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In this paper we first investigate the ansatz of one of the present authdkg¥or¥), the adimensional,
modular-invariant, nonholomorphic correction to the Wilsonian effective Lagrangian &i-ag globally
supersymmetric gauge theory. The renormalization grgufunction of the theory crucially allows us to
expresK(¥,¥) in a form that easily generalizes to the case in which the theory is coupled hypermul-
tiplets.K (¥, V) satisfies an equation which should be viewed as a fully nonperturbative “nonchiral supercon-
formal Ward identity.” We also determine its renormalization group equation. Furthermore, as a first step
towards checking the validity of this ansatz, we compute the contributid@(tB,¥) from multi-instanton
configurations of winding numbée=1 andk=2. As a by-product of our analysis we check a nonrenormal-
ization theorem folNg=4. [S0556-282(97)07520-9

PACS numbe(s): 11.30.Pb, 11.10.Hi, 11.15.Kc, 11.30.Ly

I. INTRODUCTION rection is a term with four derivatives or 8 fermions, and it is
given by the full superspace integral of a real, adimensional
In a celebrated paper, Seiberg and Witten studied a glofunction K(¥,¥) [14]. Much in the same vein of the previ-
bally N=2 supersymmetric Yang-Mills theorf5YM) with ous analysis of the symmetries of the effective prepotential,
the SU2) gauge groupl]. They also extended their analysis the investigation of the transformation properties under the
to theories with additional hypermultiple¢SQCD) [2], and  modular group of the complete Wilsonian action leads to the
they were able to exactly determine the Wilsonian effectiveconclusion thak (¥, ¥) is a modular invarianf14]. How-
action up to two derivatives and four fermions. In terms ofever, it seems that also the higher-order terms are modular
anN=2 chiral superfieldV, these leading terms are encodedinvariant. Indeed, let us denote the nonholomorphic part of
in a holomorphic functionF(¥) called the effective prepo- the Wilsonian effective action b§[ ¥, W¥]; furthermore, let
tential. From a physical point of view, the Wilsonian effec- S, T be the SI2,7) generators witts?=1 and 8T)3=1. In
tive action describes the low-energy degrees of freedom df14] it was shown tha§[ ¥, ¥] does not transform under the
the N=2 microscopic supersymmetric gauge theory. Thesaction of T while, under duality F(¥)— Fp(¥p)=F(¥)
results were achieved thanks to a certain number of conject ¥, where W= 3dF/9¥. Now, if the action ofT on
tures which were suggested by the physics of the problem. [§[ ¥, ¥] is trivial and the group has only two generators, the
was later shown i3] that, in the case dl=2 SYM, these action of S must be trivial too, since
assumptions follow from the symmetries of the theory and
from the inversion formula first derived i@] (subsequently c Ul — 3,c T — 3.8 T — o R
generalized to SQCD if5]). They are consistent with mi- SV A= (S, V=SS W, v] Sos[lp’q,%i‘l)
croscopic instanton computations in the cases of SYM and
SQCD[6-12. However, we observe that the modular invariance described
Since the moduli space of vacua of the theory is a thrice- o : : .
. “above is considered with respect to tBeand T action de-
punctured Riemann sphere, one can study the transformathn : . ) : —
properties of /(W) under the modular groub(2). The result .|ned |r1[14] whereas, strictly .spea_klng, gfuncﬂ@(\lf&)
of such an exercise is the inversion formula[#], which IS said_to be modular invariant ifG(y(¥),y(¥))
relates /(W) and its first derivative to a modular invariant =G(¥,¥), ye SL(2,7).
function. The entire physical content of the theory can now Let us now leave this argument on the side and let us
be extracted from this differential equatif®,4], which was  remind that the perturbative 1-loop term and the contribution
also derived as an anomalous superconformal Ward identitgf instantons of winding numbek=1 to K(¥,¥) were
in [13]. computed in[15,16; on the basis of these results, and by
Recently a great deal of work has been devoted to theising uniformization theory, one of the present authors was
study of nonholomorphi¢i.e., higher-derivativecorrections  able to write a modular invariant function which satisfies the
to the N=2 SYM and SQCD low-energy effective actions constraints imposed by perturbative and instanton calcula-
[14-27. Indeed, as it is well known, a Wilsonian effective tions and which has no other singularities but the one at
action can be expanded in powers of the external momentumveak coupling[18]. This function satisfies the physical re-
over some subtraction scale. The first nonholomorphic corquirements of the theory, for example, it vanishes at those
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points of the moduli space where monopoles or dyons be- — — IF

come massless: we consider it to be a candidate for the ex- K(®,®,V)=(De )2 “Ha (2.3
pression ofK(W¥,¥). Its actual form will be reviewed in

Sec. Il where we also write it in terms of th@function of IPF

the theory, and work out the renormalization group equation fan(P)= SDaIPD” (2.9

satisfied byK. We also find that this function satisfies an

equation which should be viewed as a fully nonperturbativerhe classical action for thii=2 SYM theory is obtained by

“nonchiral superconformal Ward identity.” In the same sec- choosing for the holomorphic prepotentialthe functional
tion we also extend the ansatz to the case of SQCD Nith  form

hypermultiplets. Furthermore, we study the higher-derivative
corrections to the SYM and SQCD effective Lagrangians, o A a
and in particular we focus our attention on the contributions Fo(W)= 2 (), (2.9
of instantons of winding numbede=1,2 to the real adimen-

sional functionK (¥, ¥). This is a first step in the direction Where we conventionally defing, as

of checking the proposal ifl8] and that of Sec. Ill. As we
shall discuss in Sec. IV, the situation is more involved than
in the case of the holomorphic part of the effective Lagrang-

ian, and we cannot provide here a check for the expression %f) lizat h i The choica 2.5 i
K(¥,¥). We plan to come back on this point in a future ur normalizations are the same _a$ h The ¢ 0|ce(_ 5) IS
publication. dictated by renormalizability requirements. After eliminating

The plan of the paper is the following: in Sec. Il we the auxiliary fields, the classical action of the theory is given

review the solution of1] to fix the notations and compute by

the re!atlonshlp between the Pauh-\/ﬂla_rs renorma_llz.atlon S=Sg+ S+ Se+ Syt Spor- 2.7)
group invariant scale and that appearingdih We do this in

great detail because we shall need it in the following ands; is the usual gauge field action; the kinetic terms for the
because the literature is plagued with inconsistent notations-ermi and Bose fields minimally coupled to the gauge field
The content of Sec. Il has been discussed above. We sta,lsiﬂ are

Sec. IV by computing thé&=1 contribution toK (¥, ¥). It

turns out to be in agreement with the result[@6], which N 4.3 Aa 1a

was derived by using different methods. In the second part of SFD\’)\’A]_J ADALD(ANAL 28

the same section we compute tke 2 contribution, forN :

=2 SYM and SQCD. Furthermore, we check a recent resulvherei 4 are the two gaugino#i=1,2, and

concerning a nonrenormalization theorem in the case of four

flavors [19]. While we were writing this paper a work by S|4[¢1¢T’A]:f d*x(D ¢)T3(D $)2. 2.9
Doreyet al.[21] has appeared in which computations partly

similar to ours, in the case of winding humbke1, are
carried out and the nonrenormalization theoremNgr=4 is
checked by using scaling arguments. Our results agree with

0 Ami

Tcl

The Yukawa interactions are given by

theirs. SY[¢,¢T,A,A_]=V§geabCf d4x¢aT()\E)\g)+H.c.
(2.10
Il. A REVIEW OF THE SEIBERG-WITTEN MODEL
. : . . finall =[d*xV(¢, " f h ial
The Lagrangian density for the microscopic=2 SYM ?er:% inally Spo=Jd"xV(¢,¢7) comes from the potentia
theory, in theN=2 supersymmetric formalism is given by
L V(46" =Tt ¢4, (.19
- 294279
L= 167 m J d*0d0F (V). @D for the complex scalar field. As required by supersymmetry,

one hasV(¢,¢")=0. The conditionV(¢,4')=0 implies
The chiral superfieldl, which describes the vector multiplet that [ ¢,¢']=0: ¢ is then a normal operator, and can be
of the N=2 SUSY, transforms in the adjoint representationdiagonalized by a unitary matrix: that is, a color rotation.
of the gauge groug [which will be SU2) from now orl.  The most generalsupersymmetric classical vacuum con-
Reexpressing the Lagrangian density in e 1 formalism,  figuration is then
we have

93 1
QZQ

$o=2a , aeC, QeSU?2). (.12

_ 1 2942 pK & 2 ayp/b
L—Elm Jd od 0K(<I>,<D,V)+f d“of 4,(D)WAWP |,
(2.2 Whena#0 the SU2) gauge symmetry is spontaneously bro-
ken to U1). The classical vacuum “degeneracy” for tie
wherea, b are indices of the adjoint representation®f =2 SYM theory is lifted neither by perturbative nor by non-
The Kahler potentialk (®,®,V) and the holomorphic func- perturbative quantum correction23,24). In fact any non-

tion f,,(®) are given, in terms of, by zero superpotential would explicitly break the extended su-
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persymmetry of the model; however, the Witten index of theincluding the classical contribution in the first term. The per-
theory is nonzerd25], so supersymmetry stays unbroken. turbative term has been calculated by Seibf2fl] and is
We then have a fully quantum moduli spagdelsy,), forthe  exactly determined thanks to the holomorphicity require-
low-energy theory. The effective Lagrangian for the masslesments onF(a) and to the U(1j symmetry:

(D) fields @ ={ g3\, F3}, W,={A%\>. D% will be the N sia
U(1) version of Eq.(2.1) and reads, ilN=1 notation, UDr: A€ NA, €6, (218

The associated curredf is anomalous;

L fdzaf" D)WW +J d20d?0DF (P } — — -
167 (@) (®) JR=NO N H N0, N+ 2010, 0,
(2.13
The low-energy dynamics are then governed by a unique 9,Ik=— 392 (FZVFZV)(Ach) (2.19

function F(®), the effective prepotential, whose functional
form is not restricted by supersymmetry. The crucial prop-
erty of F(®P), first proved in[26], is its holomorphicity. In
analogy with Eq.(2.6) we can also define an effective cou-
pling constant as

(in our case the number of colors is taken toMe=2). The
discrete subgroufgCU(1)g generated by the transforma-
tions (2.18 with a,=(27/8)m, me Z is a symmetry of the
full quantum theory, since in this case the action functichal

HD)=F'(D). (2.14 transforms as
It is now a simple exercise to rewrite E@.13 in the com- S—Sti8kam=S+2mim. (220
ponent field formalisnt. This way we obtain At a given point in theu-moduli space the&Zg symmetry
spontaneously breaks downg, since the Wl)g charge of
- ’ 2, A+ uis +4. However,(_2.20) teIIs_ us that the _pomta and —u
Let 4 -7 d))( 19,91 l)\Am\ FuFu ) correspond to physically equivalent theories. We now imme-

diately rewrite(2.18 in terms of the W1) superfield¥ of the

1 1 N=2 supersymmetry as
+— PN NF t FV(HNNZ| +

U(L)r:W(x,0)—W'(x,0)=€? "W (x,0e*):
(2.15 2.21

where the dots stand for terms of higher order in the couplindf we now assign a charge of 1 to 6, the charge of¥ is
constant. The effective description of the low-energy dynam-t+2, in such a way that the classical prepotent@b) is
ics in terms of the (1) superfieldsb andW,, is not appro-  invariant. Then the perturbative effective Lagrangian
priate for all vacuum configurations. In particular, the quan-

tum moduli spa_lce\/lsu(z) is better described in terms of the Lped W1= ~oe |mJ dzedzefper{\lf(x 0] (2.22
variablea and its dualap=d,F. When the gauge group is

SU(2), we can descrlbej\/lsu(z) in terms of the gauge- )

invariant coordinateu=(Tr¢2). Then Mgy is the Rie- transforms into

mann sphere with puncturesiat o andu= + A2, whereA 1
is the rgnormallzanon group invariant scéRGl) i |n the nor- L(‘;ﬂ[‘lf’]z — Im f d2edZo.r AW (x,0e71%)]
malization of[1]. P 16w P

At the classical level
=16, M j d*ge Ll €W (X,0)],

Fola)= 2 a2, (2.16
2 (2.23

however, perturbative as well as nonperturbative effectsvhered*d=d20d2g. After a little algebra we get
modify the expression of the prepotential. We shall then

write Lpert+ 5a|-pert
_ 1 9
F(2)= Fper(@) + Frl@), (217 =2—1m Jd“e l+4ia( 1+w2 H Foed ¥).

(2.29
Throughout the article we shall use the conventions of Wess and
Bagger[27] for the product of Weyl spinors and integration on Furthermore, we know that under gk transformation
superspace. We also define the Euclldeqna matrices aso,
=(Lic®), o,=(1,—ic®), o® a=1,2,3 being the usual Pauli ma—
trlces and the (ant)self dual matrlces c(-w)a are o,
(0' a' -0 a'M) I77#V , a'#,, (O'MO' 0,0,)= inwoa,
where 7y 17y, are the 't Hooft symbols defined {i28]. (with N.=2), so that

Oal per= — (4N a)( ! F2 Fa ). (2.29

nv v
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1 2 By making some hypotheses on the structure of the moduli
L pertt Oal-per= 75— IM d49[fpen(‘1’)— - w2, space and on the monodromiesofround its singularities,
(2.26 Seiberg and Witten obtained the expressionsa@f) and
ap(u), which are given by

from which it immediately follows that

W ‘/ifAzd VX—u (2.34
J i A= | M E A :
(‘1’2 W—].)]:pen(\l’)zﬁqu. (2.27) ™ A A
V2 [y —

This is the semiclassical versiph3,30,3] of the nonpertur- ap(u)=— fu dx %, (2.35
bative relation T JAZ -A

) adF ) where A is the Seiberg-Witten RGI scaléo be matched

i\ F 5 == =(Tre%), (228 against the Pauli-Villars oneWe now put

obtained in[4] and subsequently rederived [ib3]. The so-

J2u
lution to Eq.(2.27) is ap(u)=——g(1), (2.36

2

i v where
Foed W)=5 -2 In 7, (2.29

1 z—1
whereu can be fixed by the value of the coupling constant a@(1iu)= fAz,udZ Ny (2.3

some subtraction point. The normalization of tlome-loop

perturbative contribution must be fixed together with the ) )
nonperturbative contributions and the definition of the RGI _ fl , 2zt fl dz
scaleA. To this end, we first write the nonperturbative pre- A2 | 2= AW 2 A 2
potential as (2.38
= A\ %K The perturbative constanti&A2) contribution tog(1/u) is
F)=2 A 7| @ (2.30
- v (V=1 il 2
. J’ Z —=|=2i In—, (2.39
and similarly 0 z z e
1 ” A\ %K so that
u(a)== a2+ >, gk(— a’. (2.31)
2 k=1 a
VJ2u  4u
) ) ap(u)—i —In ——. (2.40
It is easy to check that the expressigBs30), (2.31) possess m  (eA)

the correct invariance properties under flagesymmetry. The

values of theZ’s and theG,’s are meaningful only if one Using the asymptotic expansid@.31) we finally obtain an
specifies the choice of the renormalization-group-invarian€Xpression folap as a function ofa in the perturbative re-
(RGI) scaleA, and can be obtained viakainstanton calcu- 9ime,

lation [6,9,12. In the following we shall need the expres- _ 0a?

sions for the l-instanton contribution to(a), which was ! a

found to be[6,12] ap(a)— —aln en)? (2.4

4
V

5 Ap that is, in the same limit,
(Tro=1=—z - (2.32

2

i
_ a2
Here Apy is the Pauli-Villars RGI scale, which naturally Frer(@) 27 2 In

arises when performing instanton calculations after the can-

cellation of the determinants of the kinetic operators of theThis sets the normalization of the classical and perturbative
various fieldd32]. We shall fix in a moment its relationship contributions. From Eq(2.42) it follows that

with the scale employed ifi]. Note that the relatiori2.28

gives theF’s as functions of thej,’s; 2

i 2a
Tper @) = Fper( @) = p= In Az (2.43
We now examine the first instanton correctionu@); via

the relation(2.33 we shall then fix the normalization of the
2Disregarding terms which vanish when integratedifs. F’s. Expanding the expressid.34) for u>A? we get
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fAZ q 1 1
IC N O TV

+O(A8/u4)l

A? x?
<] o A2
4
20 1-

67 +O(A8u%|. (2.44

In the same approximation we also have that

2

u(a)=?

4
+0

A A8

substituting into Eq(2.44) we get

1 A4 o A8 1 1(A\* 140 A8
=altal ) *Ol%) |1 ala) 1O wE )|
(2.49
and, for consistency, we must impose
L 2.4
91_21 ( . D

with respect to the RGI scalk in [1]. Comparing Eq(2.47)
with Eq. (2.32 we find

A

Apy=—. 2.4
PV (2.48

The holomorphic prepotentigf(a) is then given by

A4k

]—‘(a)— — a In

3A2+a 2 fk

i a® Apy| %
2k
27Taln 3A2 +a§]~‘2(a) ,
(2.49

where F; = G;/2mi = 1/8i.
Finally, when we add\g hypermultiplets, the holomor-
phic prepotentialFNF)(a) becomes

2

f(NF)(a):sl_w (4—Np)a?in

a
S(A(NF))

(Np)\ k(4=Ng)
B

+a22 F 22"( il

D. BELLISAI F. FUCITO, M. MATONE, AND G. TRAVAGLINI 56

(2.2). Since an effective Lagrangian is written as an expan-
sion in the space of momenta, the higher-order contributions
will come out of terms with four or more derivatives or eight
or more fermions. In the case Bf=2 SYM theory, they will

be written as an expansion in spinor derivatives:

Sy(¥, W) = f d*xd*0d o[ K (¥, W)

+G(¥,¥)DYDWDWDW+---
D4)].

If we assign the scaling dimensiofdx]=1, [d#]=—1/2
and [D]=1/2, as a consequence bf=2 supersymmetry,
the expansion will contain only terms with even dimension.
Furthermore, the U(XR) anomaly and the nonperturbative
corrections are completely encoded in the analytic prepoten-
tial F, which is the only holomorphic term that appears in the
effective Lagrangian. Therefore E(B.1) is integrated over
the whole superspace. From now on we shall restrict our
attention to the first ternK(¥,¥) in Eq. (3.1), which is
adimensional and does not contain spinor derivative¥ of
andV.

We now consider the derivation ¢f proposed in[18].
Let H={w|Im w>0} be the upper half plane endowed with
the Poincarenetricdss= (Im w)~Jdw? Sincer=#2F is the
inverse of the map uniformizingsy(y), it follows that the
positive-definite metric

+0(D* D (3.2

2

dsi= W'd

|9u7]?

|2—(—2|du|2:e‘*’|du|2

(3.2

is the Poincarenetric oNMsgy(z)- This implies thaty satis-
fies the Liouville equation

(3.3

Observe that this equation is satisfied since, for any funda-
mental domairF in H, 7(u) is aunivalent(i.e., one-to-ong
map betweenMgy;) andF. In this context we stress that
7(u) is not properly a function; rather, it is polymorphic
function (i.e., it is Mobius transformed after going around
nontrivial cycles. Therefore, classical theorems concerning
standard meromorphic functions do not hold. In particular,
Im 7(u) is a zero mode of the Laplacian. Observe that on the
moduli spacer(u) is holomorphic as zeroes and poles are at
the puncturegthat is, missing poinjs Zeroes and poles are
manifest on the compactified moduli space. However, these
critical points are absent in the case of higher-genus Rie-

where £ =0 in the presence of massless hypermultipletsmann surfaces without punctures. This follows from the fact

2k+1
This is a consequence of tig,— ) chiral symmetry group

of the quantum theorj2].

IIl. NONHOLOMORPHIC CORRECTIONS
AND THE B FUNCTION

that punctures correspond to points R=JH. In particular,

as the fundamental domains of negatively curved Riemann
surfaces without punctures belong toH, it follows that in
these cases is a holomorphic nowhere vanishing function
on 2. In particular,A Im7=0. In[4,33,3 it was shown how
the results of 1] are naturally described in the framework of

Let us briefly describe the general form of the nonholo-uniformization theory. We now show how the function
morphic (higher-derivative¢ corrections to the Lagrangian K(W,W¥) derived in[18] naturally arises in this context.
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To see this let us first recall some asymptotics for theonly in this case the scal& is a fake(it does not multiply
Poincaremetric. Let us consider the Riemann sphere withnonholomorphic terms in the Lagrangjaas it should be for
elliptic or parabolic points(puncture$ at uq,...,us_1, U, a scale-invariant theory.

=o, Near an elliptic point the behavior of the Poincanet- Let us go back to th&l=0 case. Besides E43.6) we
ric is know thatK is a modular invarianf14] and that the one-
instanton contribution i$16]
Aqry 2
e~ ——q, 3.4 _
(VD=2 || gz tHe (39

whereq, * is the ramification index ofi, andr,=|u—u,],

k=1,...n—1,r,=|u|. Taking theg,—O0 limit, we get the ) ] ) — )
parabolic singularitypuncture Strictly speaking, a functio® (¥, ¥) is said to be modular

invariant if G(y(¥),y(¥))=G(¥,¥), yeSL(2,7). How-
ever, K(¥,¥) has the invarianceloK(¥,¥)=K(¥,¥)
re In’ry’ (39 andSK (¥, ¥)=K(¥,¥). While in the former case there is
no change in the functional structure if in the latter, ac-
It follows that in the case ofMgyz) the Poincaremetrice®  cording to theS-dual formulation of the theory, whet&()

ef~

vanishes only at the punctureu=«, where o~ is replaced byF(W¥p), the functionSK(W,¥) should be
—2In(u|n|u]). Furthermore,e® is divergent only at the constructed with the building blocky (W) [which replaces
puncturesu= + A2, whereg~ —2 In(uFAZInjuxA?). F(¥) in the construction oK (W, ¥)].

Let us now gather some known results (W ,¥). First Let us discuss the reasons wiyV) should be consid-

observe that ii15] it was proved that, to the one-loop order ered as a building block fok (¥, ¥). First of all, one can
observe that the geometry determined Byis that of the
— Riemann sphere with three punctures. Then,Ssguality,
KW, W)~cIn—+In+, (3.6 modular invariance, and general arguments, it is quite natural
to believe thatK should be a well-defined function on

wherec is a constant which was recently calculafe@] in ~ Msu(e), that is, a real “function” ofu,u. On the other
the formalism of harmonic superspace fosBg<4. The hand, the inversion formulé2.28 tells us that we can ex-
nonholomorphic terms in the effective Lagrangian are (1) Pressu by means of7(W). Therefore /() is the building
invariant. If we follow the arguments used fd¥ [which block for K(W,¥). This is a useful result sinc_e, as we shall
eventually led to Eq(2.27)] we get, in particular, see, it implies a differential equation f&(¥, V), which is
the nonchiral analogue of Eq2.28. Furthermore, Eq.
J — 9 _ (2.28), which is equivalent to a second-order equation, is
J d‘%d“ﬁ\l’ ——V — K(V,¥)=0, (3.7 actually a(anomalous superconformal Ward identitj13].
v v Then, the equation we shall get should be interpreted as a
. ) ) ) ) “nonchiral superconformal Ward identity.
which should be considered as a semiclassical Ward identity The request of modular invariance indicates #athould

for K. The solution of this equation is simply given, modulo pe constructed in terms of the geometrical building blocks of

Kahler transformations, by the thrice-punctured Riemann sphevés ). The compari-
_ - son between the asymptoti¢35) and(3.6) suggests that the
K(y,y)=P(y+y)+yga(y)+ya(y), (38 Ppoincafemetric should have & fe in definingK. In particu-

_ lar, we observe that, in order to be well defined on the
wherey=In(¥/A), g is an arbitrary function an®=P.®In  y-moduli space, the logarithmic terms should come out of a
particular, the term found ifil5] is a solution to this equa- function which has to be globally defined. This would also
tion, but it seems that, in principle, no nonrenormalizationrespect the symmetries of the theory. The above analysis
theorem prevents us from considering solutions with highersuggested the following propoddls]:

order polynomials in InPW/A?). These terms would repre-

sent higher-loop contributions . However, in the case of — o(G(¥) T
SQCD with Ne=4 massless hypermultiplets and gauge K (W ‘IT)=01 - (3.10
group SU2), we know that thes function vanishes, so that ’ |G(P)— A%

no scale can arise in the theory. In this case the only possible

function of W/A which can appear in the solutid8.8) is | here 4 is a real constant to be determined via an explicit
linear in the product InP/A)In(W/A) [or, up to purely chiral calculationu=G(¥) ande“Y is defined in Eq(3.2). The
or antichiral terms, quadratic in MW/A?)] [19]; indeed,  expression3.10 can also be written in the form

N _ , _ K(T,W)=4am2e®sWg2(¥)— A%, (3.1
It is a trivial exercise to show that EB.7) is completely equiva-

lent to the superspace-integrated version of the equd8on of
[22]. or
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_ in the relevant geometrical objects. Remarkably, this is actu-
K(W,W)=2am exp ¢smG(V),6(V)) ally the case. To be more precig€,admits the equivalent
general representation
(P —_—
-5 (Q(‘P),Q(‘If))), (3.12 — |G(a)|(Im7)?
2 K@a,a)=dam 75— —7- 3.1
(@)= 4T Tl (319
where
e‘PSW(“’_)=|r?ua|2 Im 7, (3.13 B. The 1=<Ng=<4 case

As the above expressidi3.19 for K does not refer to a

is the Seiberg-Witten metric oM gy, - particular underlying geometry, we can consider it as a gen-

Let us now consider the geometrical meaning oferal model-independent expression for In particular, ob-
K(¥,¥). According to Eq.(3.12 the (1/2,1/2)-differential  serve that its asymptotic expansion can be performed by just
K is proportional to the Seiberg-Witten metric times the in-using the one for the prepotenti&l However, there is still
verse square root of the Poincaneetric. The interesting another equivalent form fak which is particularly useful in
point is that the structure of E¢3.13 does not prevent us order to perform asymptotic analyses. We have in mind the
from considering forK a suitable modification of the Liou- fact that, in the presence of massless hypermultiplets, only
ville equation which is satisfied by the Poincaretric. In  instantons with everk contribute. Then, in order to get a
particular, looking at the structure of E(.13), it is easy to  Suitable expression fdf, we introduce the functiofi34]
see that after a sufficient number of times one acts with the

derivative operators, the effect of the Seiberg-Witten metric B (1)=A(9\7)a, 3.20
ggttmg Liouville equation can be eliminated. In partlcular,Whose relation with theg function is[34]

(¥, W) =K(¥, ¥)dydgin K(¥, W), (314 B(r)=2u ‘%"" B(r). (3.21

we have the “nonchiral superconformal Ward identit}y”
By Egs.(3.19 and(3.21) we have

Ay dyInY (¥, ¥)=0. (3.19 |a|(Im7)?

- (a) :
A. K(¥,W) from the g function |1B8®][9.6(2)

In [34] the renormalization group equati()RGB and the To better illustrate the te of the,B function in the non-
exact B function were derived in the SB) case. Similar holomorphic contribution, we use a result ig4] where it
structures were also considered in the framework of thavas shown that
Witten-Dijkgraaf-Verlinde-Verlinde equation in the £3)
case[35]. It would _bg interesting to understand the scaling U= A2 exp( _ZJdeﬁl(X)), (3.23
properties oK. As it is constructed in terms ¢, one could o
imagine that the RGE fofF should play a role. The RGE,
derived in[34], is whereu(7)=A? (in the Ne=0 case,r,=0). Then, thanks

to Egs.(3.22 and(3.23, it follows thatK has the form

K(a,a)=2am

(3.22

A T
&A./T(a,A):A_OaAof(ao,Ao)eX[{_ZJ dXB (X)),
70

_ al? 7 T

= — 2 *1_‘_ -1 2

(3.16 K(a,a)=am I |F| exp( JTOB JTO/B )(Imr) ,
(3.29

where
where
B(T)=A(dx7)y (3.17)
. B1/2

is the B function. Remarkably, thg function admits a geo- F(a,a)= ECE (3.29

metrical interpretation as the chiral block for the Pointcare

metric: namely[34], As a consequence of E¢B.24), K satisfies the RGE:

2

_ 2_ 2 _ (@)
4%~ |70 my ldU=evldu®. (319 A(aAK(a,a»a,a——Z[Re(ﬁﬁ +B29, In F)
On physical grounds, it is clear that thefunction should ImB@ L
vanish atu=0. However, this degeneracy should not appear tams L K(a,a). (3.26

One can check that when only instantons with eketon-
“We thank Gaetano Bertoldi for interesting discussions on thidribute to 7, then this would also be the case for the expres-
equation. sion (3.22 for K.
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Finally we note that in theNc=4 case the above con- wherex=A/V.
struction breaks down. Here, in particular, the underlying Let us briefly comment on the functional dependence of
geometry is trivial. As a consequence, the nontrivial globalthe various terms appearing in the expansion. The first loga-
aspects of moduli spaces, which actually generate nonpertusithmic term represents the one-loop perturbative contribu-

bative corrections, do not arise fdte=4. This i52 already  ion to K(W,¥), which was first derived ifil5]; it is to be
plear for the chiral p_arﬂ-"yvhlcr_\ is proportional t@“. Since noted that there are no higher-ordéigher-loop logarith-
in general the functiorK is built in terms of 7, we see that mic corrections td (¥ qT) As far as the terms® In X are
there is no way to get nonholomorphic contribution&tbut oncerned, they appe:ar e:xplicitly in theinstanton calcula-

the one-loop term, whose structure has a global meanin§ hile the t T dx% In2x 2
since the underlying geometry is trivial. This is an alternative ons, while the terms wi nxin xandx = in-xare ex-

way to express the nonrenormalization theorenh1®A.

IV. NONPERTURBATIVE CONTRIBUTIONS TO K(\I',‘IT)

Let us now discuss the series expansion Kchlf,\IT) in
the case of SYM theory. We can rewrite £.10 as’

—  B4a |GA(¥)—4A%|(Im7(P))?

O TR - @Y
where
. 1 9F

The constante can be fixed by using the result {122];

pected to be one-loop corrections around thastanton
configuration. As a matter of fact, in this case there are no
constraints coming from holomorphicity requirements and
from the anomalous U(%)symmetry which forbid the exis-
tence of loop corrections around instanton configurations
[29]. Finally, the termsx*™x™ and logarithmic corrections
are expected to represemtinstantonnh-antiinstanton contri-
butions and loop corrections around these configurations. In
the case of SQCD this situation is modified in the presence
of massless hypermultiplets in a simple way, since the ex-
pansion contains only nonperturbative contributions from
m-instantonh-antiinstanton, wheren,n are even numbers,
and one-loop corrections around these configurations. In the
sequel we shall perform 1- and 2-instanton calculations

however, as we shall discuss in the following, this is notwhich will give contributions toK(¥,¥) of the form ex-

enough to get a complete check of the validity of E@s19
and(3.22.

pected from the conjecture [ri8]. Let us now make a re-
mark which will become clear after the instanton computa-

Expanding Eg. (4.1) up to the order relevant to tion will be performed. If we differentiaté (x,x) twice with
2-instanton calculations, and neglecting purely chiral or anrespect toc and twice with respect t® (to obtainK y,x), the
tichiral terms, we find terms containing Ixx and Irf xx give contributions which
sum. Therefore, for an unambiguous check of the conjectures
(3.19, (3.22, one needs not only 1-instanton or 2-instanton
but also mixed 1-instanton—1-antiinstanton results and per-
turbative corrections around all the aforementioned configu-
rations. Anyway, as a first step towards the check of these
proposals, we now compute the nonperturbagi«nstanton
and 2-instantoncontributions toK (¥, V).

In terms of theN=1 superspace the four-derivative term
(4.3  reads[14]

K(X,X)= a{ Inx Inx+x*(3 Inx— 2 In’x— 2 Inx Inx)

+x8

21 _ 21 57
_c- il Y i
3 Inx Inx 3 In?x+ 3 InY)

9 _
+X4Y‘(Z—6 InX =+ 2 In?x+ 4 Inx In?)+ H.c.

1 _ —_ i _ - - -
Efd20d20[K¢;(<I>,<I>)(D“Da(I)Db[D“CI)Jr2DdD“<I>DaD“<I>+4D“WQD;IW“—4D(“Wﬁ)D(aWB)—4D(dW'ﬁ)D(“Wﬁ)

+K ysga( P, D) (— BWD ,dW,D *d-+ AW W, W, W) ], (4.4

whereK ,= dK/d¢. When written in the space this Lagrangian contains a four-field strength vertex which is the one we shall
focus our attention on in our calculations:

1 4y, 142 nH2 oK B YYRYY 1 Py 4 b _cd —&f gh
2 f d*xd<ed 6K¢¢@(¢,QD)W‘”W&W&W“=2—56 Kaagfa,a)J d*x Tr(a?°c)Tr(c®'c? )FachdFengh. (4.5

SFrom now on we shall denote by the Pauli-Villars RGI scale.
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Thus, the correlator we intend to study is X2
b=z 2 8%(0°12), (4.9
(F (X)) F o (X2) Fx (X3) F cp(Xa)). (4.6 p

A. The k=1 semiclassical computation and

The reIeyan'F C(_)nfiguration which C_ontributes to this g(x):§+p—1xﬂaus—, (4.10
Green function is dictated by the sweeping-out procedure at
the next to leading order ¢B]; NG D
C O T —— \ iV2E'D oy . (4.11

v Ty g(X)O'[VDM])\ +2iN (TMVS
Here, for simplicity,x stands forx—x,, wherexg, is the
center of the 1-instanton configuration, apds its size; fi-
nally 7/’16;: Rabﬁzv, whereR?, is an SU2) rotation matrix

+2ig 20NV, A, (4.7)

whereF (%) satisfies the equation . ,
wy d which corresponds to global color rotations.
D“FLOV):—ZigML,DV@%], (4.9  We start by rederiving the result dfi6] for the 1-
instanton case in a different way. In the cdsel, theN
with =2 SYM measure on the moduli space is sim[3,36|

dp 2'7° 6mu)| 32m%p?u| 72
f d3®d4x0p—€ - (Mp)f*( 92“ ) ngdzg'(—gf—“) d%60%" expl— Sy, 4.12
|
where ¢,¢’(e,e) are theN=2 supersymmetri¢supercon- igo’[va,u])\_l(_OD)v (4.16

formal) Grassmann collective coordinat&,; is the sum of

the classical action, the Higgs and the Yukawa terms, a”%here)\_(LOD):—ifzg’ﬁ¢T,LD
_ . . . C

02 a=1,2,3 denote the moduli associated with global coloryjstance In this limit the covariant derivative becomes a

rotations. We observe first that,, does not contain the gimple one. In[9] a nice relationship between the scalar

superconformal collective coordinate so that the corre- iggs field and the Higgs action in the long-distance limit
sponding integration must be completely saturated by thg,55 derived:

Yukawa action and we can ignore the termsHp, which

depend on the fermionic coordinate Therefore in evaluat- ¢;r| Lp=a—a 'SyG(X, Xo), (4.17

ing the correlator(4.6), only the first, the second, and the '

fourth term in the rhs of Eq(4.7) will be of interest. To  where G(x,x,)=1/47%(x—X0)?> is the massless scalar

lowest order ing?p?|a|?, F{) becomes propagator. As a consequence of this observation it is pos-
sible to recast Eq4.16) into the form

and the suffix LD stands for long

Fcl 4P2 1 ( 2—/a+2 —7a
wv w22 22 (X, T XX, v2 4 ,
9 X 5 g SHET™E Gy an(X,Xo), (418
a
—ay 7
20X, 2’ (4.13 whereG,, ap(X,Xo) is the gauge-invariant propagator of the

U(2) field strength:
and the term proportional t& is negligible. Then, in order
to saturate the integration over the supersymmetric collective G v,ab(X,X0) = (8,00, 02— 6,20 L dp= 800,04
coordinatest, ¢', the product in Eq(4.6) boils down to +8,20,35) G(X. Xo).- 4.19

F,CJV(Xl)Ff,'g(Xz)[i§0[VDM])\(O)(X3)]U§U[VDM]7\(O>(X4)]- The integration on the superconformal collective coordi-
4.14 nates, which are lifted in the background of the constrained

_ instanton, is completely saturated by the Yukawa ac8en
Now we have to extrapolate the relevant long-distance effecang one get§37]

tive U(1) fields (4.13:
e 4p2 - ., ., f d?ed%e” exp(—Sy)=—2%7%g %p%aZ. (4.20
Fov (X):?F(_X Nt 2X0X, 7,0+ 2X0 X, 7y 3)
(4.15  The key observation is that the only dependence on the co-
ordinatesO? is due to the insertion df ?)® and that, in the

and long-distance limit,
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fSU(z)/zzd3®F S (X F 3% (%) = o F“‘(xl)F“'(xZ)— %]62’3—4 Tr(0%09") G, e1(%X1,X0) G i gh( X2 Xo)
(4.21
Taking into account the other two insertions which saturate the integrationépvér we finally obtain
15 A4
(F (X)) F po(X2) Fy (X3)F 1 p(X4) Jk=1=— 64m2 g'a%a® f d*%g Tr(0®a°)G ,,, an(X1,X0) G per.cd( X2,X0)
XTr(a®'09" G, e1(X3,X0) G cp,gh(Xa  Xo)- (4.22

On the other hand, the computation of the four-field strength vertex performed by making use of the effective Lagrangian
yields

3 —
<FMV(X1)Fpo’(XZ)F)\T(X3)FKG(X4)>L-eff:3_2 Kaaﬁ(a!a)‘[ d4X Tr(aabUCd)Gﬂv,ab(Xl!XO)GpU,Cd(XZvXO)

XTr(?wh)G)\f,ef(XSyXO)GKH,gh(X41XO)a (4.23

which finally reproduces the resyli6]

4
7 Ina. (4.249

K(a)8ga

We can rewrite the 1-instanton correlator in a form which is well suited to the generalization to SQCD=Mt<14 massive
hypermultiplets and gauge group & (in the case in which at least one hypermultiplet is massless the nonperturbative
contributions are expected to come only frominstanton-A-antiinstanton configurations whene, n are evep,

<F,uv Xl)FpU(XZ)F}\T(X3)FK(}(X4)>I(=1
f dﬁlpﬂ'},

(4.29

(fdﬂ'x Tr(a?* NG, an(X1,X0) G po.cd( X2, X0) T 0IM G, e1(X3,X0) G p,ghl( X4, X0) 222

wheredyu, is the “reduced” instanton measure obtained by where z is defined in Eq(2.6).
extracting from the full measure the integration over the

bosonic and fermionic translational coordinaf@sl2. This B. The k=2 computation
formula generalizes immediately by replacim:, with

~Ng Let us now describe the calculation of the 2-instanton
" [9], where —

contribution to the real functioK (¥, V). Again, the Green

A4 NE N function which we are going to study is the simplest one, the
dNF— 1 ﬁ (4.26 four-field strength one. We shall then be able to immediately
g 1677 mi. ' generalize our calculation to the case of SQCD and to check

the validity of the nonrenormalization theorem in the case
andm; is the mass of théth hypermultiplet. By doing this Ng=4 found in[19].

we obtain We start by briefly recalling how to determine gauge field
configurations for a generic winding number The instan-

1 A4 NF ton field can be conveniently written in terms of the Atiyah-
K(a,a_)|NF=—2— |n—H m,, (427  Drinfeld-Hitchin-Manin (ADHM) construction[38,39. To
8m’g* find an instanton solution of winding numbkr one intro-

duces a k+ 1) Xk guaternionic matrix
which is consistent with the relation between the RGI scales k+1) g

A for different numbers of flavors, A=a+bx, (4.30

My, A4 NF = AZFEI'} (4.28  wherex denotes a point of the one-dimensional quaternionic
spacel=(?=R*, x=x*a, .% The gauge connection is then
It is to be noted that in the casé-=4 the 8 function van-  written in the form
ishes identically so that the scatqt;NF must be replaced by

g=expimT7y), (4.29 %We use the conventions §£2].
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A%=uUts,U, 4.3 e . __
H K’ (439 d=W(vzv1—vlvg), (4.40
whereU is a (k+1)X 1 matrix of quaternions providing an
orthonormal frame of Kex: i.e., as a consequence of the ADHM defining equatipts.
- (0) .
The fermionic zero mode)sﬁA are easily deduced from
_— .
ATU=0, (4.32  the gauge field zero mod¢40]
—utco fhfu—ut T
Utu=1,. 433 z,=U'Co,fb'u-U'bfo,C'U, (4.4

by recalling that, due ttN=2 SUSY,
The constraint4.33 ensures tha@\/i' is an element of the Lie y g

alge_bra of the 3(2) gauge group. The c_ondition of self- )\(Q):a“-zﬂ, (4.42)
duality on the field strength of Eq4.31) is imposed by BA T BA

restricting the matrba to obey (A=1,2 labels the two SUSY charges aBd-1,2 is a spin
index). For Eq.(4.41) to be transverse zero modes, the (
ATA=1"1g1,, (439  +1)xk matrix C (for a generic instanton numbé&) must

. . . . . satisfy
with f an invertible Hermitiark X k matrix (of real numbergs

The reparametrization invariances of the ADHM construc- ATC=(ATO)T, (4.43
tion [40] can be used to simplify the expressionsacindb.
Exploiting this fact, in the following we shall choose the Where the superscripT stands for transposition of the
matrix b to be guaternionic elements of the matiiwithout transposing the
guaternions themselvesThe number ofC’s satisfying Eq.
0 (4.43 is 8k [40]. In order to describe the zero modes of the
b= —( lle)' (4.35 N=2 gauginos)\(ﬁo/i, we also need the form of the matiix
ok appearing in Eq(4.41), which is constrained by Ed4.43).

From Eq.(4.31) one can compute the field strength of the To parallel the form of Eq(4.39, we shall put
gauge field, which reads

( M1 M2
o ot ; Ci=| 4é+7 s |, (4.49
F.,=2U'bo,,fb'U. (4.36 s Ag— 7
In the so-called singular gauge, one has
41 ¢
1 _ |2 Co= ( 4ty ) : (4.45
UO:UO(l_EfIm Tl’v|vm y 6 4§ _7”

where 8,6’ are constrained by Ed@4.43 to be

1 —
Up=— 1772 ApifimvmUo. 43 &  ogriTT,.
P |UO|2 pITim&m*-0 (439 6= 2|e|? (2dn+vops—vimo),

wherev,=Aq, andl,m,p=1,... K. In the following we

. S . . e —_— —
shall need only the long-distance limit of these functions: S = W (2d 9 + 0,01~V 1vy). (4.46

In the long-distance limit, the 2-instanton field strength fac-

1
Ay~byX, fim~—= om, . ;
pi—pl Im-— %2 “Im torizes in

I,LD o ~ —
— FO P =—[v1X0, X0+ (v1—V2)]
UKN_X_ZXUKUO! UONO'Q, L X6 Hv

Ag~0. (4.39 = 8 [01(=XP0,, + 2XPX, 0, + 2XPX, 0, )01

Whenk=2 the most general instanton configuration can be +(v1—v9)]. (4.47)
written starting from the ADHM matrix
On the other hand, if9] it was proved that, thanks to the
v, P geometrical properties of the ADHM construction, the rela-
a=| Xpte d (4.39 tionship between thé€, ¢’ bilinear part in Eq.(4.7) and the
d Xo— € Higgs action continues to hold for every winding number.
We start with thek=2 N=2 supersymmetric measure,
Here which reads
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1 Ja\ 12
S J d*xod*ed*v d*,d2£d%¢" d?9d? 5’ d?w, 0% u,d?v,d?y, exri—SmS,)(J—E) . (4.48
|
S, is thek=2 symmetry factor which eliminates all the re- 1-1Q']% .
dundant copies of each field configuration which appears in Tt sif6 cos'd |, (4.53

the ADHM formalism[40,9], andJg(Jg) is the Jacobian of
the change of variables for the bosorffermionic) degrees \yhere we have redefined’ = Q/L, H' =H/L. The integra-
of freedom. As in the calculation of the 2-instanton contri-ion over the variablee is traded for the integration oH,
bution to theN=2 prepotentia[9], we find it convenientto e

define the four combinations of the bosonic parameters:

2,102 J gre ISl T asg
L=[v1|?+]val?, lel® 2 Juszo '
H=L+4|d|?+4]e|?, As far as the two insertions & ,, bilinear in&,&" are con-

cerned, it is possible to use a trick already exploited in the
1-instanton case. It consists in writing them as a second de-
rivative of the instanton measure with respectat¢9]; the
remaining two insertions, however, will have to be integrated

Q=vv,- Vo0,

1 explicitly. First of all, let us writev, as a function of
whereAgy= (i/2)a®c®. In terms of these new variables it is Q Q]2 vy
possible to write the Higgs action as va=| 5+ |Ul|2(L_|vl|2)_T a2 (4.59
1
Sy=1672| L|A |2_|w|2 —an?a?[L- |Q|*cog 6 and insert this form in the long-distance limit of the
oo H H ' 2-instanton classical configuration. The integration measure

(450 overuvq,L,Q is written as
” P 2
2| dL d=Q dlv4
0 Q<L L_
1

X d3e,
32V(Ls—[va])(Jvg*—Lo) f§
(4.56

and the Yukawa action as

Sy=4V272[ — viAogit+ (@TH) (pyvy— vipa+ 278’
—27'9)], (4.51

where|o| = 3|Q||a||cosd| defines the polar angle Finally

2_ 2 . . .
l[el*~1d[7 where [ ;2d30 =272 is the integration over the global color
H ' rotations of the first center of the instanton abd=3(L

(452  +L?-]Q?). On the other hand,

As in the 1-instanton case the integration over the nonsuper- on 1 1
symmetric fermionic coordinates is saturated by the Yukawa J' d3Q:|_3f d@f d(cosﬂ)f Q7 [2d|Q’],
action, which gives 0 -1 0

1 ‘]B 1/2
o (J—) exp(~ Sy) =257 9A®
2 F

(4.57
J d?7d? ' d%u10%u,0%v1d% v, exp(—Sy) whered is the angle betweef} and the direction singled out
OS5  heet
le|*H’ H’ distance limit,
|
J dOFFY)= 2%2 Fol0F oY) =— 2%6 TH(0™0°) G, a(X,X0) Gy, Y- X0) | Lloa|* - ? sinze) :
(4.58

Putting everything together one obtains the following integral for the correlator:
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"o cogh)\?
f d4x0J da’||Q’ |6f d(cos9)00326J J dLL7[1—|Q’|2sinze](—4w14)A855[ 1+—,)
1+2|Q’ | 0 H
-l —ab—cd ef _gh
+ T S|n26 00520 Tr(O' g )G,u,v,ab(xlvXO)GpU,Cd(XZIXO)Tr(U 0.9 )G)\T,ef(XSvXO)GK(J,gh(X41XO)
X i 47°Llal?| 1 —'Q,FCO% 45
Frvac m°L|a] o , (4.59
and, after a trivial integration oh, we get
dH’
f d4xof dla’||Q’ |Gf d(c039)co§0f o s [1-]Q'|3sir?6]
5X3%X7\ A% (1+cofO/H")2+(1—|Q’|?)sirfg cogb/H'?
2572 | a%al® (1-]Q'|°cosoIH")®
XTH(00N G, an(X1,X0) G pocd(X2,.X0) TH( 0% a9 Gy o(X3,X0) G p.gh(Xa o) - (4.60

The remaining integrations over the adimensional varialflg$,cos9,H’ can be easily performed by using a standard alge-
braic manipulation routine, and give 1/42. The final result is then, restoring the expligpendence,

5% 3%
(F (X)) F o (X2) F\ A(X3) F p(Xa) Yk=2= m—z 10 j d*Xo Tr(a®0°) G, ab(X1,X0) G o ca X2, X0)

XTI G, e1(X3,X0) G cpgh(Xa . Xo)- (4.6))

Comparing this result to that of the effective Lagrangian one gets

8

K(a,a)|k-p= —5 Ina, (4.62

329a

which is our prediction for the 2-instanton contribution to the real functgnW,¥). The 2-antiinstanton configuration
contribution toK is simply the complex conjugate of EG.62.

Let us generalize our result to the case Mf<4 massless hypermultiplets, which receives the first nonperturbative
contribution from the 2-instanton sector and verify the nonrenormalization theor¢h®jofor Ne=4. As in the 1-instanton
casesee Eq(4.25] it is possible to rewrite the four-field strength correlator as a double derivative of the “reduced”measure
with respect taa,

<F/.LV(X1) FpU(XZ)F)\T(Xg) FK(}(X4)>|<=2= d4XO Tr(?de)G,uv,ab(Xl ,Xo)

Q 2
fdﬁ2<|v1|2L—|Tsin29)

X Gpo’,cd(XZ !XO)Tr( O-Efo-gh)G)\T,gh(X3 !XO)GK¢9,gh(X4 !XO)l (463)

4 ga?

and the extension to the callg >0 is performed by substituting the “reduced” measdie, with dﬁgF as defined if11]:

. _ 1 1 o L, dlv 2
f day = —2°7"a?A g NF)f d|Q||Q|2f d(cosg) =3 d3®f dLLf |21| _
P o - 1ezjo] HY Js? VL =[P (Joa - L)

(Np)
" a2l 1 |Q|%cog6 g My n aZ”G‘ A6
ex ™ |a'| H =, ,n_4n azZn| . ( . 4)

Z=0

We have dropped for simplicity the primes éh(); G(Z) contains the contribution from the integration measure over the
hypermultiplets and has the form

G(Z2)=| wL+ 12 252|Q|2L2+ Aol | oL+ 12 +—Z—_|m23in29 oL iz | i |Q|aL cos
=| w o TA —a e w e ex alL CO .
8v2/ |16 8v2 4H 8v2 V2H

(4.695
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The MM are a set of SO(8¢)-invariant polynomials in _ NE 1 [An 2N
Ne-" . KW, W)y = S MO (NP i Inw
the masses,, of the hypermultiplets: PINET S TINg-n T2 208 | '
4.7
MNE) — 1 (4.70
0 ! . — . . . .
provided that one replace\sﬁ(; NF) with g° [q is defined in
NF Eq. (4.29] whenNg=4. In this case the nonrenormalization

M(lNF)= > m, theorem of[19], as already noted ifi21], is spoilt by the
n=1 presence of other energy scales represented by the masses of
Ne the hypermultiplets.
(Ng) _ 2,2
M> ‘E,, MM, (4.69 V. CONCLUSIONS AND OUTLOOK
In this paper we investigated the next-to-leading correc-
tions to the low-energy Wilsonian effective actions which
\ describe the dynamics of the light degrees of freedom of the
No) TT 2 Coulomb phase foN=2 SYM and SQCD theories. These
M N — H m2. - .
Ne —ad Tn terms are determined by the full superspace integral of a real,
adimensional, modular invariant functidt(¥,¥). In par-
In the case of massless hypermultiplets, the only contributioticular, extending[18] to the case of SQCD witiNg<4
to the correlator will come from the term with theN2-th  hypermultiplets, we proposed a solution #mvhich satisfies
derivative of G(Z) and, writing the generic contribution to all the physical requirements of the model. We found its
K(¥,¥) as behavior under the renormalization group action, and a dif-
ferential equation which we interpreted as a fully nonpertur-

1 [ Ay | 24N bative “nonchiral Ward identity.” To support our proposals
I _ 1 (Np)
KW W)l <a=K;" (

F N we performed multi-instanton calculations around configura-
4 ’ tions of winding numberk=1,2. This way we checked a
(4.67 nonrenormalization theorem in the scale-invarifdg=4
SQCD.
We observe that our investigation is strictly connected to
the “nonchiral” analogue of the Picard-Fuchs equations

we find

K(zo)_i KD — _ 3_3 [7,42] and to the rel_ated integrgble structyrs]. Thi; ap-
32’ 2 210 proach deserves being generalized to the case of higher-rank
groups[44,45 and to the study of the strong coupling region
2_ 3 @ 1 [46]. As a final remark, we would like to point out that many
K3 ~ 510 Ka'=— oI2: (4.68 aspects of the theory seem to be related to the Duistermaat-
Heckman theorerfd7]. In this context, we observe that in a
For the casdNr=4 we get recent paper a “Gaussian approach” to compute supersym-
5 metric effective actions has also been worked [@i&.
JR— q JR—
KO¥ W)= 3711208 I (469 ACKNOWLEDGMENTS
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