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In this paper we first investigate the ansatz of one of the present authors forK(C,C̄), the adimensional,
modular-invariant, nonholomorphic correction to the Wilsonian effective Lagrangian of anN52 globally
supersymmetric gauge theory. The renormalization groupb function of the theory crucially allows us to
expressK(C,C̄) in a form that easily generalizes to the case in which the theory is coupled toNF hypermul-
tiplets.K(C,C̄) satisfies an equation which should be viewed as a fully nonperturbative ‘‘nonchiral supercon-
formal Ward identity.’’ We also determine its renormalization group equation. Furthermore, as a first step
towards checking the validity of this ansatz, we compute the contribution toK(C,C̄) from multi-instanton
configurations of winding numberk51 andk52. As a by-product of our analysis we check a nonrenormal-
ization theorem forNF54. @S0556-2821~97!07520-6#

PACS number~s!: 11.30.Pb, 11.10.Hi, 11.15.Kc, 11.30.Ly

I. INTRODUCTION

In a celebrated paper, Seiberg and Witten studied a glo-
bally N52 supersymmetric Yang-Mills theory~SYM! with
the SU~2! gauge group@1#. They also extended their analysis
to theories with additional hypermultiplets~SQCD! @2#, and
they were able to exactly determine the Wilsonian effective
action up to two derivatives and four fermions. In terms of
anN52 chiral superfieldC, these leading terms are encoded
in a holomorphic functionF~C! called the effective prepo-
tential. From a physical point of view, the Wilsonian effec-
tive action describes the low-energy degrees of freedom of
the N52 microscopic supersymmetric gauge theory. These
results were achieved thanks to a certain number of conjec-
tures which were suggested by the physics of the problem. It
was later shown in@3# that, in the case ofN52 SYM, these
assumptions follow from the symmetries of the theory and
from the inversion formula first derived in@4# ~subsequently
generalized to SQCD in@5#!. They are consistent with mi-
croscopic instanton computations in the cases of SYM and
SQCD @6–12#.

Since the moduli space of vacua of the theory is a thrice-
punctured Riemann sphere, one can study the transformation
properties ofF~C! under the modular groupG~2!. The result
of such an exercise is the inversion formula in@4#, which
relatesF~C! and its first derivative to a modular invariant
function. The entire physical content of the theory can now
be extracted from this differential equation@3,4#, which was
also derived as an anomalous superconformal Ward identity
in @13#.

Recently a great deal of work has been devoted to the
study of nonholomorphic~i.e., higher-derivative! corrections
to the N52 SYM and SQCD low-energy effective actions
@14–22#. Indeed, as it is well known, a Wilsonian effective
action can be expanded in powers of the external momentum
over some subtraction scale. The first nonholomorphic cor-

rection is a term with four derivatives or 8 fermions, and it is
given by the full superspace integral of a real, adimensional
function K(C,C̄) @14#. Much in the same vein of the previ-
ous analysis of the symmetries of the effective prepotential,
the investigation of the transformation properties under the
modular group of the complete Wilsonian action leads to the
conclusion thatK(C,C̄) is a modular invariant@14#. How-
ever, it seems that also the higher-order terms are modular
invariant. Indeed, let us denote the nonholomorphic part of
the Wilsonian effective action byŜ@C,C̄#; furthermore, let
S,T be the SL~2,Z! generators withS251 and (ST)351. In
@14# it was shown thatŜ@C,C̄# does not transform under the
action of T while, under duality,F(C)→FD(CD)5F(C)
1CDC, whereCD5]F/]C. Now, if the action ofT on
Ŝ@C,C̄# is trivial and the group has only two generators, the
action ofS must be trivial too, since

Ŝ@C,C̄#5~ST!3+Ŝ@C,C̄#5S3+Ŝ@C,C̄#5S+Ŝ@C,C̄#.
~1.1!

However, we observe that the modular invariance described
above is considered with respect to theS and T action de-
fined in @14# whereas, strictly speaking, a functionG(C,C̄)
is said to be modular invariant ifG„g(C),g(C̄)…
5G(C,C̄), gPSL(2,Z).

Let us now leave this argument on the side and let us
remind that the perturbative 1-loop term and the contribution
of instantons of winding numberk51 to K(C,C̄) were
computed in@15,16#; on the basis of these results, and by
using uniformization theory, one of the present authors was
able to write a modular invariant function which satisfies the
constraints imposed by perturbative and instanton calcula-
tions and which has no other singularities but the one at
weak coupling@18#. This function satisfies the physical re-
quirements of the theory, for example, it vanishes at those

PHYSICAL REVIEW D 15 OCTOBER 1997VOLUME 56, NUMBER 8

560556-2821/97/56~8!/5218~15!/$10.00 5218 © 1997 The American Physical Society



points of the moduli space where monopoles or dyons be-
come massless: we consider it to be a candidate for the ex-
pression ofK(C,C̄). Its actual form will be reviewed in
Sec. III where we also write it in terms of theb function of
the theory, and work out the renormalization group equation
satisfied byK. We also find that this function satisfies an
equation which should be viewed as a fully nonperturbative
‘‘nonchiral superconformal Ward identity.’’ In the same sec-
tion we also extend the ansatz to the case of SQCD withNF
hypermultiplets. Furthermore, we study the higher-derivative
corrections to the SYM and SQCD effective Lagrangians,
and in particular we focus our attention on the contributions
of instantons of winding numberk51,2 to the real adimen-
sional functionK(C,C̄). This is a first step in the direction
of checking the proposal in@18# and that of Sec. III. As we
shall discuss in Sec. IV, the situation is more involved than
in the case of the holomorphic part of the effective Lagrang-
ian, and we cannot provide here a check for the expression of
K(C,C̄). We plan to come back on this point in a future
publication.

The plan of the paper is the following: in Sec. II we
review the solution of@1# to fix the notations and compute
the relationship between the Pauli-Villars renormalization
group invariant scale and that appearing in@1#. We do this in
great detail because we shall need it in the following and
because the literature is plagued with inconsistent notations.
The content of Sec. III has been discussed above. We start
Sec. IV by computing thek51 contribution toK(C,C̄). It
turns out to be in agreement with the result of@16#, which
was derived by using different methods. In the second part of
the same section we compute thek52 contribution, forN
52 SYM and SQCD. Furthermore, we check a recent result
concerning a nonrenormalization theorem in the case of four
flavors @19#. While we were writing this paper a work by
Dorey et al. @21# has appeared in which computations partly
similar to ours, in the case of winding numberk51, are
carried out and the nonrenormalization theorem forNF54 is
checked by using scaling arguments. Our results agree with
theirs.

II. A REVIEW OF THE SEIBERG-WITTEN MODEL

The Lagrangian density for the microscopicN52 SYM
theory, in theN52 supersymmetric formalism is given by

L5
1

16p
Im E d2ud2ũF~C!. ~2.1!

The chiral superfieldC, which describes the vector multiplet
of the N52 SUSY, transforms in the adjoint representation
of the gauge groupG @which will be SU~2! from now on#.
Reexpressing the Lagrangian density in theN51 formalism,
we have

L5
1

16p
ImF E d2ud2ūK~F,F̄,V!1E d2u f ab~F!WaWbG ,

~2.2!

wherea, b are indices of the adjoint representation ofG.
The Kähler potentialK(F,F̄,V) and the holomorphic func-
tion f ab(F) are given, in terms ofF, by

K~F,F̄,V!5~F̄e22V!a
]F
]Fa , ~2.3!

f ab~F!5
]2F

]Fa]Fb . ~2.4!

The classical action for theN52 SYM theory is obtained by
choosing for the holomorphic prepotentialF the functional
form

Fcl~C!5
tcl

2
~CaCa!, ~2.5!

where we conventionally definetcl as

tcl5
u

2p
1

4p i

g2 . ~2.6!

Our normalizations are the same as in@1#. The choice~2.5! is
dictated by renormalizability requirements. After eliminating
the auxiliary fields, the classical action of the theory is given
by

S5SG1SH1SF1SY1Spot. ~2.7!

SG is the usual gauge field action; the kinetic terms for the
Fermi and Bose fields minimally coupled to the gauge field
Am are

SF@l,l̄,A#5E d4xl̄Ȧa@D” ~A!l Ȧ#a, ~2.8!

wherel Ȧ are the two gauginos,Ȧ51,2, and

SH@f,f†,A#5E d4x~Df!†a~Df!a. ~2.9!

The Yukawa interactions are given by

SY@f,f†,l,l̄#5&geabcE d4xfa†~l
1̇

b
l

2̇

c
!1H.c.

~2.10!

and finally Spot5*d4xV(f,f†) comes from the potential
term

V~f,f†!5Tr@f,f†#2, ~2.11!

for the complex scalar field. As required by supersymmetry,
one hasV(f,f†)>0. The conditionV(f,f†)50 implies
that @f,f†#50: f is then a normal operator, and can be
diagonalized by a unitary matrix: that is, a color rotation.
The most general~supersymmetric! classical vacuum con-
figuration is then

f05aS V
s3

2
V†D , aPC, VPSU~2!. ~2.12!

WhenaÞ0 the SU~2! gauge symmetry is spontaneously bro-
ken to U~1!. The classical vacuum ‘‘degeneracy’’ for theN
52 SYM theory is lifted neither by perturbative nor by non-
perturbative quantum corrections@23,24#. In fact any non-
zero superpotential would explicitly break the extended su-
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persymmetry of the model; however, the Witten index of the
theory is nonzero@25#, so supersymmetry stays unbroken.
We then have a fully quantum moduli space,MSU(2) , for the
low-energy theory. The effective Lagrangian for the massless
U~1! fieldsF5$f3,l

a1̇

3
,F3%, Wa5$Am

3 ,l
a2̇

3
,D3% will be the

U~1! version of Eq.~2.1! and reads, inN51 notation,

Leff5
1

16p
ImF E d2uF9~F!WaWa1E d2ud2ūF̄F8~F!G .

~2.13!

The low-energy dynamics are then governed by a unique
function F~F!, the effective prepotential, whose functional
form is not restricted by supersymmetry. The crucial prop-
erty of F~F!, first proved in@26#, is its holomorphicity. In
analogy with Eq.~2.6! we can also define an effective cou-
pling constant as

t~F!5F9~F!. ~2.14!

It is now a simple exercise to rewrite Eq.~2.13! in the com-
ponent field formalism.1 This way we obtain

Leff5
1

4p
ImF2F9~f!S u]mfu21 i l̄Ȧ]”l Ȧ1

1

4
FmnFmnD

1
1

&
F-~f!l 1̇smnl 2̇Fmn1

1

4
FIV~f!l

1̇

2
l

2̇

2G1••• ,

~2.15!

where the dots stand for terms of higher order in the coupling
constant. The effective description of the low-energy dynam-
ics in terms of the U~1! superfieldsF andWa is not appro-
priate for all vacuum configurations. In particular, the quan-
tum moduli spaceMSU~2! is better described in terms of the
variablea and its dualaD5]aF. When the gauge group is
SU~2!, we can describeMSU~2! in terms of the gauge-
invariant coordinateu5^Trf2&. ThenMSU~2! is the Rie-
mann sphere with punctures atu5` andu56L2, whereL
is the renormalization group invariant scale~RGI! in the nor-
malization of@1#.

At the classical level

Fcl~a!5
tcl

2
a2; ~2.16!

however, perturbative as well as nonperturbative effects
modify the expression of the prepotential. We shall then
write

F~a!5Fpert~a!1Fnp~a!, ~2.17!

including the classical contribution in the first term. The per-
turbative term has been calculated by Seiberg@29# and is
exactly determined thanks to the holomorphicity require-
ments onF(a) and to the U(1)R symmetry:

U~1!R :l Ȧ→eial Ȧ , f→e2iaf. ~2.18!

The associated currentJR
m is anomalous;

JmR5l̄1̇s̄ml 1̇;1l̄2̇s̄ml 2̇12if†]Jmf,

]mJR
m52

i

32p2 ~Fmn
a F̃mn

a !~4Nc! ~2.19!

~in our case the number of colors is taken to beNc52!. The
discrete subgroupZ8,U~1!R generated by the transforma-
tions ~2.18! with am5(2p/8)m, mPZ is a symmetry of the
full quantum theory, since in this case the action functionalS
transforms as

S→S1 i8kam5S12p im. ~2.20!

At a given point in theu-moduli space theZ8 symmetry
spontaneously breaks down toZ4 , since the U~1!R charge of
u is 14. However,~2.20! tells us that the pointsu and2u
correspond to physically equivalent theories. We now imme-
diately rewrite~2.18! in terms of the U~1! superfieldC of the
N52 supersymmetry as

U~1!R :C~x,u!→C8~x,u!5e2iaC~x,ue2 ia!:
~2.21!

if we now assign a charge of11 to u, the charge ofC is
12, in such a way that the classical prepotential~2.5! is
invariant. Then the perturbative effective Lagrangian

Lpert@C#5
1

16p
ImE d2ud2ũFpert@C~x,u!# ~2.22!

transforms into

Lpert
~a!@C8#5

1

16p
Im E d2ud2ũFpert@e2iaC~x,ue2 ia!#

5
1

16p
Im E d4ue24iaFpert@e2iaC~x,u!#,

~2.23!

whered4u5d2ud2ũ. After a little algebra we get

Lpert1daLpert

5
1

16p
Im E d4uF114iaS 211C2

]

]C2D GFpert~C!.

~2.24!

Furthermore, we know that under a U~1!R transformation

daLpert52~4Nca!S 1

32p2 Fmn
a F̃mn

a D , ~2.25!

~with Nc52!, so that

1Throughout the article we shall use the conventions of Wess and
Bagger @27# for the product of Weyl spinors and integration on
superspace. We also define the Euclideansm ,s̄m matrices assm

5(1,isa), s̄m5(1,2 isa), sa, a51,2,3 being the usual Pauli ma-
trices, and the ~anti!self-dual matrices (s̄mn)smn are smn

5
1
2 (sms̄n2sns̄m)5 ihmn

a sa, s̄mn5
1
2 (s̄msn2s̄nsm)5 i h̄mn

a sa,
wherehmn

a ,h̄mn
a , are the ’t Hooft symbols defined in@28#.
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Lpert1daLpert5
1

16p
Im E d4uFFpert~C!2

2a

p
C2G ,

~2.26!

from which it immediately follows that2

S C2
]

]C221DFpert~C!5
i

2p
C2. ~2.27!

This is the semiclassical version@13,30,31# of the nonpertur-
bative relation

ipSF2
a

2

]F
]a D5^Trf2&, ~2.28!

obtained in@4# and subsequently rederived in@13#. The so-
lution to Eq.~2.27! is

Fpert~C!5
i

2p
C2 ln

C2

m2 , ~2.29!

wherem can be fixed by the value of the coupling constant at
some subtraction point. The normalization of the~one-loop!
perturbative contribution must be fixed together with the
nonperturbative contributions and the definition of the RGI
scaleL. To this end, we first write the nonperturbative pre-
potential as

Fnp~a!5 (
k51

`

FkS L

a D 4k

a2, ~2.30!

and similarly

u~a!5
1

2
a21 (

k51

`

GkS L

a D 4k

a2. ~2.31!

It is easy to check that the expressions~2.30!, ~2.31! possess
the correct invariance properties under theZ8 symmetry. The
values of theFk’s and theGk’s are meaningful only if one
specifies the choice of the renormalization-group-invariant
~RGI! scaleL, and can be obtained via ak-instanton calcu-
lation @6,9,12#. In the following we shall need the expres-
sions for the 1-instanton contribution tou(a), which was
found to be@6,12#

^Trf2&k515
LPV

4

a2 . ~2.32!

Here LPV is the Pauli-Villars RGI scale, which naturally
arises when performing instanton calculations after the can-
cellation of the determinants of the kinetic operators of the
various fields@32#. We shall fix in a moment its relationship
with the scale employed in@1#. Note that the relation~2.28!
gives theFk’s as functions of theGk’s;

2ipkFk5Gk . ~2.33!

By making some hypotheses on the structure of the moduli
space and on the monodromies oft around its singularities,
Seiberg and Witten obtained the expressions ofa(u) and
aD(u), which are given by

a~u!5
&

p E
2L2

L2

dx
Ax2u

Ax22L4
, ~2.34!

aD~u!5
&

p E
L2

u

dx
Ax2u

Ax22L4
, ~2.35!

where L is the Seiberg-Witten RGI scale~to be matched
against the Pauli-Villars one!. We now put

aD~u!5
A2u

p
g~1/u!, ~2.36!

where

g~1/u!5E
L2/u

1

dz
Az21

Az22L4/u2
~2.37!

5E
L2/u

1

dzF Az21

Az22L4/u2
2

i

zG1E
L2/u

1

dz
i

z
.

~2.38!

The perturbative constant (u@L2) contribution tog(1/u) is

E
0

1

dzFAz21

z
2

i

zG52i ln
2

e
, ~2.39!

so that

aD~u!→ i
A2u

p
ln

4u

~eL!2 . ~2.40!

Using the asymptotic expansion~2.31! we finally obtain an
expression foraD as a function ofa in the perturbative re-
gime,

aD~a!→
i

p
a ln

2a2

~eL!2 , ~2.41!

that is, in the same limit,

Fpert~a!5
i

2p
a2 ln

2a2

e3L2 . ~2.42!

This sets the normalization of the classical and perturbative
contributions. From Eq.~2.42! it follows that

tpert~a!5Fpert9 ~a!5
i

p
ln

2a2

L2 . ~2.43!

We now examine the first instanton correction tou(a); via
the relation~2.33! we shall then fix the normalization of the
Fk’s. Expanding the expression~2.34! for u@L2 we get2Disregarding terms which vanish when integrated ind4u.
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a~u!5
&

p F E
2L2

L2

dx
1

AL42x2
2

1

8u2

3E
2L2

L2

dx
x2

AL42x2
1O~L8/u4!G

5A2uF12
L4

16u2 1O~L8/u4!G . ~2.44!

In the same approximation we also have that

u~a!5
a2

2 F112G1S L

a D 4

1OS L8

a8 D G ; ~2.45!

substituting into Eq.~2.44! we get

a5aF11G1S L

a D 4

1OS L8

a8 D G H 12
1

4 S L

a D 4F11OS L8

a8 D G J ,

~2.46!

and, for consistency, we must impose

G15
1

4
, ~2.47!

with respect to the RGI scaleL in @1#. Comparing Eq.~2.47!
with Eq. ~2.32! we find

LPV5
L

&
. ~2.48!

The holomorphic prepotentialF(a) is then given by

F~a!5
i

2p
a2 ln

2a2

e3L2 1a2(
k51

`

FkS L

a D 4k

5
i

2p
a2 ln

a2

e3LPV
2 1a2(

k51

`

Fk2
2kS LPV

a D 4k

,

~2.49!

whereF15G1/2p i 51/8p i .
Finally, when we addNF hypermultiplets, the holomor-

phic prepotentialF(NF)(a) becomes

F~NF!~a!5
i

8p
~42NF!a2 ln

a2

e3~LPV
~NF!

!2

1a2(
k51

`

Fk
~NF!22kS LPV

~NF!

a
D k~42NF!

, ~2.50!

whereF2k11
(NF)

50 in the presence of massless hypermultiplets.
This is a consequence of theZ4(42NF) chiral symmetry group
of the quantum theory@2#.

III. NONHOLOMORPHIC CORRECTIONS
AND THE b FUNCTION

Let us briefly describe the general form of the nonholo-
morphic ~higher-derivative! corrections to the Lagrangian

~2.2!. Since an effective Lagrangian is written as an expan-
sion in the space of momenta, the higher-order contributions
will come out of terms with four or more derivatives or eight
or more fermions. In the case ofN52 SYM theory, they will
be written as an expansion in spinor derivatives:

SNH~C,C̄!5E d4xd4ud4ū@K~C,C̄!

1G~C,C̄!D̄C̄D̄C̄D̄C̄D̄C̄1•••

1O~D4,D̄4!#. ~3.1!

If we assign the scaling dimensions@dx#51, @du#521/2
and @D#51/2, as a consequence ofN52 supersymmetry,
the expansion will contain only terms with even dimension.
Furthermore, the U(1)R anomaly and the nonperturbative
corrections are completely encoded in the analytic prepoten-
tial F, which is the only holomorphic term that appears in the
effective Lagrangian. Therefore Eq.~3.1! is integrated over
the whole superspace. From now on we shall restrict our
attention to the first termK(C,C̄) in Eq. ~3.1!, which is
adimensional and does not contain spinor derivatives ofC
andC̄.

We now consider the derivation ofK proposed in@18#.
Let H5$wuIm w.0% be the upper half plane endowed with
the Poincare´ metricdsP

2 5(Im w)22udwu2. Sincet5]a
2F is the

inverse of the map uniformizingMSU(2) , it follows that the
positive-definite metric

dsP
2 5

u]a
3Fu2

~ Imt!2 udau25
u]utu2

~ Imt!2 uduu25ewuduu2 ~3.2!

is the Poincare´ metric onMSU(2) . This implies thatw satis-
fies the Liouville equation

] ū]uw5
ew

2
. ~3.3!

Observe that this equation is satisfied since, for any funda-
mental domainF in H, t(u) is aunivalent~i.e., one-to-one!
map betweenMSU(2) and F. In this context we stress that
t(u) is not properly a function; rather, it is apolymorphic
function ~i.e., it is Möbius transformed after going around
nontrivial cycles!. Therefore, classical theorems concerning
standard meromorphic functions do not hold. In particular,
Im t(u) is a zero mode of the Laplacian. Observe that on the
moduli spacet(u) is holomorphic as zeroes and poles are at
the punctures~that is, missing points!. Zeroes and poles are
manifest on the compactified moduli space. However, these
critical points are absent in the case of higher-genus Rie-
mann surfaces without punctures. This follows from the fact
that punctures correspond to pointstPR5]H. In particular,
as the fundamental domains of negatively curved Riemann
surfaces without puncturesS belong toH, it follows that in
these casest is a holomorphic nowhere vanishing function
on S. In particular,D Imt50. In @4,33,3# it was shown how
the results of@1# are naturally described in the framework of
uniformization theory. We now show how the function
K(C,C̄) derived in@18# naturally arises in this context.
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To see this let us first recall some asymptotics for the
Poincare´ metric. Let us consider the Riemann sphere with
elliptic or parabolic points~punctures! at u1 ,...,un21 , un
5`. Near an elliptic point the behavior of the Poincare´ met-
ric is

ew;
4qk

2r k
2qk22

~12r k
2qk!2 , ~3.4!

whereqk
21 is the ramification index ofuk and r k5uu2uku,

k51, . . . ,n21, r n5uuu. Taking theqk→0 limit, we get the
parabolic singularity~puncture!

ew;
1

r k
2 ln2r k

. ~3.5!

It follows that in the case ofMSU(2) the Poincare´ metric ew

vanishes only at the punctureu5`, where w;
22 ln(uuulnuuu). Furthermore,ew is divergent only at the
puncturesu56L2, wherew;22 ln(uu7L2ulnuu7L2u).

Let us now gather some known results onK(C,C̄). First
observe that in@15# it was proved that, to the one-loop order

K~C,C̄!;c ln
C

L
ln

C̄

L
, ~3.6!

wherec is a constant which was recently calculated@22# in
the formalism of harmonic superspace for 0<NF<4. The
nonholomorphic terms in the effective Lagrangian are U(1)R
invariant. If we follow the arguments used forF @which
eventually led to Eq.~2.27!# we get, in particular,

E d4ud4ūH C
]

]C
2C̄

]

]C̄
J K~C,C̄!50, ~3.7!

which should be considered as a semiclassical Ward identity
for K. The solution of this equation is simply given, modulo
Kähler transformations, by

K~y,ȳ!5P~y1 ȳ!1yḡ~ ȳ!1 ȳg~y!, ~3.8!

wherey5 ln(C/L), g is an arbitrary function andP5 P̄.3 In
particular, the term found in@15# is a solution to this equa-
tion, but it seems that, in principle, no nonrenormalization
theorem prevents us from considering solutions with higher-
order polynomials in ln(CC̄/L2). These terms would repre-
sent higher-loop contributions toK. However, in the case of
SQCD with NF54 massless hypermultiplets and gauge
group SU~2!, we know that theb function vanishes, so that
no scale can arise in the theory. In this case the only possible
function of C/L which can appear in the solution~3.8! is
linear in the product ln(C/L)ln(C̄/L) @or, up to purely chiral
or antichiral terms, quadratic in ln(CC̄/L2)# @19#; indeed,

only in this case the scaleL is a fake~it does not multiply
nonholomorphic terms in the Lagrangian!, as it should be for
a scale-invariant theory.

Let us go back to theNF50 case. Besides Eq.~3.6! we
know thatK is a modular invariant@14# and that the one-
instanton contribution is@16#

K~C,C̄!uk515
1

32p2 S L

C D 4

ln
CC̄

L2 1H.c. ~3.9!

Strictly speaking, a functionG(C,C̄) is said to be modular
invariant if G„g(C),g(C̄)…5G(C,C̄), gPSL(2,Z). How-
ever, K(C,C̄) has the invarianceT+K(C,C̄)5K(C,C̄)
andS+K(C,C̄)5K(C,C̄). While in the former case there is
no change in the functional structure ofK, in the latter, ac-
cording to theS-dual formulation of the theory, whereF~C!
is replaced byFD(CD), the functionS+K(C,C̄) should be
constructed with the building blockFD(CD) @which replaces
F~C! in the construction ofK(C,C̄)#.

Let us discuss the reasons whyF~C! should be consid-
ered as a building block forK(C,C̄). First of all, one can
observe that the geometry determined byF is that of the
Riemann sphere with three punctures. Then, byS-duality,
modular invariance, and general arguments, it is quite natural
to believe thatK should be a well-defined function on
MSU(2) , that is, a real ‘‘function’’ of u,ū. On the other
hand, the inversion formula~2.28! tells us that we can ex-
pressu by means ofF~C!. Therefore,F~C! is the building
block for K(C,C̄). This is a useful result since, as we shall
see, it implies a differential equation forK(C,C̄), which is
the nonchiral analogue of Eq.~2.28!. Furthermore, Eq.
~2.28!, which is equivalent to a second-order equation, is
actually a~anomalous! superconformal Ward identity@13#.
Then, the equation we shall get should be interpreted as a
nonchiral superconformal Ward identity.

The request of modular invariance indicates thatK should
be constructed in terms of the geometrical building blocks of
the thrice-punctured Riemann sphereMSU(2) . The compari-
son between the asymptotics~3.5! and~3.6! suggests that the
Poincare´ metric should have a roˆle in definingK. In particu-
lar, we observe that, in order to be well defined on the
u-moduli space, the logarithmic terms should come out of a
function which has to be globally defined. This would also
respect the symmetries of the theory. The above analysis
suggested the following proposal@18#:

K~C,C̄!5a
e2w„G~C!,G~C!…

uG2~C!2L4u
, ~3.10!

wherea is a real constant to be determined via an explicit
calculation,u5G(C) andew(u, ū ) is defined in Eq.~3.2!. The
expression~3.10! can also be written in the form

K~C,C̄!54ap2e2wSWuG2~C!2L4u, ~3.11!

or

3It is a trivial exercise to show that Eq.~3.7! is completely equiva-
lent to the superspace-integrated version of the equation~3.7! of
@22#.
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K~C,C̄!52ap expS wSW„G~C!,G~C!…

2
w

2
„G~C!,G~C!…D , ~3.12!

where

ewSW~u, ū !5u]uau2 Im t, ~3.13!

is the Seiberg-Witten metric onMSU~2! .
Let us now consider the geometrical meaning of

K(C,C̄). According to Eq.~3.12! the (1/2,1/2)-differential
K is proportional to the Seiberg-Witten metric times the in-
verse square root of the Poincare´ metric. The interesting
point is that the structure of Eq.~3.13! does not prevent us
from considering forK a suitable modification of the Liou-
ville equation which is satisfied by the Poincare´ metric. In
particular, looking at the structure of Eq.~3.13!, it is easy to
see that after a sufficient number of times one acts with the
derivative operators, the effect of the Seiberg-Witten metric
on the Liouville equation can be eliminated. In particular,
setting

Y~C,C̄!5K~C,C̄!]C]C̄̄ ln K~C,C̄!, ~3.14!

we have the ‘‘nonchiral superconformal Ward identity’’4

]C̄]ClnY~C,C̄!50. ~3.15!

A. K„C,C̄… from the b function

In @34# the renormalization group equation~RGE! and the
exact b function were derived in the SU~2! case. Similar
structures were also considered in the framework of the
Witten-Dijkgraaf-Verlinde-Verlinde equation in the SU~3!
case@35#. It would be interesting to understand the scaling
properties ofK. As it is constructed in terms ofF, one could
imagine that the RGE forF should play a role. The RGE,
derived in@34#, is

]LF~a,L!5
L

L0
]L0
F~a0 ,L0!expS 22E

t0

t

dxb21~x! D ,

~3.16!

where

b~t!5L~]Lt!u ~3.17!

is theb function. Remarkably, theb function admits a geo-
metrical interpretation as the chiral block for the Pointcare´
metric: namely@34#,

dsP
2 5U b

2u ImtU
2

uduu25ewuduu2. ~3.18!

On physical grounds, it is clear that theb function should
vanish atu50. However, this degeneracy should not appear

in the relevant geometrical objects. Remarkably, this is actu-
ally the case. To be more precise,K admits the equivalent
general representation

K~a,ā!54ap
uG~a!u~ Imt!2

ubuu]aG~a!u2 . ~3.19!

B. The 1<NF<4 case

As the above expression~3.19! for K does not refer to a
particular underlying geometry, we can consider it as a gen-
eral model-independent expression forK. In particular, ob-
serve that its asymptotic expansion can be performed by just
using the one for the prepotentialF. However, there is still
another equivalent form forK which is particularly useful in
order to perform asymptotic analyses. We have in mind the
fact that, in the presence of massless hypermultiplets, only
instantons with evenk contribute. Then, in order to get a
suitable expression forK, we introduce the function@34#

b~a!~t !5L~]Lt!a , ~3.20!

whose relation with theb function is @34#

b~t!52u
]ua

a
b~a!~t !. ~3.21!

By Eqs.~3.19! and ~3.21! we have

K~a,ā!52ap
uau~ Imt!2

ub~a!uu]aG~a!u
. ~3.22!

To better illustrate the roˆle of theb function in the non-
holomorphic contribution, we use a result in@34# where it
was shown that

u5L2 expS 22E
t0

t

dxb21~x! D , ~3.23!

whereu(t0)5L2 ~in the NF50 case,t050!. Then, thanks
to Eqs.~3.22! and ~3.23!, it follows thatK has the form

K~a,ā!5apU a

LU2

uFu2 expS E
t0

t

b211E
t0

t

b21D ~ Imt!2,

~3.24!

where

F~a,ā!5
b1/2

b~a! . ~3.25!

As a consequence of Eq.~3.24!, K satisfies the RGE:

L„]LK~a,ā!…a, ā52FReS b~a!

b
1b~a!]t ln F D

1
Imb~a!

Imt
21GK~a,ā!. ~3.26!

One can check that when only instantons with evenk con-
tribute toF, then this would also be the case for the expres-
sion ~3.22! for K.

4We thank Gaetano Bertoldi for interesting discussions on this
equation.
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Finally we note that in theNF54 case the above con-
struction breaks down. Here, in particular, the underlying
geometry is trivial. As a consequence, the nontrivial global
aspects of moduli spaces, which actually generate nonpertur-
bative corrections, do not arise forNF54. This is already
clear for the chiral partF which is proportional toa2. Since
in general the functionK is built in terms ofF, we see that
there is no way to get nonholomorphic contributions toK but
the one-loop term, whose structure has a global meaning
since the underlying geometry is trivial. This is an alternative
way to express the nonrenormalization theorem of@19#.

IV. NONPERTURBATIVE CONTRIBUTIONS TO K„C,C̄…

Let us now discuss the series expansion forK(C,C̄) in
the case of SYM theory. We can rewrite Eq.~3.10! as5

K~C,C̄!5
64a

p2

uG2~C!24L4u~ Imt~C!!2

uCu4u t̂~C!2t~C!u4 , ~4.1!

where

t̂~C!5
1

C

]F
]C

. ~4.2!

The constanta can be fixed by using the result in@22#;
however, as we shall discuss in the following, this is not
enough to get a complete check of the validity of Eqs.~3.19!
and ~3.22!.

Expanding Eq. ~4.1! up to the order relevant to
2-instanton calculations, and neglecting purely chiral or an-
tichiral terms, we find

K~x,x̄!.aH lnx lnx̄1x4~3 lnx̄22 ln2x̄22 lnx̄ lnx!

1x8S 2
21

2
lnx lnx̄2

21

2
ln2x̄1

57

8
lnx̄D

1x4x̄4S 9

4
26 lnx̄12 ln2x̄14 lnx lnx̄D1H.c.J ,

~4.3!

wherex5L/C.
Let us briefly comment on the functional dependence of

the various terms appearing in the expansion. The first loga-
rithmic term represents the one-loop perturbative contribu-
tion to K(C,C̄), which was first derived in@15#; it is to be
noted that there are no higher-order~higher-loop! logarith-
mic corrections toK(C,C̄). As far as the termsx4k ln x̄ are
concerned, they appear explicitly in thek-instanton calcula-
tions, while the terms withx4k ln x̄ ln x andx4k ln2 x̄ are ex-
pected to be one-loop corrections around thek-instanton
configuration. As a matter of fact, in this case there are no
constraints coming from holomorphicity requirements and
from the anomalous U(1)R symmetry which forbid the exis-
tence of loop corrections around instanton configurations
@29#. Finally, the termsx4mx̄4n and logarithmic corrections
are expected to representm-instanton/n-antiinstanton contri-
butions and loop corrections around these configurations. In
the case of SQCD this situation is modified in the presence
of massless hypermultiplets in a simple way, since the ex-
pansion contains only nonperturbative contributions from
m-instanton/n-antiinstanton, wherem,n are even numbers,
and one-loop corrections around these configurations. In the
sequel we shall perform 1- and 2-instanton calculations
which will give contributions toK(C,C̄) of the form ex-
pected from the conjecture in@18#. Let us now make a re-
mark which will become clear after the instanton computa-
tion will be performed. If we differentiateK(x,x̄) twice with
respect tox and twice with respect tox̄ ~to obtainKxx x̄ x̄!, the
terms containing lnxx̄ and ln2 xx̄ give contributions which
sum. Therefore, for an unambiguous check of the conjectures
~3.19!, ~3.22!, one needs not only 1-instanton or 2-instanton
but also mixed 1-instanton–1-antiinstanton results and per-
turbative corrections around all the aforementioned configu-
rations. Anyway, as a first step towards the check of these
proposals, we now compute the nonperturbative~1-instanton
and 2-instanton! contributions toK(C,C̄).

In terms of theN51 superspace the four-derivative term
reads@14#

1

16 E d2ud2ū@Kff̄~F,F̄!„DaDaFD̄ ȧD̄ ȧF̄12D̄ ȧDaFDaD̄ ȧF̄14DaWaD̄ ȧW̄ȧ24D (aWb)D (aWb)24D̄ (ȧW̄ḃ)D̄
(ȧW̄ḃ)

22DaDa~WbWb!22D̄ ȧD̄ ȧ~W̄ḃW̄ḃ!…22Kfff̄~F,F̄!WaWaDbDbF22Kff̄f̄~F,F̄!W̄ȧW̄ȧD̄ ḃD̄ ḃF̄

1Kfff̄f̄~F,F̄!~28WaDaFW̄ȧD̄ ȧF̄14WaWaW̄ȧW̄ȧ!#, ~4.4!

whereKf5]K/]f. When written in thex space this Lagrangian contains a four-field strength vertex which is the one we shall
focus our attention on in our calculations:

1

4 E d4xd2ud2ūKfff̄f̄~F,F̄!WaWaW̄ȧW̄ȧ5
1

256
Kaa āā~a,ā!E d4x Tr~sabscd!Tr~ s̄e fs̄gh!FabFcdFe fFgh . ~4.5!

5From now on we shall denote byL the Pauli-Villars RGI scale.
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Thus, the correlator we intend to study is

^Fmn~x1!Frs~x2!Flt~x3!Fku~x4!&. ~4.6!

A. The k51 semiclassical computation

The relevant configuration which contributes to this
Green function is dictated by the sweeping-out procedure at
the next to leading order of@9#;

Fmn5Fmn
~0!1 i j~x!s [nDm] l̄

~0!12i l̄~0!s̄mn«̄

12igj2~x!l̄~0!s̄mnl̄~0!, ~4.7!

whereFmn
(0) satisfies the equation

DmFmn
~0!522ig@fcl

† ,Dnfcl#, ~4.8!

with

fcl5
x2

x21r2 ac~sc/2!, ~4.9!

and

j~x!5j1r21xmsm«̄, ~4.10!

l̄~0!52 i&j8D” fcl
† . ~4.11!

Here, for simplicity,x stands forx2x0 , wherex0 , is the
center of the 1-instanton configuration, andr is its size; fi-
nally h̄mn8a 5Ra

bh̄mn
b , whereRa

b is an SU~2! rotation matrix
which corresponds to global color rotations.

We start by rederiving the result of@16# for the 1-
instanton case in a different way. In the casek51, the N
52 SYM measure on the moduli space is simply@28,36#

E d3Qd4x0

dr

r5

27p6

g8 ~mr!8S 16p2m

g2 D 22

d2jd2j8S 32p2r2m

g2 D 22

d2«̄d2«̄8 exp~2Sinst!, ~4.12!

wherej,j8( «̄,«̄1) are theN52 supersymmetric~supercon-
formal! Grassmann collective coordinates,Sinst is the sum of
the classical action, the Higgs and the Yukawa terms, and
Qa, a51,2,3 denote the moduli associated with global color
rotations. We observe first thatFmn does not contain the
superconformal collective coordinate«̄8 so that the corre-
sponding integration must be completely saturated by the
Yukawa action and we can ignore the terms inFmn which
depend on the fermionic coordinate«̄. Therefore in evaluat-
ing the correlator~4.6!, only the first, the second, and the
fourth term in the rhs of Eq.~4.7! will be of interest. To
lowest order ing2r2uau2, Fmn

(0) becomes

Fmn
cl 5

4r2

g

1

x2~x21r2!2 ~2x2h̄mn8a 12xlxnh̄ml8a

12xlxmh̄ln8a!
sa

2
, ~4.13!

and the term proportional toj2 is negligible. Then, in order
to saturate the integration over the supersymmetric collective
coordinatesj,j8, the product in Eq.~4.6! boils down to

Fmn
cl ~x1!Frs

cl ~x2!@ i js [nDm] l̄
~0!~x3!#@ i js [nDm] l̄

~0!~x4!#.
~4.14!

Now we have to extrapolate the relevant long-distance effec-
tive U~1! fields ~4.13!:

Fmn
~3!cl,LD~x!5

4r2

g

1

x6 ~2x2h̄mn83 12xlxnh̄ml83 12xlxmh̄ln83!

~4.15!

and

i js@n]m] l̄LD
~0! , ~4.16!

wherel̄LD
(0)52 i&j8]”fcl

†LD and the suffix LD stands for long
distance. In this limit the covariant derivative becomes a
simple one. In@9# a nice relationship between the scalar
Higgs field and the Higgs action in the long-distance limit
was derived:

fcl,LD
† 5ā2a21SHG~x, x0!, ~4.17!

where G(x,x0)51/4p2(x2x0)2 is the massless scalar
propagator. As a consequence of this observation it is pos-
sible to recast Eq.~4.16! into the form

&

2

]

]a
SHjsabj8Gmn,ab~x,x0!, ~4.18!

whereGmn,ab(x,x0) is the gauge-invariant propagator of the
U~1! field strength:

Gmn,ab~x,x0!5~dnb]m]a2dna]m]b2dmb]n]a

1dma]n]b!G~x,x0!. ~4.19!

The integration on the superconformal collective coordi-
nates, which are lifted in the background of the constrained
instanton, is completely saturated by the Yukawa actionSY ,
and one gets@37#

E d2«̄d2«̄8 exp~2SY!5229p4g22r4ā2. ~4.20!

The key observation is that the only dependence on the co-
ordinatesUa is due to the insertion ofFmn

(3)cl and that, in the
long-distance limit,
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E
SU~2!/Z2

d3QFmn
~3!cl~x1!Frs

~3!cl~x2!5
8p2

3
Fmn

acl~x1!Frs
acl~x2!52

16p6r4

3g2 Tr~ s̄e fs̄gh!Gmn,e f~x1 ,x0!Grs,gh~x2 ,x0!.

~4.21!

Taking into account the other two insertions which saturate the integration overj, j8, we finally obtain

^Fmn~x1!Frs~x2!Flt~x3!Fku~x4!&k5152
15

64p2

L4

g4ā2a6 E d4x0 Tr~sabscd!Gmn,ab~x1 ,x0!Grs,cd~x2 ,x0!

3Tr~ s̄e fs̄gh!Glt,e f~x3 ,x0!Gku,gh~x4 ,x0!. ~4.22!

On the other hand, the computation of the four-field strength vertex performed by making use of the effective Lagrangian
yields

^Fmn~x1!Frs~x2!Flt~x3!Fku~x4!&L-eff5
3

32
Kaa āā~a,ā!E d4x Tr~sabscd!Gmn,ab~x1 ,x0!Grs,cd~x2 ,x0!

3Tr~ s̄e fs̄gh!Glt,e f~x3 ,x0!Gku,gh~x4 ,x0!, ~4.23!

which finally reproduces the result@16#

K~a,ā!5
1

8p2g4

L4

a4 lnā. ~4.24!

We can rewrite the 1-instanton correlator in a form which is well suited to the generalization to SQCD with 1<NF<4 massive
hypermultiplets and gauge group SU~2! ~in the case in which at least one hypermultiplet is massless the nonperturbative
contributions are expected to come only fromm-instanton–n-antiinstanton configurations wherem, n are even!,

^Fmn~x1!Frs~x2!Flt~x3!Fku~x4!&k51

5
p4

2 S E d4x0 Tr~sabscd!Gmn,ab~x1 ,x0!Grs,cd~x2 ,x0!Tr~ s̄e fs̄gh!Glt,e f~x3 ,x0!Gku,gh~x4 ,x0! D ]2

]a2 F E dm̃1r4G ,
~4.25!

wheredm̃1 is the ‘‘reduced’’ instanton measure obtained by
extracting from the full measure the integration over the
bosonic and fermionic translational coordinates@9,12#. This
formula generalizes immediately by replacingdm̃1 with
dm̃1

NF @9#, where

E dm̃1
NF52

1

16p2g4

LNF

42NF

a2 )
i 51

NF

mi , ~4.26!

andmi is the mass of thei th hypermultiplet. By doing this
we obtain

K~a,ā!uNF
5

1

8p2g4

LNF

42NF

a4 lnā)
i 51

NF

mi , ~4.27!

which is consistent with the relation between the RGI scales
L for different numbers of flavors,

mNF
LNF

42NF5LNF21
52NF. ~4.28!

It is to be noted that in the caseNF54 theb function van-
ishes identically so that the scaleLNF

42NF must be replaced by

q5exp~2iptcl!, ~4.29!

wheretcl is defined in Eq.~2.6!.

B. The k52 computation

Let us now describe the calculation of the 2-instanton
contribution to the real functionK(C,C̄). Again, the Green
function which we are going to study is the simplest one, the
four-field strength one. We shall then be able to immediately
generalize our calculation to the case of SQCD and to check
the validity of the nonrenormalization theorem in the case
NF54 found in @19#.

We start by briefly recalling how to determine gauge field
configurations for a generic winding numberk. The instan-
ton field can be conveniently written in terms of the Atiyah-
Drinfeld-Hitchin-Manin ~ADHM ! construction@38,39#. To
find an instanton solution of winding numberk, one intro-
duces a (k11)3k quaternionic matrix

D5a1bx, ~4.30!

wherex denotes a point of the one-dimensional quaternionic
spaceH[C2[R4, x5xmsm .6 The gauge connection is then
written in the form

6We use the conventions of@12#.
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Am
cl5U†]mU, ~4.31!

whereU is a (k11)31 matrix of quaternions providing an
orthonormal frame of KerD†: i.e.,

D†U50, ~4.32!

U†U512 . ~4.33!

The constraint~4.33! ensures thatAm
cl is an element of the Lie

algebra of the SU~2! gauge group. The condition of self-
duality on the field strength of Eq.~4.31! is imposed by
restricting the matrixD to obey

D†D5 f 21
^ 12 , ~4.34!

with f an invertible Hermitiank3k matrix ~of real numbers!.
The reparametrization invariances of the ADHM construc-
tion @40# can be used to simplify the expressions ofa andb.
Exploiting this fact, in the following we shall choose the
matrix b to be

b52 S 013k

1k3k
D . ~4.35!

From Eq. ~4.31! one can compute the field strength of the
gauge field, which reads

Fmn
cl 52U†bsmn f b†U. ~4.36!

In the so-called singular gauge, one has

U05s0S 12
1

2
f lm Trv l v̄mD 1/2

,

Up52
1

uU0u2 Dpl f lmv̄mU0 , ~4.37!

where vp5D0p and l ,m,p51, . . . ,k. In the following we
shall need only the long-distance limit of these functions:

Dpl;bplx, f lm;
1

x2 d lm ,

Uk;2
1

x2 xv̄kU0 , U0;s0 ,

D0l;0. ~4.38!

Whenk52 the most general instanton configuration can be
written starting from the ADHM matrix

a5S v1

x01e
d

v2

d
x02e

D . ~4.39!

Here

d5
e

4ueu2 ~ v̄2v12 v̄1v2!, ~4.40!

as a consequence of the ADHM defining equations@41#.
The fermionic zero modesl

bȦ

(0)
are easily deduced from

the gauge field zero modes@40#

Zm5U†Cs̄m f b†U2U†b fsmC†U, ~4.41!

by recalling that, due toN52 SUSY,

l
bȦ

~0!
5s

bȦ

m
Zm , ~4.42!

~Ȧ51,2 labels the two SUSY charges andb51,2 is a spin
index!. For Eq. ~4.41! to be transverse zero modes, the (k
11)3k matrix C ~for a generic instanton numberk! must
satisfy

D†C5~D†C!T, ~4.43!

where the superscriptT stands for transposition of the
quaternionic elements of the matrix~without transposing the
quaternions themselves!. The number ofC’s satisfying Eq.
~4.43! is 8k @40#. In order to describe the zero modes of the
N52 gauginosl

bȦ

(0)
, we also need the form of the matrixC

appearing in Eq.~4.41!, which is constrained by Eq.~4.43!.
To parallel the form of Eq.~4.39!, we shall put

C1̇5S m1

4j1h
d

m2

d
4j2h

D , ~4.44!

C2̇5S n1

4j81h8
d8

n2

d8
4j82h8

D , ~4.45!

whered,d8 are constrained by Eq.~4.43! to be

d5
e

2ueu2 ~2d̄h1 v̄2m12 v̄1m2!,

d85
e

2ueu2 ~2d̄h81 v̄2n12 v̄1n2!. ~4.46!

In the long-distance limit, the 2-instanton field strength fac-
torizes in

Fmn
cl,LD5

2

x6 @v1x̄smnxv̄11~v1→v2!#

5
1

x6 @v1~2x2s̄mn12xrxms̄rn12xrxns̄mr!v̄1

1~v1→v2!#. ~4.47!

On the other hand, in@9# it was proved that, thanks to the
geometrical properties of the ADHM construction, the rela-
tionship between thej,j8 bilinear part in Eq.~4.7! and the
Higgs action continues to hold for every winding number.

We start with thek52 N52 supersymmetric measure,
which reads
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1

S2
E d4x0d4ed4v1d4v2d2jd2j8d2hd2h8d2m1d2m2d2n1d2n2 exp~2Sinst!S JB

JF
D 1/2

. ~4.48!

S2 is thek52 symmetry factor which eliminates all the re-
dundant copies of each field configuration which appears in
the ADHM formalism@40,9#, andJB(JF) is the Jacobian of
the change of variables for the bosonic~fermionic! degrees
of freedom. As in the calculation of the 2-instanton contri-
bution to theN52 prepotential@9#, we find it convenient to
define the four combinations of the bosonic parameters:

L5uv1u21uv2u2,

H5L14udu214ueu2,

V5v1v̄22v2v̄1 ,

v5
1

2
TrVA00, ~4.49!

whereA005( i /2)acsc. In terms of these new variables it is
possible to write the Higgs action as

SH516p2S LuA00u22
uvu2

H D54p2uau2S L2
uVu2cos2u

H D ,

~4.50!

and the Yukawa action as

SY54&p2@2nkĀ00mk1~v̄/H !~m1n22n1m212hd8

22h8d!#, ~4.51!

whereuvu5 1
2 uVuuauucosuu defines the polar angleu. Finally

1

S2
S JB

JF
D 1/2

exp~2Scl!526p28L8
zueu22udu2z

H
.

~4.52!

As in the 1-instanton case the integration over the nonsuper-
symmetric fermionic coordinates is saturated by the Yukawa
action, which gives

E d2hd2h8d2m1d2m2d2n1d2n2 exp~2SY!

52
25p6ā6cos2u

ueu4H82 L2F S 11
cos2u

H8 D 2

1
12uV8u2

H82 sin2u cos2uG , ~4.53!

where we have redefinedV85V/L, H85H/L. The integra-
tion over the variablee is traded for the integration onH,
i.e.,

E d4e
zueu22udu2z

ueu4
→

p2

2 E
L12uVu

`

dH. ~4.54!

As far as the two insertions ofFmn bilinear in j,j8 are con-
cerned, it is possible to use a trick already exploited in the
1-instanton case. It consists in writing them as a second de-
rivative of the instanton measure with respect toa @9#; the
remaining two insertions, however, will have to be integrated
explicitly. First of all, let us writev2 as a function of
v1 ,V,L;

v25S V̄

2
1Auv1u2~L2uv1u2!2

uVu2

4 D v1

uv1u2 , ~4.55!

and insert this form in the long-distance limit of the
2-instanton classical configuration. The integration measure
over v1 ,L,V is written as

2E
0

`

dLE
uVu<L

d3VE
L2

L1

duv1u2

3
1

32A~L12uv1u2!~ uv1u22L2!
E

S3
d3Q,

~4.56!

where*S3d3Q52p2 is the integration over the global color
rotations of the first center of the instanton andL65 1

2 (L
6AL22uVu2). On the other hand,

E d3V5L3E
0

2p

dwE
21

1

d~cosu!E
0

1

uV8u2duV8u,

~4.57!

whereu is the angle betweenV and the direction singled out
by the vacuum expectation value of the Higgs field. Again,
as in the 1-instanton case, we observe that, in the long-
distance limit,

E d3QFmn
3cl~x!Frs

3cl~y!5
2p2

3
Fmn

acl~x!Frs
acl~y!52

2p6

3
Tr~ s̄abs̄cd!Gmn,ab~x,x0!Grs,cd~y,x0!S Luv1u22

uVu2

2
sin2u D .

~4.58!

Putting everything together one obtains the following integral for the correlator:
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E d4x0E
0

1

duV8uuV8u6E
21

1

d~cosu!cos2uE
112uV8u

` dH8

H83 E
0

`

dLL7@12uV8u2 sin2u#~24p14!L8ā6F S 11
cos2u

H8 D 2

1
12uV8u2

H82 sin2u cos2uGTr~ s̄abs̄cd!Gmn,ab~x1 ,x0!Grs,cd~x2 ,x0!Tr~se fsgh!Glt,e f~x3 ,x0!Gku,gh~x4 ,x0!

3
]2

]a2expF24p2Luau2S 12
uV8u2cos2u

H8 D G , ~4.59!

and, after a trivial integration onL, we get

E d4x0E
0

1

duV8uuV8u6E
21

1

d~cosu!cos2uE
112uV8u

` dH8

H83 @12uV8u2sin2u#

3S 2
533437

26p2 D L8

ā2a10

~11cos2u/H8!21~12uV8u2!sin2u cos2u/H82

~12uV8u2cos2u/H8!8

3Tr~ s̄abs̄cd!Gmn,ab~x1 ,x0!Grs,cd~x2 ,x0!Tr~se fsgh!Glt,e f~x3 ,x0!Gku,gh~x4 ,x0!. ~4.60!

The remaining integrations over the adimensional variablesuV8u,cosu,H8 can be easily performed by using a standard alge-
braic manipulation routine, and give 1/42. The final result is then, restoring the explicitg dependence,

^Fmn~x1!Frs~x2!Flt~x3!Fku~x4!&k5252
5333

27p2g8

L8

ā2a10 E d4x0 Tr~ s̄abs̄cd!Gmn,ab~x1 ,x0!Grs,cd~x2 ,x0!

3Tr~se fsgh!Glt,e f~x3 ,x0!Gku,gh~x4 ,x0!. ~4.61!

Comparing this result to that of the effective Lagrangian one gets

K~a,ā!uk525
5

32p2g8

L8

a8 lnā, ~4.62!

which is our prediction for the 2-instanton contribution to the real functionK(C,C̄). The 2-antiinstanton configuration
contribution toK is simply the complex conjugate of Eq.~4.62!.

Let us generalize our result to the case ofNF<4 massless hypermultiplets, which receives the first nonperturbative
contribution from the 2-instanton sector and verify the nonrenormalization theorem of@19# for NF54. As in the 1-instanton
case@see Eq.~4.25!# it is possible to rewrite the four-field strength correlator as a double derivative of the ‘‘reduced’’measure
with respect toa,

^Fmn~x1!Frs~x2!Flt~x3!Fku~x4!&k525
p4

4

]2

]a2 F E dm̃2S uv1u2L2
uVu2

2
sin2u D G E d4x0 Tr~ s̄abs̄cd!Gmn,ab~x1 ,x0!

3Grs,cd~x2 ,x0!Tr~se fsgh!Glt,gh~x3 ,x0!Gku,gh~x4 ,x0!, ~4.63!

and the extension to the caseNF.0 is performed by substituting the ‘‘reduced’’ measuredm̃2 with dm̃2
NF as defined in@11#:

E dm̃2
NF5229p7ā2LNF

2~42NF!E
0

1

duVuuVu2E
21

1

d~cosu!E
112uVu

` dH

H3 E
S3

d3QE
0

`

dLLE
L2

L1 duv1u2

A~L12uv1u2!~ uv1u22L2!

3expF24p2Luau2S 12
uVu2cos2u

H D G (
n50

NF MNF2n
~NF!

p4n

]2nG

]Z2nU
Z50

. ~4.64!

We have dropped for simplicity the primes onH,V; G(Z) contains the contribution from the integration measure over the
hypermultiplets and has the form

G~Z!5S v̄L1
iZ

8&
D 2F ā2

16
uVu2L21

L

2H
āv̄LS v̄L1

iZ

8&
D 1

12uVu2 sin2u

4H2 S v̄L1
iZ

8&
D 2GexpF ip2Z

&H
uVuaL cosuG .

~4.65!
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The MNF2n
(NF) are a set of SO(2NF)-invariant polynomials in

the massesmn of the hypermultiplets:

M0
~NF!

51,

M1
~NF!

5 (
n51

NF

mn
2,

M2
~NF!

5 (
n,p

NF

mn
2mp

2, ~4.66!

A A

MNF

~NF!
5 )

n51

NF

mn
2.

In the case of massless hypermultiplets, the only contribution
to the correlator will come from the term with the 2NF-th
derivative ofG(Z) and, writing the generic contribution to
K(C,C̄) as

K~C,C̄!uNF,45K2
~NF! 1

p2g8 S LNF

C
D 2~42NF!

lnC̄,

~4.67!

we find

K2
~0!5

5

32
, K2

~1!52
33

210,

K2
~2!5

3

210, K2
~3!52

1

212. ~4.68!

For the caseNF54 we get

K~C,C̄!uNF545
q2

33211p2g8 lnC̄, ~4.69!

which is a purely antichiral term. When integrated over the
whole superspace it does not contribute to the effective ac-
tion; this confirms thus the nonrenormalization theorem of
@19#. In the case in which there are massive hypermultiplets,
Eqs.~4.67! and~4.69! generalize immediately to the formula

K~C,C̄!uNF
5 (

n50

NF

MNF2n
~NF! K2

~NF! 1

p2g8 S LNF

C
D 2~42NF!

lnC̄,

~4.70!

provided that one replacesLNF

2(42NF) with q2 @q is defined in

Eq. ~4.29!# whenNF54. In this case the nonrenormalization
theorem of@19#, as already noted in@21#, is spoilt by the
presence of other energy scales represented by the masses of
the hypermultiplets.

V. CONCLUSIONS AND OUTLOOK

In this paper we investigated the next-to-leading correc-
tions to the low-energy Wilsonian effective actions which
describe the dynamics of the light degrees of freedom of the
Coulomb phase forN52 SYM and SQCD theories. These
terms are determined by the full superspace integral of a real,
adimensional, modular invariant functionK(C,C̄). In par-
ticular, extending@18# to the case of SQCD withNF,4
hypermultiplets, we proposed a solution forK which satisfies
all the physical requirements of the model. We found its
behavior under the renormalization group action, and a dif-
ferential equation which we interpreted as a fully nonpertur-
bative ‘‘nonchiral Ward identity.’’ To support our proposals
we performed multi-instanton calculations around configura-
tions of winding numberk51,2. This way we checked a
nonrenormalization theorem in the scale-invariantNF54
SQCD.

We observe that our investigation is strictly connected to
the ‘‘nonchiral’’ analogue of the Picard-Fuchs equations
@7,42# and to the related integrable structure@43#. This ap-
proach deserves being generalized to the case of higher-rank
groups@44,45# and to the study of the strong coupling region
@46#. As a final remark, we would like to point out that many
aspects of the theory seem to be related to the Duistermaat-
Heckman theorem@47#. In this context, we observe that in a
recent paper a ‘‘Gaussian approach’’ to compute supersym-
metric effective actions has also been worked out@48#.
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