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Abstract. In this article the forward rates equation of the Musiela model is
analysed. The equation is studied in the Sobolev spacesH 1

γ (R+) and H 1(R+).
Explicit mild solutions and equivalent conditions for the existence and uniqueness
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1. Introduction

The aim of this work is to study in a rigorous way some asymptotic properties of
the Musiela equation in the Gaussian case. Our methods are based on the theory
of stochastic equations in separable Hilbert spaces by Da Prato and Zabczyk [5],
and we study invariant measures for the equation and weak convergence of the
solution to such measures.

The Musiela model, developed by Musiela himself and other authors in [3],
[4], [8], [9] and [12], is based on the family of rates (r (t , x))t,x≥0, wherer (t , x)
represents the forward rate prevailing int for the time t + x. This model is
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a reparametrization of the well-known Heath-Jarrow-Morton (HJM) model (see
[10]), such thatr (t , x) = f (t , t +x), wheref (t , T) are the forward rates analysed in
[10]. The Musiela reparametrization is coherent with other forward rates models
(see [3] and [14]) and allows us to consider the forward curver (t , ·) as a Markov
process in a suitable function space, while in the HJM model the state space
changes with time.

Let us now introduce more in detail the Musiela model. We suppose that
we have a probability space (Ω, F , P) endowed with the filtration (Ft )t≥0,
and that the price at timet of a bond expiring at timeT is represented
by the process (B(t , T))t∈[0,T] . Furthermore, we suppose that we have a ran-
dom field (r (t , x))t,x≥0 such that r (t , x) is Ft -measurable andB(t , T) =

exp(− ∫ T−t
0 r (t , u) du). The quantityr (t , x) is called instantaneous forward

rate at timet for the maturityt +x and represents the rate at timet at which one
can enter a forward contract for the timet + x for a short (infinitesimal) period
of time. Theactualized price at time t of a bond expiring at timeT is given by
B̃(t , T) = B(t , T)/β(t), whereβ(t) = exp(

∫ t
0 r (u, 0) du) is the actualizing factor.

Now we add the hypotheses that there exists a probability measureQ equivalent
to P, calledrisk-neutral probability under which the processes (B̃(t , T))t∈[0,T]

are martingales for allT > 0, and that there exists ak-dimensional standard
Q-Brownian motion (Wt )t≥0 adapted to (Ft )t≥0 such that (r (t , x))t,x≥0 satisfies
the stochastic partial differential equation


dr(t , x) =

(
∂

∂x
r (t , x) +

k∑
n=1

τn(t , x)
∫ x

0
τn(t , u) du

)
dt +

k∑
n=1

τn(t , x) dWn
t ,

r (0, ·) ∈ AC(R+) ,
(1)

where the (τn(t , x))t,x≥0, n = 1, . . . , k are random fields such thatτn(t , x) is Ft -
measurable and such that Eq. (1) is well defined for all maturitiesx ≥ 0. This
model is justified by the following result that can be found both in [4] as in [12].

Theorem 1. If ∀t ∈ R+ the application x→ r (t , x) belongs to AC(R+) Q-a.s.
and r satisfies Eq. (1), then for all T> 0 the process(B̃(t , T))t∈[0,T] is a local
martingale with respect toQ.

Our aim is to study asymptotic properties of Eq. (1) in the simple case when the
diffusion termτ is deterministic and the processr takes values in a separable
Hilbert spaceH contained inAC(R+). This leads to a model that is Gaussian
in the forward ratesr (t , x) and it is analytically tractable. In fact, in this case
we can find an explicit solution to Eq. (1), given by Eq. (5) and usually called
mild solution. First we show that this mild solution, under technical conditions,
is well defined in some particular Hilbert spacesH ⊆ AC(R+), and is unique
in the class of weak solutions of Eq. (1) (see [5]). Then we will study (when
possible) the characterization of the invariant measures for the process of the
solution. The study of invariant measures is a first step in studying asymptotic
properties of a system; in this case, the existence of invariant measures means
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that the distribution of the forward curve converges, ast → +∞, to an invariant
measure onH (see Theorem 7).

Let us restate the problem in a more systematic way. We rewrite Eq. (1) as
a Langevin equation in a separable Hilbert spaceH (that we will specify later):{

drt = (Art + c) dt + dWt ,
r0 ∈ L2(Ω, F0, Q; H ) ,

(2)

whereA = ∂
∂x , c(x) =

∑∞
n=1 τn(x)

∫ x
0 τn(u) du anddWt stands for

∑∞
n=1 τn dWn

t

and is anH -valued Brownian motion. This means that, if we indicate with
Q =

∑∞
n=1 τn ⊗ τn the covariance operator ofW, we have that TrQ =∑∞

n=1 ‖τn‖2
H < +∞. In practical terms, this situation corresponds to the well

accepted idea that there are infinitely many sources of randomness in the model,
but only a few “principal components” are significant, because the intensity of
the noises decreases rather quickly (see [11] for another kind of genuine infinite
dimensional dynamics of the forward rates). In order to obtain the usual case of
a k-dimensional driving Brownian motion (see for examples [1], [2], [3], [4]), it
is sufficient to suppose thatτn = 0 for all n > k. By a solution of Eq. (1) (or
better of Eq. (2)), we will mean, as in [4] and [12], a so calledmild solution
(see [5]), given by

rt = St r0 +
∫ t

0
St−uc du +

∫ t

0
St−u dWu , (3)

where (St )t is the C0-semigroup inH generated byA (see [13]), which in this
case is the translation semigroup defined by

(St f )(x) = f (x + t) ∀t , x ≥ 0 .

To specify exactly in which spaceH we will study Eq. (1), we define the Sobolev
spaces

H k
γ (R+) =

{
u : R+ → R

∣∣ ∃u′, . . . , u(k) andu, u′, . . . , u(k) ∈ L2
γ(R+)

}
,

where u′, u′′, . . . , u(k) indicate respectively the first, second,. . . , k-th weak
derivative, and

Lp
γ(R+) =

{
u : R+ → R

∣∣∣∣ u meas. and s.t.
∫ +∞

0
up(x)e−γx dx < +∞

}
.

We notice thatH k
0 andLp

0 coincide with the usual definitions ofH k andLp, and
we recall thatH k

γ is a Hilbert space with respect to the scalar product

〈f , g〉H k
γ

=
k∑

i =0

〈f (i ), g(i )〉L2
γ

=
k∑

i =0

∫ +∞

0
f (i )(x)g(i )(x)e−γx dx . (4)

FurthermoreH 1
γ ⊆ H 1

γ′ ∀γ < γ′, andH 1
γ ⊆ AC(R+) ∀γ ≥ 0.

In view of Theorem 1, we will study Eq. (1) in the spacesH 1
γ (R+) for γ ≥ 0,

which are contained in the spaceAC(R+). If we studied the equation inL2
γ(R+) (as
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[8] and [9] do), we would obtain an invariant measure in the whole spaceL2
γ(R+),

and it would be difficult to prove that the measure is concentrated onAC(R+).
We start studying the Musiela equation in the spacesH 1

γ (R+) for γ > 0. In these
spaces we find infinitely many Gaussian invariant measures (among which there
are the ones found in [12]), but also other non-Gaussian ones, and we show that
if the initial r0 is deterministic, then the solutionrt converges weakly ast → +∞
to a Gaussian invariant measure, which depends on the initial forward curver0.
The properties of the equation inH 1(R+) are completely different, and for this
reason we study this specific situation separately. InH 1(R+) flat term structures
r (x) = const./= 0 are not allowed and the forward curves must converge to 0 for
x → +∞. This means thatH 1(R+) does not contain the simplest forward curves.
Moreover, in this space we find only one invariant measure, that is Gaussian.
This is another drawback, because the invariant measure does not depend on
the initial r0. We conclude our work by summarizing these and other financial
remarks and giving some final comments in a specific section.

Our work is organized as follows. In Section 2 we study the Musiela equation
in the spaceH 1

γ (R+) for γ > 0. Section 3 is specifically devoted to the Musiela
equation in the spaceH 1(R+). Section 4 contains the conclusions of our work.

2. The forward rate equation in the spaceH 1
γ

We first study the case when the Hilbert space isH 1
γ (R+), and start by presenting

some sufficient conditions under which the mild solution of Eq. (1) is well defined
in H 1

γ (R+). These conditions will be also necessary to obtain the existence of
invariant measures in the same space.

Theorem 2. If
∑∞

n=1 ‖τn‖2
H 1

γ
< +∞,

∑∞
n=1 ‖τn‖4

H 1 < +∞,
∑∞

n=1 ‖τn‖4
L4

γ
< +∞,

and r0 ∈ L2(Ω, F0, Q; H ), then the mild solution of Eq. (1) in H1γ (R+), given by

rt (x) = r0(x + t) +
∞∑

n=1

∫ t

0
τn(x + t − u)

(∫ x+t−u

0
τn(v) dv

)
du +

+
∫ t

0
τn(x + t − u) dWn

u =

= r0(x + t) +
1
2

∞∑
n=1

((∫ x+t

0
τn(u) du

)2

−
(∫ x

0
τn(u) du

)2
)

+

+
∞∑

n=1

∫ t

0
τn(x + t − u) dWn

u , (5)

is well defined. Moreover, it is the unique solution in the class of weak solutions
(see [5]). The mild solution is a Gaussian process with mean

E[rt (x)] = E[r0(x + t)] +
1
2

∞∑
n=1

((∫ x+t

0
τn(u) du

)2

−
(∫ x

0
τn(u) du

)2)
(6)
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and covariance

Cov (rt (x), rv(y)) = Cov (r0(t + x), r0(v + y)) +

+
∞∑

n=1

∫ t

0
τn(x + t − u)τn(y + v − u) du . (7)

Proof. Following [5], Theorem 5.4, p. 121, it is sufficient to check that TrQ <
+∞, c ∈ H , r0 ∈ L2(Ω, F0, Q; H ) and thatA generates aC0-semigroup (St )t in
H 1

γ . The first condition is equivalent to
∑∞

n=1 ‖τn‖2
H 1

γ
< +∞. Now we observe

that the weak derivative ofc is

c′(x) =
∞∑

n=1

(
τ ′

n(x)
∫ x

0
τn(u) du + τ2

n (x)

)
. (8)

If we impose
∑∞

n=1 ‖τn‖4
L2 < +∞, then, from Jensen’s and Hölder’s inequalities,

it follows that c ∈ H 1
γ . To prove the last condition, we will use the following

well known fact, whose proof we omit:

Lemma 3. For all γ ≥ 0, the translation semigroup(St )t is a C0-semigroup in
H 1

γ (R+), having as infinitesimal generator A, which has domain equal to H2
γ (R+).

In view of Lemma 3 and Eq. (3), the theorem is proved. �

Now we analyse the problem of finding invariant measures. In the follow-
ing, N (b, Q) will indicate the Gaussian measure inH 1

γ (R+) having as mean the
functionb ∈ H 1

γ (R+) and as covariance the operatorQ : H 1
γ (R+)×H 1

γ (R+) → R.

Theorem 4. There exist invariant measures for Eq. (2) in the Hilbert space H1
γ if

and only if
∑∞

n=1 ‖τn‖2
H 1 < +∞ and

∑∞
n=1 ‖τn‖4

L4
γ

< +∞. If these conditions hold

there exists an infinite number of invariant measures. In particular, the measures
N (b∗(·) + b0, Q∞) are invariant, where b0 is an arbitrary real number, b∗ is the
function given by Eq. (11), and

Q∞ =
∞∑

n=1

∫ +∞

0
τn(· + u) ⊗ τn(· + u) du . (9)

In the proof we will need the following result from [6]:

Theorem 5. Let the following conditions be satisfied:

(i) supt≥0

∫ t
0 Tr SuQS∗

u du < +∞
(ii) ∃b ∈ D(A) such that Ab+ c = 0, and there exists an invariant measureν for

the equation
dZt = AZt dt . (10)

Then there exists an invariant measure for Eq. (2). In particular every invariant
measure is of the formν ∗ N (b, Q∞), where Q∞ =

∫ +∞
0 SuQS∗

u du.

Now we prove Theorem 4.
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Proof. It is sufficient to check points (i ) and (ii ) of Theorem 5. First of all we
calculate

sup
t≥0

∫ t

0
Tr Qu du =

∫ +∞

0

∞∑
n=1

∫ +∞

0

(
τ2

n (x + u) + τ ′2
n (x + u)

)
e−γx dx du =

=
∫ +∞

0

∞∑
n=1

∫ +∞

u

(
τ2

n (x) + τ ′2
n (x)

)
e−γ(x−u) dx du =

=
∫ +∞

0

∞∑
n=1

(
τ2

n (x) + τ ′2
n (x)

)
e−γx

∫ x

0
eγu du dx =

=
∫ +∞

0

∞∑
n=1

(
τ2

n (x) + τ ′2
n (x)

) 1 − e−γx

γ
dx .

We notice that the condition
∑∞

n=1 ‖τn‖2
H 1 < +∞ is necessary and sufficient to

guarantee that point (i ) in Theorem 5 holds. We now check (ii ). An invariant
measure for Eq. (10) is given by the measureδ0. Moreover, a solution of the
equationAb + c = 0 is:

b∗(x) = −
∫ x

0
c(u) du = −1

2

∞∑
n=1

(∫ x

0
τn(u) du

)2

. (11)

To check thatb∗(x) ∈ D(A), we first verify thatb∗(x) ∈ L2
γ :

|b∗(x)| ≤
∞∑

n=1

∫ x

0
|τn(u)|

∫ u

0
|τn(v)| dv du =

=
1
2

∞∑
n=1

(∫ x

0
|τn(u)| du

)2

≤ 1
2

x
∞∑

n=1

∫ x

0
|τn(u)|2 du ≤ x

∞∑
n=1

‖τn‖2
L2 ,

so‖b∗‖L2
γ

≤ ‖x‖L2
γ

∑∞
n=1 ‖τn‖2

L2, andb∗ ∈ L2
γ . Sinceb∗ has the weak derivative

equal to−c, which is inH 1, thenb∗ ∈ H 2
γ . We also notice that constant functions

belong toH 1
γ , so every functionb∗(·) + b0, b0 ∈ R is a solution ofAb + c = 0

and we have the result. �

Remark 6. There exist also non-Gaussian invariant measures for Eq. (1). In fact,
if in Eq. (10) we choose an initial datumZ0 ≡ f ∈ H 1

γ periodical with periodT,
then the solution would beZt (x) ≡ f (t + x). Now we define the random variable
π : [0, T] → H 1

γ such thatπ(t) = f (· + t) and we set the uniform density on
[0, T]; then π induces a measureµf on H 1

γ . So, if in Eq. (10) we choose an
initial datumZ0 with law µf , then we obtain a solution (Zt )t with Zt having law
µf ∀t ≥ 0. This means thatµf ∗ N (b∗(·) + b0, Q∞) is an invariant measure for
Eq. (1), and it is not Gaussian.

We can see that the ergodic behaviour of Eq. (1) could be more intricate than
a simply Gaussian one, and a characterization of all the invariant measures would
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be very difficult. However, in the next theorem we see that if we start from a
deterministic initial datumr0, then the asymptotic law is one of the Gaussian
invariant measures found in Theorem 4. Besides, the theorem will show also that
all the invariant measures found before can be reached starting from a suitable
r0.

Theorem 7. If
∑∞

n=1 ‖τn‖2
L1 < +∞, the assumptions of Theorem 4 hold, and the

initial datum is a deterministic r0 ∈ H 1
γ such thatlimx→+∞ r0(x) = r0(∞) ∈ R,

limx→+∞ r ′
0(x) = 0, then rt converges weakly for t→ +∞ to the invariant measure

N (r0(∞) + b0 + b(x), Q∞), where b and Q∞ are given respectively by (11) and
(9), and b0 is given by

b0 =
∫ +∞

0
c(u) du =

1
2

∞∑
n=1

(∫ +∞

0
τn(u) du

)2

. (12)

Proof. Let us consider an initial datum with a degenerate law concentrated on
r0, and see what happens to the marginal law of the solutionrt . The solutionrt

has functional mean

E[rt ](·) = r0(· + t) +
∫ t

0
c(· + u) du

and functional variance

Var [rt ] =
∞∑

n=1

∫ t

0
τn(· + u) ⊗ τn(· + u) du .

Then for allG ∈ Cb(H 1
γ ) we have that

lim
t→+∞ E[G(rt )] = lim

t→+∞ E

[
G

(
E[rt ] +

∞∑
n=1

∫ t

0
τn(· + t − s) dWs

)]
=

=
∫

H 1
γ

G(r )N (r0(∞) + b0 + b(·), Q∞)(dr)

In fact:

lim
t→+∞ ‖E[rt ] − r0(∞) − b0 − b(·)‖H 1

γ
≤ lim

t→+∞ ‖r0(t + ·) − r0(∞)‖H 1
γ

+

+ lim
t→+∞

∥∥∥∥
∫ ·+t

0
c(u) du −

∫ +∞

0
c(u) du +

∫ ·

0
c(u) du

∥∥∥∥
H 1

γ

=

= 0 + lim
t→+∞

∥∥∥∥
∫ +∞

·+t
c(u) du

∥∥∥∥
H 1

γ

= 0

where the two limits follow from Lebesgue’s theorem. Besides
∞∑

n=1

∫ t

0
τn(· + t − s) dWs

has lawN (0, Qt ), whereQt =
∑∞

n=1

∫ t
0 τn(·+s)⊗τn(·+s) ds. Since TrQ∞ < +∞,

then limt→+∞(Q∞ − Qt ) = 0, soN (0, Qt ) converges weakly toN (0, Q∞). �
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Theorem 7 says that the solutionrt starting from a rather general deterministic
initial forward curver0, under some regularity conditions, converges weakly to
a Gaussian invariant measure. Moreover, the invariant measure to which the
solution converges is determined byr0(∞). From this we deduce that if we take
a suitable initial datumr0, it is possible to reach any invariant Gaussian measure
we found in the last theorem. From a mathematical point of view this means that
there are no “privileged” invariant measures, at least in the purely Gaussian case.
From a practical point of view, this non-uniqueness is related to the deterministic
part of the forward curver0 known at time 0, and corresponds to the limit of the
forward curve at infinity. This is intuitively quite appealing.

Remark 8. The quantityrt (∞) is usually calledlong forward rate . In our case,
it is easy to see from Eq. (5) that ifr0(∞) exists andτn(∞) exists and is equal to 0
for all n ∈ N, thenrt (∞) = r0(∞) Q-almost surely. This is a common behaviour
of the long forward rate: in fact, while it can be shown by no-arbitrage techniques
that this quantity isQ-almost surely increasing witht (see [7]), in our model (as
in many models used in practice) the long forward rate is constant.

3. The forward rate equation in the spaceH 1

Now we study Eq. (1) in the spaceH 1(R+). As before, we first present some
sufficient conditions for the mild solution of Eq. (1) to be well defined in this
space. These conditions will be also necessary in order to obtain the existence
of an invariant measure.

Theorem 9. If
∑∞

n=1 ‖τn‖2
H 1 < +∞,

∑∞
n=1 ‖τn‖4

L4 < +∞, the functions
√

xτn(x)
and

√
xτ ′

n(x) are uniformly bounded in L2(R+) and r0 ∈ H 1(R+), then the mild
solution of Eq. (2) in H1(R+), given by (5), is well defined. Moreover, it is the
unique solution in the class of weak solutions. The mild solution is a Gaussian
process with mean (6) and covariance (7).

Proof. The proof is similar to the one of Theorem 2. �

Theorem 10. Given Eq. (2) in the Hilbert space H1(R+), necessary and sufficient
conditions to have an invariant measure are the following:

∑∞
n=1 ‖τn‖2

H 1 < +∞,∑∞
n=1 ‖τn‖4

L4 < +∞,
∑∞

n=1 ‖√
xτn(x)‖2

L2 < +∞,
∑∞

n=1 ‖√
xτ ′

n(x)‖2
L2 < +∞,∑∞

n=1 ‖τn‖2
L1 < +∞, and that the functions

∫ +∞
· τn(u) du are uniformly bounded

in L2(R+). Under these hypotheses N(b∗(·) + b0, Q∞) is the only invariant mea-
sure, where b∗ is given by Eq. (11), b0 is given by Eq. (12), and Q∞ is given by
Eq. (9).

Proof. As before, we check if the conditions of Theorem 5 are satisfied. Since
(i ) must hold, and

sup
t≥0

∫ t

0
Tr Qu du =

∫ +∞

0

∞∑
n=1

∫ +∞

u

(
τ2

n (x) + τ ′2
n (x)

)
dx du =
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=
∞∑

n=1

∫ +∞

0

(
τ2

n (x) + τ ′2
n (x)

) ∫ x

0
du dx =

=
∞∑

n=1

(∥∥√xτn(x)
∥∥2

L2 +
∥∥√xτ ′

n(x)
∥∥2

L2

)
,

the conditions
∑∞

n=1 ‖√
xτn(x)‖2

L2 < +∞ and
∑∞

n=1 ‖√
xτ ′

n(x)‖2
L2 < +∞ are

necessary to have an invariant measure. We now check point (ii ) of Theorem
5, and see if there existsb ∈ D(A) such thatAb + c = 0. A solution isb(x) =
b∗(x) + b0, whereb∗ is defined by Eq. (11) andb0 ∈ R. Sinceb is a decreasing
function, thenb ∈ L2 only if lim x→+∞ b(x) = 0. This determinesb0:

0 = lim
x→+∞ b(x) = b0 − lim

x→+∞
1
2

∞∑
n=1

(∫ x

0
τn(u) du

)2

.

The necessary conditions for this to happen are thatτn ∈ L1,
∑∞

n=1 ‖τn‖2
L1 <

+∞ and thatb0 is given by Eq. (12). Now let us see under which conditions
b ∈ L2. If we defineTn(x) =

∫ +∞
x τn(u) du then, applying the algebraic identity

(c2 − d2)2 = (c − d)2(c2 + 2cd + d2) to the functionb, we can see that the
conditionsTn ∈ L2 andTn uniformly bounded inL2 are necessary and sufficient
to haveb ∈ L2. Sinceb′ = −c ∈ H 1, we haveb ∈ H 2, so b is a solution of
Ab + c = 0.

Now we search for invariant measures for Eq. (10) of the kindδz with
z ∈ H 1. This problem is equivalent to find solutions for the equationz′ = Az in
H 1 which are constant int . This means thatAz = 0 must hold, so the solutions
must have the formz(x) = const. Since the only constant function inH 1 is the
null function, the only invariant measure of the kindδz is δ0. Thus we have
proved thatN (b∗(·) + b0, Q∞) is an invariant measure.

We claim that this is the only invariant measure for Eq. (1). To this aim, we
refer to various results on asymptotic behaviour of solutions contained in [5].
We call Zt (X) the solution of Eq. (10) at timet having initial datumZ0 = X, and
L (Y) the law of a generic random variableY underQ. Since limt→+∞ St f = 0
for all f ∈ H 1, thenL (Zt (f )) = δSt f converges weakly toδ0 for all f ∈ H 1. This
means thatδ0 is the only invariant measure for Eq. (10). HenceN (b∗(·)+b0, Q∞)
is the unique invariant measure for Eq. (1) inH 1(R+). �

We have just shown that inH 1(R+) there exists only one invariant measure.
This means that the invariant measure is independent of the initial forward curve
r0. Moreover, a result like Theorem 6 in Section 2 would be useless in this case,
becauser0(∞) is always equal to 0, and this is clearly inconsistent with the
way the market extrapolates the yield curve to get an idea of levels of interest
rates beyond the longest observable maturities. The conclusion seems to be that
H 1(R+) is too poor to allow for a good financial interpretation of the results.
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4. Concluding remarks

We analysed the Musiela forward rates equation in the Sobolev spacesH 1
γ (R+)

for all γ ≥ 0 in the Gaussian case. For each of the spaces, we presented an
explicit solution, called mild solution, and analysed its asymptotic behaviour.
From our work it is clear that the asymptotic evolution of the solutions depends
on the choice of the particular spaceH , and in our case it seems that working on
H 1

γ (R+) for γ > 0 is better than working onH 1(R+) for the practical applications.
This is because forγ > 0 we find a wide range of invariant measures, and the
Gaussian ones are significant in the sense that if we start from a forward curver0

that is known today, then the law ofrt converges to a Gaussian invariant measure
for t → +∞. Moreover, the particular invariant measure to which the law ofrt

converges is determined by the level of the long forward rater0(∞). Conversely,
in H 1(R+) there exists only one invariant measure, that is independent of the
particular initial forward curver0. Moreover inH 1 flat term structures are not
allowed and all the forward curves converge to 0 asx → +∞. These facts let us
believe thatH 1 is not a suitable choice for practical purposes.
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