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Abstract—In this study a numerical method for optimum synthesis of planar mechanisms, generators of
functions, paths and rigid motions, is presented. Design parameters have wide variability ranges, inside
which first guesses, demanded by the iterative minimization procedure, can be chosen at random.
Kinematic analysis is carried out by decomposition of the mechanism into Assur groups; mechanism
assembly is managed by the construction of a proper penalty function. Optimization is carried out by using
a non-derivative and a quasi-Newton method in series. Some optimum design examples are presented to
illustrate the power of the method.

INTRODUCTION

Many closed-loop mechanisms are used to guide a rigid body, to generate a path, or to realize a
functional relation between the motion of a motor-link and the follower-link.

The aim of dimensional synthesis is to determine the geometric characteristics of the links which
allow the mechanism to perform the desired task.

Dimensional synthesis based on optimization techniques has developed substantially since the
1960s. The least square method was initially used [1-3] and followed by many others, such as the
penalty function approach [4], geometric programming approach [5] and sensitivity coefficient
method [6]. In these approaches, mechanism assembly was nearly always managed by considering
the compatibility equations of the mechanisms as constraint equations to be satisfied by design
variables.

In a paper on the synthesis of a six-bar linkage, Pakes ez al. [7} proposed an original and simple
method for handling mechanism assembly, embedding the assembly criterion in the penalty
function.

More recently, methods based on analysis of design sensitivity have been introduced [8-10]: the
penalty function is minimized subjected to the state equations of the mechanism and to equality
and inequality design constraints; the input parameter (e.g. crank rotation) is discretized into a
finite set of points; and a special technique is used to calculate the derivatives of the constraint
equations.

Selective precision synthesis (SPS) and stochastic formulation must also be mentioned.

In the SPS approach [11-13] the kinematic chain is considered to be composed of dyads,
“accuracy neighbourhoods” are constructed around the precision points, and a mechanism that
goes through each accuracy neighbourhood is found with an optimization technique.

In stochastic formulation [14-16] not only structural but also mechanical errors are minimized,
because of the importance of manufacturing and assembly errors in the practical construction of
mechanisms.

The major difficulties of optimum synthesis, as shown by various authors, essentially deal with
the non-linearity of position analysis and management of mechanism assembly during the iterative
minimization procedure.

In this study, the assembly criterion is embedded in the penalty function as in Ref. [7], and
kinematic analysis is carried out by mechanism decomposition into Assur groups.
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Fig. 1. Flow chart for method of optimum synthesis.

PROPOSED METHOD

Figure 1 shows the flow chart of the proposed method. The project specifications in the various
types of synthesis are:

—number of design points;

—coordinates of the tracer point in the design points for path generation;

—coordinates and rotations of the rigid body in the design points to guide the rigid
body;

—rotations of the follower-link in the design points for function generation. In any
case, the design points are correlated with motor-link positions (synthesis with
prescribed timing).

The designer must then choose the type of mechanism (e.g. a four-bar mechanism) and fix the
design variables, which may be link lengths, coordinates of fixed pivots, initial rotations of motor
cranks, or the position of a particular point of a link.

The following step, the initialization of the design procedure, is relatively easy, because the
proposed method allows wide variability ranges of design parameters. Although the choice of a
guess vector for the design parameters ensuring mechanism assembly is advisable, the following
examples show that (within the variability ranges) good solutions can be reached by starting from
a random guess vector.
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Fig. 2. Assur groups.

The choice of tolerances of the optimization procedure depends on the accuracy required for
output motion.

Automatic search for the optimum mechanism is based on the search for a vector of design
parameters minimizing the penalty function.

In the proposed method, the penalty function not only considers the error between the desired
motion and the motion obtained with the current vector of design parameters (the so-called
structural error), but also embeds the assembly criterion. If a vector of design parameters does not
allow mechanism assembly, a sharp increase in the global penalty function follows, shifting the
search to other directions.

A key feature of the proposed method is decomposition of the mechanism into Assur groups,
in order to perform position analysis and the assembly tests required to calculate the penalty
function. This approach usually speeds up kinematic analysis considerably.

The minimization procedure is carried out by using two subroutines in series, the first for a coarse
search and the second for a fine one. The use of a stable subroutine for coarse search is the key
feature that allows such great variability in design parameters.

Kinematic analysis

Problems due to non-linearity of the closure equations are overcome by carrying out kinematic
analysis by decomposition of the mechanisms into elementary groups, also known as Assur groups
[17-19]. This method consists of considering the articulated system as made up of motor-cranks
to which elementary groups, which do not modify the degrees of freedom of the mechanism, are
then added.

The solution of the complete mechanism is performed by solving first the equations
of the motor-cranks and then those of the Assur groups. The advantage is that the equations
of each single group are dealt with separately. Moreover, the equations of the first- and
second-class Assur groups do not require iterative procedures for their solution. In this
work, therefore, only the class of mechanisms that can be made up with such groups is
considered.

Figure 2 shows the elementary groups implemented in the module that executes kinematic
analysis during the optimization iterative procedure.

Assembly is checked in every position by verifying the assembly conditions of all the elementary
groups making up the mechanism.

If a group cannot be assembled, the residual of the assembly conditions is calculated. This
residual is the difference between actual distance d and the value of this distance that allows group
assembly.
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Penalty functions

If the mechanism can be assembled in all positions, penalty function F is equal to the structural
penalty function. This function takes into account the error between the desired motion and the
motion obtained with the current vector of design parameters. It is defined as follows:

R’= x./;:+ wyf:v-l— Wﬂf;"

Terms f,, f, and f, are the sums of the squares of the errors in n design points on x, y and on
angle 6 respectively:

L=iurmm:ﬁéiurmﬁ.ﬁé2@—%ﬁ

where (x,,y,,0,) indicate design coordinates and (x,, y;, 6;) are the coordinates supplied by
kinematic analysis of the mechanism with the current vector of design parameters.
Weights w,, w,, w, allow the desired type of synthesis to be performed:

—if w, = w, = 0 and w, # 0, function generation is obtained, 8 being the follower-link
rotation correlated to motor-link rotation;

—if w, #0, w, # 0 and w, = 0, path generation is obtained,;

—if w, #0, w, # 0 and w, # 0, rigid body guide is obtained, and in this case @ is rigid
body rotation.

Information about the transmission angle may be inserted into the penalty function by adding
a term that increases when the transmission angle decreases.

If the mechanism cannot be assembled in all positions, function F, related to the non-assembly
condition is introduced. This function must depend on number m of positions in which the
mechanism cannot be assembled and on the extent of the modifications which must be carried out
to obtain a closed-loop configuration. It is therefore:

m
—_ 2
Fa_‘waZr[:
i=1

where X7, r7 is the sum of the squares of the residuals of the first group that cannot be assembled
and w, > 1 is an amplifying coefficient.
The penalty function is thus:

F =F,+ F*,

where F* is the penalty function calculated in the previous iteration. The addition of F* has the
purpose of keeping F, large, even when the sum of the squares of the residuals is small.

Some tests have shown that number m of positions in which the mechanism cannot be assembled
is the essential factor. Therefore, the term X7, r2 can be replaced with a conventional value of the
structural penalty function, calculated by assuming all null values for (x;, y;, 8,) variables in m
positions.

With this approach, if starting conditions correspond to a mechanism that cannot be assembled,
the penalty function is continually changed until the minimization algorithm determines a vector
of parameter values that does allow mechanism assembly. However, when starting from a
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mechanism that can be assembled, the algorithm selects the directions of parameter variations to
avoid non-assembly areas.

The error between the desired motion and the obtained motion of the synthesized mechanism
is represented in the following examples by mean errors:

M:
M:

1 1
= 1 fx; — xd,l €ymean — " Zl lyi— }’4,| €lpnean — P |6; — 9,1, |
i i= i

Exman ~

[}

1
Coman = L M= %4 P+ (i =y Y17

and by maximum errors:

Cx,,m = 1X; — Xy, |max Eymax = |y1 - ydi |max 69,,,3, = |01 - Gd, Imax

€xpne = (6 = X4 Y + (¥ — ¥4,V Iriix-

*Ymax

Minimization algorithm

Minimization is first carried out by using the BCPOL subroutine of the IMSL library [20], based
on a direct search Complex algorithm; no derivative information is taken into account.

A Complex is a set of 2N points in an N-dimensional space; the algorithm iterates by replacing
the point of the Complex with the highest function value with a new point with a lower function
value, and stops when the difference among the function values in the points of the Complex is
less than given tolerance §. The algorithm also stops when a second criterion, based on the standard
deviation of the function values, is satisfied.

This non-derivative method turns out to be very suitable for this type of problem, since it gives
the design parameters a wide range of variability.

If the accuracy of the solution obtained with the BCPOL subroutine is not sufficient it may be
improved by using a more accurate subroutine in the neighbourhood of the minimum found by
the BCPOL subroutine.

Subroutine BCONF of the IMSL library is used for this search. It is based on a quasi-Newton
method, and the gradient of the function is calculated with a finite-difference technique. The
minimization procedure is stopped when:

gl < 4,

where g(h,) is the function gradient in point h, and 1 is a gradient tolerance.

Subroutine BCONF allows good accuracy, but it performs well only if the variability range of
the design parameters is about ten times shorter than the variability range allowed by subroutine
BCPOL.

NUMERICAL EXAMPLES AND DISCUSSION

Example 1

As a first example, a four-bar mechanism was synthesized with a point belonging to coupler plane
able to generate a conchoid path represented by the law:

r=p cos(a)+%

P(x4,y4)=P{—rcos(x); —r sin(a,)] o, =(i — 1)-257(—;(1’ =1, 50),

where p was assumed equal to 10 units and « was variable from 0.0 to 6.28 radians. The conchoid
curve was described with 50 precision points.

Figure 3 shows the desired path, defined with respect to the reference frame, the sketch of the
four-bar mechanism to be synthesized, and the 10 design parameters which were the position of
the two ground pivots (h;, b, ks, h,), link lengths (hs, ks, by, hy) angle (k) and initial crank rotation
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7z OPTIMUM

i DESIGN
w c o
2 | RANGEOF |2 801 | O
= DESIGN |EWo| 26
& |PARAMETERS|Z 5 £ E U
hy | 25| 25|-13743 | -a.205
hy | 25| 25| -2486 | 4784
hg | 25| 25| 8771 -2011
hy | 25| 25| 20028 4479
hg | 10| 60| 16.285 | 59.997
hg | 0:01| 60| 21051 7.780
hy | 0.01| 60| 34559 | 50.439
hg | 0:01| 60| 48067 | 56.935
hg | -314| 314 |-29751 |-1.4003
hyo| -314| 31415620 |-0.8683

€ 6671 | 0.
ERRORS: XY max 0.441
5198 | 0.250

XYmea

Fig. 3. Four-bar conchoid path generator mechanism.

(h1p). The variability ranges of the design parameters are also shown in Fig. 3. Note that the ranges
are greater than the size of the path to be achieved.

Optimization was carried out 50 times, starting from 50 different initial guess vectors determined
by a random procedure. Minimization was performed with subroutine DBCPOL, with a tolerance
factor of 3 = 107° and the parameters of the penalty function w, = 10, w, =10, wo=0, w,= 10.

The optimization procedure was able to find 50 mechanisms that could be assembled, although
only seven of the 50 guess mechanisms could be assembled.

The conchoid path was traced with very good accuracy (€41, < 0.4) by 16 mechanisms, and with
sufficient accuracy (0.4 <e¢ < 0.6) by 28 mechanisms; only six mechanisms had poor accuracy
06<¢, ).

All mechanisms were double-crank linkages with the two ground pivots and tracer point close
together.

XVmean

301’
20
CONCHoID_-19
PATH X
L}
2353rd 60
iteration
INITIAL GUESS PATH

1st iteration

Fig. 4. Initial and final paths of four-bar path generator mechanism of Fig. 3.
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hg |6.28 [6:28 -0.6691 | .0.2461
€

ERRORS: : XY max | 567.04 | 0.382
XY mean| 549.58 0.088

Fig. 5. Inverted slider crank mechanism.

The solutions showed smaller errors when the tolerance factor was reduced. Improved
performance was obtained by keeping the two ground pivots closer, by shortening the coupler-link,
and by lengthening the cranks, which quickly reached the extreme values of their variability ranges.

Some mechanisms with similar configurations were also found. Among the groups having
different configurations linkages similar to cognate mechanisms were noted.

Figure 3 shows the parameters of the best solution mechanism with the corresponding guess
vector, and the maximum and mean errors obtained.

Figure 4 shows the paths described by the initial guess mechanism and by the best mechanism.
Note how the iterative procedure did converge, although it started from a configuration describing
a very different path.

Example 2

As a second example, a mechanism composed of a motor crank and a type II dyad (Fig. 5) was
synthesized, assuming the conchoid curve of the previous example as a design path.

The position of the ground pivots (A, h,, h;, h,), length and initial rotation of the motor crank
(hs, hy), and position (k, h,) of the point describing the path, were assumed as design parameters.

The optimization procedure, the best results of which are shown in Fig. 5, led to configurations
having link 4, tending to line up with the sliding axis and the line joining the two ground pivots
tending to pass through the origin.

The results were satisfactory (subroutine DBCPOL was used, with a tolerance factor of § = 1073
and the parameters of the penalty function w, =1, w, =1, wy =0, w, = 10). With lower tolerance
factors, better results were obtained, but they tended to lengthen 45 and A, up to the allowed limits.

Example 3

To compare the accuracy of the method with the results obtained by other authors [8], the
problem of the synthesis of a four-bar mechanism describing a rectilinear path was considered.

Figure 6 shows a sketch of the four-bar mechanism with its eight variables. The distance between
the fixed pivots was constant and equal to 10 units.

For a crank rotation of 0.6982 radians, the coupler point had to describe a rectilinear path from
x; =293 to x,=7.08, which was divided into 19 equidistant points corresponding to 18 crank
rotations.

The values given in Ref. [8] were used as first guess variables. Different weights were adopted
for the penalty functions related to the errors along coordinates x and y (w,=0.01 w,=1,
respectively), to favour path rectilinearity.
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2 OPTIMUM

w DESIGN
s YIS
A 2 | RANGEOF | g2 G| , O
STRAIGHT LINE PATH z DESIGN ELSQ ! Q
& |PARAMETERS| Z g Y| T &
h1 20 1 3.5 | 3.5552
h2 20 1 9.0 | 5.8597
h:3 20 1 10.0 | 2.1862
h4 3.14 | -3.14 | -1.3491 |-1.3987
hg [ 314 | 314 1.0 |-1.0407
he | 10 -10 25 |-2.7541
h, | 20 0 6.5 | 6.6746
hg | 314 | -3.14 1.0 | 1.7559
€ 1.36032 |0.00036

ERRORS: ' Mmax

Ymean| 0-94006 0.00018

Fig. 6. Four-bar straight-line generator mechanism.

Optimization was conducted first by subroutine DPCPOL (tolerance factor § = 10~%) and then,
to improve the results with little variation in the design parameters, by subroutine DBCONF
(tolerance factor 4 = 107°).

The results are shown in Fig. 6, with the initial vector and maximum and mean errors obtained
along coordinate y.

The maximum error obtained here was nearly three times lower than that obtained in Ref. [8]
for the same problem (0.001175). The maximum error in the position along the axis x was 0.00393.

In a second simulation, 30 minima searches were carried out, starting from random-generated
guess vectors inside the variability ranges of Fig. 6. It can be observed that the amplitudes of the
variability ranges are nearly five times larger than the length of the rectilinear path and may reach
360° for the angles.

Table 1 shows the four best solutions obtained in this simulation, with a DBCPOL tolerance
factor of § = 10~° and a DBCONF tolerance factor of 4 =102

The solutions correspond to mechanism configurations which were very different from one
another: in particular, the fourth solution had a very long crank (reaching the maximum allowed
value) with a pivot positioned above the rectilinear path to be constructed.

Maximum errors along axis y were about 10 times higher than those of the solution shown in
Fig. 6. In the fourth case the reach of a boundary for parameter s, caused larger mean and
maximum errors.

Table 1. Optimum results for four-bar straight-line
path generator

2 OPTIMUM
E _ EDESIGN —
= o Z [
g | "oson |pzhlB2E(225(E28
o [PARAMETERS|F EL|B EL|FEL|REY
h, 20 1| 3.1505 | 3.0429 [ 2.4093 | 20.0000
hy | 20 1| 6.3664 | 7.7982 | 13.3617 | 14.7037
hy [ 20 1| 6.0663 | 8.9634 | 7.2850 | 10.6531
h, | 314 | -314 | -1.3740 | -1.3658 | -1.3406 | -0.9316
hg | 3.14 | -3.14 | -1.0920 | -1.1082 [ -0.5059 | 0.2811
hg 10| 10| -4.6563 | -5.2170 | -9.8005 | 7.5324
hy | 20 0| 80853 | 85157 | 123781 | 12.3056
hg [ 314|314 13134 10078 1.1550 | 0.0900
EARORS € ynax [0.00352 10.00277 [0.00447 |0.00881
€yn0an|0-00067 [0.00074 |0.00089 [0.00136
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@ OPTIMUM
] DESIGN
S | ranceoF |20 5] 5
RIGID < -
BODY | beseN |EES[Z5
& |PARAMETERS|Z g L) £ ¢
6= /2 rad h, 1| 20 |185845 | 58910
A STRAIGHT h, 1 20 | 7.1545 | 12,6436
YT UNEPATH hy 1 20 | 17,8077 | s.6868
hy {314 | 314 | 19561 [ 19180
hg |-3.14 | 3.14 | 38151 [-0.50525
— he | 10| 10| 13719 | 50037
+ h, 0 20 [ 11.3135 | 5.0315
hg | 314 | 3.14 | -0.2408 | -0.7182
h -3.14 3.14 1.1097 1.4400
€X max © 0.0777
c
ERRORS: JYmax |95 2| *
Ymean| 8 € S | 0.0230
0 S 2 8| o.0409
max | 8 %8
€8 mean 0.0200

Example 4

Fig. 7. Four-bar rigid body guidance mechanism.
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In the fourth example, the problem of rigid body guide was treated. A four-bar linkage had to
move a rigid body with a given constant inclination (around axis x) along the rectilinear path of

Example 3.

The inclination of the rigid body with respect to link 4, was added as a design parameter (k).

2 OPTIMUM
w4 u DESIGN
Dwell range S | RANGEOF FINAL
N = | DESIGN BEST
72 o w2 2 & |PARAMETERS| VECTOR
o [rad] hy | -3.14| 3.14 | -0.9350
hy 0.1 10 0.9406
hg 01| 10| 38059
hy 0.1 10 4.1576
hg 01| 10 6.3000
hg | -314| 314 | 05519
hy 0.0 10| 57462
hg 10| 10| -0.9047
hg 01| 10 5.9308
ho{ 01| 10| 53474
hyy| -814] 314 | -0.6820
ERRORS: EOmax | 00174
€0mean| 0.0067

MMT 273y

Fig. 8. Watt II six-bar linkage function generator.
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Optimization was carried out starting from 30 first guess vectors generated by a random
procedure. Subroutine DBCPOL was used with 6 = 107, and the weights in the penalty function
were w, =1, w, =1, wy = 10, w, = 10. The parameters of the four-bar mechanism having the lowest
value of the penalty function are shown in Fig. 7.

Example 5

The last example deals with optimum synthesis of a sine function generator mechanism with a
dwell range. This problem can be found in looms where combs have to perform a sine beat-up
diagram with a dwell during grasping, cutting and weft exchange.

A Watt II mechanism was chosen; its sketch and the design parameters with their variability
ranges are shown in Fig. 8. The function to be generated, also shown, had a sinusoidal part and
a dwell range of the same duration.

Mini:na search, starting from 30 random generated guess configurations, provided some good
results, one of which is shown in Fig. 8. Subroutine DBCPOL was used with § = 10~°, and the
weights in the penalty function were w, =0, w, =0, wy =10, w, = 10.

CONCLUSIONS

The proposed method for the optimum synthesis of planar mechanisms was tested in some
problems of path generation, rigid body motion and function generation. It performs well and
ensures good accuracy, especially when the two minimization subroutines are used in series.

The method is able to cope with non-assembly conditions, and very extended variability ranges
can be selected for design parameters.

First guess vectors were determined at random inside their variability ranges, to demonstrate the
robustness of the method.
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UNE SIMPLE METHODOLOGIE NUMERIQUE POUR LA SYNTHESE
OPTIMALE DES MECANISMES DECOMPOSABLE
EN GROUPES D’ASSUR

Résumé—Cet étude présente une méthodologie numérique pour la synthése optimale des mécanismes plans
générateurs de fonctions et de trajectoires et pour le guidage des corps rigides. Les paramétres de projet,
représentés par les charactéristiques géometriques de chaque membre et par les positions des pivots fixés
au chassis, peuvent changer entre les domaines de variabilité dans I'intérieur desquels sont choisis d’une
maniére casuelle les valeurs de prémier essai requis par le procés itératif de minimisation. L’analyse
cinématique est conduite par le moyen de décomposition du mécanisme en groupes d’Assur. L’assemblage
des mécanismes est gérée par une construction opportune de la fonction pénalité sans l'imposition
d’équations sur les paramétres du projet. L’optimisation est conduite par une méthode non-dérivative et
par une quasi-Newton. Quelques exemples de projet optimal sont présentés, pour illustrer les potentialités
de la méthode.



