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SUMMARY

A model to simulate cavitation phenomena in the pores of saturated porous media is developed. Such phenomena
appear in connection with pore water traction, which may be observed during strain localization in dense sand
samples or in dynamic ¯uid±structure interaction problems where the structure is made of geomaterials. The
model makes use of an isothermal two-phase ¯ow approach. Numerical examples relating to strain localization
are shown. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cavitation, which means the nucleation of the phase change to vapour, occurring when the absolute

pressure of water decreases below the vapour saturation pressure, is not too common in geomaterials.

However, it sometimes plays an important role. For instance, cavitation has been observed in strain

localization experiments carried out on undrained samples of dense sand1 and it has been stated that

in such situations localization starts only if cavitation takes place. Cavitation has also been observed

numerically in ¯uid±structure interaction problems, e.g. at the interface between a concrete dam and

the water of the reservoir if they are subject to seismic excitation.2

A simpli®ed approach to the modelling of cavitation in dynamic situations was presented in

Reference 3, where the mass balance equation of vapour was neglected as well as the energy balance

equation. This may be considered as an isothermal monospecies approach, but was found useful in

strain localization models to follow the shear band from its onset up to its full development. In this

paper we develop a more complete isothermal two-phase ¯ow model where phase change and the

mass balance equation of vapour are taken into account.
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We ®rst present brie¯y the full model for non-isothermal behaviour of partially saturated

deforming porous media, from which our applied model stems. Then we discuss the introduced

simpli®cations and the numerical solution of the resulting equations. These solutions are obtained

with a modi®ed version of the Swandyne code.4,5

Finally we show applications of this model to the dynamic strain localization problem and compare

the results with those of the previous simpli®ed approach.

2. GENERAL MATHEMATICAL MODEL OF THERMOHYDROMECHANICAL TRANSIENT

BEHAVIOUR OF GEOMATERIALS

The full mathematical model necessary to simulate thermohydromechanical transient behaviour of

fully and partially saturated porous media was developed in Reference 6 using averaging theories

following Hassanizadeh and Gray.7±9 Based on it, the general cavitation model and its simpli®ed

version (monospecies approach) were presented in Reference 3.

The underlying physical model, thermodynamic relations and constitutive equations as well as

governing equations are brie¯y summarized here for the sake of completeness.

The partially saturated porous medium is treated as a multiphase system with the voids of the solid

skeleton ®lled partly with liquid and partly with gas. The latter is assumed to behave as an ideal

mixture of two species: dry air (non-condensable gas) and water vapour (condensable gas). The state

of the medium is described by the water pressure pw, the gas pressure pg, the temperature T and the

displacement vector of the solid matrix, u. Small displacements are assumed for the development of

the equations. Local thermal equilibrium between solid matrix, gas and liquid phases is assumed, so

the temperature is the same for all the constituents.

The saturation of liquid water, Sw, is an experimentally determined function of the capillary

pressure pc and the temperature T, i.e.

Sw � Sw�pc; T �; �1�
while the capillary pressure pc can be expressed at equilibrium10 as

pc � pg ÿ pw; �2�
where pg is the pressure of the dry air and water vapour mixture.

The equation of state of a perfect gas (the Clapeyron equation) and Dalton's law applied to dry air

(ga), water vapour (gw) and moist air (g) yield

pga � rgaRT=Ma; pgw � rgwRT=Mw; �3�

pg � pga � pgw; rg � rga � rgw: �4�
Owing to the curvature of the meniscus separating the liquid (water) phase from the gas phase

inside the pores of the medium (considered as a capillary porous body), the equilibrium water vapour

pressure pgw differs from the saturation pressure pgws and can be obtained from the Kelvin equation

pgw � pgws�T � exp ÿ pcMw

rwRT

� �
; �5�

where the water vapour saturation pressure pgws, depending only on the temperature T, can be

calculated from the Clausius±Clapeyron equation or from empirical correlations (see e.g. Reference

11).
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The constitutive law for the solid phase is introduced through the concept of the modi®ed effective

stress

s00 � s� �apI; �6�
where s00 is the total Cauchy stress tensor, I is the unit second-order tensor, �a is Biot's constant and p

is the average pressure of the mixture of ¯uids surrounding the grains, which in the case of a small

dependence of Helmholtz free energies on void fraction is given10 by the commonly employed

relation

p � Swpw � Sgpg ÿ patm; �7�
where Sw� Sg� 1. The last term in (7) has been added because we use absolute pressures here, and

pure atmospheric pressure does not cause any deformation of the medium.

The constitutive relationship for the solid skeleton has the form

ds00 � CT�deÿ deT ÿ deo�; �8�
where CT is the tangent constitutive tensor, deT� I(bs/3) dT is the strain increment caused by

thermoelastic expansion, with bs the cubic thermal expansion coef®cient of the solid, and deo

represents the autogeneous strain increments and the irreversible part of the thermal strain tensor.12

For the binary gas mixture of dry air and water vapour, Fick's law gives the following relative

average velocities vp
g of the diffusing species:13

vga
g � ÿ

MaMw

M 2
g

Dg grad
pga

pg

� �
� MaMw

M 2
g

Dg grad
pgw

pg

� �
� ÿvgw

g ; �9�

where

1

Mg

� rgw

rg

1

Mw

� rga

rg

1

Ma

: �10�

In (9), Dg is the effective diffusivity tensor and Mg is the molar mass of the gas mixture.

The linear momentum balance equation for the ¯uids, after neglecting several terms of minor

importance,12,14,15 can be written in the form of the generalized Darcy equation

vps � kkrp

mp
�ÿgrad pp � rp�gÿ as ÿ aps��; �11�

where p�w or g, vps is the intrinsic mass-averaged velocity relative to the solid, aps is the

acceleration relative to the solid and the term kkrp=mp expresses the ¯uid±solid exchange of

momentum. The relative permeability krp is a function of the degree of saturation Sp and the

temperature T, k is the intrinsic permeability tensor and m is the dynamic viscosity.

The linear momentum balance equation for the multiphase medium has the form6

div s� r�gÿ as� ÿ nSwr
waws ÿ nSgr

gags � 0; �12�
where r is the average density of the multiphase medium given by

r � �1ÿ n�rs �P
p 6�s

nSpr
p: �13�

The dry air mass balance equation, after application of Darcy's law and Fick's law and neglecting

acceleration terms, is

@

@t
�nSgr

ga� � Sgr
ga div vs ÿ div rga kkrg

mg
grad pg

� �
� div rg MaMw

M2
Dg grad

pgw

pg

� �� �
� 0: �14�
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The water vapour mass balance and liquid water mass balance equations are summed to eliminate

the source term related to phase change, yielding the mass balance equation for all water species.

After introduction of Darcy's law and Fick's law, as above, we obtain

@

@t
�nSgr

gw� � Sgr
gw div vs ÿ div rgw kkrg

mg
grad pg

� �
ÿ div rg MaMw

M 2
Dg grad

pgw

pg

� �� �
� ÿ @

@t
�nSwr

w� ÿ Swr
w div vs � div rw kkrw

mw
�grad pw ÿ rw�gÿ as ÿ aws��

� �
: �15�

The macroscopic mass balance equation for the solid has already been summed with the above

mass balance equations (14) and (15) to eliminate the time derivative of porosity n.

The energy conservation equation (enthalpy balance) can be expressed in the form6

rCp

@T

@t
ÿ div�leff grad T � ÿ Cw

p r
w kkrw

mw
�grad pw ÿ rw�gÿ as ÿ aws�� � Cg

pr
g kkrg

mg
grad pg

� �
grad T

� Dhvap

@

@t
�nSwr

w� � Swr
w div vs ÿ div rw kkrw

mw
�grad pw ÿ rw�gÿ as ÿ aws��

� �� �
; �16�

where

rCp � nSwr
wCw

p � nSgr
gCg

p � �1ÿ n�rsCs �17�
is the heat capacity of the multiphase medium at constant pressure, leff is the effective thermal

conductivity of the moist material and Dhvap is the latent heat of evaporation.

For model closure it is necessary to de®ne the initial and boundary conditions.

The initial conditions specify the full ®elds of gas pressure, water pressure, temperature and

displacements:

pg � pg
o; pw � pw

o ; T � To; u � uo at t � to: �18�
The boundary conditions can be imposed values on Gp or ¯uxes on Gq

p, where the boundary is

G�Gp [ Gq
p. The imposed values on the boundary for gas pressure, water pressure, temperature and

displacements are

pg � p̂
g

on Gg; pw � p̂
w

on Gw; T � T̂ on GT; u � û on Gu for t 5 to; �19�
The volume-averaged ¯ux boundary conditions for the water species and dry air conservation

equations and the energy equation to be imposed at the interface between the porous medium and the

surrounding ¯uid (the natural boundary conditions) are

�rgavg ÿ rgvgw
g �n � qga on Gq

g; �20a�

�rgwvg � rwvw � rgvgw
g �n � bc�rgw ÿ rgw

1 � � qgw � qw on Gq
c; �20b�

ÿ�rwvwDhvap ÿ leffHT �n � ac�T ÿ T1� � qT on Gq
T for t 5 to; �20c�

where n is the unit vector, perpendicular to the surface of the porous medium, pointing towards the

surrounding gas, rgw
1 and T? are respectively the mass concentration of water vapour and

temperature in the undisturbed gas phase distant from the interface, ac and bc are convective heat and

mass transfer coef®cients respectively and qga, qgw, qw and qT are the imposed dry air ¯ux, imposed

vapour ¯ux, imposed liquid ¯ux and imposed heat ¯ux respectively.
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The traction boundary conditions for the displacement ®eld are

sn � t̂ on Gq
u for t 5 to; �21�

where t̂ is the imposed traction.

3. ISOTHERMAL TWO-PHASE FLOW APPROACH TO CAVITATION SIMULATION

As in Reference 3, we consider undrained situations, where cavitation has been experimentally

observed.1 In such conditions, with the exception of air bubbles in the water, which may be present in

fully saturated specimens at low pressures, only two ¯uid phases are present after desaturation due to

cavitation: liquid water and water vapour. An isothermal two-phase ¯ow approach is adopted here;

hence the air mass balance equation (14) and the energy balance equation (16) are not needed,

because we assume that no air is present in the pores of the medium and that the temperature is

constant.

An isothermal approach means physically that heat is supplied or taken away at in®nite rate to

maintain constant temperature (hence this implies in®nite heat capacity value); thus there are no

energetic restrictions on phase change (evaporation or condensation).

Thus ®nally our isothermal model consists of the linear momentum balance equation for the

multiphase medium, (12), and the mass balance equation for the water species (15), with the diffusion

term omitted (there is no diffusion of the water vapour in the air). Actually the Clausius±Clapeyron

equation is not needed in Kelvin's law (5), because the water saturation pressure pgws is constant in

isothermal conditions.

From the assumption about absence of air in the pores of the medium it follows that the average

pressure (7) is given by the relation

p � Swpw � Sgpgw ÿ patm: �22�
In the linear momentum balance equations for the multiphase medium, (12), and the ¯uids, (15),

we ignore the relative component of the ¯uid accelerations. This allows us to reduce the primary

variables to solid displacements and ¯uid pressure.14 After introduction of the effective stress (6) into

the linear momentum balance equation (12), we obtain its ®nal form as

div �s00 ÿ �a�Swpw � Sg pgw ÿ patm�I� � r�gÿ as� � 0: �23�
The dynamic seepage forcing term in (15), connected with the solid acceleration, is very small

when compared with other terms of the equation system, so it is neglected.4 In isothermal conditions,

at temperature T� To, the vapour pressure depends only on the water pressure value:

pgw � pgws�To� exp ÿ �p
gw ÿ pw�Mw

rwRTo

� �
; �24�

hence the water vapour gradient appearing in (15) can be expressed as

grad pgw � @p
gw

@pw
grad pw: �25�

The capillary pressure in (24) has been eliminated using (2), which, because of the absence of air in

the pores of the medium, reads

pc � pgw ÿ pw: �26�
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Introduction of (25) allows the balance equation for the water species (both liquid water and water

vapour) in the partially saturated regime to be written as

@

@t
�n�Swr

w � Sgr
gw�� � �Swr

w � Sgr
gw� div vs

ÿ div rw kkrw

mw
�grad pw ÿ rw�gÿ as�� � rgw kkrg

mg

@pgw

@pw
grad pw

� �
� 0: �27�

The terms in (23) and (27) related to the pressure and density of the water vapour will be obtained

by use of the Kelvin equation (24) and the Clapeyron equation (3).

Together with equations (3), (23), (24) and (27) we need the constitutive equations of the medium,

i.e.

Sw � Sw�pc�; krw � krw�Sw�; krg � krg�Sw�; �28�
and the appropriate initial and boundary conditions (18) and (20b).

Cavitation may occur if the absolute pressure of the water is equal to or smaller than the saturation

water vapour pressure at the temperature of the surrounding water (neglecting the surface tension on

the interface of the arising vapour bubbles). Thus for the thermodynamic equilibrium state (assumed

during formulation of the model) the vapour pressure on the interface between saturated and partially

saturated porous material (pc� 0) is equal to the saturation value, e.g. at T� 20 �C, pgws� 2339 Pa.

Note that the ®nal form of our equations (23) and (27) is similar to the governing equations of the

fully saturated state model,16 even with the same two state variables: water pressure pw and

displacement vector u; we have, however, to obtain the vapour pressure from (24).

Equation (24), having an implicit form, will be calculated iteratively, simultaneously with the main

iterations of a Newton±Raphson type solution procedure, using in the RHS of (24) the value of pgw

from the previous iteration. The differences between the values of water vapour pressure at two

successive iterations are very small because of the very low value of the term qpgw=qpw (see next

section); thus the method applied has suf®cient accuracy.

4. DISCRETIZATION AND SOLUTION

The governing equations are discretized in space using ®nite elements and in the time domain by

means of Newmark's scheme.17 The unknown ®eld variables are expressed in the whole domain by

global shape function matrices Nu and Nw and nodal value vectors �u and �p:

u � Nu �u; pw � Nw �p: �29�
A weak form of the linear momentum balance equation (23) and the mass balance equation (26),

obtained following a Galerkin procedure,17 can be expressed in matrix form as

M ��u� �PÿQw �p � fu; �30�

�Hw �Hv� �p� �Qw �Qv�T _�u� �Sw � Sv� _�p � fp; �31�
where the equivalent nodal force vector �P, the mass matrix M, the coupling matrices Qp, the

permeability matrices Hp, the compressibility matrices Sp, the external load vector f u, and the ¯ow

vector f p are as de®ned in Appendix I. The superscripts `w' and `v' refer to water and vapour

respectively.
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Thus the coupled equation system at time level tn�1 can be written in the form

Mn�1
��un�1 � �Pn�1 ÿQw

n�1 �pn�1 � fu
n�1;

�Qw
n�1 �Qv

n�1�T _�un�1 � �Hw
n�1 �Hv

n�1� �pn�1 � �Sw
n�1 � Sv

n�1� _�pn�1 � f
p
n�1:

�32�

The Newmark scheme adopted for time integration, with the lowest allowable order for each variable,

permits us to write the variables and their derivatives at time level tn�1 as a function of their values at

the previous time level tn and the increments of unknown variables between tn and tn�1:

_�un�1 � _�un � _�unDt � b1D ��unDt � ��u
p
n�1 � b1D _�unDt;

�un�1 � �un � _�unDt �
��unDt2

2
� b2D ��unDt2 � _�u

p
n�1 � b2D ��unDt2;

�pn�1 � �pn � _�pnDt �YD _�pnDt � �p
p
n�1 �YD _�pnDt;

�33�

where _�u
p
n�1, �u

p
n�1 and �p

p
n�1 are predicted values from known parameters at time level tn and b1, b2 and

Y are the Newmark parameters.

Insertion of equations (33) into (32) allows the equation system to be written as

Cu
n�1 �Mn�1D ��un � �Pn�1 ÿQw

n�1YDtD _�pn ÿ Fu
n�1 � 0;

Cp
n�1 � �Qw

n�1 �Qv
n�1�Tb1DtD ��un � �Hw

n�1 �Hv
n�1�YDtD _�pn � �Sw

n�1 � Sv
n�1�D _�pn ÿ F

p
n�1 � 0;

�34�
where the vectors Fu

n�1, and F
p
n�1 are as de®ned in Appendix I. At the beginning of each time step

�Pn�1 must be evaluated by integration of the rate elastoplastic constitutive law, knowing the stress

®eld at the previous step. Also the vapour pressure and density must be evaluated from (24) and (3),

respectively.

The coupled equation system (34) is non-linear because of the constitutive laws for the solid

skeleton and for the capillary pressure and saturation. It is hence linearized by an iterative Newton±

Raphson-type procedure

Cp
i �

@Cp
i

@x

����
x�xi

Dxi � 0; �35�

where the Jacobian matrix of transformation, J, at the ith iteration is

J � @C
@x

����
x�xi

�

@Cu

@�D ��u�
@Cu

@�D _�p�
@Cp

@�D ��u�
@Cp

@�D _�p�

0BBB@
1CCCA � M�KTb2Dt2 ÿQwYDt

�Qw �Qv�Tb1Dt �Hw �Hv�YDt � Sw � Sv

� �
�36�

and KT is the elastoplastic tangent stiffness matrix.

Substituting (36) in (35) and scalar multiplying the second set of equations by ÿY=b1, we obtain

the following equation system to be solved:

M�KTb2Dt2 ÿQwYDt

ÿ�Qw �Qv�TYDt ÿY
b1

��Hw �Hv�YDt � Sw � Sv�

0@ 1A D ��u

D _�p

 !
�

ÿCu

ÿY
b1

Cp

0@ 1A: �37�

Note that the multiplication by ÿY=b1 has been carried out to maintain a formal similarity of

equation (37) with that for the fully saturated state.3,4,16 The system is, however, non-symmetric. It
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has been further symmetrized by transferring the coupling term related to the water vapour to the

RHS of the second equation:

M�KTb2Dt2 ÿQwYDt

ÿ�Qw�TYDt ÿY
b1

��Hw �Hv�YDt � Sw � Sv�

0@ 1A D ��u
D _p

� �
�

ÿCu

ÿY
b1

Cp � �Qv�TD ��uYDt

 !
: �38�

During computations this coupling term has been evaluated using D ��u from the previous iteration.

It should be underlined that this and other terms with the superscript `v' in the second equation are

very small in comparison with the water-related terms (superscript `w'), because all of them contain

the factor rgw=rw, e.g. at T � 20 �C, rgw=rw � rgws=rw � 0�01731=998�21� 1�73610ÿ5.

A similar value is taken by the factor @pgw=@pw factor present in many terms of (38), for which

@pgw

@pw
� pgwMw

rwRT

� �
1� pgwMw

rwRT

� �ÿ1

� rgw

rw

1� rgw

rw

� �ÿ1

� rgw

rw

: �39�

The Newton±Raphson method requires the Jacobian matrix to be evaluated and inverted at each

iteration; thus Davidon's modi®ed scheme using secant updates has been used, because it achieves

convergence with less computational effort and was found advantageous in non-linear analyses of

porous media.4

Numerical problems often arise during computations when a rapid desaturation process in the zone

near the shear band front occurs. In fact, very fast water pressure changes occur computationally in

this zone, such that the saturation falls rapidly from one to almost its minimum value (irreversible

saturation level) during a very short period of time (e.g. about 0�001 s in the examples described in

the next section). Because in the same region other physical and numerical instabilities are also

present, usually serious problems with convergence arise. Extensive tests carried out have shown that

the source of these problems is the term Cs (containing @Sw=@p
w) in the compressibility matrix Sw

(see Appendix I). Application of a smaller time step length usually does not improve the situation.

However, an ef®cient way of avoiding the mentioned problems is multiplication of the term Cs by a

`weighting factor' smaller than one. Since the term Cs is of importance only in the region near the

shear band front, the general picture of the whole phenomenon should not be changed too much

because of this. It is recalled that this term is missing altogether in some models of unsaturated ¯ow

(see e.g. Reference 18) and its in¯uence should not be too large. This term is, however, maintained in

our model but with a reduced weight.

5. NUMERICAL EXAMPLE

As a numerical example we use the dynamic strain localization problem, which was previously

solved for fully saturated soil by Loret and Prevost19 and Schre¯er et al.16. Then Schre¯er et al.3

observed numerically for the same problem, using a simpli®ed one-phase ¯ow model, the occurrence

of cavitation for dilatant material with impervious boundaries. This is in accordance with

experimental observations carried out by Mokni.1 Here this example is further analysed, by means of

a two-phase ¯ow model, to evaluate the in¯uence of the terms related to the water vapour and then to

compare strain localization phenomena in two different materials: sand and loam.

The sample of fully saturated soil (plain strain) is shown in Figure 1. It has impervious boundaries.

Vertical and horizontal displacements are constrained at the bottom surface. Ramp loading is applied

at the top, as indicated in Figure 1. During computations the self-weights of the soil and the water

®lling its pores are taken into account. A hydrostatic distribution of water pressure is assumed as

initial condition.
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Two different materials are considered. For the ®rst one, with an intrinsic permeability

k� 0�55610ÿ11 m2, the relationships between capillary pressure, saturation and water relative

permeability (Figures 2 and 3) proposed by Safai and Pinder18 for San Fernando sand are used. In the

partially saturated region the gas relative permeability±saturation relationship of Brooks and Corey20

(with l� 3) is applied (Figure 3). A Mohr±Coulomb yield criterion with associative ¯ow rule and

isotropic linear softening is used. The material parameters used during the computations are

presented in Table I.

The second material analysed has an intrinsic permeability k� 0�55610ÿ13 m2 and the

constitutive relationships of Safai and Pinder18 for loam (Figure 2). Also for this material in the

partially saturated region the gas relative permeability±saturation relationship of Brooks and Corey20

(with l� 3) is assumed (Figure 3). Other material parameters are the same as for the ®rst case, except

the apparent cohesion co which equals 2�0 MPa instead of 1�84 MPa.

Two different meshes of 396 (18 elements in width and 22 over the height) and 720 (24630) four-

node isoparametric ®nite elements (FEs) of equal size, the same for displacements and water

Figure 1. Scheme of analysed example

Figure 2. Constitutive relationship between capillary pressure and saturation for loam and San Fernando sand18
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pressures, have been used together with a one-point Gaussian integration scheme for the stiffness

matrix. Computations are performed by use of the modi®ed version of the Swandyne code,4,5 with the

initial time step length Dt� 0�001 s in the elastic range, then reducing it 10±100 times depending on

the case analysed. In all the examples solved the temperature is taken equal to 20 �C.

First the localization problem for the sand data (Table I) was solved, applying the present model

and the previous simpli®ed one,3 where only one-phase ¯ow was considered together with zero value

of the relative water vapour pressure (with respect to atmospheric pressure). The results obtained with

both approaches are compared to evaluate the practical signi®cance of the terms related to the vapour.

For both cases the weighting factor for the term Cs is equal to 0�001 and the same time step lengths

(Dt� 0�001 s in the elastic and Dt� 0�0001 s in the plastic range) have been assumed. The

computations have been performed for the mesh of 396 FEs.

The time histories of water pressure and vertical total strain at the same two points, inside and

outside the shear band, are compared in Figures 4(a) and 4(b), showing that omitting the terms related

to the gas phase results in smaller water pressures (higher capillary pressures) and larger absolute

values of vertical total strain for points inside the shear band. The differences outside the band are

less signi®cant. The time value when the shear band is fully developed is about 0�01 s higher for the

present model. The shape of the corresponding isolines for both water pressure, Figures 5 (a) and

5(b), and equivalent plastic strain, Figures 6(a) and 6(b) as well as for the other variables (e.g.

capillary pressure, saturation, water ¯ow rate), not shown here, is slightly different. Their minimal

and maximal values for water pressure are changed: for the present model the maximal water

Figure 3. Relative permeabilities of water18 and gas20 in loam and San Fernando sand

Table I

Young modulus E� 285 MPa Poisson ratio n� 0�4285
Solid grain density rs� 2000 kg mÿ 3 Liquid density rw� 998�2 kg mÿ 3

Apparent cohesion co� 1�84 MPa Hardening modulus H� 7 40 MPa
Angle of internal friction j� 20� Initial porosity n� 0�20
Solid grain bulk modulus Ks� 6�78 GPa Liquid phase bulk modulus Kw� 0�20 GPa
Gas phase bulk modulus Kg� 2�34 kPa Biot constant �a� 1�0

118 D. GAWIN, L. SANAVIA AND B. A. SCHREFLER

INT. J. NUMER. METH. FLUIDS, VOL. 27: 109±125 (1998) # 1998 John Wiley & Sons, Ltd.



pressure is about 0�65 MPa higher and the minimal one about 3�4 MPa higher. Further, the maximal

¯ow rate is about 0�0075 m sÿ1 lower. It should be underlined that the differences in the water

pressure distribution are not caused by a simple addition of the constant pressure value

ÿ (pgw 7 patm)� 0�1 MPa, which was omitted in the previous model.3 Hence the terms related to

the water vapour, and omitted in Reference 3, are of importance for the full description of the

phenomenon and should be taken into account during simulations: the more correct model is only

slightly more complicated than the simpli®ed one.

Finally the problem has been solved for sand and loam to show the combined effect of the material

parameters and different constitutive capillary pressure±water degree of saturation relationship on the

shear band development. In this case a mesh of 720 FEs has been applied. For both materials the

same weighting factor for the term Cs, equal to 0�001, as well as the same time step length

(Dt� 0�0001 s in the plastic range) have been assumed.

Figure 4. Comparison of two solutions for sand, obtained by use of present and previous3 models, at same two points, inside and
outside shear band: (a) water pressure history; (b) vertical total strain history

Figure 5. Comparison of water pressure ®elds in sand: (a) previous simpli®ed model;3 (b) present two-phase ¯ow model
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The resulting isolines for water pressure, capillary pressure and equivalent plastic strain, as well as

the ¯ow rate graphs are presented in Figures 7(a)±7(d) for the sand and in Figures 8(a)±8(d) for the

loam. The resulting time histories of water pressure and vertical total strain for the same two points,

inside and outside the shear band, have been compared in Figures 9(a) and 9(b). In this case the

differences are signi®cant. The shear band in the loam is fully developed after a period of time twice

as long as for the sand (about 0�21 s later) and for slightly higher absolute values of the equivalent

Figure 6. Comparison of equivalent plastic strain ®elds in sand: (a) previous simpli®ed model;3 (b) present two-phase ¯ow
model

Figure 7. Results of computations for sand: (a) water pressure ®eld; (b) capillary pressure ®eld; (c) equivalent plastic strain
®eld; (d) water ¯ow rate ®eld
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plastic strain because of the smaller intrinsic permeability and greater apparent cohesion value for the

loam. The sand is more desaturated and in a slightly greater region than the loam, reaching higher

values of capillary pressure (maximal value higher by about 12 MPa), while the maximal water

pressure value in the loam is about 0�11 MPa lower. The water ¯ow rates in the loam, because of the

much smaller intrinsic permeability, are very distinctly lower: the maximal value about 100 times so.

Figure 8. Results of computations for loam: (a) water pressure ®eld; (b) capillary pressure ®eld; (c) equivalent plastic strain
®eld; (d) the water ¯ow rate ®eld

Figure 9. Comparison of results for sand and loam at same two points, inside and outside shear band: (a) water pressure history;
(b) the vertical total strain history
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For both materials the vapour pressures in the desaturated regions of the shear band are practically

constant (negligible gradient) and only slightly different from the saturation value (2339 Pa). The

minimal vapour pressures at the point of the band crossing are 1949 Pa in the sand and 1973 Pa in the

loam. As a consequence, the vapour ¯ow rates in the desaturated zone are very small, about 1000

times lower than the water ¯ow rates in the same region.

6. CONCLUSIONS

An isothermal two-phase ¯ow model for the simulation of cavitation phenomena in partially saturated

porous media has been presented. As compared with a previous simpli®ed model, it requires the

solution of the Kelvin equation in the form of a non-linear implicit equation for the vapour pressure

and of the mass balance equation for the vapour. This second equation allows us to eliminate the mass

rate of evaporation from the mass balance equation of the water phase. Also the effective stress

principle is modi®ed to take into account two-phase ¯ow. These modi®cations have been introduced

in the Swandyne4,5 ®nite element code for soil dynamics and problems relating to dynamic strain

localization in samples of dense sand have been solved. It has been shown that the previously

neglected terms relating to the water vapour are of importance and should be taken into account in a

more correct simulation of the phenomena.
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APPENDIX I: DEFINITIONS OF VECTORS AND MATRICES

M �
�
O

NT
u �rs�1ÿ n� � rwnSw�Nu dO;

�P �
�
O

BTs00 dO;

Qw � ÿ
�
O

BT �aSw mNw dO; where m � �1; 1; 1; 0; 0; 0�T;

Qv � ÿ
�
O

BT r
gw

rw
�aSgmNw dO;
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NT
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Hw � ÿ
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Hv � ÿ
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� �
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APPENDIX II: NOMENCLATURE

s solid phase

g gaseous phase

gw gaseous water phase, water vapour

w liquid phase, water

p generic phase

ap acceleration of p-phase

aps acceleration relative to solid

B linear strain operator

Cs speci®c moisture capacity

CT tangential constitutive tensor

Dg effective diffusivity tensor

fp ¯ow load vector

fu external load vector

g gravity acceleration

Hp permeability matrix

I unit second-order tensor

krp liquid phase relative permeability

k absolute or intrinsic permeability tensor

k� kkrprwg=m permeability value (m sÿ1)

Ks solid grain bulk modulus

Kw liquid phase bulk modulus

KT elastoplastic tangential stiffness matrix

Mp molar mass of constituent p
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M mass matrix

n porosity

n unit normal vector

pp macroscopic pressure of p-phase
�P equivalent force vector

Qp coupled matrix

R universal constant gas

Sw water saturation

Sg gas saturation

Sp compressibility matrix

t time variable

t surface traction tensor

T temperature

u solid displacements

vap velocity of a-phase with respect to p-phase

vp velocity of p-phase
�a Biot coef®cient

b1, b2, Y Newmark parameters

leff effective thermal conductivity

m liquid dynamic viscosity

r porous medium density

rp intrinsic phase-averaged density of p-phase

s Cauchy stress tensor

s00 effective stress tensor

Variables with overbar refers to the nodal values.
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