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Abstract: Diffusion models represent an interesting approach to the study of technical change and
evolutionary processes. In the business area many models based on the diffusion approach have been
developed particularly in forecasting, as in new product analysis. Some authors have also used these
models extensively in technological forecasting applications. Despite the fact that at present diffusion
models are a widely employed tool, their value compared to other forecasting techniques has not yet
been well established. The aim of this paper is to carry out a comparative analysis on the descriptive and
forecasting accuracy of the Box—Jenkins and diffusion models, on the basis of many different time series.
The numerical procedures used in parameter calibration and the performance indexes employed in
comparing the models’ performance are explicitated. Some general conclusions regarding the conditions

of diffusion models practical application are put forward.
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1. Introduction

Diffusion models represent a powerful class of
conceptual tools that have been used for various
applications in a multitude of disciplines. Initially
diffusion models were employed to describe the
temporal spread of phenomena. In the economic
perspective, for example, they are used to de-
scribe the spread of technological innovations.
Some authors, e.g. Griliches (1957) and Mans-
field (1961), have applied these models in an
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explanatory fashion, testing specific-based hy-
potheses.

Diffusion models have often been viewed as
normative models. The normative approach is
based on the assumption that there should be
certain observed regularities in the data. The well
known ‘epidemic model’ owes its notoriety to the
fact that it represents the typical observed pat-
terns by a simple S-shaped curve. In this view the
epidemic model has given rise to a wide range of
diffusion models. Normative models are used, for
example, as a basis for planning commercial activ-
ities, and in considering the ‘natural’ growth shape
of sales.

The most common application is perhaps in
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forecasting, particularly in the business area. In
Marketing, e.g. new product analysis, many mod-
els based on the diffusion approach have been
developed (Mahajan and Wind, 1986; Mahajan,
Muller and Bass, 1990). In some cases these
models have even shown themselves to be useful
ex-ante (Easingwood, 1989) because they make it
possible to take advantage of analogies with pat-
terns of similar phenomena. Several authors, es-
pecially Martino (1983) have also utilized these
models extensively for technological forecasting
applications. Furthermore the diffusion models
denote an interesting approach to the study of
technical changes and evolutionary processes.

As is well known, there is at present a great
need of new planning and forecasting tools in the
business field (as in strategy formulation, policy
making, purchasing, inventory control) particu-
larly in the presence of turbulent environments.
Despite the fact that diffusion models are today
an important alternative approach to forecasting,
their value compared to other forecasting tech-
niques is not yet well established. In some cases
the simplest diffusion models seem to work well
(Bass, 1969; Coleman et al., 1966; Mansfield,
1961), in other cases the results are not as good
(Bernhardt, 1970). Their success is normally tied
to judicious choices of situation, type of innova-
tion, population and time frame for analysing
data. Note that in the literature these choices
often have been made ex post, for successful
innovations; but in operative contexts the choice
of the forecasting model must be made ex-ante.

There is a virtual paucity of research on the
validity of forecasts made using diffusion models.
There are no systematic comparisons with best
time-series techniques, particularly with the
Box-Jenkins method (Mahajan and Peterson,
1985; Mahajan and Wind, 1986; Makridakis and
Gardner, 1988).

The reason for this is the fact that the two
classes of models have been developed within
different research perspectives referring to differ-
ent kinds of phenomena. Diffusion models origi-
nated from an industrial economics tradition, and
only later they were applied in business eco-
nomics; their development has been undertaken
to try to improve the description of the temporal
spread of new technologies. ARIMA models, in-
stead, derive from mathematics and statistics tra-
dition and can be applied to a great number of

very different phenomena. The conditions in
which they may be utilized are also different.
Based on the literature one might expect that the
ARIMA models to work well, as predictors, in
the case of relatively stabilized phenomena, where
there is a strong stocastic component, for which
many data points are availablé (not less than 30,
according to the basic work of Box and Jenkins,
1970). On the contrary one would expect the
diffusion models to work well when dealing with
the spread of a new product or technology. One
would also expect a good fitting performance by
ARIMA (Makridakis et al., 1984), but there are
no sufficient comparative evaluations.

The aim of the paper is to compare, in an
empirical way, the descriptive and the forecasting
power of Box—Jenkins and diffusion models. The
analysis is carried out on the basis of many time
series, differentiated according to industry, coun-
try, technology and temporal horizon. The pur-
pose is to contribute both in investigating the
properties of these forecasting techniques and in
formulating operative considerations on their
performances and application fields.

2. Some conceptual problems in forecasting

Before going on to discuss the methods to be
adopted in comparing the fitting and forecasting
accuracy of Box-Jenkins and diffusion models, it
is essential to recall some basic concepts on the
use of forecasting algorithms. Any theory is based
on several assumptions; if one of these assump-
tions is not realistic, the theory can predict events
which are different from empirical observation.
In the forecasting field there are often discrepan-
cies between theoretical predictions and empiri-
cal results. “The major reason for such discrep-
ancies is that some of the theoretical assumptions
do not hold” (Makridakis et al., 1984).

Unfortunately there is no way to guarantee
this stability. The habit some forecasters have of
choosing the model with the largest correlation
coefficient with respect to the available data as a
basis for subsequent forecasts “is an extremely
bad practice: forecasters are not concerned with
how well a curve fits past data but, rather, with
how well the curve will perform as a forecast”
(Martino, 1983). Hence the most relevant aspect
of forecasting “is to know the methods which can
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minimize the post-sample forecasting errors”
(Makridakis et al., 1984).

Keeping this in mind, empirical comparison
remains the fundamental methodology when dif-
ferent forecasting models are to be compared in
an objective way. The empirical approach sup-
plies a sound basis with which to investigate the
accuracy of forecasting algorithms; furthermore it
allows one to formulate various kinds of hypothe-
ses, e.g. about the most appropriate methods for
different classes of phenomena. From this point
of view it is important to test the various forecast-
ing models by means of many different time se-
ries, with respect to the length (number of data
points) and the phenomenon from which they are
obtained.

» The choice of the time series which are to be
analyzed is a delicate problem. Regarding the
kind of phenomena and their measure unit, some
authors suggest diffusion models should only be
employed in the case of a single good unit-single
adoption decision; but other authors do not agree.
In reality diffusion models are largely employed
in a broad meaning; the well known seminal work
by Griliches on the hybrid corn did not consider
single good units, but the new culture acreage
percentage (a proxy of output amount) in differ-
ent States as a measure of diffusion. In other
recent works the diffusion of process innovation
is evaluated through the output (e.g. in tons)
made by new plants (see Poznansky, 1983; Meade,
1984) and there does not seem to be any major
disagreement on this. Some authors even use
diffusion models to study phenomena started long
time before (e.g. electrical energy: Quaddus, 1986,
Bodger and Tay, 1987; telephones: Young and
Ord, 1989; tractors: Mar Molinero, 1980) and also
there do not exist any objections.

Another critical aspect regards the length of
the time series. It is well known that ARIMA
models are totally unemployable, for theoretical
reasons, in ‘short’ series, while diffusion models
are more apt to represent the initial phases of the
spread on the market of a new product. However,
according to certain authors, ARIMA models
provide acceptab{e results even when there are
about 20 data points (see for example Lusk and
Neves, 1984); on the other hand diffusion is often
a very slow process which lasts many years (e.g.
Rosemberg, 1976).

To conclude it can be said that in comparing

ARIMA models with diffusion models, it seems
important, in the interest of scientific analysis, to
verify their performances empirically both with
long and short time series describing different
kinds of phenomena. Note also that the ex ante
choice of only suitable data for each class of
models could invalidate our analysis, the risk
being that in this way one only ascertains what
only initially intended to.

3. Diffusion models: A synthetical overview

Different types of forecasting methods are
identified in literature. A first broad subdivision
distinguishes between judgmental or qualitative
methods (e.g. Delphi methods and so on) and
more formal quantitative methods. Among the
latter, another two classes are identifiable: non-
causal and causal methods. The former includes
time-series analysis techniques such as ‘naive’
methods, moving averages and so on; the latter
encloses regression analysis, econometric models
and other ‘explanatory’ techniques.

Although diffusion models in general could be
classified as causal models (Lilien and Kotler,
1983; Martino, 1983) as they indeed attempt to
take into account the process determinants, it is
not correct to define their simplest releases (e.g.
logistic models) as causal, in that they assume the
adopter imitative behavior as the only force driv-
ing the diffusion process. So it is possible to
define them as a ‘deterministic’ description, the
generic S-shape of the time pattern being fixed.
In the following pages the mathematical and de-
scriptive features of some of the best known and
most investigated S-shaped diffusion models are
summarized (for further reading we suggest opti-
mal and detailed overviews today available, for
example Skiadas, 1985; here we refer however to
the taxonomy suggested by Mahajan and Peter-
son, 1985).

The basic or fundamental diffusion logistic
model can be expressed by the following differen-
tial equation:

dN —
di” =g(0[N-N(1)] €

where N(¢) is the cumulative number of adopters
at time f; N is the total number of potential
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adopters, i.e. the ceiling of N(z); (dN(¢)/d¢) is
the number of new adopters, i.e. the diffusion
rate at ¢; g(t) the imitation or diffusion coeffi-
cient.

The specific mathematical expression of g(z)
shapes the form of this ‘deterministic’ equation,
settling, above all, its point of inflection, i.e. the
maximum of the d N(¢) /d¢ function, and its sym-
metry, which is often Considered in relation with
the features of the imitative forces causing the
diffusion process. If g(¢) is a constant, we obtain
the so called external-influence diffusion model:

dN(1)
dt

=a[ N - N(#)]. (2)

This model assumes that the information flow-
ing from an external source is the diffusion agent.
It was employed above all by Coleman et al.
(1966) in studying new pharmaceutical products.

The internal influence model, so called because
it considers the adoption as induced by interper-
sonal contacts, is based on the epidemic paradigm.
Its mathematical form derives from the tradi-
tional biological studies on the spread of a dis-
ease through a population:

dN(t)
dt

=bN(1)[N-N(1)], (3)

and states that diffusion is a function of interac-
tions between prior and potential adopters; it
represents the pure imitation diffusion model.
Integrating (3) we obtain a perfectly symmetric
logistic curve.

The constant b, often inadequately named
‘speed of diffusion’, reflects the imitative force
due to the communication channels operating
within the reference population. Thanks to the
seminal works of Griliches (1957) and Mansfield
(1961), this is one of the best known and most
applied diffusion models in the literature.

The Gompertz function, often employed in
technological forecasting (see e.g. Martino, 1983)
as a ‘growth curve’, may also be viewed as an
internal diffusion model.

The Bass mixed-influence diffusion model
(1969) is the ‘simple’ algebraic sum of the previ-
ous models:

dN(t)
ds

=[a+bN(t)][N=N(1)] (4)

and takes into account both external and internal
influence forces.

The shape of this generalised logistic curve is
determined by both a and b whose ratio gives
the relative weight of the two forces. Some fore-
casting applications of this model, especially with
consumer durables, were studiéd by Bass (1969),
Dodds (1973) and Tigert and Farivar (1981), giv-
ing quite satisfactory results.

Various important objections to the basic dif-
fusion models can be raised: the number of po-
tential adopters N is constant during the diffu-
sion process; only one adoption is permitted;
both coefficients, a and b, are constant in time so
that the diffusion driving forces do not change
(this in addition implies that the population is
regarded as homogeneous) and consequently the
innovation itself does not change during the dif-
fusion process. In particular they are not ‘flexible’
in that their inflection point cannot occur at any
moment of the diffusion process, they are either
symmetric or non-symmetric because the diffu-
sion speed is a constant; so their ability to repre-
sent many diffusion patterns is rather limited.

Hence, various models were developed to
overcome this structural lack of flexibility. Based
on some empirical diffusion curves, Floyd (1968),
for example, suggested a model with a variable
‘diffusion speed coefficient’.

Expressly from the need to overcome the time
constancy of b, Easingwood, Mahajan and Muller
(1981) proposed the NSRL (Nonsymmetric Re-
sponding Logistic) model:

dN(t)
dt

= B[N(¢)/N]’[N - N(1)]. (5)

This curve may be made symmetric or non-
symmetric, with an inflection point varying be-
tween zero and one; in addition b(¢) =
(B/N®)N(t)°~! can decrease or increase with
time. Hence it is the most flexible model so far
examined.

Another important reducing assumption of the
fundamental model is the time constancy of N.
Hence other models, not analyzed here, attempt
to make N ‘dynamic’ putting, for example, N(z)
= f[S(¢)] where S(¢) is a vector of variables af-
fecting N(¢). Some ‘dynamic’ models were devel-
oped by Mahajan and Peterson (1978), Sharif and
Ramanathan (1981) and Kalish (1985).
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In the literature more complex and advanced
diffusion models which take into account other
meaningful features of diffusion processes (e.g.
repurchasing, multiple adoption and so on) have
been developed: in this paper we have chosen to
analyse only the models previously described be-
cause they are the best known, the easiest to
employ, and “one of the more heavily used fore-
casting techniques in corporate environment”
(Meade, 1984).

4. The Box-Jenkins approach

The widely known Box—Jenkins method is to-
day the most general and perhaps the most pow-
erful forecasting technique available. Indeed it
can be employed to realize an appropriate model
to analyse any set of data. This ‘flexibility’ makes
it a reference point for comparing and analysing
the performance of other forecasting techniques.

Referring to the basic work of Box and Jenkins
(1970) for a more in-depth treatment of the theo-
retical foundations of this method, in the follow-
ing pages the iterative approach which, starting
from a real pattern of data, leads to the building
of the actual forecasting model will be dwelt
upon.

The generic form of an ARIMA (p, d, q),
where p is the order of the AR part, g the order
of the MA part, and d the level of differentiation
that produces stationarity, is

a,=w,—dw,_;—...—DdW,_,

g ¥ . OB s (6)

with W, =w,—w, w,=V%z, V the derivative
operator, E[w,] =W, and z, represents the time
series.

Usually the simplest processes, with a limited
number of parameters, generally four, i.e. 0 <p
<2,2<d<2,0<qg <2, are adequate in a large
number of situatjons.

Building an ARIMA model requires the fol-
lowing three steps:

1. Identification (establishing p, d and q).
2. Estimation of ¢ and @ parameters.
3. Diagnostic checking.

The first stage is the most difficult and delicate
one, as there is no existing deterministic ap-
proach with which to tackle it. Hence the basic
task of this step is to focus on a class of models
which will then be fitted and controlled, in other
words to obtain some information on p, d and gq.

The parameter estimation step, which is today
fully computerized, may be divided into two
stages. The first consists of a preliminary estima-
tion of the parameters by a linear system where
the previously estimated autocorrelations are the
fixed terms. Then these preliminary values be-
come the input of a ‘least squares’ procedure that
computes the final identification.

The third step involves the adequacy control,
regarding the specific data series under examina-
tion, of the selected model. In this stage a great
number of statistical test can be employed, each
of them takes into account a specific feature of
the model. The statistical procedure proposed by
Box and Jenkins is based on the comparison of
the function of the residual autocorrelations with
the chi-square distribution. If the diagnostic
checking is not passed, the user will have to
return to the first step and start the building
procedure again.

5. Comparing Box—Jenkins with diffusion mod-
els: Design of the study

In this section, procedures and indexes used to
compare the descriptive and forecasting perfor-
mance of the previously described diffusion mod-
els with the Box—Jenkins method are briefly sum-
marized.

Initially the procedures used to obtain the best
estimation of the model paramieters are taken up
(a general survey on this problem, for diffusion
models, is presented by Mahajan and Wind, 1986).

In the case of diffusion models a computa-
tional sub-routine from the IMSL Library (Digital
E.C.) named ZXSSQ, has been utilized. ZXSSQ
is based on a modification of the Levenberg—
Marquardt algorithm which eliminates the need
for explicit derivatives. For other references, in
addition to IMSL Library, see Brown and Dennis
(1972), Levenberg (1984) and Marquardt (1963).
Other elements regarding this technique are given
in the Appendix.

The procedure yields the curve fitting and
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computes the coefficient of correlations R? and
the sum of square errors SSE:

SSE = f,-(s,-—Y,-)z (7)
1

where i is the i-th of the N values considered, Y,
is the computed value and S; is the actual value.
They are the indicators chosen to evaluate the
model’s fitting performance.

As far as the calibration of the Box—Jenkins
method parameters is concerned, the fully com-
puterised routine we have employed is more com-
plex.

Once an ARIMA (p, d, g) model has been
selected, the NSPE (Non-Seasonal Preliminary
Estimation) subroutine of the IMSL-Digital Li-
brary computes the prior estimates of parame-
ters. Successively, employing the values previ-

Table 1
List of time series employed

ously yielded by NSPE as input, the NSLSE
(Non-Seasonal Least Estimation) subroutine
(from the IMLS Library too) computes the least
squares estimates. When the identification and
estimation phases are completed, the procedure
goes on with the diagnostic control step, using the
chi-square test. This step is folldwed by the fitting
and the R? and SSE computation.

The procedure we have adopted in evaluating
the reliability of forecasting methods, is similar to
that used in other works (see e.g., Makridakis and
Wheelwright, 1987). With a time series containing
n observations, the identification of the model
being studied is carried out on the first 7 obser-
vations, reserving the remaining n —m to the
comparison with the corresponding outputs of the
model on different forecasting horizons. For n —
m =1 a forecast for the following period is ob-
tained, for n — m = 2 another one-period forecast

Dynamic Ram 4-K (74-85)

Dynamic Ram 16-K (76-85)

Dynamic, Ram 64-K (79-85)

Worldwide Dynamic RAM (74-85)

Steel produced by oxygen process FRANCE (60-80)
Steel produced by oxygen process JAPAN (58-80)
Steel produced by oxygen process SPAIN (63-80)
Steel produced by oxygen process USA (55-80)
Steel produced by oxygen process WEST G. (57-78)
Steel produced by oxygen process WORLD (60-78)
C.A.T. head scanner USA (72-78)

C.A.T. body scanner USA (73-78)

Optical scanner systems USA (74-79)

Worldwide photovoltaic modules (76-87)
Integrated circuits (70-85)

Peripheral equipment ITALY (76-86)

Color television ITALY (74-86)

Propylenical ITALY (67-86)

Polyester ITALY (51-76)

Car’s production JAPAN (54-85)

Shuttle-looms GREECE (74-81)

Shuttle-looms UNITED KINGDOM (74-81)
Shuttle-looms WEST GERMANY (74-81)
Shuttle-looms ITALY (74-81)

Telephone diffusion ITALY (30-42)

Telephone diffusion ITALY (48-65)

Telephone diffusion ITALY (65-80)

Electric power SINGAPORE (61-82)

Electric power JAPAN (69-85)

Telex SINGAPORE (66-82)

Acrylic fibers ITALY (72-86)

Synthetic fibers ITALY (47-83)

Float glass ITALY (53-86)

S.G.S.-Thompson
S.G.S.-Thompson
S.G.S.-Thompson
S.G.S.-Thompson
Poznanski (1983)
Poznanski (1983)
Poznanski (1983)
Poznanski (1983)
Poznanski (1983)
Poznanski (1983)
Easingwood et al. (1981)
Easingwood et al. (1981)
Tigert and Farivar (1981)
Strategies Unlimited
S.G.S.-Thompson
IS.T.AT.

I.S.T.A.T.

I.S.T.A.T.

IS.T.AT.

IST.A.T.

O.CD.E.

O.CD.E.

O.C.D.E.

O.C.D.E.

STET Group

STET Group

STET Group
Quaddus (1986)
1.S.T.A.T.

Quaddus (1986)
I1.S.T.A.T.

1.S.T.AT.

IS.T.AT.
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and a two-period forecast are obtained and so
forth.

Therefore from one series it is possible to
obtain n —p one-period forecasts, n—p —1
two-period forecasts and so forth, where p is the
lowest number of samples used in the identifica-
tion. This allows one to evaluate the accuracy of a
large number of forecasts (for example 30 series
yielded more than 350 one-period forecasts).

In the literature different performance mea-
sures of forecasting accuracy are used: the best
known and most employed are the Average
Squared Error (ASE) and the Mean Absolute
Percentage Error (MAPE).

Following Makridakis (1984), our performance
analysis will be carried out on the basis of the
"MAPE:

I 2 I8 i — Y ire!
MAPE, =~ ¥  — 1),
bop=1 Sn—k+1
i=1,...,MAX, (8)

where MAPE, is the MAPE concerning the tem-
poral horizon of length i, Y, _, ., is the predicted
value at n —k+1, §,_,,, is the ‘real’ value at
n—k-+1 and MAX is the temporal horizon’s
greatest length. i

By means of the procedure previously de-
scribed a great number of forecasts (and MAPE-
values) have been generated. The average MAPE
computation and table presentation are carried
out by a suitable computer subroutine.

The analysis was conducted on 33 time series
collected from literature on diffusion, and there-
fore previously employed by other authors, and
from national and international statistical sources
(OCDE, ISTAT, etc.). For the reasons which
were mentioned in Section 2, they were selected
considering a set of different process and product
technologies which are spreading into different
geographical and social environments. Data be-
long to various industrial sectors (basis industry,
manufacturing, chemical, electronics and biomed-
ical industry, public services) and concern several
phases of the diffusion process, from the initial
stages to the complete spread (see Table 1). The
series are also* different as far as length and
patterns are concerned.! Note that, compared to

1 A copy of all series used in this paper is available from the
authors on request. All but one series have one data point
_per year; the remaining one does not show seasonality.

what is suggested in the literature, diffusion mod-
els are also fitted to many data (the longest series
have more than 20 data points) and the ARIMA
to few (less than 11 data points in the shortest
series). This is done in the interest of scientific
analysis as stated before.

6. Main results
6.1. Model fitting

In the following pages the performances of the
single diffusion models are compared; then the
comparison with Box—Jenkins is carried out.

We attempted to put together the advantages
of flexible and dynamic models (see Section 3) by
eliminating the hypotheses of constancy of the
population and of diffusion rate. In this way it is
possible to develop a new model whose derivative
expression is:

dN(1)
di

where the parameters to be estimated are four in
number. Note that (9) becomes NSRL if § =0.
By means of (9), which is indicated in the follow-
ing as SSDFM? the effects on the fitting and the
forecasting power of an additional parameter can
be evaluated.

Among diffusion models, NSRL and SSDFM,
which in practice are often indistinguishable, ap-
pear to be the best fitting models in 19 cases out
of a total of 33 time series. In the remaining 14
cases they give the second best results. A very
good fitting ability is provided by the Bass (Mixed)
model®, which generates the lowest SSE value in
14 cases. In some series, Floyd and Gompertz
models SSE values are comparable with the best
one, but generally they are found to be at least
one order higher. The epidemic model, here re-
ferred to as Dodd model, clearly gives the worst

=BN(1)*[N*N(1)°-N(1)|,  (9)

2 S-shaped Dynamic and Flexible Diffusion Model. Some
analytical consideration on the characteristics of this model
are in Gottardi (1988). ‘

3 The Bass model gives good results mainly in fitting the
diffusion patterns in the public service sectors. This is
probably due to the fact that the action of ‘external agents’
is taken into account in its mathematical formulation.
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results, yielding the highest SSE and the lowest
R? no less than 31 times (see Table 7 for the
complete fitting comparison results).

On the basis of these results NSRIL, SSDFM
and Mixed models supply a description of the
technological diffusion process which is better
than other logistic models considered here. The
descriptive ability of the Mixed model proves
particularly good, especially in comparison with
more flexible ones; also Gompertz shows a rela-
tively good fitting performance. Figures 1 and 2
report some results on fitting comparation pat-
terns.

Proceeding with the comparative evaluation of
the Box—Jenkins method, our analysis displays its
quite evident inferiority in descriptive power when
referred to diffusion models. Only in 14 cases in
fact it is equivalent to the latter; in the remaining
cases it presents a much higher SSE-value.

According to the theory, this approach does
not permit a good identification with length lim-

Table 2
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ited time series: this explains the improved fitting
accuracy which can be observed when the num-
ber of data points increases (see Table 2, the
worst models are omitted). Referring to fitting
outcomes, this technique is however still employ-
able when time series have a 15 data point length
at least. This is certainly less than is usually
indicated in the literature (as previously recalled,
other authors’ empirical results, e.g. Lusk and
Neves, 1984, suggest about 20 data points). Fig-
ures 3 and 4 report some fitting comparisons
between Box-Jenkins and the best working diffu-
sion models.

6.2. Forecasting accuracy

To analyse the forecasting accuracy of the
models only 30 time series have been employed,
excluding the shortest ones for obvious reasons.
The detailed results of the analysis are repre-
sented by the values of average MAPE which are

Average values of R? for number of data points in different models

Model Time series data points
0<n<10 10<n<15 15<n<20 20<n<25 25<n <30 n>30
@®* =2 82 @ 3)* 3
NSRL /SSDFM 0.966 0.947 0.965 0.993 0.985 0.971
Mixed 0.967 0.960 0.963 - 0.977 0.978 0.953
Gompertz 0.916 0.886 0.910 0.969 0.984 0.953
Box-Jenkins 0.706 0.871 0.950 0.985 0.973 0.974

2 Number of series
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Number of times in which each diffusion model turns out to be the best, according to MAPE, for different temporal horizons

Temporal horizon

1 2 3 4 5 6 7 8

30)2 30y? (26) ® (25)® (25) 23) - 19)2
NSRL 17 14 12 12 16 13 11 8
Mixed 9 8 7 5 4 4 3 4
Gompertz 4 7 6 7 S 6 7 7/
Floyd - 1 1 1 - - - -
Dodd - - - - - - - -

2 Number of series analysed

Table 4

A comparison of relative MAPE-values (Box-Jenkins MAPE-values = 100) for time series with 13 data points or less

Temporal horizon

1 2 3 4 5 6

ane an? @* @2 @* O
NSRL 55.31 65.25 33.35 47.31 65.90 37.30
Mixed 66.96 77.97 53.04 77.42 107.28 62.34
Gompertz 74.57 82.57 49.23 61.96 90.28 52.73
Box-Jenkins 100.00 100.00 100.00 100.00 100.00 100.00

2 Number of series analysed

Table 5

A comparison of relative MAPE-values (Box-Jenkins MAPE-values = 100) for time series with more than 13 data points

Temporal horizon

1 2 3 4 5 6 7 8

{19° (19* a9 a9* 19 19)* 19) > (19)*
NSRL 82.46 94.67 96.64 102.04 103.53 115.50 124.50 147.10
Mixed 102.83 119.70 135.03 15222 160.09 178.45 198.30 215.58
Gompertz 133.46 140.66 155.58 154:60 158.44 164.03 176.99 198.65
Box-Jenkins 100.00 100.00 100.00 100.00 - 100.00 100.00 100.00 100.00

& Number of series analysed.
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obtained from every model and time series for
the different temporal horizons. These data are
shown in Table 8. A preliminary analysis reveals
that the MAPE-values obtained correspond com-
pletely to the typical size of the forecasting error
(see Makridakis, 1986, p. 20).

To make comparison of the models and under-
standing of the results easier, some simple elabo-
rations have been provided. Firstly the diffusion
models are considered. Table 3 shows the num-
ber of times in which each model turns out to be
the best, according to MAPE. Regarding this
class of models, a substantial confirmation of the
previously resulting performances can be ob-
served. NSRL is relatively better; its performance
are almost equal to SSDFM (see Table 9). Mixed
and Gompertz give alternate results which are
however on the whole good. As is clearly shown,
unsatisfactory results were instead obtained from
the Dodd and Floyd models.

Including Box-Jenkins in this comparative
analysis, NSRL remains the best, except in the
case of very long temporal horizons, while mixed
and Gompertz supply results which are better
than Box-Jenkins only in the case of short time
series (13 data points or less, see Table 4). For a
detailed analysis see Table 8.

As the temporal horizon increases, Box—
Jenkins offers relatively superior results. A care-
ful investigation on the basis of MAPE-values
shows that Box—Jenkins degrades itself, enlarging
the forecasting horizon, less quickly than diffu-
sion models (see Table 10 for further details).
Similar results in comparing Box-Jenkins with
the simplest forecasting method were found by
Makridakis et al. (1984).*

According to what previously recalled, the
Box-Jenkins method requires a larger number of
data points in carrying out a proper parameter
calibration. The effect of length of series on the
forecasting accuracy of all the best models can be
verified in detail in Tables 4 and 5

4 These model features seem to be confirmed by an analysis
of the single time series. In fact diffusion models’ forecast-
ing accuracy results are more sensitive to the presence of
‘exogenous noise’ (i.e. non-predictable changes in the eco-
nomic enviroment) which produce ‘false inflection points’
upon the basic S-shaped pattern.

7. Discussion of results and conclusions

The most common use of diffusion models is
in forecasting, particularly in technology spread
analysis and in business applications. Despite the
fact they are widely used, their performance com-
pared to other forecasting mefhods has not yet
been well investigated. In this paper an empirical
analysis on many time series, aimed at evaluating
the performances of this class of models com-
pared to the class of ARIMA and in particular
Box—Jenkins models, has been carried out.

Our results seem to agree with the considera-
tions of Makridakis and Gardner (1988) and re-
gard in particular:

a) the opportunity of a distinction between
model fitting and model forecasting performance;

b) the absence of a clear link between model
complexity and forecasting accuracy (and there-
fore between its ‘cost’, in terms of time and
scientific know-how, and its performances);

¢) the fact that the models which may supply
accurate forecasts in the short term do not neces-
sarily do so in the long term.

Moreover the results allow to evaluate the effects
of the length of series on the model descriptive
power and on forecasting accuracy.

The results can be summarized in the follow-
ing considerations. Regarding the performance of
the main existing diffusion models, it can be said
that from the classic epidemic model to the
dynamic or flexible ones proposed in recent liter-
ature, there has been considerable improvement.
The descriptive power of NSRL and Mixed is
decidedly good, systematically better than that
obtained using Box-Jenkins techniques. This is
not stated explicitly in the literature. Employing a
four-parameter diffusion model (SSDFM) one
obtains RZvalues substantially identical to the
ones given by NSRL, where there are three pa-
rameters. Furthermore it can be affirmed that,
compared to Box—Jenkins, Gompertz also offers
a relatively good fitting (remember that this model
requests the estimation of only two parameters).

It can be said that in providing a descriptive
and explanatory analysis of growth and diffusion
processes, the deterministic and causal frame-
work characterizing diffusion models permits bet-
ter results than the Box—Jenkins approach. These
results are confirmed especially when data points
are scarce, as clearly showed in Fig. 5. This could
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‘be explained remembering that diffusion models
only require an estimation of the best fit parame-
ters (as the function is predetermined) whereas
the Box—Jenkins method requires a preliminary
identification of the most appropriate model. Still,
from a descriptive point of view, diffusion models
also supply important information on the dy-
namic characteristics of spreading processes: be-
cause of their causal foundation, their parameters
describe and measure particular features of diffu-
sion, once they have been calibrated by means of
ordinary numerical computation techniques.

As regards the forecasting accuracy, NSRL
offers the best performance, Mixed and Gom-
pertz give alternate results, and Dodds and Floyd
appear unsatisfactory. NSRL remains the best
also when Box-Jenkins is considered (Tables 4
and 5), except in the case of very long forecasting
horizon, while Mixed and Gompertz are system-
atically better than Box—-Jenkins in the time se-

‘ries with less than 14 data points (see Table 8).

An important aspect to underline is the model
forecasting reliability, which we may define as the
inverse of the number of times in which each
model is found to be the worst. This is quite
low for Box—Jenkins and very high for NSRL
(Table 6). Compared to a four-parameter model
(SSDFM), NSRL is the best or second best and
at any rate offers satisfying results. Considering
cost /effectiveness rate, we can affirm in conclu-
sion that NSRL remains a very good tool.

The reliability of Mixed is comparable with
that of Gompertz, and both are quite low. The
performance of these latter models is however
clearly better than that of Box—Jenkins in short
time series (see Table 5).

An important consequence in comparing the
methods in discussion derives from the fact that
in cases of economic interest the data points
available are scarce. This can cause serious prob-
lems in the use of statistically based techniques.
In fact, even if Box—Jenkins is utilizable in prac-
tice with less than 30 data points (as also demon-

MAPE
Gompertz

O NSRL

() Mixed ' Box-Jenkins

o @

40 =
30 -
20
10 =
data points
<i4 14-19°° >19

Figure 6. Average MAPE-values for different series lengths

Table 6
Number of times in which each model turns out to be the worst, according to MAPE, for differef_;t temporal horizons
1 2 3 4 5 6 7/ 8
L Goe (30) @ 26)2 (25)° 25 (23) 2 VAV 19 =

NSRL 1 1 il - - 1 1 1
Mixed 8 11 13 13 12 10 9 10
Gompertz 10 10 9 8 8 8 8 6
Box~-Jenkins 11 . 8 3 4 5 4 3 2

2 Number of series.
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strated by other authors), the number of data
points which are needed to calibrate the parame-
ters remains however greater than that of the
diffusion models; furthermore this approach re-
quires pre-identification of the model. Hence,
when time series are too short, Box—Jenkins be-
comes unreliable. This is confirmed by our re-
sults, which are summarized in Fig. 6: in the cases
of short time series (less than 14 samples) the
diffusion models give Systematically better fore-
casting accuracy.

After all the results seen to be quite insensible
to the kind of phenomenon (new consumer
durables, innovative process technologies or ser-
vices), the most meaningful factor being the length
of the series. Keeping in mind that the practical
utility of the forecasts is greater when there are
few data points available and decreases as these
increase, diffusion models could, from this point
of view, prove to be irreplaceable instruments.

The last comment regards the temporal hori-
zon of the forecast. The analysis which has been
carried out confirms that minimizing the model
fitting errors can guarantee fewer errors in fore-
casting only if structural changes in the data do
not occur. In particular Box-Jenkins seems to
supply a relatively better forecasting accuracy in
the long term. The analysis of the results shows
that its accuracy degrades less quickly than the
diffusion models as temporal horizon increases.
This effect could be explained remembering the
deterministic nature of diffusion models: this
makes them much more sensitive to structural
modifications in the data, which are certainly
more probable in the long run.

Appendix

Numerical procedures employed in parameters esti-
mation of diffusion models.

The purpose of the ZZSSQ procedure is to
minimize the sum of squares of M functions in N
variablés using a finite difference Levenberg—
Marquardt algorithm, that is, solve a nonlinear
least squares problem. The problem is stated
as follows: given M nonlinear functions f,,

f2>--., Fy of a vector parameter X, minimise
over X:

fl(X)2+f2(X)2+ SR (X

where X =(X,, X,,...,Xy) is a vector of N
unknown parameters to be estimated. When fit-
ting a non-linear model to data, the function f,
should be defined as follows:

f(X)=y,—g(X, V), i=1,2,...,M,

where y; is the i-th observation of the dependent
variable, V' =(v,, v,,...,Uyy) IS a vector con-
taining the i-th observation of the N}V indepen-
dent variables, and g is the function defining the
non-linear model.

This subroutine utilizes three convergence cri-
teria: the first is satisfied if on two successive
iterations, the parameter estimates agree, compo-
nent by component to K digits. The second is
satisfied if, on two successive iterations, the resid-
ual sum of squares estimates have relative differ-
ences less than or equal to r; r may be set to
zero. The third convergence criterion is satisfied
if the norm of the approximate gradient is less
than or equal to r’; r’ may be set to zero.

The user has to choose and introduce proper
convergence criteria values; moreover he has to
define the maximum number of iterations permit-
ted. The iteration is terminated and convergence
is considered achieved if any one of the three
conditions is satisfied or if the maximum iteration
number is performed. Subroutine output is a
vector with final estimates and some indexes re-
vealing that convergence has been achieved and,
if it is reached, which criterion was satisfied;
otherwise, what kind of error there has been.

ZXSSQ needs a previous empirical identifica-
tion of the parameters, because it could not con-
verge if the starting values are too far from the
resulting estimates. The lack of a general method
to deal with the pre-identification problems (the
simple algebraic estimation technique suggested
by Mahajan and Sharma, 1986, does not work
with all models and with all kinds of data) was
solved allowing the operator to make various
trials: if convergence is not achieved, he can
modify either the pre-identification values or the
stopping criteria.
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Table 8
Average MAPE-values of various models for different number of data points and time horizons
Number of data Model Temporal horizon
points considered 1 2 3 1 5 6 7 3
>20 NSRL 11.012 13.221 15.813 17.670 19.830 23.612 26.446 32.788
(11 series) SSDFM 9.395 12.011 14.425 15.970 195173 20.438 23.060 26.870
Dodd 45.707 54.191 62.245 68.169 73.182 77.329 80.079 82.571
Mixed 14.198 18.831 23.538 27.652 32.395 38.347 44.590 50.705
Gompertz 13.780 16.133 18.060 20.020 21.772 22.624 26.885 29.688
Floyd 34.393 39.934 45.069 49.742 50.038 58.541 61.812 65.001
Box—Jenkins 11.804 13.542 14.476 14.735 15.196 15.547 15.980 15.414
<20 and > 14 NSRL 7.318 10.863 11.702 13.302 14.260 16.660 19.870 20.446
(8 series) SSDFM 7.741 8.452 9.946 11.345 13.629 15.188 18.516 20.024
Dodd 30.172 48.111 60.355 63.551 89.562 98.598  112.905  131.866
Mixed 8.484 10.829 14.366 18.064 19.669 23.170 28.262 26.318
Gompertz 17.401 20.970 29.008 29.437 33.685 38.659 42.979 47.675
Floyd 31.051 38.183 45.427 51.266 58.080 61.192 66.099 71.064
Box—Jenkins 11.005 12.058 14.702 16.585 19.216 21.155 23197 ° 23.354
<14 and >12 NSRL 26.993 32.144 34.555 41.939 37.581 37.072
(4 series) SSDFM 27.279 34.170 40.648 47.510 43,702 41.868
Dodd 101.471 139.627 219.134 445134 627.405 808.405
Mixed 37.050 45.838 54.960 65.970 61.178 61.294
Gompertz 38.712 45.207 51.012 54.923 51.486 51.853
Floyd 41.617 48.184 54.158 59.743 66.319 68.654
Box—Jenkins 53.071 65.709  103.617 88.643 57.026 98.334
<11 NSRL 22.898 32.653
(7 series) SSDFM 22.339 35.995
Dodd 80.838 108.920
Mixed 25.333 34.939
Gompertz 29.669 38.906
Floyd 46.290 58.351

Box-Jenkins 39.127 40.851

Table 9
Number of times in which each diffusion model turns out to be the best, according to MAPE, for different temporal horizons

Temporal horizon

1 2 3 4 5 6 7 8

(30) 2 30) @ (26) @ 252 (25)2 (23) 2 -(21) 2 (19) 2
NSRL® 9 9 7 8 11 8 8 5
SSDFM 12 11 9 8 12 12 10 9
Mixed 74 7 6 5 4 4 3 4
Gompertz 4 S 3 6 4 S 6 6
Floyd - 1 1 1l - - - -

Dodd - -

@ Number of series analysed.
> In some cases NSRL and SSDFM are tied first.
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Table 10

Number of times in which each model turns out to be the best, according to MAPE, for different temporal horizons (Floyd and

Dodd models are omitted)

Temporal horizon

1 2 3 4 5 6 7 8

302 3o* (26) 2 (25) 2 (25) 2 23)? (2 % (19) 2
NSRL 12 11 9 7 9 6 6 3
Mixed 7 6 5 4 2 3 2 3
Gompertz 3 i 4 4 2 2 1 1 1
Box—Jenkins 8 9 8 12 12 13 12 12

& Number of series.
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