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Equivalence of Dynamics for Nonholonomic Systems
with Transverse Constraints
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This paper is concerned with the dynamics of a mechanical system subject to
nonintcgrable constraints. In the first part, we prove the equivalence between
the classical nonholonomic equations and those derived from the nonholonomic
variational formulation, proposed by Kozlov in [10-12] , for a class of con-
strained systems with constraints transverse to a foliation. This result extends
the equivalence between the two formulations, proved for holonomic con-
straints, to a class of linear nonintegrable ones. In the second part, we derive the
nonholonomic variational reduced equations for a constrained system with sym-
metry and constraint transverse to a principal bundle fibration, using a reduc-
tion procedure similar to the one developed in [5]. The resulting equations are
compared with the nonholonomic reduced ones through mechanical examples.

1. INTRODUCTION

The problem of writing the dynamic equations for a mechanical system
subject to non holonomic constraints using a variational principle has a
long history. It has received new contributions in [10] and subsequent
papers. In [10], the author proposes a derivation of the dynamic equations
based on an extension of Hamilton' variational Principle. More in detail,
the motion for the system is seen as the solution of a constrained varia-
tional problem for the Lagrangian functional; using a standard procedure
in calculus of variations, one substitutes the constrained variational
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problem for the Lagrangian L with an unconstrained one for a Lagrangian
L in which the constraints are taken into account by Lagrange multipliers.
The nonholonomic variational equations are then the Euler-Lagrange
equations for the Lagrangian functional £. This formulation has the
advantage that it can handle equally well the linear and nonlinear con-
straints but, on the other hand, it is troublesome in that, once the dynamic
equations are given normal form, the value of the Lagrange multipliers has
to be supplied among initial data for the evolution Cauchy Problem for the
configuration variables and Lagrange multipliers. This request, which is
absent in the classical nonholonomic equations, based on Virtual Work'
Principle, amounts to specify the reaction forces of the constraint in the
initial phase space configuration. Moreover, while for integrable constraints
the two formulations do coincide, for a linear nonintegrable constraint
examples are found where the dynamics may or may not be equivalent for
a suitable choice of the initial value of the Lagrange multipliers. Both
features are explained in [13] using a physical realization procedure of the
constraint that leads to the nonholonomic variational equations: the equa-
tions are obtained by adding to the kinetic energy tensor an anisotropic
inertia tensor term and letting the inertia tend to infinity. As a result, the
kinetic energy of the system depends closely on the direction of the motion.
On the other hand, classical nonholonomic equations have a physical
realization too in terms of anisotropic viscous friction forces and, according
to [13], preference between the two models should be accorded upon the
nature of the constraint.

In this paper we study the dynamics for systems with linear non
integrable constraints using geometric methods. In the first part we intro-
duce a class of constrained systems in which the linear constraint is com-
plementary to (the tangent space of) a foliation of the configuration
manifold. Next, we consider the special case in which the configuration
manifold has a principal bundle structure and the linear constraint
provides a principal connection on it and we give the conditions for the
equivalence between the two formulations in this framework (Theorem 3.1).

For systems with symmetry, a better understanding of the dynamics is
obtained if one passes to the reduced equations of motion, in which the
group variables are absent. Roughly speaking, this is physically equivalent
to giving the description of the motion using a rotating frame instead of an
inertial one. Therefore, in the second part, we derive the reduced non-
holonomic variational equations using a procedure similar to the one
developed in [ 5 ] and we compare the two formulations through mechanical
examples.

Now we recall briefly the two sets of dynamic equations that we will
discuss in the subsequent sections. For a more detailed derivation of these
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These are commonly referred to as vakonomic equations (equations of
variational axiomatic kind). In the next section we introduce some
geometrical tools that will be used in the description of the reaction forces
of the constraint.

2. REVIEW OF CONNECTIONS

On a smooth fibration n: M —> N, where M, N are smooth manifolds,
the set VM = ker Tn of the vectors that project onto the null space of TN
is an integrable subbundle of TM. An Ehresmann connection on n: M -> N is
the assignment of a distribution HM transversal to VM, HM ® VM = TM
and the elements of HM are the horizontal vectors. Since Tn restricted to
HM is an isomorphism, it has a fiberwise defined inverse, the horizontal
lift: hor: Tn(z)N->TZM, hor(X)eHzM.

Let X = Xh + Xv be the splitting of a vector in TZM into its horizontal
and vertical component. The projection on VM with respect to the
horizontal subspace defines the vector-valued connection one-form
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The classical nonholonomic equations are (summation over repeated index
is understood)

see, e.g., [7]. Let (M, L, A) be respectively the configuration manifold, the
Lagrange function and the linear non integrable constraint distribution
A <= TM of a constrained mechanical system. Locally, we describe the
linear constraint as the null space of dim M — dim A linearly independent
one-form Wa, called characteristic forms of the distribution A. Therefore,
locally

where [L] = (d/dt)(dL/dz)-dL/dz are the Lagrange brackets of L and the
parameters 1 are the Lagrange multipliers. For the variational non-
holonomic equations, we first form the unconstrained Lagrangian in the
(z, Y)-variables

and we write the related Euler-Lagrange equations [L] =0 as



If we extend the vectors X, Y to vector fields X, YeT(M), and we use
Cartan's formula dw(X, Y) = Xw( 7) - Yco(X) -w([X, YJ), we get the
equivalent expression for the curvature Q(X, Y} = — a>([Xh, Y h ] ) that
shows that the curvature exactly measures the failure of the horizontal dis-
tribution to be integrable.

Next we give the local expressions of connection and curvature in a
fibered chart. Notice that since every foliation is locally a fibration, the
following relations hold locally for a foliation. Let z = (x, y) be a fibered
chart on U c. M, n(x, y) = y. Then the vertical space is

Now we particularize the above notions to the important class of
principal fiber bundles, where the fibration is the one defined by the set of
orbits of a smooth group action. Suppose that a Lie group G acts freely
and properly on the left on M and that, to every z e M, z i—> Gz is an
immersion, so that n: M -> M/G is a principal bundle. On a principal
bundle, the group action induces an Ad-equivariant isomorphism a:
g->r(M, VM), a(£,):=c,M(z), where LM is the infinitesimal vector field
associated to ^ e g. A principal connection on the bundle is the assignment
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whose kernel is the horizontal distribution. The assignment of an horizon-
tal distribution, of an horizontal lift operator or of a connection one-form
are equivalent ways to define a connection on n: M -> N.

The curvature of the connection is the KM-valued two-form obtained
by restricting the exterior derivative of w to the horizontal distribution:

where

The Af(z) are the connection's coefficients. The connection's curvature can
be expressed as: X, Yer(U)

and the connection one-form co is
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of a Ehresmann connection compatible with the group action, i.e., satis-
fying

Moreover, the related connection one form w is G-invariant and it defines
an equivariant g-valued connection one form by setting w = a~ w. In a
principal bundle, the curvature, defined as above, is Ad-equivariant and,
unlike the Ehresmann case, it satisfies the structure equation

Now consider a local trivialization z = (y, g) of the bundle, where g are the
coordinates on the fiber isomorphic to G. By equivariance of w, the local
expression of the connection become

where c, = g - 1 g e T e G = g is the left translation to the origin of gcTgG
and Af are the connection's coefficients with respect to a chosen basis {e^}
of &. It is important to notice that now the connection's coefficients are
represented by functions constant on the fibers.

3. SYSTEMS WITH TRANSVERSE CONSTRAINTS

The aim of this section is to introduce a certain class of constrained
systems with non integrable constraints transversal to a foliation of the
configuration manifold and to discuss the related dynamics. We first split
in two separate set the dynamic equations by projecting the vakonomic
equations on the tangent space to the leaves and on the constraint distribu-
tion respectively. This gives a clearer picture of the geometrical structure of
the reaction forces of the constraint, expressed by the right hand side of the
equations, in terms of curvature of a connection. Moreover, the evolution
of the Lagrange multipliers is seen to be entirely determined by a subset of
the dynamic equations, namely those projected on the vertical subspace—
see Proposition 4.1 below. Both results help to answer to the question

when the vakonomic solution coincides with the nonholonomic one
for a suitable choice of the Lagrange multipliers in the initial con-
figuration.

This is surely possible, for the system at hand, if the reaction forces vanish
along both the nonholonomic and vakonomic motion and an instance of
the conditions for this to happen are stated in Theorem 3.2. Moreover,
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Theorem 3.1 below gives a complete answer to the aforementioned ques-
tion in case of non vanishing reaction forces. The above statements extend
the "equivalence" of the theories from the case of integrable constraints,
proved in [7, 14], to a certain class of linear non integrable constraint. We
first discuss the more general case of a constraint transverse to a foliation
and then we rephrase some of the results for a principal bundle fibration.

Let us consider the constrained system (M, L, A) where A is a non
integrable linear constraint, and suppose that

(H.I) the constraint distribution A admits an integrable distribution
AT transverse to A

Since dim AT=dim M — dim stf, (H.I) is very reasonable for a weakly
constrained system and it is trivially satisfied in the limiting case dim A =
dimM— 1. Then the foliation defined by the integrable distribution AT is
The fibration n: U-> U / A T , 7r(Xa, YL) = YL, a= 1,..., dim M-dim A, L= I,...,
dim A, in a open set UcM. The vertical space of the fibration is AT

and the constraint distribution A defines an Ehresmann connection by
hypothesis (H.I). Consequently, the horizontal constraint distribution A is
the kernel of a connection one form ker W = A whose local expression in
U is (7). Therefore, the vakonomic lagrangian £ associated to (M, L, A
is

and, by introducing the vertical and horizontal projectors, (3) become

The above formula is interesting because it describes the constraint's reac-
tions in terms of the curvature Q of the connection defined by the linear
constraint ,a/. Notice (see [7]) that for an integrable constraint the cur-
vature is vanishing and the two formulations coincide. The local form of
the above vakonomic equations is
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The above description of linear constraints has a local character. In [7]
we show how to make the local fibration into a principal bundle one by
adding suitable hypotheses on the constraint A. This construction is then
applied to the mechanical example of the vertical rolling disk. In the
following we assume that the configuration manifold is a principal bundle
and that the linear constraint defines a principal connection on it. In this
way we can profit of globally defined geometrical objects; for instance, the
kinematically admissible paths are simply the horizontal lift of paths in the
base space. The second aim is to develop a vakonomic version of the
reduced equations for a nonholonomically constrained system with sym-
metry. For the nonholonomic approach, these are displayed in [5].

Let O: G x M —> M be a free and proper group action on the manifold M,
so that n: M -> M/G is a principal bundle; our purpose now is to derive the
vakonomic equations for a mechanical system (M, L) subject to equivariant
affine constraints. These latter are defined as follows; given a principal
connection to on the bundle and an equivariant map u: M -> g, the con-
straint is the affine sub-bundle of TM

We refer to (M, L, ,AU) as a mechanical system with equivariant affine con-
straints and as a mechanical system with horizontal constraints in the case
U = 0. The vakonomic lagrangian associated to (M, L, AU) is from (2)

where < , > is the pairing between G and 'G*, and the related vakonomic
equations of motion are

As before, we gain a deeper insight of the geometrical structure of the
above Eq. ( 1 7 ) by projecting it on the vertical and horizontal subspace of
TM respectively. Since VM = a ( g ) , and by using the structure Eq. ( 1 1 ) , we
get from ( 1 7 )
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Now, for an horizontal vector weHM, one has that dw(z, w) =
Q ( z , w ) again by structure equation, so (17) gives

since D u ( W ) = du(hor w) is the covariant derivative in the adjoint bundle.
Collecting the results obtained, we can rewrite the vakonomic equations for
(M, L, jaf") as

The nonholonomic equations for (M, L, Au) are easily derived from (1)

The general solution to (18) depends on 2 dim M arbitrary constants. If the
matrix

is nonsingular, then in (19) the multipliers v can be expressed along the
motion as functions of the state of the system and time, v = v(t, z, z) (see
[7]). Hence, the general solution to (19) depends on 2 dim M — dim g
arbitrary constants and the system of Eqs. (18) and (19) are nonequivalent
in the general case.

Nonetheless, a positive answer can be given to the question hinted at
in Section 3 in terms of Theorem 3.1 below. To this, we recall some basic
facts about mechanical systems with symmetry. We say that (M, L) is a
mechanical system with symmetry if the lagrangian L is invariant for the
induced action of G on TM, that is L(z, z) = L(o g z , T z

o
g z ) to every g in G.

Given a G-invariant lagrangian with L hyperregular, the Legendre transform
FL: TM —> T*M is a vector bundle isomorphism and the momentum map
associated to L is the Ad*-equivariant map J: TM-^y* defined as



is a solution of the vakonomic system (18).

Proof. ( i ) -»( i i ) . The curve (z(t), i(t)) satisfies (18)1 by its very
definition. Moreover, if y(t) is given by (23), then the right hand side of
(18)2 vanishes by hypothesis (22). Therefore (z(t), y ( t ) ) satisfies Eq. (18) 2 ,
being equivalent to (19)2.

( i i ) - > ( i ) . Suppose that ( z ( t ) , y ( t ) ) satisfies the vakonomic system of
Eqs. (18) whereas its component z(t) satisfies (19). The necessity of condi-
tion (22) is straightforward by comparing (18)2 and (19)2. This completes
the proof. The equivalence J=v(t,:, z) for z(t) is straightforward from
(19)! by using (21). Q.E.D

Remark. A version of the above theorem is proved in [19] for a
mechanical system (M, L) subject to the nonlinear constrain fa(t, z, z) = 0,
and the analogous of condition (22) is
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The link between the momentum map and the Lagrange bracket relative to
a Lagrangian L is afforded by the important formula below that holds
along any path t\-*z(t) on M:

The term dL • £M is the infinitesimal variation of L, and c,M represents the
vector field on TM naturally induced by £M. If L is a G-invariant
Lagrangian, dL • £M = 0, and along the motion of the unconstrained system
(M, L) the momentum map is constant in time. This last statement is
known as Noether' Theorem.

Theorem 3.1. Let (M, L ,A U ) be a mechanical system with symmetry
and equivariant affine constraints and suppose that the matrix B =
<W, FL~lW> is non singular. The following are equivalent:

(i) the nonholonomic solution z(t) of ( 1 9 ) satisfies the condition

(ii) the curve (:(t), Y ( t ) ) , constructed with the same z(t), where
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Notice that this condition is considerably more difficult to prove because
it involves at one time the nonholonomic motion z(t) and the A-component
of the vakonomic motion whereas (22) concerns only the nonholonomic
solution. Moreover, the same condition is proved in [19] to be necessary
and sufficient to apply to the nonholonomic equations the Hamilton-
Jacobi method.

Condition (22) is satisfied in a number of interesting cases.

• For a system with horizontal and integrable constraints, that is with
u = 0, and vanishing curvature Q,

• If the momentum map J(z, z) is constant along the nonholonomic
motions, by setting A0 = 0.

In more detail, for a class of mechanical systems with symmetry, the
momentum map itself provides a connection, the mechanical connection of
Kummer-Smale that we recall briefly (see also [15] and the references
therein). We consider a mechanical system with symmetry (M, g,G) with
g the kinetic energy Riemannian metric and the group G acting by
isometrics. Given a regular value weg* of the momentum map J, we
consider the constraint J - l ( u ) < T M , the isotropy subgroup of G at u,
Gu := {geG : M*/u=u} and the locked inertia tensor I I U ( z ) : g U > ' 0 * >

defined as < I I U ( z ) U > := g ( z ) ( £ M ( z ) , U M ( z ) ) . It is known that

defines a principal connection on the bundle n : M - > M / G ^ , called the
mechanical connection. Moreover, U: M~> GU U : = I I ~ l ( z ) U , is an equiv-
ariant section of ^ and the affine constraint J(z, z)=u can be given the g
equivalent form

The system with equivariant affine constraints (M, g, .of, G^} is a special
instance of the system (M, L , A ) . Anyway, the above result has a scanty
value in that the affine constraint (24) is a collection of integrals of motion,
therefore it can hardly be seen as a genuine constraint for the system;

• IF U = 0, we have by the Ambrose-Singer Theorem that, along the
nonholonomic motion,

where gz0 is the Lie algebra of the holonomy group at z0 and M(z0)
is the accessibility set of the horizontal constraint at z0. Therefore,



A geodesic of (M, g) satisfies the Lagrange equation [L]=0 for the
unconstrained system. At the same time, if its tangent vector at the initial
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condition (22) is satisfied, e.g., if J(z, z) — J0 + A0 e
 (S°Z , the annihi-

lator of gzo.

We will apply Theorem 3.1 to mechanical systems in Section 5. The
request of G-invariance of the lagrangian can be weakened in some cases.

Indeed, for the system (M, L, f), suppose that the Lagrangian is a
Riemannian metric g on M and the distribution jtf-1, orthogonal to the con-
straint jtf, is integrable. We call the resulting system (M, g, jtf) a system
with orthogonal constraints. Moreover, we suppose the metric to be bundle-
like with respect to the foliation defined by jtf-1. A bundle-like metric is the
completion to TM of a transverse metric g^, which is the pull back of a
metric on the local quotient manifold by n, the projection on the local
quotient manifold. Equivalently,bundle-Hke metrics can be defined as
follows.

Definition 3.1 [18]. A Riemannian metric # on M is bundle-like for
a foliation tF if the normal plane field to 2P', stf, is totally geodesic, that is
each geodesic which is tangent to stf at one point remains tangent for its
entire length.

Now we are able to prove the following equivalence theorem

Theorem 3.2. Let (M, g, j/) be a mechanical system with orthogonal
constraint and suppose that the kinetic energy metric is bundle-like for the
foliation orthogonal to the constraint. Moreover, let the initial velocity (at
t = 0) be compatible with the constraint. Then

(i) the trajectory of the resulting nonholonomic motion, viewed as an
unparametrized curve, is a geodesic of (M, g} perpendicular to the
leaves;

(ii) furthermore, if we set A = 0 at t~ 0, then the corresponding
vakonomic solution of (26) coincides with the nonholonomic solu-
tion of (25).

Proof. If we set 2L = g, the nonholonomic and vakonomic equations
for (M, g, s/) are respectively
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point belongs to the constraint distribution, it is an integral curve of the
constraint distribution by Definition 3.1. Hence it is the unique solution to
(25) with A = 0. So (i) is proved.

If we substitute the solution z(t) of (25) in the left hand side of (26),
we get [L] sO; having fixed Y = 0 for r = 0, it follows then that A is con-
stantly zero along the motion. Therefore the Nonholonomic solution satis-
fies (26) too. This concludes the proof of (i i) and of the theorem. Q.E.D

4. THE REDUCED EQUATIONS OF MOTION

In this section we derive the reduced vakonomic dynamics for the
system with constraints transverse to a foliation of Section 3 and for the
above system with affine equivariant constraints (M, L, AU) and we con-
trast the results with the analogous ones for the nonholonomic case.

There is a well-established procedure, developed in [9, 16] for
unconstrained systems and in [5] for a nonholonomicaily constrained
mechanical system that enables one to derive the reduced equations of
motion. Under suitable conditions, one can "drop" the dynamic equation
to the quotient (or shape space) of the configuration manifold with respect
to the group action, writing a reduced equation that contains only the
quotient space variables. Once this is solved, the motion on the fiber is
recovered by a standard reconstruction procedure which utilizes the con-
straint equation. For system with abelian symmetry, the motion on the
fiber is determined by quadratures (see also [15]).

We begin by considering the system (M, L, A) of Section 3. The
expressions of the Lagrangian function and of the Ehresmann connection
defined by the constraint on a fibered chart are respectively L(x, y, x, y)
and Wa = dx* + A * ( z ) dy1, where z = ( x , y ) are local coordinates on M
adapted to the foliation whose leaves have equation y' = const. By intro-
ducing the constraint x + A ( z ) y = 0 in L we form the constrained
Lagrangian ( [5])

Now consider the following function, defined along the vakonomic motions
of (M, L, A),

where the ( )* means that the quantity is evaluated for x —A(z) y after
partial derivation. By substituting (27) in the left-hand side of the
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vakonomic dynamic Eq. (14) for (M, L, A) of Section 3, and using (28), we
find

These can be considered as the semi-reduced equations since the right-hand
side of (29) depends on x-variables. The local equivalent of the G-in-
variance for (M, L, A) is that the Lagrangian L and the connection's coef-
ficients A* are constant on the leaves of the transverse foliation, that is
L(y, y, x) and A"(y). If these conditions are verified for (M, L, A), then
[Lc ]=0 and the £a are constant in time along the vakonomic motions.
Equation (29) then represents the vakonomic reduced equations. It is inter-
esting to compare this equation with the nonholonomic reduced equations
for ( M , L , a in [5]:

By comparing (29) and (30), we realize that the difference is represented by
the extra term

representing a gyroscopic force that is nonzero in the typical case.
Moreover, by setting Ia(t0) = (aL/9xa)* (t0), one has Ca = 0 along the
vakonomic motion, so there is a choice of the Lagrange multipliers in the
initial configuration that annihilate the nonholonomic reaction force in
the quotient space. We recall that these forces arise as a consequence of the
reduction procedure,

Vakonomic Momentum Map

The aim of this paragraph is to provide the technical background for
the reduced dynamics equations on a trivial bundle to be derived in the
next section.

Recall that in the vakonomic model, the variables c = (z, A) are to be
treated on the same level. Therefore, to the system (M, L, AU ),it is natural



Indeed, Eq. (32) is nothing but Eq. (18), , relative to vertical variations
of L, where the Lagrange bracket [L] of the symmetric Lagrangian L has
been replaced by its equivalent expression (21).

A result equivalent to Proposition 4.1 is contained in [2] (Theorem 9,
p. 84) and a similar one is proved in [20] (Theorem 4.6) for a mechanical
system with symmetry acted on by a gyroscopic force field. This latter is
used as a control in feedback form to stabilize the system around a position
of relative equilibrium.

Notice that, due to the definition of $, J is an Ad*-equivariant map that
can be defined as the difference between the momentum maps on TM and
g* respectively, since J #»(&)£,= <A, £>.

The system (M, l) being a system with symmetry, the corresponding
momentum map 7 takes constant value along the (vakonomic) motions.
Therefore

Proposition 4.1. Along the motions of the vakonomic system with sym-
metry (M, £ ) associated to (M, L, x^), the time derivative of the momen-
tum map J is zero:

fails to define a vector bundle isomorphism, we introduce the related
momentum map J: TM->g*. A straightforward calculation shows that,
since ^js(c) = (^Af(z), — ad|l), the ordinary (see (20)) and vakonomic
momentum maps are related by

where <Ad*£, X> = <£, a d g X ) . Notice that Ad* (and hence $) is a
proper action only in special cases, e.g., if G is a compact group. Nonethe-
less, the vakonomic unconstrained system (M, L) (where L is the one in
(16)) associated to (M, L, AU ) is a mechanical system with symmetry if L
is a symmetric Lagrangian. Even if

to introduce the extended configuration space M = MxG* for the
variables (z, Y) and to define an extension to M of the group action by
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The evolution of Jloc along the vakonomic motions of (M, L, ,AU) is
quickly computed using Proposition 4.1 and the fact that if f ( t ) = Adg*(, its

If we finally set Jhc = dl/dc — A6, we get

and consequently the vakonomic momentum map (31) can be expressed as

To rewrite the vakonomic momentum map in this framework, note that by
chain rule one has that dL/dg = (dl/d£) TgLg-i, therefore for the ordinary
(see (20)) momentum map one has

as much as when one passes from space to body coordinates in the descrip-
tion of rigid body dynamics. Collecting the above definitions, we define the
vakonomic reduced Lagrangian associated to (M, L, AU) to be the follow-
ing function on TB x g x g*

Our next aim is to rewrite the content of Proposition 4.1 for a trivial
bundle M = BxG. We will use the result in the derivation of the reduced
vakonomic equations for a system with affine equivariant constraints in the
next section. As it is well known, the tangent space TG to a group G is
isomorphic to Gx^ , e.g., by left translation to the origin £, = g~lg =
TgLg-ig; therefore we can identify the tangent space TM with TBxGxtf
and, if z = (>', g) are coordinates on Bx G, induced coordinates on 77? x ^
are (y, y,c). A Lagrangian L which is invariant for the left G-action has
the form L(y, y, g~lg) therefore it induces a reduced lagrangian function
l=l(y, y, £,} on 77? x ^. Now we come to the description of the constraint
stf1* in BxG. Using the local expression (12) of the connection, which
holds globally for a trivial bundle, and writing the equivariant section p. of
Mx% 'dsfi(y, g) = Mgf^(y), the equivariant constraint ,rf" in (15) become
Adg(g~1g + A ( y ) y — ft(y)) = Q. For the Lagrange multipliers Ae(^*, we
perform the transformation
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The vakonomic equations for yloc can be obtained from d \ £?loc = 0 with
respect to variations with fixed endpoints performed in the (y, £, Ab)
variables. We have already taken into account for the <;-variables by deriving
Eq. (36) from Eq. (32) relative to vertical variations of £. For an alter-
native derivation, one can rephrase the argument used in [16]. Now, per-
forming a variation in the Ab -variables gives back the constraint equation
g + A(y) y— u ( y ) = 0, while for a variation 8y of y with fixed endpoints
and oy = (d/dt)(8y) one has

Notice that (36) or equivalently (32) can also be obtained by perform-
ing a vertical (i.e., along the fibers) variation of the lagrangian £?loc and &
respectively. This is done in [16] for l(y, y, £); moreover, by setting 1 = 0,
Eq. (36) coincides with the Euler-Poincare equations (see [16]). We will
complete the comparison with the reduced Euler-Lagrange equations in
the next section.

Vakonomic Reduction on a Trivial Bundle

Now we apply the reduction procedure to the vakonomic uncon-
strained system (M, JS?) associated to the system with equivariant affine
constraints that we studied in the Section 3. See, e.g., [7] or [14] for a
detailed derivation of the vak equations using the variational principle.
Since we do not suppose the extended configuration space M = M x g *
to be a principal bundle for the extended action <o>, we will adopt here a
somewhat different approach to the derivation of the reduced equations.
Consider the reduced lagrangian function defined in (34) for a trivial
bundle B x G

time derivative is ((?) = ad*( TLg-\g) ((t) (see [ 1 ], p. 275). We thus rewrite
Proposition 4.1 as

Proposition 4.2. Along the motions of the unconstrained vakonomic
system with symmetry associated to (M,L, AU), the time derivative of the
momentum map J!oc satisfies
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The nonholonomic reduced equations for the system (M, L, .c^) are com-
puted in [5] as

Therefore we can replace the vakonomic reduced Eqs. (38) with

By substituting dl/dc and [/] as given respectively from the first and the
second of (38) into Eq. (40), and using the relations Q,oc = dA — [A, A]
and DU = dU — [A,/*], one gets

The Lagrange bracket for / and lc are related through

To make a comparison with the nonholonomic reduced equations in [5],
we need to carry on a further step. Following [5], we use the constraint
equation c= — A y + U to form the constrained reduced lagrangian

Collecting the above results, the reduced vakonomic equations display as
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5. MECHANICAL EXAMPLES

In this section we will study in details the vakonomic dynamic for a
couple of mechanical systems by applying the reduction procedure and we
will check the equivalence of the nonholonomic and vakonomic theory for
the systems at hand using Theorem 3.1.

Two-Wheeled Carriage

The following example is widely treated in literature (see, e.g., [8] or
[9]). See also [8] for the derivation of the nonholonomic equations and
as a general reference. We consider the two-wheeled carriage depicted in
Fig. 1. For simplicity' sake, we suppose the center of mass of the carriage
to lie on the middle of the wheels' axis. The typical configuration of the
system is defined by the position (x, y) of the center of mass G, by the
heading angle 6 and by the angles w1 and w2 formed by fixed radii on each
wheel with a vertical axis. Since the position of the carriage, regardless to
the angles w1 and w2, is defined by an element of SE(2), the non abelian
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As it is easily seen, nonholonomic Eqs. (42) are simpler than their
vakonomic counterpart. This is due, among other things, to the fact that
in the vakonomic theory one enlarges the configuration manifold to the
(z, y)-space to look at the evolution of the system and at the reaction forces
simultaneously. However, it is possible to get rid of the e-variables in ( 4 1 )
and to write a closed set of dynamic equations for the (y, y)-variables.
Moreover, a further reduction could be operated for the A-variables only
by adding more hypotheses on the group action of G on g* so as to intro-
duce the bundle n: M x g* -> M x g*/G.

To carry on the comparison between the two theories it is useful to
"drop" condition (22) in Theorem 3.1 to TB. As it is easily seen, condition
(22) for the system (M, L, au) can be rewritten as

where the ( )* means that the quantity in brackets is evaluated for £ =
— Ay+u. Accordingly, from (23)



The assumption of pure rolling for each wheel and the constraint of no
lateral sliding yields constraints

Moreover, let m and J be the mass of the system and its inertia and let /,
r, 2w be the wheels' inertia, radius and mutual distance.

The lagrangian of the system, which reduces to its kinetic energy part,
can be written as

group of planar rigid motions, the configuration manifold is the trivial
bundle SE(2) x T2-> T2, where T2 is the two-dimensional torus. It is con-
venient to replace in the following the variables W1, and W

2 in the base space
with O = (O1, 02) where
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Fig. 1. Two-wheeled carriage.



where k = diag[2/+mr2, 2/+(r 2 /w 2) J].

where J = diag[m, m, J], and dot denote the scalar product. The con-
strained reduced lagrangian lc = l(O, O, — A O ) is

Now we apply the reduction procedure developed in the last section. Note
that by the SE(2) invariance of the lagrangian, L coincides with the
reduced lagrangian / = l ( O , O , E )

and £, is as above. The constraint connection yields a non-vanishing cur-
vature two-form

One can check that both the lagrangian and constraints are invariant for
the left S£(2)-action and that (45) defines a principal connection on the
bundle SE(2)xT2 ->T2 (see [8]). Indeed, (45) can be rewritten as
£ + A(O, (O) = 0, where A: T2 —> se(2) is the local connection one form

The velocity of a rigid motion £ E ( 2 ) -R3 is given by

Now we recall the group action of SE(2) acting on itself on the left: denote
with g = (p, R) the typical element of SE(2) and with g1, g2 = (p1 + R1P2 ,

R 1 R 2 ) the group multiplication. These are expressed in components by
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Now we compute the vakonomic reduced equations from (41) with u = Q.
These latter read

Therefore the center of mass of the system moves along a straight line if
02(0) = w1(0) - w2(0) = 0, and it performs a circular orbit if w2(0) = 0 with
radius

The motion for the whole system is recovered from the above trajectory in
the base space by using the constraint Eq. (45) and it yields

Thus in the nonholonomic case, the motion in the base space is given by

Therefore condition (43)—see Theorem 3.1—for the equivalence between the
two formulations is satisfied by setting lb(Q) = (9//3<J)*|0= —JA$(Q). The
nonholonomic reduced Eqs. (42) are simply

one has

As a first step, we compute the nonholonomic reduced equations for the
carriage system from (42) with u = 0. Since dl/d£ computed for £, = — Ao is
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According to Theorem 3.1, the nonholonomic solution (47) determines a
solution of the vakonomic reduced Eqs. (49) by setting

Next we look at the constraint reaction forces in the nonholonomic
theory. Nonholonomic reaction forces are expressed by the right-hand side
of the nonholonomic equations [see (1)].

In this case the above equations read

By substituting the trajectory (47) and (48) in (50), one gets



Nonholonomic Systems with Transverse Constraints 533

so that the reaction forces are vanishing (yi,= O, i= 1,..., 3) only for recti-
linear motions (o 2 (0)=0) or "point" motions (0 j (0 )=0) , i.e., rotations
about a fixed center of mass position.

Sphere Rolling on a Rotating Table

The following example is dealt with in, e.g., [17] or [6]. See also [14]
for a detailed analysis of the dynamics from both a theoretical and
experimental point of view.

We consider an homogeneous sphere having mass in and inertia / =
f ma2 and rolling without sliding on a plane that can eventually rotate with
constant angular velocity Q about a vertical axis. The typical configuration
is defined by the contact point between the sphere and the plane and by the
orientation of a frame joint to the sphere with respect to an inertial frame.
Thus the configuration manifold is the trivial bundle R2 x SO(3) -> R2 and
the lagrangian function, which reduces to its kinetic part, is invariant for
the right so(3) action. We make use of the Lie algebra isomorphism
(.so(3), [ , ] ) - > (R3, x ) and we take (r, r, w), where w = AA~l is the right
translation to the identity of AeTASO(3), as coordinates of the reduced
space TR2xso(l) (see Section 3). The reduced lagrangian is

We recall that using the aforementioned Lie algebra isomorphism, the
expressions for the adjoint and coadjoint actions on R3 are

and the pairing between so(3) and its dual space is simply the R3 scalar
product, which defines a bi-invariant metric on SO(3).

The pure rolling constraint coupled to conservation of the angular
momentum about a vertical axis (which holds in the nonholonomic theory
in absence of external torque) define a principal connection on the trivial
bundle, whose local expression of the form gg~l + A(y) y = 0 for a right
action is

We warn that in the vakonomic framework the vertical component of the
angular momentum is not conserved a priori and thus the vakonomic



and the reduced vakonomic equations can be computed from (41) as

According to the above dynamic equations, the contact point between the
ball and the plate performs a circular orbit whose radius depends linearly
on the plate' angular velocity, Q.

The reduced vakonomic lagrangian (34) is given in this case by

It is easy to see that this condition is not satisfied in the general case and
that it holds only if du = 0 (e.g., if Q = 0 that is the platform does not
rotate) by setting Ab(0) = Ia>0. The nonholonomic reduced equations for the
ball system can be computed from (42) or directly using Newton's equa-
tions as in [14, 6] to give

Now we can enquire about the equivalence of the two formulations for this
example using condition (42)—see Theorem 3.1—that reads
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lagrangian contains only the rolling constraint. We will take coz = const, as
an a priori constraint because we want to profit of the description of the
constraint as an affine equivariant constraint of Section 3.

If the platform is rotating with constant angular velocity Q, then the
above linear constraint become the equivariant affine constraint of the form
gg~l+A(y) y = u
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As it can be easily seen from above, if the platform does not rotate
(£2 = 0), the solution to the nonholonomic equations (x, y) = 0, provides a
solution to the above vakonomic equations by setting Ab(t) = ha(t).

We have shown that in the ball example the nonholonomic motion
cannot be obtained from the vakonomic scheme by a particular choice of
the initial conditions y ( O ) on the multipliers y Moreover, vakonomic tra-
jectories are highly sensitive to the choice of /(O), as it is shown by a
numerical treatment of the equations in [14]; therefore, the vakonomic
approach is unreliable in this example.
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