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We develop a product functional quantization of rough volatility. Since the optimal quantizers can
be computed offline, this new technique, built on the insightful works by [Luschgy, H. and Pagès,
G., Functional quantization of Gaussian processes. J. Funct. Anal., 2002, 196(2), 486–531; Luschgy,
H. and Pagès, G., High-resolution product quantization for Gaussian processes under sup-norm dis-
tortion. Bernoulli, 2007, 13(3), 653–671; Pagès, G., Quadratic optimal functional quantization of
stochastic processes and numerical applications. In Monte Carlo and Quasi-Monte Carlo Methods
2006, pp. 101–142, 2007 (Springer: Berlin Heidelberg)], becomes a strong competitor in the new
arena of numerical tools for rough volatility. We concentrate our numerical analysis on the pricing
of options on the VIX and realized variance in the rough Bergomi model [Bayer, C., Friz, P.K. and
Gatheral, J., Pricing under rough volatility. Quant. Finance, 2016, 16(6), 887–904] and compare our
results to other benchmarks recently suggested.

Keywords: Riemann–Liouville process; Volterra process; Functional quantization; Series expan-
sion; Rough volatility; Vix options

1. Introduction

Gatheral et al. (2018) recently introduced a new framework
for financial modelling. To be precise—according to the refer-
ence website https://sites.google.com/site/roughvol/home—
almost 2400 days have passed since instantaneous volatility
was shown to have a rough nature, in the sense that its sam-
ple paths are α-Hölder-continuous with α < 1

2 . Many studies,
both empirical (Bennedsen et al. 2017, Fukasawa 2021, Fuka-
sawa et al. 2022) and theoretical (Alòs et al. 2007, Fuka-
sawa 2011), have confirmed this, showing that these so-called
rough volatility models are a more accurate fit to the implied
volatility surface and to estimate historical volatility time
series.

On equity markets, the quality of a model is usu-
ally measured by its ability to calibrate not only to the
SPX implied volatility but also VIX Futures and the
VIX implied volatility. The market standard models had
so far been Markovian, in particular the double mean-
reverting process (Gatheral 2008, Huh et al. 2018), Bergomi’s
model (Bergomi 2005) and, to some extent, jump mod-
els (Carr and Madan 2014, Kokholm and Stisen 2015). How-
ever, they each suffer from several drawbacks, which the new
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generation of rough volatility models seems to overcome.
For VIX Futures pricing, the rough version of Bergomi’s
model was thoroughly investigated in Jacquier et al. (2018a),
showing accurate results. Nothing comes for free though and
the new challenges set by rough volatility models lie on
the numerical side, as new tools are needed to develop fast
and accurate numerical techniques. Since classical simulation
tools for fractional Brownian motions are too slow for real-
istic purposes, new schemes have been proposed to speed it
up, among which the Monte Carlo hybrid scheme (Bennedsen
et al. 2017, McCrickerd and Pakkanen 2018), a tree formula-
tion (Horvath et al. 2019), quasi Monte-Carlo methods (Bayer
et al. 2020) and Markovian approximations (Abi Jaber and El
Euch 2019, Chen et al. 2021).

We suggest here a new approach, based on product func-
tional quantization (Pagès 2007). Quantization was originally
conceived as a discretization technique to approximate a
continuous signal by a discrete one (Sheppard 1897), later
developed at Bell Laboratory in the 1950s for signal trans-
mission (Gersho and Gray 1992). It was, however, only in
the 1990s that its power to compute (conditional) expectations
of functionals of random variables (Graf and Luschgy 2007)
was fully understood. Given an R

d -valued random vector on
some probability space, optimal vector quantization investi-
gates how to select an R

d -valued random vector X̂ , supported
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on at most N elements, that best approximates X accord-
ing to a given criterion (such as the Lr-distance, r ≥ 1).
Functional quantization is the infinite-dimensional version,
approximating a stochastic process with a random vector tak-
ing a finite number of values in the space of trajectories for the
original process. It has been investigated precisely (Luschgy
and Pagès 2002, Pagès 2007) in the case of Brownian dif-
fusions, in particular for financial applications (Pagès and
Printems 2005). However, optimal functional quantizers are
in general hard to compute numerically and instead product
functional quantizers provide a rate-optimal (so, in principle,
sub-optimal) alternative often admitting closed-form expres-
sions (Pagès and Printems 2005, Luschgy and Pagès 2007).

In section 2, we briefly review important properties of
Gaussian Volterra processes, displaying a series expansion
representation, and paying special attention to the Riemann–
Liouville case in section 2.2. This expansion yields, in
section 3, a product functional quantization of the processes,
that shows an L2-error of order log(N)−H , with N the num-
ber of paths and H a regularity index. We then show, in
section 3.1, that these functional quantizers, although sub-
optimal, are stationary. We specialize our setup to the gen-
eralized rough Bergomi model in section 4 and show how
product functional quantization applies to the pricing of VIX
Futures and VIX options, proving in particular precise rates of
convergence. Finally, section 5 provides a numerical confir-
mation of the quality of our approximations for VIX Futures
and Call Options on the VIX in the rough Bergomi model,
benchmarked against other existing schemes. In this section,
we also discuss how product functional quantization of the
Riemann–Liouville process itself can be exploited to price
options on realized variance.

Notations We set N as the set of strictly positive natu-
ral numbers. We denote by C[0, 1] the space of real-valued
continuous functions over [0, 1] and by L2[0, 1] the Hilbert
space of real-valued square integrable functions on [0, 1], with
inner product 〈f , g〉L2[0,1] := ∫ 1

0 f (t)g(t) dt, inducing the norm

‖f ‖L2[0,1] := (
∫ 1

0 |f (t)|2 dt)1/2, for each f , g ∈ L2[0, 1]. L2(P)

denotes the space of square integrable (with respect to P)
random variables.

2. Gaussian Volterra processes on R+

For clarity, we restrict ourselves to the time interval [0, 1]. Let
{Wt}t∈[0,1] be a standard Brownian motion on a filtered prob-
ability space (�,F , {Ft}t∈[0,1], P), with {Ft}t∈[0,1] its natural
filtration. On this probability space, we introduce the Volterra
process

Zt :=
∫ t

0
K(t − s) dWs, t ∈ [0, 1], (1)

and we consider the following assumptions for the kernel K:

Assumption 2.1 There exist α ∈ (− 1
2 , 1

2 ) \ {0} and L :
(0, 1] → (0, ∞) continuously differentiable, slowly varying
at 0, that is, for any t> 0, limx↓0

L(tx)
L(x) = 1, and bounded away

from 0 function with |L′(x)| ≤ C(1 + x−1), for x ∈ (0, 1], for

some C> 0, such that

K(x) = xαL(x), x ∈ (0, 1].

This implies in particular that K ∈ L2[0, 1], so that the
stochastic integral (1) is well defined. The Gamma kernel,
with K(u) = e−βuuα , for β > 0 and α ∈ (− 1

2 , 1
2 ) \ {0}, is a

classical example satisfying assumption 2.1. Straightforward
computations show that the covariance function of Z reads

RZ(s, t) =
∫ t∧s

0
K(t − u)K(s − u) du, s, t ∈ [0, 1].

Under assumption 2.1, Z is a Gaussian process admitting a
version which is ε-Hölder continuous for any ε < 1

2 + α =
H and hence also admits a continuous version (Bennedsen
et al. 2017, Proposition 2.11).

2.1. Series expansion

We introduce a series expansion representation for the cen-
tered Gaussian process Z in (1), which will be key to
develop its functional quantization. Inspired by Luschgy and
Pagès (2007), introduce the stochastic process

Yt:=
∑
n≥1

K[ψn](t)ξn, t ∈ [0, 1], (2)

where {ξn}n≥1 is a sequence of i.i.d. standard Gaussian random
variables, {ψn}n≥1 denotes the orthonormal basis of L2[0, 1]:

ψn(t) =
√

2 cos

(
t√
λn

)
, with λn = 4

(2n − 1)2π2
, (3)

and the operator K : L2[0, 1] → C[0, 1] is defined for f ∈
L2[0, 1] as

K[f ](t) :=
∫ t

0
K(t − s)f (s) ds, for all t ∈ [0, 1]. (4)

Remark 2.2 The stochastic process Y in (2) is defined as a
weighted sum of independent centered Gaussian variables, so
for every t ∈ [0, 1] the random variable Yt is a centered Gaus-
sian random variable and the whole process Y is Gaussian
with zero mean.

We set the following assumptions on the functions
{K[ψn]}n∈N:

Assumption 2.3 There exists H ∈ (0, 1
2 ) such that

(A) there is a constant C1 > 0 for which, for any n ≥ 1,
K[ψn] is (H + 1

2 )-Hölder continuous, with

sup
s,t∈[0,1],s�=t

|K[ψn](t)− K[ψn](s)|
|t − s|H+ 1

2

≤ C1n;

(B) there exists a constant C2 > 0 such that

sup
t∈[0,1]

|K[ψn](t)| ≤ C2n−(H+ 1
2 ), for all n ≥ 1.
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Note that under these assumptions, the series (2) con-
verges both almost surely and in L2(P) for each t ∈ [0, 1] by
Khintchine–Kolmogorov Convergence Theorem (Chow and
Teichner 1997, theorem 1, section 5.1).

It is natural to wonder whether assumption 2.1 implies
assumption 2.3 given the basis functions (3). This is far from
trivial in our general setup and we provide examples and justi-
fications later on for models of interest. Similar considerations
with slightly different conditions can be found in Luschgy
and Pagès (2007). We now focus on the variance–covariance
structure of the Gaussian process Y.

Lemma 2.4 For any s, t ∈ [0, 1], the covariance function of Y
is given by

RY (s, t) := E[YsYt] =
∫ t∧s

0
K(t − u)K(s − u) du.

Proof Exploiting the definition of Y in (2), the definition of
K in (4) and the fact that the random variable ξn’s are i.i.d.
standard Normal, we obtain

RY (s, t) = E[YsYt] = E

[(∑
n≥1

K[ψn](s)ξn

)

×
(∑

m≥1

K[ψm](t)ξm

)]

=
∑
n≥1

K[ψn](s)K[ψn](t)

=
∑
n≥1

(∫ 1

0
K(s − u)1[0,s](u)ψn(u) du

×
∫ 1

0
K(t − r)1[0,t](r)ψn(r) dr

)
=

∑
n≥1

〈K(s − ·)1[0,s](·),ψn〉L2[0,1]

· 〈K(t − ·)1[0,t](·),ψn〉L2[0,1]

=
∑
n≥1

〈
K(t − ·)1[0,t](·),

〈K(s − ·)1[0,s](·),ψn〉L2[0,1]ψn

〉
L2[0,1]

=
〈

K(t − ·)1[0,t](·),
∑
n≥1

〈K(s − ·)

× 1[0,s](·),ψn〉L2[0,1]ψn

〉
L2[0,1]

= 〈K(t − ·)1[0,t](·), K(s − ·)1[0,s](·)〉L2[0,1]

=
∫ 1

0
K(s − u)1[0,s](u)K(t − u)1[0,t](u) du

=
∫ t∧s

0
K(t − u)K(s − u) du.�

Remark 2.5 Note that the centered Gaussian stochastic pro-
cess Y admits a continuous version, too. Indeed, we have

shown that Y has the same mean and covariance function as Z
and, consequently, that the increments of the two processes
share the same distribution. Thus Bennedsen et al. (2017,
proposition 2.11) applies to Y as well, yielding that the
process admits a continuous version. This last key prop-
erty of Y can be alternatively proved directly as done in
appendix A.2.

Lemma 2.4 implies that E[YsYt] = E[ZsZt], for all s, t ∈
[0, 1]. Both Z and Y are continuous, centered, Gaussian with
the same covariance structure, so from now on we will work
with Y, using

Z =
∑
n≥1

K[ψn]ξn, P−a.s. (5)

2.2. The Riemann–Liouville case

For K(u) = uH− 1
2 , with H ∈ (0, 1

2 ), the process (1) takes the
form

ZH
t :=

∫ t

0
(t − s)H− 1

2 dWs, t ∈ [0, 1],

where we add the superscript H to emphasize its importance.
It is called a Riemann–Liouville process (henceforth RL) (also
known as Type II fractional Brownian motion or Lévy frac-
tional Brownian motion), as it is obtained by applying the
Riemann–Liouville fractional operator to the standard Brow-
nian motion, and is an example of a Volterra process. This
process enjoys properties similar to those of the fractional
Brownian motion (fBM), in particular being H-self-similar
and centered Gaussian. However, contrary to the fractional
Brownian motion, its increments are not stationary. For a
more detailed comparison between the fBM and ZH , we refer
to Picard (2011, theorem 5.1). In the RL case, the covari-
ance function RZH (·, ·) is available (Jacquier et al. 2018b,
proposition 2.1) explicitly as

RZH (s, t) = 1

H + 1
2

(s ∧ t)H+ 1
2 (s ∨ t)H− 1

2

× 2F1

(
1,

1

2
− H ; 2H + 1;

s ∧ t

s ∨ t

)
, s, t ∈ [0, 1],

where 2F1(a, b; c; z) denotes the Gauss hypergeometric func-
tion (Olver 1997, chapter 5, section 9). More gener-
ally, Olver (1997, chapter 5, Section 11), the generalized
hypergeometric functions pFq(z) are defined as

pFq(z) = pFq(a1, a2, − − . . . , ap; c1, c2, . . . , cq; z)

:=
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(c1)k(c2)k . . . (cq)k

z

k!
, (6)

with the Pochammer’s notation (a)0 := 1 and (a)k := a(a +
1)(a + 2) · · · (a + k − 1), for k ≥ 1, where none of the ck

are negative integers or zero. For p ≤ q the series (6) con-
verges for all z and when p = q + 1 convergence holds for
|z| < 1 and the function is defined outside this disk by ana-
lytic continuation. Finally, when p > q + 1 the series diverges
for nonzero z unless one of the ak’s is zero or a negative
integer.
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Regarding the series representation (2), we have, for t ∈
[0, 1] and n ≥ 1,

KH [ψn](t) :

=
√

2
∫ t

0
(t − s)H− 1

2 cos

(
s√
λn

)
ds

= 2
√

2

1 + 2H
tH+ 1

2 1F2

(
1;

3

4
+ H

2
,

5

4
+ H

2
; − t2

4λn

)
. (7)

Assumption 2.3 holds in the RL case here using (Luschgy and
Pagès 2007, lemma 4) (identifying KH [ψn] to fn from Luschgy
and Pagès (2007, equation (3.7))). Assumption 2.3 (B) implies
that, for all t ∈ [0, 1],

∑
n≥1

KH [ψn](t)2 ≤
∑
n≥1

(
sup

t∈[0,1]
|KH [ψn](t)|

)2

≤ C2
2

∑
n≥1

1

n1+2H
< ∞,

and therefore the series (2) converges both almost surely
and in L2(P) for each t ∈ [0, 1] by Khintchine–Kolmogorov
Convergence Theorem (Chow and Teichner 1997, theorem 1,
section 5.1).

Remark 2.6 The expansion (2) is in general not a
Karhunen–Loève decomposition (Pagès and Printems 2005,
section 4.1.1). In the RL case, it can be numerically checked
that the basis {KH [ψn]}n∈N is not orthogonal in L2[0, 1]
and does not correspond to eigenvectors for the covari-
ance operator of the Riemann–Liouville process. In his PhD
Thesis (Corlay 2011), Corlay exploited a numerical method
to obtain approximations of the first terms in the K–L
expansion of processes for which an explicit form is not
available.

3. Functional quantization and error estimation

Optimal (quadratic) vector quantization was conceived
to approximate a square integrable random vector X :
(�,F , P) → R

d by another one X̂ , taking at most a finite
number N of values, on a grid 
N := {xN

1 , xN
2 , . . . , xN

N }, with
xN

i ∈ R
d , i = 1, . . . , N . The quantization of X is defined as

X̂ := Proj
N (X ), where Proj
N : R
d → 
N denotes the near-

est neighbor projection. Of course the choice of the N-
quantizer 
N is based on a given optimality criterion: in most
cases 
N minimizes the distance E[|X − X̂ |2]1/2. We recall
basic results for one-dimensional standard Gaussian, which
shall be needed later, and refer to Graf and Luschgy (2007)
for a comprehensive introduction to quantization.

Definition 3.1 Let ξ be a one-dimensional standard Gaus-
sian on a probability space (�,F , P). For each n ∈ N, we
define the optimal quadratic n-quantization of ξ as the
random variable ξ̂ n := Proj
n(ξ) = ∑n

i=1 xn
i 1Ci(
n)(ξ), where


n = {xn
1, . . . , xn

n} is the unique optimal quadratic n-quantizer

of ξ , namely the unique solution to the minimization problem

min

n⊂R,Card(
n)=n

E[|ξ − Proj
n(ξ)|2],

and {Ci(

n)}i∈{1,...,n} is a Voronoi partition of R, that is a Borel

partition of R that satisfies

Ci(

n) ⊂

{
y ∈ R : |y − xn

i | = min
1≤j≤n

|y − xn
j |

}
⊂ Ci(


n),

where the right-hand side denotes the closure of the set in R.

The unique optimal quadratic n-quantizer 
n = {xn
1, . . . , xn

n}
and the corresponding quadratic error are available online, at
http://www.quantize.maths-fi.com/gaussian_database for n ∈
{1, . . . , 5999}.

Given a stochastic process, viewed as a random vector tak-
ing values in its trajectories space, such as L2[0, 1], functional
quantization does the analogue to vector quantization in an
infinite-dimensional setting, approximating the process with a
finite number of trajectories. In this section, we focus on prod-
uct functional quantization of the centered Gaussian process Z
from (1) of order N (see Pagès 2007, section 7.4 for a gen-
eral introduction to product functional quantization). Recall
that we are working with the continuous version of Z in the
series (5). For any m, N ∈ N, we introduce the following set,
which will be of key importance all throughout the paper:

DN
m :=

{
d ∈ N

m :
m∏

i=1

d(i) ≤ N

}
. (8)

Definition 3.2 A product functional quantization of Z of
order N is defined as

Ẑd
t :=

m∑
n=1

K[ψn](t)̂ξ d(n)
n , t ∈ [0, 1], (9)

where d ∈ DN
m , for some m ∈ N, and for every n ∈ {1, . . . , m},

ξ̂ d(n)
n is the (unique) optimal quadratic quantization of the stan-

dard Gaussian random variable ξn of order d(n), according to
definition 3.1.

Remark 3.3 The condition
∏m

i=1 d(i) ≤ N in equation (8)
motivates the wording ‘product’ functional quantization.
Clearly, the optimality of the quantizer also depends on the
choice of m and d, for which we refer to proposition 3.6 and
section 5.1.

Before proceeding, we need to make precise the explicit
form for the product functional quantizer of the stochastic
process Z:

Definition 3.4 The product functional d-quantizer of Z is
defined as

χd
i (t) :=

m∑
n=1

K[ψn](t) xd(n)
in , t ∈ [0, 1], i = (i1, . . . , im),

for d ∈ DN
m and 1 ≤ in ≤ d(n) for each n = 1, . . . , m.
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Remark 3.5 Intuitively, the quantizer is chosen as a Carte-
sian product of grids of the one-dimensional standard Gaus-
sian random variables. So, we also immediately find the
probability associated to every trajectory χd

i : for every i =
(i1, . . . , im) ∈ ∏m

n=1{1, . . . , d(n)},

P(̂Zd = χd
i ) =

m∏
n=1

P(ξn ∈ Cin(

d(n))),

where Cj(

d(n)) is the jth Voronoi cell relative to the d(n)-

quantizer 
d(n) in definition 3.1.

The following, proved in appendix A.1, deals with the
quantization error estimation and its minimization and pro-
vides hints to choose (m, d). A similar result on the error can
be obtained applying (Luschgy and Pagès 2007, theorem 2)
to the first example provided in the reference. For complete-
ness we preferred to prove the result in an autonomous way
to further characterize the explicit expression of the rate opti-
mal parameters. Indeed, we then compare these rate optimal
parameters with the (numerically computed) optimal ones in
section 5.1. The symbol �·� denotes the lower integer part.

Proposition 3.6 Under assumption 2.3, for any N ≥ 1, there
exist m∗(N) ∈ N and C>0 such that

E

[∥∥∥Ẑd∗
N − Z

∥∥∥2

L2[0,1]

] 1
2

≤ C log(N)−H ,

where d∗
N ∈ DN

m∗(N) and with, for each n = 1, . . . , m∗(N),

d∗
N (n) =

⌊
N

1
m∗(N) n−(H+ 1

2 )
(
m∗(N)!

) 2H+1
2m∗(N)

⌋
.

Furthermore m∗(N) = O(log(N)).

Remark 3.7 In the RL case, the trajectories of ẐH ,d are easily
computable and they are used in the numerical implementa-
tions to approximate the process ZH . In practice, the param-
eters m and d = (d(1), . . . , d(m)) are chosen as explained in
section 5.1.

3.1. Stationarity

We now show that the quantizers we are using are stationary.
The use of stationary quantizers is motivated by the fact that
their expectation provides a lower bound for the expectation
of convex functionals of the process (remark 3.9) and they
yield a lower (weak) error in cubature formulae (Pagès 2007,
page 26). We first recall the definition of stationarity for
the quadratic quantizer of a random vector (Pagès 2007,
definition 1).

Definition 3.8 Let X be an R
d -valued random vector on

(�,F , P). A quantizer 
 for X is stationary if the nearest
neighbor projection X̂
 = Proj
(X ) satisfies

E
[
X |X̂


] = X̂
 . (10)

Remark 3.9 Taking expectation on both sides of (10) yields
E[X ] = E[E[X |X̂
]] = E[X̂
]. Furthermore, for any convex

function f : R
d → R, the identity above, the conditional

Jensen’s inequality and the tower property yield

E[f (X̂
)] = E[f (E[X |X̂
])] ≤ E[E[f (X )|X̂
]] = E[f (X )].

While an optimal quadratic quantizer of order N of a ran-
dom vector is always stationary (Pagès 2007, proposition
1(c)), the converse is not true in general. We now present the
corresponding definition for a stochastic process.

Definition 3.10 Let {Xt}t∈[T1,T2] be a stochastic process on
(�,F , {Ft}t∈[T1,T2], P). We say that an N-quantizer �N :=
{λN

1 , . . . , λN
N } ⊂ L2[T1, T2], inducing the quantization X̂ =

X̂�N
, is stationary if E[Xt|X̂t] = X̂t, for all t ∈ [T1, T2].

Remark 3.11 To ease the notation, we omit the grid �N in
X̂�N

, while the dependence on the dimension N remains via
the superscript d ∈ DN

m (recall (9)).

As was stated in section 2.1, we are working with the con-
tinuous version of the Gaussian Volterra process Z given by
the series expansion (5). This will ease the proof of station-
arity below (for a similar result in the case of the Brownian
motion (Pagès 2007, proposition 2)).

Proposition 3.12 The product functional quantizers induc-
ing Ẑd in (9) are stationary.

Proof For any t ∈ [0, 1], by linearity, we have the following
chain of equalities:

E
[
Zt|{̂ξ d(n)

n }1≤n≤m
] = E

[∑
k≥1

K[ψk](t)ξk

∣∣∣{̂ξ d(n)
n }1≤n≤m

]

=
∑
k≥1

K[ψk](t)E
[
ξk

∣∣∣{̂ξ d(n)
n }1≤n≤m

]
.

Since the N (0, 1)-Gaussian ξn’s are i.i.d., by definition of
optimal quadratic quantizers (hence stationary), we have
E[ξk |̂ξ d(i)

i ] = δik ξ̂
d(i)
i , for all i, k ∈ {1, . . . , m}, and therefore

E

[
ξk

∣∣∣{̂ξ d(n)
n }1≤n≤m

]
= E

[
ξk

∣∣∣̂ξ d(k)
k

]
= ξ̂

d(k)
k ,

for all k ∈ {1, . . . , m}.

Thus we obtain

E

[
Zt

∣∣∣{̂ξ d(n)
n }1≤n≤m

]
=

∑
k≥1

K[ψk](t)̂ξ d(k)
k = Ẑd

t .

Finally, exploiting the tower property and the fact that the σ -
algebra generated by Ẑd

t is included in the σ -algebra generated
by {̂ξ d(n)

n }n∈{1,...,m} by definition 3.2, we obtain

E

[
Zt

∣∣̂Zd
t

] = E

[
E

[
Zt

∣∣∣{̂ξ d(n)
n }n∈{1,...,m}

]∣∣∣ Ẑd
t

]
= E

[
Ẑd

t

∣∣∣̂Zd
t

]
= Ẑd

t ,

which concludes the proof. �
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4. Application to VIX derivatives in rough Bergomi

We now specialize the setup above to the case of rough
volatility models. These models are extensions of classical
stochastic volatility models, introduced to better reproduce
the market implied volatility surface. The volatility process
is stochastic and driven by a rough process, by which we
mean a process whose trajectories are H-Hölder continuous
with H ∈ (0, 1

2 ). The empirical study (Gatheral et al. 2018)
was the first to suggest such a rough behavior for the volatil-
ity, and ignited tremendous interest in the topic. The web-
site https://sites.google.com/site/roughvol/home contains an
exhaustive and up-to-date review of the literature on rough
volatility. Unlike continuous Markovian stochastic volatil-
ity models, which are not able to fully describe the steep
implied volatility skew of short-maturity options in equity
markets, rough volatility models have shown accurate fit
for this crucial feature. Within rough volatility, the rough
Bergomi model (Bayer et al. 2016) is one of the simplest, yet
decisive frameworks to harness the power of the roughness
for pricing purposes. We show how to adapt our functional
quantization setup to this case.

4.1. The generalized Bergomi model

We work here with a slightly generalized version of the rough
Bergomi model, defined as⎧⎪⎪⎨⎪⎪⎩

Xt = −1

2

∫ t

0
Vs ds +

∫ t

0

√
Vs dBs, X0 = 0,

Vt = v0(t) exp

{
γZt − γ 2

2

∫ t

0
K(t − s)2 ds

}
, V0 > 0,

where X is the log-stock price, V the instantaneous variance
process driven by the Gaussian Volterra process Z in (1),
γ > 0 and B is a Brownian motion defined as B := ρW +√

1 − ρ2W⊥ for some correlation ρ ∈ [−1, 1] and W , W⊥

orthogonal Brownian motions. The filtered probability space
is therefore taken as Ft = FW

t ∨ FW⊥
t , t ≥ 0. This is a non-

Markovian generalization of Bergomi’s second generation
stochastic volatility model (Bergomi 2005), letting the vari-
ance be driven by a Gaussian Volterra process instead of a
standard Brownian motion. Here, vT (t) denotes the forward
variance for a remaining maturity t, observed at time T. In
particular, v0 is the initial forward variance curve, assumed
to be F0-measurable. Indeed, given market prices of variance
swaps σ 2

T (t) at time T with remaining maturity t, the forward
variance curve can be recovered as vT (t) = d

dt (tσ
2
T (t)), for all

t ≥ 0, and the process {vs(t − s)}0≤s≤t is a martingale for all
fixed t>0.

Remark 4.1 With K(u) = uH− 1
2 , γ = 2νCH , for ν > 0, and

CH :=
√

2H
(3/2−H)

(H+1/2)
(2−2H) , we recover the standard rough

Bergomi model (Bayer et al. 2016).

4.2. VIX Futures in the generalized Bergomi

We consider the pricing of VIX Futures (www.cboe.com/trad
able_products/vix/) in the rough Bergomi model. They are

highly liquid Futures on the Chicago Board Options Exchange
Volatility Index, introduced on March 26, 2004, to allow
for trading in the underlying VIX. Each VIX Future repre-
sents the expected implied volatility for the 30 days following
the expiration date of the Futures contract itself. The con-
tinuous version of the VIX at time T is determined by the
continuous-time monitoring formula

VIX2
T := ET

[
1

�

∫ T+�

T
d〈Xs, Xs〉

]
= 1

�

∫ T+�

T
E[Vs|FT ] ds

= 1

�

∫ T+�

T
ET

[
v0(s)e

γZs− γ 2

2

∫ s
0 K(s−u)2 du

]
ds

= 1

�

∫ T+�

T
v0(s)e

γ
∫ T

0 K(s−u) dWu− γ 2

2

∫ s
0 K(s−u)2 du

× ET

[
eγ

∫ s
T K(s−u) dWu

]
ds

= 1

�

∫ T+�

T
v0(s)e

γ
∫ T

0 K(s−u) dWu− γ 2

2

∫ s
0 K(s−u)2 du

× e
γ 2

2

∫ s
T K(s−u)2 du ds, (11)

similarly to Jacquier et al. (2018a), where � is equal to 30
days, and we write ET [·] := E[·|FT ] (dropping the subscript
when T = 0). Thus the price of a VIX Future with maturity T
is given by

PT := E [VIXT ]

= E

[(
1

�

∫ T+�

T
v0(t)

× e
γZT ,�

t + γ 2

2

(∫ t−T
0 K(s)2 ds−∫ t

0 K(s)2 ds
)

dt

) 1
2

]
,

where the process (ZT ,�
t )t∈[T ,T+�] is given by

ZT ,�
t =

∫ T

0
K(t − s) dWs, t ∈ [T , T +�].

To develop a functional quantization setup for VIX Futures,
we need to quantize the process ZT ,�, which is close, yet
slightly different, from the Gaussian Volterra process Z in (1).

4.3. Properties of ZT

To retrieve the same setting as above, we normalize the time
interval to [0, 1], that is T +� = 1. Then, for T fixed, we
define the process ZT := ZT ,1−T as

ZT
t :=

∫ T

0
K(t − s) dWs, t ∈ [T , 1],

which is well defined by the square integrability of K. By
definition, the process ZT is centered Gaussian and Itô isome-
try gives its covariance function as

RZT (t, s) =
∫ T

0
K(t − u)K(s − u) du, t, s ∈ [T , 1].

Proceeding as previously, we introduce a Gaussian process
with same mean and covariance as those of ZT , represented as
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a series expansion involving standard Gaussian random vari-
ables; from which product functional quantization follows.
It is easy to see that the process ZT has continuous trajecto-
ries. Indeed, (ZT

t − ZT
s )

2 ≤ E[|Zt − Zs|2|FW
T ], by conditional

Jensen’s inequality since ZT
t = E[Zt|FW

T ]. Then, applying
tower property, for any T ≤ s < t ≤ 1,

E

[∣∣ZT
t − ZT

s

∣∣2
]

≤ E
[|Zt − Zs|2

]
,

and therefore the H-Hölder regularity of Z (section 2) implies
that of ZT .

4.3.1. Series expansion. Let {ξn}n≥1 be an i.i.d. sequence
of standard Gaussian and {ψn}n≥1 the orthonormal basis of
L2[0, 1] from (3). Denote by KT (·) the operator from L2[0, 1]
to C[T , 1] that associates to each f ∈ L2[0, 1],

KT [f ](t) :=
∫ T

0
K(t − s)f (s) ds, t ∈ [T , 1]. (12)

We define the process Y T as (recall the analogous (2)):

Y T
t :=

∑
n≥1

KT [ψn](t)ξn, t ∈ [T , 1].

The lemma below follows from the corresponding results in
remark 2.2 and lemma 2.4:

Lemma 4.2 The process Y T is centered, Gaussian and with
covariance function

RY T (s, t) := E
[
Y T

s Y T
t

]
=

∫ T

0
K(t − u)K(s − u) du, for all s, t ∈ [T , 1].

To complete the analysis of ZT , we require an analogue
version of assumption 2.3.

Assumption 4.3 Assumption 2.3 holds for the sequence
(KT [ψn])n≥1 on [T , 1] with the constants C1 and C2 depending
on T.

4.4. The truncated RL case

We again pay special attention to the RL case, for which the
operator (12) reads, for each n ∈ N,

KT
H [ψn](t) :=

∫ T

0
(t − s)H− 1

2ψn(s) ds, for all t ∈ [T , 1],

and satisfies the following, proved in appendix A.4.

Lemma 4.4 The functions {KT
H [ψn]}n≥1 satisfy assump-

tion 4.3.

A key role in this proof is played by an intermediate lemma,
proved in appendix A.3, which provides a convenient repre-
sentation for the integral

∫ T
0 (t − u)H− 1

2 eiπudu, t ≥ T ≥ 0, in
terms of the generalized Hypergeometric function 1F2(·).

Lemma 4.5 For any t ≥ T ≥ 0, the representation∫ T

0
(t − u)H− 1

2 eiπu du = eiπ t
[(
ζ 1

2
(t, h1)− ζ 1

2
((t − T), h1)

)
−iπ

(
ζ 3

2
(t, h2)− ζ 3

2
((t − T), h2)

)]
holds, where h1 := 1

2 (H + 1
2 ) and h2 = 1

2 + h1, χ(z) :=
− 1

4π
2z2 and

ζk(z, h) := z2h

2h
1F2 (h; k, 1 + h;χ(z)) , for k ∈

{
1

2
,

3

2

}
.

(13)

Remark 4.6 The representation in lemma 4.5 can be
exploited to obtain an explicit formula for KT

H [ψn](t), t ∈
[T , 1] and n ∈ N:

KT
H [ψn](t)

=
√

2

mH+ 1
2

∫ mT

0
(mt − u)H− 1

2 cos(πu) du

=
√

2

mH+ 1
2

�
{∫ mT

0
(mt − u)H− 1

2 eiπu du

}
=

√
2

mH+ 1
2

�
{

eiπmt
[(
ζ 1

2
(mt, h1)− ζ 1

2
(m(t − T), h1)

)
−iπ

(
ζ 3

2
(mt, h2)− ζ 3

2
(m(t − T), h2)

)]}
=

√
2

mH+ 1
2

{
cos(mtπ)

(
ζ 1

2
(mt, h1)− ζ 1

2
(m(t − T), h1)

)
+π sin(mtπ)

(
ζ 3

2
(mt, h2)− ζ 3

2
(m(t − T), h2)

)}
,

with m := n − 1
2 and ζ 1

2
(·), ζ 3

2
(·) in (13). We shall exploit this

in our numerical simulations.

4.5. VIX derivatives pricing

We can now introduce the quantization for the process ZT ,�,
similarly to definition 3.2, recalling the definition of the
set DN

m in (8):

Definition 4.7 A product functional quantization for ZT ,�

of order N is defined as

ẐT ,�,d
t :=

m∑
n=1

KT ,�[ψT ,�
n ](t)̂ξ d(n)

n , t ∈ [T , T +�],

where d ∈ DN
m , for some m ∈ N, and for every n ∈ {1, . . . , m},

ξ̂ d(n)
n is the (unique) optimal quadratic quantization of the

Gaussian variable ξn of order d(n).

The sequence {ψT ,�
n }n∈N denotes the orthonormal basis of

L2[0, T +�] given by

ψT ,�
n (t) =

√
2

T +�
cos

(
t√

λn(T +�)

)
, with

λn = 4

(2n − 1)2π2
,
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and the operator KT ,� : L2[0, T +�] → C[T , T +�] is
defined for f ∈ L2[0, T +�] as

KT ,�[f ](t) :=
∫ T

0
K(t − s)f (s) ds, t ∈ [T , T +�].

Adapting the proof of proposition 3.12, it is possible to prove
that these quantizers are stationary, too.

Remark 4.8 The dependence on � is due to the fact that the
coefficients in the series expansion depend on the time interval
[T , T +�].

In the RL case for each n ∈ N, we can write, using
remark 4.6, for any t ∈ [T , T +�]:

KT ,�
H [ψT ,�

n ](t)

=
√

2

T +�

∫ T

0
(t − s)H− 1

2 cos

(
s√

λn(T +�)

)
ds,

=
√

2(T +�)H

(n − 1/2)H+ 1
2

∫ (n−1/2)
T+� T

0

(
(n − 1/2)

T +�
t − u

)H− 1
2

cos(πu) du

=
√

2(T +�)H

(n − 1
2 )

H+ 1
2

{
cos

(
(n − 1

2 )

T +�
tπ

) (
ζ 1

2

(
(n − 1

2 )

T +�
t, h1

)

+ −ζ 1
2

(
(n − 1

2 )

T +�
(t − T), h1

))

+ π sin

(
(n − 1

2 )

T +�
tπ

) (
ζ 3

2

(
(n − 1

2 )

T +�
t, h2

)

+ −ζ 3
2

(
(n − 1

2 )

T +�
(t − T), h2

))}
.

We thus exploit ẐT ,�,d to obtain an estimation of VIXT and of
VIX Futures through the following:

V̂IX
d
T :=

(
1

�

∫ T+�

T
v0(t) exp

{
γ ẐT ,�,d

t + γ 2

2

×
(∫ t−T

0
K(s)2 ds −

∫ t

0
K(s)2 ds

)}
dt

) 1
2

,

P̂d
T := E

[(
1

�

∫ T+�

T
v0(t) exp

{
γ ẐT ,�,d

t + γ 2

2

×
(∫ t−T

0
K(s)2 ds −

∫ t

0
K(s)2 ds

)}
dt

) 1
2
]

.

(14)

Remark 4.9 The expectation above reduces to the following
deterministic summation, making its computation immediate:

P̂d
T = E

[(
1

�

∫ T+�

T
v0(t)

e
γ

∑m
n=1 KT ,�[ψT ,�

n ](t)̂ξ d(n)
n + γ 2

2

(∫ t−T
0 K(s)2 ds−∫ t

0 K(s)2 ds
)

dt

) 1
2

]

=
∑
i∈Id

(
1

�

∫ T+�

T
v0(t)

e
γ

∑m
n=1 KT ,�[ψT ,�

n ](t)xd(n)
in + γ 2

2

(∫ t−T
0 K(s)2 ds−∫ t

0 K(s)2 ds
)

dt

) 1
2

·
m∏

n=1

P(ξn ∈ Cin(

d(n))),

where ξ̂ d(n)
n is the (unique) optimal quadratic quantization

of ξn of order d(n), Cj(

d(n)) is the jth Voronoi cell relative to

the d(n)-quantizer ( definition 3.1), with j = 1, . . . , d(n) and
i = (i1, . . . , im) ∈ ∏m

j=1{1, . . . , d(j)}. In the numerical illustra-
tions displayed in section 5, we exploited Simpson rule to
evaluate these integrals. In particular, we used simps function
from scipy.integrate with 300 points.

4.6. Quantization error of VIX derivatives

The following L2-error estimate is a consequence of assump-
tion 4.3 (B) and its proof is omitted since it is analogous to
that of proposition 3.6:

Proposition 4.10 Under assumption 4.3, for any N ≥ 1,
there exist m∗

T (N) ∈ N, C> 0 such that

E

[∥∥∥ẐT ,�,d∗
T ,N − ZT ,�

∥∥∥2

L2[T ,T+�]

] 1
2

≤ C log(N)−H ,

for d∗
T ,N ∈ DN

m∗
T (N)

and with, for each n = 1, . . . , m∗
T (N),

d∗
T ,N (n) =

⌊
N

1
m∗

T (N) n−(H+ 1
2 )

(
m∗

T (N)!
) 2H+1

2m∗
T (N)

⌋
.

Furthermore m∗
T (N) = O(log(N)).

As a consequence, we have the following error quantifica-
tion for European options on the VIX:

Theorem 4.11 Let F : R → R be a globally Lipschitz-
continuous function and d ∈ N

m for some m ∈ N. There exists
K > 0 such that∣∣∣E [F (VIXT )] − E

[
F

(
V̂IX

d
T

)]∣∣∣
≤ K E

[∥∥ZT ,� − ẐT ,�,d
∥∥2

L2([T ,T+�])

] 1
2

. (15)

Furthermore, for any N ≥ 1, there exist m∗
T (N) ∈ N and C >

0 such that, with d∗
T ,N ∈ DN

m∗
T (N)

,∣∣∣E [F (VIXT )] − E

[
F

(
V̂IX

d∗
T ,N

T

)]∣∣∣ ≤ C log(N)−H . (16)

The upper bound in (16) is an immediate consequence of
(15) and proposition 4.10. The proof of (15) is much more
involved and is postponed to appendix A.5.

Remark 4.12 • When F(x) = 1, we obtain the price
of VIX Futures and the quantization error∣∣PT − P̂d

T

∣∣ ≤ K E

[∥∥ZT ,� − ẐT ,�,d
∥∥2

L2([T ,T+�])

] 1
2

,

and, for any N ≥ 1, theorem 4.11 yields the exis-
tence of m∗

T (N) ∈ N, C > 0 such that∣∣∣PT − P̂d∗
T ,N

T

∣∣∣ ≤ C log(N)−H .
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• Since the functions F(x) := (x − K)+ and F(x) :=
(K − x)+ are globally Lipschitz continuous, the
same bounds apply for European Call and Put
options on the VIX.

5. Numerical results for the RL case

We now test the quality of the quantization on the pric-
ing of VIX Futures in the standard rough Bergomi model,
considering the RL kernel in remark 4.1.

5.1. Practical considerations for m and d

Proposition 3.6 provides, for any fixed N ∈ N, some indica-
tions on m∗(N) and d∗

N ∈ DN
m (see (8)), for which the rate

of convergence of the quantization error is log(N)−H . We
present now a numerical algorithm to compute the optimal
parameters. For a given number of trajectories N ∈ N, the
problem is equivalent to finding m ∈ N and d ∈ DN

m such
that E[‖ZH − ẐH ,d‖2

L2[0,1]] is minimal. Starting from (A1) and

adding and subtracting the quantity
∑m

n=1(
∫ 1

0 KH [ψn](t)2 dt),
we obtain

E

[∥∥ZH − ẐH ,d
∥∥2

L2[0,1]

]
=

m∑
n=1

(∫ 1

0
KH [ψn](t)2 dt

)

[εd(n)(ξn)]
2 +

∑
k≥m+1

∫ 1

0
KH [ψk](t)2 dt

=
m∑

n=1

(∫ 1

0
KH [ψn](t)2 dt

)

s
{[

εd(n)(ξn)
]2 − 1

}
+

∑
k≥1

∫ 1

0
KH [ψk](t)2 dt, ix (17)

where εd(n)(ξn) denotes the optimal quadratic quantization
error for the quadratic quantizer of order d(n) of the stan-
dard Gaussian random variable ξn (see appendix A.1 for more
details). Note that the last term on the right-hand side of (17)
does not depend on m, nor on d. We therefore simply look
for m and d that minimize

A(m, d) :=
m∑

n=1

(∫ 1

0
KH [ψn]2(t) dt

) (
[εd(n)(ξn)]

2 − 1
)

.

This can be easily implemented: the functions KH [ψn]
can be obtained numerically from the Hypergeometric
function and the quadratic errors εd(n)(ξn) are available
at www.quantize.maths-fi.com/gaussian_database, for d(n) ∈
{1, . . . , 5999}. The algorithm therefore reads as follows:

(i) fix m;
(ii) minimize A(m, d) over d ∈ DN

m and call it Ã(m);
(iii) minimize Ã(m) over m ∈ N.

The results of the algorithm for some reference values of
N ∈ N are available in table 1, where Ntraj := ∏m(N)

i=1 dN (i)

Table 1. Optimal parameters.

N m(N) dN Ntraj

10 2 5 - 2 10
102 4 8 - 3 - 2 - 2 96
103 6 10 - 4 - 3 - 2 - 2 - 2 960
104 8 10 - 5 - 4 - 3 - 2 - 2 - 2 - 2 9600
105 10 14 - 6 - 4 - 3 - 3 - 2 - 2 - 2 - 2 - 2 96768
106 12 14 - 6 - 5 - 4 - 3 - 3 - 2 - 2 - 2 - 2 - 2 - 2 967680

represents the number of trajectories actually computed in
the optimal case. In table 2, we compute the rate optimal
parameters derived in proposition 3.6: the column ‘Relative
error’ contains the normalized difference between the L2-
quantization error made with the optimal choice of m(N)
and dN in table 1 and the L2-quantization error made
with m∗(N) and d∗

N of the corresponding line of the table,

namely
|‖ZH −ẐH ,dN ‖L2[0,1]−‖ZH −ẐH ,d∗

N ‖L2[0,1]|
‖ZH −ẐH ,dN ‖L2[0,1]

. In the column N∗
traj :=∏m∗(N)

i=1 d∗
N (i) we display the number of trajectories actually

computed in the rate-optimal case. The optimal quadratic
vector quantization of a standard Gaussian of order 1 is the
random variable identically equal to zero and so when d(i) =
1 the corresponding term is uninfluential in the representation.

5.2. The functional quantizers

The computations in sections 2 and 3 for the RL process,
respectively the ones in sections 4.3 and 4.4 for ZH ,T , provide
a way to obtain the functional quantizers of the processes.

5.2.1. Quantizers of the RL process. For the RL process,
definition 3.4 shows that its quantizer is a weighted Cartesian
product of grids of the one-dimensional standard Gaussian
random variables. The time-dependent weights KH [ψn](·)
are computed using (7), and for a fixed number of trajecto-
ries N, suitable m(N) and dN ∈ DN

m(N) are chosen according
to the algorithm in section 5.1. Not surprisingly, figure 1
shows that as the paths of the process get smoother (H
increases) the trajectories become less fluctuating and shrink
around zero. For H = 0.5, where the RL process reduces
to the standard Brownian motion, we recover the well-
known quantizer from Pagès (2007, figures 7–8). This is
consistent as in that case KH [ψn](t) = √

λn

√
2 sin( t√

λn
), and

so Y H is the Karhuenen–Loève expansion for the Brownian
motion (Pagès 2007, section 7.1).

5.2.2. Quantizers of ZH ,T . A quantizer for ZH ,T is defined
analogously to that of ZH using Definition 3.4. The weights
KT

H [ψn](·) in the summation are available in closed form, as
shown in Remark 4.6. It is therefore possible to compute the
N-product functional quantizer, for any N ∈ N, as figure 2
displays.

5.3. Pricing and comparison with Monte Carlo

In this section, we show and comment some plots related to
the estimation of prices of derivatives on the VIX and realized
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Table 2. Rate-optimal parameters.

N m∗(N) = �log(N)� Relative error d∗
N N∗

traj

10 2 2.75% 3 - 2 6
102 4 1.30% 5 - 3 - 2 - 2 60
103 6 1.09% 6 - 4 - 3 - 2 - 2 - 2 576
104 9 3.08% 6 - 4 - 3 - 2 - 2 - 2 - 2 - 1 - 1 1152
105 11 3.65% 7 - 4 - 3 - 3 - 2 - 2 - 2 - 2 - 1 - 1 - 1 4032
106 13 2.80% 8 - 5 - 4 - 3 - 3 - 2 - 2 - 2 - 2 - 2 - 1 - 1 - 1 46080

N m∗(N) = �log(N)� - 1 Relative error d∗
N N∗

traj

10 1 2.78% 10 10
102 3 1.13% 6 - 4 - 3 72
103 5 1.22% 7 - 4 - 3 - 3 - 2 504
104 8 1.35% 7 - 4 - 3 - 3 - 2 - 2 - 2 - 2 4032
105 10 2.29% 7 - 5 - 4 - 3 - 2 - 2 - 2 - 2 - 2 - 1 13440
106 12 2.25% 8 - 5 - 4 - 3 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 1 92160

N m∗(N) = �log(N)� - 2 Relative error d∗
N N∗

traj

102 2 2.53% 12 - 8 96
103 4 1.44% 9 - 5 - 4 - 3 540
104 7 1.46% 7 - 5 - 4 - 3 - 2 - 2 - 2 3360
105 9 1.57% 8 - 5 - 4 - 3 - 3 - 2 - 2 - 2 - 2 23040
106 11 1.48% 9 - 6 - 4 - 3 - 3 - 3 - 2 - 2 - 2 - 2 - 2 186624

variance. We set the values H = 0.1 and ν = 1.18778 for
the parameters and investigate three different initial forward
variance curves v0(·), as in Jacquier et al. (2018a):

Scenario 1. v0(t) = 0.2342;
Scenario 2. v0(t) = 0.2342(1 + t)2;
Scenario 3. v0(t) = 0.2342

√
1 + t.

The choice of such ν is a consequence of the choice η =
1.9, consistently with Bennedsen et al. (2017), and of the
relationship ν = η

√
2H

2CH
. In all these cases, v0 is an increasing

function of time, whose value at zero is close to the square of
the reference value of 0.25.

5.3.1. VIX Futures pricing. One of the most recent and
effective way to compute the price of VIX Futures is a Monte-
Carlo-simulation method based on Cholesky decomposition,
for which we refer to Jacquier et al. (2018a, section 3.3.2).
It can be considered as a good approximation of the true
price when the number M of computed paths is large. In fact,
in Jacquier et al. (2018a) the authors tested three simulation-
based methods (Hybrid scheme + forward Euler, Truncated
Cholesky, SVD decomposition) and ‘all three methods seem
to approximate the prices similarly well’. We thus consider
the truncated Cholesky approach as a benchmark and take
M = 106 trajectories and 300 equidistant point for the time
grid.

In figure 3, we plot the VIX Futures prices as a function
of the maturity T, where T ranges in {1, 2, 3, 6, 9, 12} months
(consistently with actual quotations) on the left, and the cor-
responding relative error w.r.t. the Monte Carlo benchmark
on the right. It is clear that the quantization approximates the
benchmark from below and that the accuracy increases with
the number of trajectories.

We highlight that the quantization scheme for VIX Futures
can be sped up considerably by storing ahead the quantized

trajectories for ZH ,T ,�, so that we only need to compute
the integrations and summations in remark 4.9, which are
extremely fast.

Furthermore, the grid organization time itself is not that
significant. In table 3, we display the grid organization times
(in seconds) as a function of the maturity (rows) expressed in
months and of the number of trajectories (columns). From this
table, one might deduce that the time needed for the organiza-
tion of the grids is suitable to be performed once per day (say
every morning) as it should be for actual pricing purposes. It
is interesting to note that the estimations obtained with quan-
tization (which is an exact method) are consistent in that they
mimick the trend of benchmark prices over time even for very
small values of N. However, as a consequence of the variance
in the estimations, the Monte Carlo prices are almost useless
for small values of M. Moreover, improving the estimations
with Monte Carlo requires to increase the number of points in
the time grid with clear impact on computational time, while
this is not the case with quantization since the trajectories in
the quantizers are smooth. Indeed, the trajectories in the quan-
tizers are not only smooth but also almost constant over time,
hence reducing the number of time steps to get the desired
level of accuracy. Note that here we may refer also to the issue
of complexity related to discretization: a quadrature formula
over n points has a cost O(n), while the simulation with a
Cholesky method over the same grid has cost O(n2). Finally,
our quantization method does not require much RAM. Indeed,
all the simulations performed with quantization can be easily
run on a personal laptop,† while this is not the case for the

† The personal computer used to run the quantization codes has the
following technical specifications: RAM: 8.00 GB, SSD memory:
512 GB, Processor: AMD Ryzen 7 4700U with Radeon Graphics
2.00 GHz.
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Figure 1. Product functional quantizations of the RL process with N-quantizers, for H ∈ {0.1, 0.25, 0.5}, for N = 10 and N = 100.

Figure 2. Product functional quantization of ZH ,T via N-quantizers, with H = 0.1, T = 0.7, for N ∈ {10, 100}.
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Figure 3. VIX Futures prices (left) and relative error (right) computed with quantization and with Monte-Carlo as a function of the maturity T,
for different numbers of trajectories, for each forward variance curve scenario.

Monte Carlo scheme proposed here.† For the sake of com-
pleteness, we also recall that combining Monte Carlo pricing
of VIX futures/options with an efficient control variate speeds
up the computations significantly (Horvath et al. 2020).

In figure 4, we show some plots comparing the behavior
of the empirical error with the theoretically predicted one.

† The computer used to run the Monte Carlo codes is a virtual
machine (OpenStack/Nova/KVM/Qemu, www.openstack.org) with
the following technical specifications: RAM: 32.00 GB, CPU: 8 vir-
tual cores, Hypervisor CPU: Intel(R) Xeon(R) CPU E5-2650 v3 @
2.30GHz, RAM 128GB, Storage: CEPH cluster (www.ceph.com).

We have decided to display only a couple of maturities for
the first scenario since the other plots are very similar. The
figures display in a clear way that the order of convergence
of the empirical error should be bigger than the theoretically
predicted one: in particular, we expect it to be O(log(N)−1).

5.3.2. VIX options pricing. To complete the discussion on
VIX Options pricing, we present in figure 5 the approximation
of the prices of ATM Call Options on the VIX obtained via
quantization as a function of the maturity T and for different
numbers of trajectories against the same price computed via
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Table 3. Grid organization times (in seconds) as a function of the maturity (rows, in months) and of the number of trajectories (columns).

Grid organization time

102 103 104 105 106

1 0.474 0.491 0.99 4.113 37.183
2 0.476 0.487 0.752 4.294 39.134
3 0.617 0.536 0.826 4.197 37.744
6 0.474 0.475 0.787 4.432 37.847
9 0.459 0.6 0.858 3.73 41.988
12 0.498 0.647 1.016 3.995 38.045

Figure 4. Log–log (natural logarithm) plot of the empirical absolute error with the theoretically predicted one for scenario 1, with T ∈ {1, 12}
months.

Monte Carlo simulations with M = 106 trajectories and 300
equidistant point for the time grid, as a benchmark. Each plot
represents a different scenario for the initial forward variance
curve. For all scenarios, as the number N of trajectories goes
to infinity, the prices in figure 5 are clearly converging, and
the limiting curve is increasing in the maturity, as it should
be.

5.3.3. Pricing of continuously monitored options on
realized variance. Product functional quantization of the
process (ZH

t )t∈[0,T] can be exploited for (meaningful) pricing
purposes, too. We first price variance swaps, whose price is
given by the following expression:

ST := E

[
1

T

∫ T

0
Vtdt

∣∣∣∣F0

]
.

Let us recall that, in the rough Bergomi model,

Vt = v0(t) exp

(
2νCH ZH

t − ν2C2
H

H
t2H

)
,

where CH =
√

2H
(3/2−H)

(H+1/2)
(2−2H) , ν > 0 is an endogenous con-

stant and v0(t) being the initial forward variance curve. Thus,
exploiting the fact that, for any fixed t ∈ [0, T], ZH

t is dis-
tributed according to a centered Gaussian random variable
with variance

∫ t
0(t − s)2H−1 ds = t2H

2H , the quantity ST can be

explicitly computed:

ST = 1

T

∫ T

0
v0(t)dt.

This is particularly handy and provides us a simple bench-
mark. The price ST is, then, approximated via quantization
through

Ŝd
T =

∑
i∈Id

(
1

T

∫ T

0
v0(t) exp

(
2νCH

m∑
n=1

KH [ψn](t)xd(n)
in

−ν
2C2

H

H
t2H

)
dt

) m∏
n=1

P(ξn ∈ Cin(

d(n))).

Numerical results are presented in figure 6. On the left-hand
side, we display a table with the approximations (depending
on N, the number of trajectories) of the price of a swap on
the realized variance in Scenario 1, for T = 1, and the true
value v0 = 0.2342. On the right-hand side a log–log (natural
logarithm) plot of the error against the function c log(N)−H ,
with c being a suitable positive constant. For variance swaps
the error is not performing very well. It is indeed very close to
the upper bound c log(N)−H that we have computed theoret-
ically. One possible theoretical motivation for this behavior
lies in the difference between strong and weak error rates.
Weak error and strong error do not necessarily share the same
order of convergence, being the weak error faster in general.
See Bayer et al. (2021, 2022) and Gassiat (2022) for recent
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Figure 5. Prices of ATM Call Options on the VIX via quantization.

developments on the topic in the rough volatility framework.
For pricing purposes, we are interested in weak error rates.
Indeed, the pricing error should in principle have the fol-
lowing form E[f (ZH )] − E[f (̂ZH)], where ẐH is the process
that we are using to approximate the original ZH and f is a
functional that comes from the payoff function and that we
can interpret as a test function. Thus the functional f has a
smoothing effect. On the other hand, the upper bound for the
quantization error we have computed is a strong error rate.
This theoretical discrepancy motivates the findings in figure 4
when pricing VIX Futures and other options on the VIX: the
empirical error seems to converge with order O(log(N)−1),
while the predicted order is O(log(N)−H). The different
empirical rates that are seen in figure 4 for VIX futures
(roughly O(log(N)−1))) and in figure 6 for variance swaps
(much closer to O(log(N)−H)) could be also related to the
different degree of pathwise regularity of the processes Z and
ZT . While t → Zt = ∫ t

0 K(t − s) dWs is a.s. (H − ε)-Hölder,

for fixed T, the trajectories t → ZT
t = ∫ T

0 K(t − s) dWs of ZT

are much smoother when t ∈ (T , T +�) and t is bounded
away from T. When pricing VIX derivatives, we are quan-
tizing almost everywhere a smooth Gaussian process (hence
error rate of order log(N)−1), while when pricing derivatives
on realized variance, we are applying quantization to a rough
Gaussian process (hence error rate of order O(log(N)−H)),
resulting in a deteriorated accuracy for the prices of

realized volatility derivatives such as the variance swaps in
figure 6.

Furthermore, it can be easily shown that, for any d ∈
DN

m and for any m, N ∈ N, with m<N, Ŝd
T always pro-

vides a lower bound for the true price ST . Indeed, since
the quantizers ẐH ,d of the process ZH are stationary (cfr.
proposition 3.12), an application of remark 3.9 to the con-
vex function f (x) = exp(2νCH x) together with the positivity

of v0(t) exp(− ν2C2
H t2H

H ), for any t ∈ [0, T], yields

Ŝd
T = E

[
1

T

∫ T

0
v0(t) exp

(
−ν

2C2
H t2H

H

)
× exp

(
2νCH ẐH ,d

T

)
dt

∣∣∣F0

]
= 1

T

∫ T

0
v0(t) exp

(
−ν

2C2
H t2H

H

)
× E0

[
exp

(
2νCH ẐH ,d

T

)]
dt

≤ 1

T

∫ T

0
v0(t) exp

(
−ν

2C2
H t2H

H

)
× E0

[
exp

(
2νCH ZH

T

)]
dt = ST .

To complete this section, we plot in figure 7 approximated
prices of European Call Options on the realized variance
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Figure 6. Prices and errors for variance swaps.

Figure 7. Prices of European Call Option on realized variance computed via Monte Carlo with M = 106 trajectories and via quantization
with N ∈ {102, 103, 104, 105, 106} trajectories, as a function of K.

via quantization with N ∈ {102, 103, 104, 105, 106} trajectories
and via Monte Carlo with M = 106 trajectories, as a bench-
mark. In order to take advantage of the trajectories obtained,
we compute the price of a realized variance Call option with
strike K and maturity T = 1 as

C(K, T) = E

[(
1

T

∫ T

0
Vtdt − K

)
+

∣∣∣∣F0

]
,

and we approximate it via quantization through

Ĉd(K, T) =
∑
i∈Id

(
1

T

∫ T

0
v0(t) exp

(
2νCH

m∑
n=1

KH [ψn](t)xd(n)
in

−ν
2C2

H

H
t2H

)
dt − K

)
+

m∏
n=1

P(ξn ∈ Cin(

d(n))).
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Figure 8. Computational costs for quantization versus Monte Carlo for Scenario 1, with T = 1 month (left-hand side) and T = 12 months
(right-hand side). The number of trajectories, M for Monte Carlo and N for quantization, corresponding to a specific dot is displayed above
it.

The three plots in figure 7 display the behavior of the price of
a European Call on the realized variance as a function of the
strike price K (close to the ATM value) for the three scenarios
considered before.

5.3.4. Quantization and MC comparison. To make a fair
comparison between quantization and Monte Carlo simu-
lations, we present a figure to display, for each method-
ology, the computational work needed for a given error
tolerance for the pricing of VIX Futures. The plots in
figure 8 should be read as follows. First, for any M , N ∈
{102, 103, 104, 105, 106}, we have computed the correspond-
ing pricing errors: εMC(M ) := |PriceMC(M )− RefPrice| and
εQ(N) := |PriceQ(N)− RefPrice| where PriceMC(M ) is the
Monte Carlo price obtained via truncated Cholesky with M
trajectories, PriceQ(N) is the price computed via quantization
with N trajectories and RefPrice comes from the lowerbound
in equation (3.4) in Jacquier et al. (2018a) and the associated
computational time in seconds tMC(M ) and tQ(N), respec-
tively for Monte Carlo simulation and quantization. Then,
each point in the plot is associated either to a value of M in
case of Monte Carlo (the circles in figure 8), or N in case of
quantization (the triangles in figure 8), and its x-coordinate
provides the absolute value of the associated pricing error,
while its y-coordinate represents the associated computational
cost in seconds.

These plots lead to the following observations:

• For quantization, which is an exact method, the
error is strictly monotone in the number of trajec-
tories.

• When a small number of trajectories is considered,
quantization provides a lower error with respect to
Monte Carlo, at a comparable cost.

• For large numbers of trajectories Monte Carlo over-
comes quantization both in terms of accuracy and of
computational time.

To conclude, quantization can always be run with an
arbitrary number of trajectories and furthermore for N ∈

{102, 103, 104} it leads to a lower error with respect to
Monte Carlo, at a comparable computational cost, as it
is visible from figure 8. This makes quantization partic-
ularly suitable to be used when dealing with standard
machines, i.e. laptops with a RAM memory smaller or equal
to 16GB.

6. Conclusion

In this paper we provide, on the theoretical side, a precise
and detailed result on the convergence of product functional
quantizers of Gaussian Volterra processes, showing that the
L2-error is of order log(N)−H , with N the number of trajecto-
ries and H the regularity index.

Furthermore, we explicitly characterize the rate optimal
parameters, m∗

N and d∗
N , and we compare them with the

corresponding optimal parameters, mN and dN , computed
numerically.

In the rough Bergomi model, we apply product functional
quantization to the pricing of VIX options, with precise rates
of convergence, and of options on realized variance, com-
paring those—whenever possible—to standard Monte Carlo
methods.

The thorough numerical analysis carried out in the paper
shows that unfortunately, despite the conceptual promise of
functional quantization, while the results on the VIX are very
promising, other types of path-dependent options seem to
require machine resources way beyond the current require-
ments of standard Monte Carlo schemes, as shown precisely
in the case of variance swaps. While product functional quan-
tization is an exact method, the analysis provided here does
not however promise a bright future in the context of rough
volatility. It may nevertheless be of practical interest when
machine resources are limited and indeed the results for
VIX Futures pricing are strongly encouraging in this respect.
Functional quantization for rough volatility can, however, be
salvaged when used as a control variate tool to reduce the
variance in classical Monte Carlo simulations.
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Appendices

Appendix 1. Proofs

A.1. Proof of proposition 3.6

Consider a fixed N ≥ 1 and (m, d) for d ∈ DN
m . We have

E

[∥∥∥Z − Ẑd
∥∥∥2

L2[0,1]

]

= E

⎡⎢⎣
∥∥∥∥∥∥
∑
n≥1

K[ψn](·)ξn −
m∑

n=1

K[ψn](·)̂ξd(n)
n

∥∥∥∥∥∥
2

L2[0,1]

⎤⎥⎦

= E

⎡⎢⎣
∥∥∥∥∥∥

m∑
n=1

K[ψn](·)(ξn − ξ̂d(n)
n )+

∑
k≥m+1

K[ψk](·)ξk

∥∥∥∥∥∥
2

L2[0,1]

⎤⎥⎦

= E

⎡⎢⎣∫ 1

0

∣∣∣∣∣∣
m∑

n=1

K[ψn](t)(ξn − ξ̂d(n)
n )+

∑
k≥m+1

K[ψk](t)ξk

∣∣∣∣∣∣
2

dt

⎤⎥⎦
=

∫ 1

0

⎛⎝ m∑
n=1

K[ψn]2(t)E
[
|ξn − ξ̂d(n)

n |2
]

+
∑

k≥m+1

K[ψk]2(t)

⎞⎠ dt

=
∫ 1

0

⎛⎝ m∑
n=1

K[ψn]2(t)εd(n)(ξn)
2 +

∑
k≥m+1

K[ψk]2(t)

⎞⎠ dt,

(A1)

using Fubini’s Theorem and the fact that {ξn}n≥1 is a sequence of
i.i.d. Gaussian and where εd(n)(ξn) := inf(α1,...,αd(n))∈Rd(n)√

E[min1≤i≤d(n) |ξn − αi|2]. The Extended Pierce Lemma (Pagès

2007, theorem 1(b)) ensures that εd(n)(ξn) ≤ L
d(n) for a suitable pos-

itive constant L. Exploiting this error bound and the property (B) for
K[ψn] in assumption 2.3, we obtain

E

[
‖Z − Ẑd‖2

L2[0,1]

]
=

m∑
n=1

(∫ 1

0
K[ψn]2(t) dt

)
εd(n)(ξn)

2 +
∑

k≥m+1

∫ 1

0
K[ψk]2(t) dt

≤ C2
2

⎧⎨⎩
m∑

n=1

n−(2H+1)εd(n)(ξn)
2 +

∑
k≥m+1

k−(2H+1)

⎫⎬⎭
≤ C2

2

⎧⎨⎩
m∑

n=1

n−(2H+1) L2

d(n)2
+

∑
k≥m+1

k−(2H+1)

⎫⎬⎭
≤ C̃

⎛⎝ m∑
n=1

1

n2H+1d(n)2
+

∑
k≥m+1

k−(2H+1)

⎞⎠ , (A2)

with C̃ = max{L2C2
2, C2

2}. Inspired by Luschgy and Pagès (2002,
section 4.1), we now look for an ‘optimal’ choice of m ∈ N and
d ∈ DN

m . This reduces the error in approximating Z with a product
quantization of the form in (9). Define the optimal product functional
quantization ẐN ,� of order N as the Ẑd which realizes the minimal
error:

E

[∥∥∥Z − ẐN ,�
∥∥∥2

L2[0,1]

]
= min

{
E

[∥∥∥Z − Ẑd
∥∥∥2

L2[0,1]

]
, m ∈ N, d ∈ DN

m

}
.

From (A2), we deduce

E

[∥∥∥Z − ẐN ,�
∥∥∥2

L2[0,1]

]

≤ C̃ inf
m∈N

⎧⎨⎩ ∑
k≥m+1

1

k2H+1 + inf

{
m∑

n=1

1

n2H+1d(n)2
, d ∈ DN

m

}⎫⎬⎭ .

(A3)

For any fixed m ∈ N, we associate to the internal minimization
problem the one we get by relaxing the hypothesis that d(n) ∈ N:

I := inf

{
m∑

n=1

1

n2H+1z(n)2
, {z(n)}n=1,...,m ∈ (0, ∞) :

m∏
n=1

z(n) ≤ N

}
.

For this infimum, we derive a simple solution exploiting the
arithmetic-geometric inequality using lemma A.3. Setting z̃(n) :=
γN ,mn−(H+ 1

2 ), with γN ,m := N
1
m (

∏m
j=1 j−(2H+1))−

1
2m , n = 1, . . . , m,

we get

I =
m∑

n=1

1

n2H+1̃z(n)2
= N− 2

m m

(
m∏

n=1

n−(2H+1)

) 1
m

,

and note that the sequence {̃z(n)} is decreasing. Since ultimately the
vector d consists of integers, we use d̃(n) = �̃z(n)�, n = 1, . . . , m. In
fact, this choice guarantees that

m∏
n=1

d̃(n) =
m∏

n=1

�̃z(n)� ≤
m∏

n=1

z̃(n) = N .

Furthermore, setting d̃(j) = �̃z(j)� for each j ∈ {1, . . . , m}, we obtain

d̃(j)+ 1

(j−(2H+1))
1
2

= jH+ 1
2 (�̃z(j)� + 1)

≥ jH+ 1
2 z̃(j) = jH+ 1

2 N
1
m

jH+ 1
2

{
m∏

n=1

1

n2H+1

}− 1
2m

= N
1
m

{
m∏

n=1

1

n2H+1

}− 1
2m

.

Ordering the terms, we have (̃d(j)+ 1)2N− 2
m (

∏m
n=1 n−(2H+1))

1
m ≥

j−(2H+1), for each j ∈ {1, . . . , m}. From this we deduce the follow-
ing inequality (notice that the left-hand side term is defined only if
d̃(1), . . . , d̃(m) > 0):

m∑
j=1

j−(2H+1)d̃(j)−2 ≤
m∑

j=1

(
d̃(j)+ 1

d̃(j)

)2

N− 2
m

(
m∏

n=1

n−(2H+1)

) 1
m

= N− 2
m

(
m∏

n=1

n−(2H+1)

) 1
m m∑

j=1

(
d̃(j)+ 1

d̃(j)

)2

≤ 4mN− 2
m

(
m∏

n=1

n−(2H+1)

) 1
m

. (A4)

Hence, we are able to make a first error estimation, placing in the
internal minimization of the right-hand side of (A3) the result of
inequality in (A4).

E

[∥∥∥Z − ẐN ,�
∥∥∥2

L2[0,1]

]

≤ C̃ inf

⎧⎨⎩ ∑
k≥m+1

1

k2H+1 + 4mN− 2
m

(
m∏

n=1

n−(2H+1)

) 1
m

, m ∈ I(N)

⎫⎬⎭



Functional quantization of rough volatility and applications to volatility derivatives 19

≤ C′ inf

⎧⎨⎩ ∑
k≥m+1

1

k2H+1 + mN− 2
m

(
m∏

n=1

n−(2H+1)

) 1
m

, m ∈ I(N)

⎫⎬⎭ ,

(A5)

where C′ = 4C̃ and the set

I(N) := {m ∈ N : N
2
m m−(2H+1)

(
m∏

n=1

n−(2H+1)

)− 1
m

≥ 1}, (A6)

which represents all m’s such that all d̃(1), . . . , d̃(m) are positive
integers. This is to avoid the case where

∏m
i=1 d̃(i) ≤ N holds only

because one of the factors is zero. In fact, for all n ∈ {1, . . . , m},
d̃(n) = �̃z(n)� is a positive integer if and only if z̃(n) ≥ 1. Thanks
to the monotonicity of {z(n)}n=1,...,m, we only need to check that

z̃(m) = N
1
m m−(H+ 1

2 )

(
m∏

n=1

n−(2H+1)

)− 1
2m

≥ 1.

First, let us show that I(N), defined in (A6) for each N ≥ 1, is a non-
empty finite set with maximum given by m∗(N) of order log(N). We
can rewrite it as I(N) = {m ≥ 1 : am ≤ log(N)}, where

an = 1

2
log

⎛⎝ n∏
j=1

n2H+1

j2H+1

⎞⎠ .

We can now verify that the sequence an is increasing in n ∈ N:

an ≤ an+1

⇐⇒
n∑

j=1

log
(

j−(2H+1)
)

− n log
(

n−(2H+1)
)

≤
n+1∑
j=1

log
(

j−(2H+1)
)

− (n + 1) log
(
(n + 1)−(2H+1)

)
⇐⇒ − n log

(
n−(2H+1)

)
≤ log

(
(n + 1)−(2H+1)

)
− (n + 1) log

(
(n + 1)−(2H+1)

)
⇐⇒ log

(
n−(2H+1)

)
≥ log

(
(n + 1)−(2H+1)

)
,

which is obviously true. Furthermore the sequence (an)n diverges to
infinity since

n∏
j=1

n(2H+1)

j(2H+1)
= n(2H+1)n

n∏
j=1

1

j(2H+1)
≥ n(2H+1)n

n∏
j=2

1

j(2H+1)

≥ n(2H+1)n 1

n(2H+1)(n−1)
≥ n(2H+1).

and H ∈ (0, 1
2 ). We immediately deduce that I(N) is finite and, since

{1} ⊂ I(N), it is also non-empty. Hence I(N) = {1, . . . , m∗(N)}.
Moreover, for all N ≥ 1, am∗(N) ≤ log(N) < am∗(N)+1, which
implies that m∗(N) = O(log(N)).

Now, the error estimation in (A5) can be further simplified
exploiting the fact that, for each m ∈ I(N),

mN− 2
m

(
m∏

n=1

n−(2H+1)

) 1
m

= mm−(2H+1)

⎛⎝m−(2H+1)N
2
m

(
m∏

n=1

n−(2H+1)

)− 1
m

⎞⎠−1

≤ m−2H .

The last inequality is a consequence of the fact that (
∏m

n=1

n−(2H+1))−
1
m ≥ 1 by definition. Hence,

E

[
‖Z − ẐN ,�‖2

L2[0,1]

]
≤ C′ inf

⎧⎨⎩ ∑
k≥m+1

1

k2H+1 + m−2H , m ∈ I(N)

⎫⎬⎭ , (A7)

for some suitable constant C′ > 0.
Consider now the sequence {bn}n∈N, given by bn = ∑

k≥n+1
1

k2H+1 + n−2H . For n ≥ 1,

bn+1 − bn =
∑

k≥n+2

1

k2H+1 + 1

(n + 1)2H
−

⎡⎣ ∑
k≥n+1

1

k2H+1 + 1

n2H

⎤⎦
= − 1

(n + 1)2H
+ 1

(n + 1)2H+1 − 1

n2H
≤ 0,

so that the sequence is decreasing and the infimum in (A7) is attained
at m = m∗(N). Therefore,

E

[
‖Z − ẐN ,�‖2

L2[0,1]

]
≤ C′ inf

⎧⎨⎩ ∑
k≥m+1

1

k2H+1 + m−2H , m ∈ I(N)

⎫⎬⎭
= C′

⎛⎝ ∑
k≥m∗(N)+1

1

k2H+1 + m∗(N)−2H

⎞⎠
ss ≤ C′

(
m∗(N)−2H−1+1 + m∗(N)−2H

)
= 2C′m∗(N)−2H ≤ C log(N)−2H .

A.2. Proof of Remark 2.5

This can be proved specializing the computations done in Luschgy
and Pagès (2007, page 656). Consider an arbitrary index n ≥ 1. For
all t, s ∈ [0, 1], exploiting assumption 2.3, we have that, for any ρ ∈
[0, 1],

|K[ψn](t)− K[ψn](s)|
= ∣∣K[ψn](t)− K[ψn](s)

∣∣ρ ∣∣K[ψn](t)− K[ψn](s)
∣∣1−ρ

≤
(

sup
u,v∈[0,1],u�=v

|K[ψn](u)− K[ψn](v)|
|u − v|H+ 1

2

|t − s|H+ 1
2

)ρ

×
(

2 sup
t∈[0,1]

K[ψn](t)

)1−ρ

≤ (C1n)ρ(2C2n−(H+ 1
2 ))1−ρ |t − s|ρ(H+ 1

2 )

= Cρnρ(H+ 3
2 )−(H+ 1

2 )|t − s|ρ(H+ 1
2 ),

where Cρ := Cρ1 (2C2)
1−ρ < ∞. Therefore

[K[ψn]]ρ(H+ 1
2 )

= sup
t �=s∈[0,1]

|K[ψn](t)− K[ψn](s)|
|t − s|ρ(H+ 1

2 )

≤ Cρnρ(H+ 3
2 )−(H+ 1

2 ). (A8)

Notice that ρ(H + 3
2 )− (H + 1

2 ) < − 1
2 when ρ ∈ [0, H

H+3/2 ] so
that (A8) implies

∞∑
n=1

[K[ψn]]2
ρ(H+ 1

2 )
≤ C2

ρ

∞∑
n=1

n2ρ(H+ 3
2 )−2(H+ 1

2 )
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≤ C2
ρ

∞∑
n=1

n−(1+ε) = K < ∞.

In particular,

E

[
|Yt − Ys|2

]
=

∞∑
n=1

|K[ψn](t)− K[ψn](s)|2

≤
∞∑

n=1

[K[ψn]]2
ρ(H+ 1

2 )
|t − s|2ρ(H+ 1

2 )

≤ K|t − s|2ρ(H+ 1
2 ).

As noticed in Remark 2.2 the process Y is centered Gaussian. Hence,
for each t, s ∈ [0, 1] so is Yt − Ys. Proposition A.2 therefore implies
that, for any r ∈ N,

E

[
|Yt − Ys|2r

]
= E

[
|Yt − Ys|2

]r
(2r − 1)!! ≤ K′|t − s|2rρ(H+ 1

2 ),

where K′ = Kr(2r − 1)!!, yielding existence of a continuous version
of Y since choosing r ∈ N such that 2rρ(H + 1

2 ) > 1, Kolmogorov
continuity theorem (Kallenberg 2002, theorem 3.23) applies directly.

A.3. Proof of Lemma 4.5

Let H+ := H + 1
2 . Using Karp (2015, corollary 1, equation (12))

(with ψ = b2 + b1 − a > 1/2), the identity

1F2(a, b1, b2, −r) = 
(b1)
(b2)


(a)
√
π

∫ 1

0
G2,0

2,2

(
[b1, b2],

[
a,

1

2

]
, u

)
cos

(
2
√

ru
) du

u
,

holds for all r> 0, where G denotes the Meijer-G function,
generally defined through the so-called Mellin–Barnes type inte-
gral (Luke 1969, equation (1), section 5.2)) as

G m,n
p,q

(
[a1, . . . , ap], [b1, . . . , bq], z

)
= 1

2π i

∫
L

∏m
j=1 
(bj − s)

∏n
j=1 
(1 − aj + s)∏q

j=m+1 
(1 − bj + s)
∏p

j=n+1 
(aj − s)
zs ds.

This representation holds if z �= 0, 0 ≤ m ≤ q and 0 ≤ n ≤ p, for
integers m, n, p, q, and ak − bj �= 1, 2, 3, . . . , for k = 1, 2, . . . , n and
j = 1, 2, . . . , m. The last constraint is set to prevent any pole of
any 
(bj − s), j = 1, 2, . . . , m, from coinciding with any pole of any

(1 − ak + s), k = 1, 2, . . . , n. With a> 0, b2 = 1 + a and b1 = 1

2 ,

since G2,0
2,2([

1
2 , a + 1], [a, 1

2 ], u) = ua, we can therefore write∫ 1

0
ua−1 cos

(
2
√

ru
)

du = 1

a
1F2

(
a;

1

2
, a + 1; −r

)
. (A9)

Similarly, using integration by parts and properties of generalized
Hypergeometric functions,∫ 1

0
ua−1 sin

(
2
√

ru
)

du (A.31)

= sin(2
√

r)

a
−

√
r

a

∫ 1

0
ua− 1

2 cos(2
√

ru) du

= sin(2
√

r)

a
−

√
r

a(a + 1
2 )

1F2

(
a + 1

2
;

1

2
, a + 3

2
; −r

)

= 2
√

r

a + 1
2

1F2

(
a + 1

2
;

3

2
, a + 3

2
; −r

)
, (A10)

where the last step follows from the definition of generalized sine
function sin(z) = z 0F1(

3
2 , − 1

4 z2). Indeed, exploiting (6), we have

sin(2
√

r)

a
−

√
r

a(a + 1
2 )

1F2

(
a + 1

2
;

1

2
, a + 3

2
; −r

)

= 2
√

r

a
0F1

(
3

2
, −r

)
−

√
r

a(a + 1
2 )

1F2

(
a + 1

2
;

1

2
, a + 3

2
; −r

)

= 2
√

r

a
(

a + 1
2

) [(
a + 1

2

)
0F1

(
3

2
; −r

)

−1

2
1F2

(
a + 1

2
;

1

2
, a + 3

2
; −r

)]

= 2
√

r

a
(

a + 1
2

) [(
a + 1

2

) ∞∑
k=0

(−r)k

k!(3/2)k

−1

2

∞∑
k=0

(a + 1/2)k
k!(1/2)k(a + 3/2)k

(−r)k
]

= 2
√

r

a
(

a + 1
2

) ∞∑
k=0

1

k!

[
(a + 1/2)

(3/2)k
− 1/2(a + 1/2)k
(1/2)k(a + 3/2)k

]
(−r)k

= 2
√

r

a
(

a + 1
2

) ∞∑
k=0

1

k!

[
a(a + 1/2)k

(3/2)k(a + 3/2)k

]
(−r)k

= 2
√

r(
a + 1

2

) ∞∑
k=0

1

k!

(a + 1/2)k
(3/2)k(a + 3/2)k

(−r)k

= 2
√

r(
a + 1

2

) 1F2

(
a + 1

2
;

3

2
, a + 3

2
; −r

)
.

Letting α := H − 1
2 , τ := t − T , and mapping v: = t − u, w := v

t
and y := w2, we write∫ T

0
(t − u)αeiπu du

= eiπ t
∫ t

(t−T)
vαe−iπv dv

= eiπ t
[∫ t

0
vαe−iπv dv −

∫ τ

0
vαe−iπv dv

]
= eiπ t

[
t1+α

∫ 1

0
wαe−iπwt dw − τ 1+α

∫ 1

0
wαe−iπwτ dw

]
= eiπ t

2

[
t1+α

∫ 1

0
y
α−1

2 e−iπ t
√

y dy − τ 1+α
∫ 1

0
y
α−1

2 e−iπyτ
√

y dy

]
= eiπ t

2
[I(t)− I(τ )] , (A11)

where I(z) := z1+α ∫ 1
0 v

α−1
2 e−iπz

√
v dv.

We therefore write, for z ∈ {t, τ }, using (A9)–(A10), πz = 2
√

r,
and identifying a − 1 = α−1

2 ,

I(z) = z1+α
∫ 1

0
v
α−1

2 e−iπz
√

v dv

= z1+α
∫ 1

0
v
α−1

2 cos(πz
√

v) dv − iz1+α
∫ 1

0
v
α−1

2 sin(πz
√

v) dv

= 2z1+α

H+
1F2

(
H+
2

;
1

2
, 1 + H+

2
; −r

)
− izH+ 4

√
r

1 + H+
1F2

(
1

2
+ H+

2
;

3

2
,

3

2
+ H+

2
; −r

)
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= zH+

h1
1F2

(
h1;

1

2
, 1 + h1; −π

2z2

4

)

− i
πz1+H+

h2
1F2

(
h2;

3

2
, 1 + h2; −π

2z2

4

)
,

since α = H − 1
2 = H+ − 1, h1 = H+

2 and h2 = 1
2 + h1. Plugging

these into (A11), we obtain∫ T

0
(t − u)αeiπu du

= eiπ t

2
[I(t)− I(τ )]

= eiπ t

2

[
zH+

h1
1F2

(
h1;

1

2
, 1 + h1; −π

2z2

4

)

−iπz1+H+

h2
1F2

(
h2;

3

2
, 1 + h2; −π

2z2

4

)]
z=t

− eiπ t

2

[
zH+

h1
1F2

(
h1;

1

2
, 1 + h1; −π

2z2

4

)

−iπz1+H+

h2
1F2

(
h2;

3

2
, 1 + h2; −π

2z2

4

)]
z=τ

= eiπ t

2h1

[
(t)H+

1F2

(
h1;

1

2
, 1 + h1; −π

2t2

4

)

−(τ )H+
1F2

(
h1;

1

2
, 1 + h1; −π

2τ 2

4

)]

− i
πeiπ t

2h2

[
(t)1+H+

1F2

(
h2;

3

2
, 1 + h2; −π

2t2

4

)

−(τ )1+H+
1F2

(
h2;

3

2
, 1 + h2; −π

2τ 2

4

)]

= eiπ t
[
ζ 1

2
(t, h1)− ζ 1

2
(τ , h1)

−iπ
(
ζ 3

2
(t, h2)− ζ 3

2
(τ , h2)

)]
,

where χ(z) := − 1
4π

2z2 and ζ 1
2

and ζ 3
2

as defined in the lemma.

A.4. Proof of lemma 4.4

We first prove (A). For each n ∈ N and all t ∈ [T , 1], recall that

KT
H [ψn](t) =

√
2

∫ T

0
(t − u)H− 1

2 cos

(
u√
λn

)
du

=
√

2
∫ t

t−T
vH− 1

2 cos

(
t − v√
λn

)
dv,

with the change of variables v = t − u. Assume T ≤ s < t ≤ 1. Two
situations are possible:

• If 0 ≤ s − T < t − T ≤ s < t ≤ 1, we have∣∣∣KT
H [ψn](t)− KT

H [ψn](s)
∣∣∣

=
√

2

∣∣∣∣∫ t

t−T
vH− 1

2 cos

(
t − v√
λn

)
dv

−
∫ s

s−T
vH− 1

2 cos

(
s − v√
λn

)
dv

∣∣∣∣

≤
√

2

(∣∣∣∣∫ s

t−T
vH− 1

2

(
cos

(
t − v√
λn

)
− cos

(
s − v√
λn

))
dv

∣∣∣∣
+

∣∣∣∣∫ t

s
vH− 1

2 cos

(
t − v√
λn

)
dv

∣∣∣∣
+

∣∣∣∣∫ t−T

s−T
vH− 1

2 cos

(
s − v√
λn

)
dv

∣∣∣∣)
≤

√
2

(∫ s

t−T
vH− 1

2

∣∣∣∣cos

(
t − v√
λn

)
− cos

(
s − v√
λn

)∣∣∣∣ dv

+
∫ t

s
vH− 1

2 dv +
∫ t−T

s−T
vH− 1

2 dv

)
≤

√
2

(∫ s

t−T
vH− 1

2

∣∣∣∣ t − s√
λn

∣∣∣∣ dv

+K|t − s|H+ 1
2 + K|t − s|H+ 1

2

)
≤

√
2

( |t − s|√
λn

∫ s

t−T
vH− 1

2 dv + 2K|t − s|H+ 1
2

)
≤

√
2

( |t − s|√
λn

‖(·)H− 1
2 ‖L1[0,1] + 2K|t − s|H+ 1

2

)
≤ C̃T

1 |t − s|H+ 1
2 ,

with C̃T
1 = max{2√

2K,
√

2
λn

‖(·)H− 1
2 ‖L1[0,1]} =

max{2√
2K,

√
2(2n−1)π

2 ‖(·)H− 1
2 ‖L1[0,1]}, since cos(·) is

Lipschitz on any compact and
∫ ·

0 vH− 1
2 dv is (H + 1

2 )-
Hölder continuous.

• If 0 ≤ s − T ≤ s ≤ t − T ≤ t ≤ 1,

∣∣∣KT
H [ψn](t)− KT

H [ψn](s)
∣∣∣

=
√

2

∣∣∣∣∫ t

t−T
vH− 1

2 cos

(
t − v√
λn

)
dv

−
∫ s

s−T
vH− 1

2 cos

(
s − v√
λn

)
dv

∣∣∣∣
=

√
2

∣∣∣∣∫ t

t−T
vH− 1

2 cos

(
t − v√
λn

)
dv

−
∫ s

s−T
vH− 1

2 cos

(
s − v√
λn

)
dv

+
∫ t−T

s
vH− 1

2 cos

(
t − v√
λn

)
dv

−
∫ t−T

s
vH− 1

2 cos

(
t − v√
λn

)
dv

+
∫ t−T

s
vH− 1

2 cos

(
s − v√
λn

)
dv

−
∫ t−T

s
vH− 1

2 cos

(
s − v√
λn

)
dv

∣∣∣∣
≤

√
2

(∣∣∣∣∫ t−T

s
vH− 1

2

(
cos

(
t − v√
λn

)
− cos

(
s − v√
λn

))
dv

∣∣∣∣
+

∣∣∣∣∫ t

s
vH− 1

2 cos

(
t − v√
λn

)
dv

∣∣∣∣
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+
∣∣∣∣∫ t−T

s−T
vH− 1

2 cos

(
s − v√
λn

)
dv

∣∣∣∣)
≤ · · · ≤ C̃T

1 |t − s|H+ 1
2 ,

where the dots correspond to the same computations as in
the previous case and leads to the same estimation with
the same constant C̃T

1 .

This proves (A).
To prove (B), recall that, for T ∈ [0, 1] and n ∈ N, the function

KT
H [ψn] : [T , 1] → R reads

KT
H [ψn](t) =

√
2

∫ T

0
(t − s)H− 1

2 cos

((
n − 1

2

)
πs

)
ds

=
√

2

mH+ 1
2

∫ mT

0
(mt − u)H− 1

2 cos (πu) du =: �m(t).

(A12)

with the change of variable u = (n − 1
2 )s =: ms. Denote from now

on Ñ := {m = n − 1
2 , n ∈ N}. From (A12), we deduce, for each m ∈

Ñ and t ∈ [T , 1],

mH+ 1
2�m(t) =

√
2

∫ mT

0
(mt − u)H− 1

2 cos (πu) du =:
√

2φm(t).

(A13)
To end the proof of (B), it therefore suffices to show that
(φm(t))m∈Ñ,t∈[T ,1] is uniformly bounded since, in that case we have

‖KT
H [ψn]‖∞ = sup

t∈[T ,1]
|KT

H [ψn](t)|

= sup
t∈[T ,1]

|�n− 1
2
(t)|

=
√

2

(n − 1
2 )

H+ 1
2

sup
t∈[T ,1]

|φn− 1
2
(t)|

≤
√

2

(n − 1
2 )

H+ 1
2

sup
t∈[T ,1],m∈Ñ

|φm(t)|

≤
√

2

(n − 1
2 )

H+ 1
2

C ≤ CT
2 n−(H+ 1

2 ),

for some CT
2 > 0, proving (B). The following guarantees the uniform

boundedness of φx in (A13).

Proposition A.4.1 For any T ∈ [0, 1], there exists C> 0 such that
|φx(t)| ≤ C for all x ≥ 0, t ∈ [T , 1].

Proof For x> 0, we write

φx(t) =
∫ xT

0
(xt − u)H− 1

2 cos (πu) du

= �
{∫ xT

0
(xt − u)H− 1

2 eiπudu

}
.

Using the representation in lemma 4.5, we are thus left to prove
that the maps ζ 1

2
(·, h1) and ζ 3

2
(·, h2), defined in (13), are bounded

on [0, ∞) by, say L 1
2

and L 3
2
. Indeed, in this case,

sup
x>0,t∈[T ,1]

|φx(t)|

= sup
x>0,t∈[T ,1]

∣∣∣∣∫ xT

0
(xt − u)H− 1

2 eiπu du

∣∣∣∣
≤ sup

x>0,t∈[T ,1]

∣∣∣∣ eiπxt

2

[(
ζ 1

2
(xt, h1)− ζ 1

2
(x(t − T), h1)

)

−iπ
(
ζ 3

2
(xt, h2)− ζ 3

2
(x(t − T), h2)

)]∣∣∣
≤ 1

2
sup

y,z∈[0,∞)

∣∣∣∣∣ (
ζ 1

2
(y, h1)− ζ 1

2
(z, h1)

)
− iπ

(
ζ 3

2
(y, h2)− ζ 3

2
(z, h2)

)∣∣∣
≤ π

{
sup

y∈[0,∞)

∣∣∣ζ 1
2
(y, h1)

∣∣∣ + sup
y∈[0,∞)

∣∣∣ζ 3
2
(y, h2)

∣∣∣}
≤ L 1

2
+ L 3

2
= C < +∞.

The maps ζ 1
2
(·, h1) and ζ 3

2
(·, h2) are both clearly continuous. More-

over, as z tends to infinity ζk(z, h) converges to a constant ck , for
(k, h) ∈ ({ 1

2 , 3
2 }, {h1, h2}). The identities

1F2

(
h; 1

2 , 1 + h; −x
)

h
=

∫ 1

0

cos(2
√

xu)

u1−h
du and

1F2

(
h; 3

2 , 1 + h; −x
)

h
= 1

2
√

x

∫ 1

0

sin(2
√

xu)

u3/2−h
du

hold (this can be checked with Wolfram Mathematica for
example) and therefore,

ζ 1
2
(z, h1) = z2h1

2h1
1F2

(
h1;

1

2
, 1 + h1; −π

2z2

4

)

= z2h1

2

∫ 1

0
uh1−1 cos(πz

√
u) du

= z2h1

2

∫ πz

0

x2(h1−1)

(πz)2(h1−1)
cos(x)

2x

π2z2 dx

= 1

π2h1

∫ πz

0
x2h1−1 cos(x) dx,

where, in the second line, we used the change of vari-
ables x = πz

√
u. In particular, as z tends to infinity, this con-

verges to π−2h1
∫ +∞

0 x2h1−1 cos(x) dx = cos(πh1)

π2h1

(2h1) =: c1/2 ≈

0.440433. Analogously, for k = 3
2 ,

ζ 3
2
(z, h2) = z2h2

2h2
1F2

(
h2;

3

2
, 1 + h2; −π

2z2

4

)

= z2h2

2πz

∫ 1

0
uh2−3/2 sin(πz

√
u) du

= z2h2−1

2π

∫ πz

0

x2h2−3)

(πz)2h2−3)
sin(x)

2x

π2z2 dx

= 1

π2h2

∫ πz

0
x2(h2−1) sin(x) dx,

with the same change of variables as before. This con-
verges to π−2h2

∫ +∞
0 x2h2−2 sin(x) dx = − cos(πh2)

π2h2

(2h2 − 1) =:

c3/2 ≈ 0.193 as z tends to infinity. For k> 0, ζk(z, h) = z2h(1 +
O(z2)) at zero. Since H ∈ (0, 1

2 ), the two functions are continuous
and bounded and the proposition follows. �

A.5. Proof of theorem 4.11

We only provide the proof of (15) since, as already noticed, that
of (16) follows immediately. Suppose that F : R → R is Lipschitz
continuous with constant M. By definitions (11) and (14), we have∣∣∣E [F (VIXT )] − E

[
F

(
V̂IX

d
T

)]∣∣∣
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=
∣∣∣∣E [

F

(∣∣∣∣ 1

�

∫ T+�

T
v0(t) exp

{
γZT ,�

t

+γ
2

2

(∫ t−T

0
K(s)2 ds −

∫ t

0
K(s)2 ds

)}
dt

∣∣∣∣∣
1
2

⎞⎠⎤⎦
−E

[
F

(∣∣∣∣ 1

�

∫ T+�

T
v0(t) exp

{
γ ẐT ,�,d

t

+γ
2

2

(∫ t−T

0
K(s)2 ds −

∫ t

0
K(s)2 ds

)}
dt

∣∣∣∣∣
1
2

⎞⎠⎤⎦∣∣∣∣∣∣ .

For clarity, let Z := ZT ,�, Ẑ := ẐT ,�,d, H := ∫ T+�
T h(t)eγZt dt and

Ĥ := ∫ T+�
T h(t)eγ Ẑt dt, with

h(t) := v0(t)

�
exp

{
γ 2

2

(∫ t−T

0
K(s)2 ds −

∫ t

0
K(s)2 ds

)}
,

for t ∈ [T , T +�].

We can therefore write, using the Lipschitz property of F (with
constant M ) and lemma A.4,∣∣∣E [F (VIXT )] − E

[
F

(
V̂IX

d
T

)]∣∣∣
=

∣∣∣E [
F

(
H

1
2

)]
− E

[
F

(
Ĥ

1
2

)]∣∣∣ ≤ E

[∣∣∣F (
H

1
2

)
− F

(
Ĥ

1
2

)∣∣∣]
≤ ME

[∣∣∣H 1
2 − Ĥ

1
2

∣∣∣] ≤ ME

[(
1

H
+ 1

Ĥ

) ∣∣H − Ĥ
∣∣]

=: ME
[
A

∣∣H − Ĥ
∣∣] ≤ ME

[
A

∫ T+�

T
h(t)

∣∣∣eγZt − eγ Ẑt

∣∣∣ dt

]
≤ ME

[
A

∫ T+�

T
h(t)γ

(
eγZt + eγ Ẑt

) ∣∣Zt − Ẑt
∣∣ dt

]
.

Now, an application of Hölder’s inequality yields∣∣∣E [F (VIXT )] − E

[
F

(
V̂IX

d
T

)]∣∣∣
≤ ME

⎡⎣γA

∣∣∣∣∫ T+�

T
h(t)2

(
eγZt + eγ Ẑt

)2
dt

∣∣∣∣
1
2

×
∣∣∣∣∫ T+�

T

∣∣Zt − Ẑt
∣∣2 dt

∣∣∣∣
1
2

⎤⎦
≤ ME

[
(γA)2

∫ T+�

T
h(t)2

(
eγZt + eγ Ẑt

)2
dt

] 1
2

× E

[∫ T+�

T

∣∣Zt − Ẑt
∣∣2 dt

] 1
2

= K E

[∫ T+�

T

∣∣Zt − Ẑt
∣∣2 dt

] 1
2

,

where K := ME[γ 2A2
∫ T+�

T h(t)2(eγZt + eγ Ẑt )2 dt]
1
2 . It remains to

show that K is a strictly positive finite constant. This follows from
the fact that {Zt}t∈[T ,T+�] does not explode in finite time (and so does
not its quantization Ẑ either). The identity (a + b)2 ≤ 2(a2 + b2) and
Hölder’s inequality imply

K2 ≤ 4M 2γ 2
E

[(
1

H
+ 1

Ĥ

) ∫ T+�

T
h(t)2

(
e2γZt + e2γ Ẑt

)
dt

]

≤ 4M 2γ 2
E

[∣∣∣∣ 1

H
+ 1

Ĥ

∣∣∣∣2
] 1

2

× E

[∣∣∣∣∫ T+�

T
h(t)2

(
e2γZt + e2γ Ẑt

)
dt

∣∣∣∣2] 1
2

≤ 16M 2γ 2
E

[
1

H2 + 1

Ĥ2

] 1
2

× E

[∣∣∣∣∫ T+�

T
h(t)2e2γZt dt

∣∣∣∣2

+
∣∣∣∣∫ T+�

T
h(t)2e2γ Ẑt dt

∣∣∣∣2] 1
2

=: 16M 2γ 2(A1 + A2)
1
2 (B1 + B2)

1
2 .

We only need to show that A1, A2, B1 and B2 are finite. Since h is a
positive continuous function on the compact interval [T , T +�], we
have

H ≥
∫ T+�

T
inf

s∈[T ,T+�]

(
h(s)eγZs

)
dt ≥ � inf

s∈[T ,T+�]
h(s)eγZs

≥ � inf
t∈[T ,T+�]

h(t) inf
s∈[T ,T+�]

eγZs ≥ �̃h exp

{
γ inf

s∈[T ,T+�]
Zs

}
,

(A14)

with h̃ := inft∈[T ,T+�] h(t) > 0. The inequality (A14) implies

A1 = E

[
H−2

]
≤ E

[
exp

{−2γ infs∈[T ,T+�] Zs
}]

�2̃h2

= E
[
exp

{
2γ sups∈[T ,T+�](−Zs)

}]
�2̃h2

= 1

�2̃h2
E

[
exp

{
2γ sup

s∈[T ,T+�]
Zs

}]
,

since −Z and Z have the same law. The process Z = (Zt)t∈[T ,T+�]
is a continuous centered Gaussian process defined on a compact set.
Thus, by theorem 1.5.4 in Adler and Taylor (2007), it is almost surely
bounded there. Furthermore, exploiting Lemma A.5 and Borel-TIS
inequality (Adler and Taylor 2007, Theorem 2.1.1), we have

E

[
e2γ sups∈[T ,T+�] Zs

]
=: E

[
e2γ ‖Z‖

]
=

∫ +∞

0
P

(
e2γ ‖Z‖ > u

)
du

=
∫ +∞

0
P

(
‖Z‖ > log(u)

2γ

)
du

=
∫ e2γE[‖Z‖]

0
du +

∫ +∞

e2γE[‖V‖]
P

(
‖Z‖ > log(u)

2γ

)
du

= e2γE[‖Z‖] +
∫ +∞

e2γE[‖V‖]
e
− 1

2

( 1
2γ log(u)−E[‖Z‖]

σT

)2

du

≤ e2γE[‖Z‖] +
∫ +∞

0
e
− 1

2

( 1
2γ log(u)−E[‖Z‖]

σT

)2

du, (A15)

with ‖Z‖ := sups∈[T ,T+�] Zs and σ 2
T := supt∈[T ,T+�] E[Z2

t ]. The

change of variable log(u)
2γ = v in the last term in (A15) yields

∫ +∞

0
e
− 1

2

( 1
2γ log(u)−E[‖Z‖]

σT

)2

du = 2γ
∫

R

e
− 1

2

(
v−E[‖Z‖]

σT

)2

e2γ v dv

=
√

2π2γE[e2γY ],

since Y ∼ N (E[‖Z‖], σT ), and hence A1 is finite. Now, note that,
in analogy to the last line of the proof of proposition 3.12, for any
t ∈ [T , T +�], we have

E

[
Zt

∣∣∣(̂Zs)s∈[T ,T+�]

]
= E

[
E

[
Zt

∣∣∣{̂ξd(n)
n }n=1,...,m

]∣∣∣ (̂Zs)s∈[T ,T+�]

]
= E

[
Ẑt

∣∣∣(̂Zs)s∈[T ,T+�]

]
= Ẑt, (A16)
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since the sigma-algebra generated by (̂Zs)s∈[T ,T+�] is included in

the sigma-algebra generated by {̂ξd(n)
n }n=1,...,m. Now, exploiting,

in sequence, (A16), the conditional version of supt∈[T1,T2] E[ft] ≤
E[supt∈[T1,T2] ft], conditional Jensen’s inequality together with the
convexity of x �→ eγ x, for γ > 0 and the tower property, we obtain

E

[
exp

{
γ sup

t∈[T ,T+�]
Ẑt

}]

= E

[
exp

{
γ sup

t∈[T ,T+�]
E

[
Zt

∣∣∣(̂Zs)s∈[T ,T+�]

]}]

≤ E

[
exp

{
γE

[
sup

t∈[T ,T+�]
Zt

∣∣∣(̂Zs)s∈[T ,T+�]

]}]

≤ E

[
E

[
exp

{
γ sup

t∈[T ,T+�]
Zt

} ∣∣∣(̂Zs)s∈[T ,T+�]

]]

= E

[
exp

{
γ sup

t∈[T ,T+�]
Zt

}]
.

Thus we have

A2 = E

[
Ĥ−2

]
≤ 1

�2̃h2
E

[
exp

{
γ sup

t∈[T ,T+�]
Ẑt

}]

s ≤ 1

�2̃h2
E

[
exp

{
γ sup

t∈[T ,T+�]
Zt

}]
,

which is finite because of the proof of the finiteness of A1, above.
Exploiting Fubini’s theorem we rewrite B1 as

B1 = E

[(∫ T+�

T
h(t)2e2γZt dt

)2]

=
∫ T+�

T

∫ T+�

T
h(t)2h(s)2E

[
e2γ (Zt+Zs)

]
dt ds.

Since (Zt)t∈[T ,T+�] is centered Gaussian with covariance E[ZtZs] =∫ T
0 K(t − u)K(s − u) du, then (Zt + Zs) ∼ N (0, g(t, s)), with

g(t, s) := E[(Zt + Zs)
2] = ∫ T

0 (K(t − u)+ K(s − u))2 du and there-
fore

B1 =
∫ T+�

T

∫ T+�

T
h(t)2h(s)2e2γ 2g(t,s) dt ds

is finite since both h and g are continuous on compact intervals.
Finally, for B2 we have

B2 = E

[(∫ T+�

T
h(t)2e2γ Ẑt dt

)2]

=
∫ T+�

T

∫ T+�

T
h(t)2h(s)2E

[
e2γ (̂Zt+Ẑs)

]
dt ds

≤
∫ T+�

T

∫ T+�

T
h(t)2h(s)2E

[
e2γ (Zt+Zs)

]
dt ds = B1,

where we have used the fact that for all t, s ∈ [T , T +�], (̂Zt +
Ẑs) is a stationary quantizer for (Zt + Zs) and so E[e2γ (̂Zt+Ẑs)] ≤
E[e2γ (Zt+Zs)] since f (x) = e2γ x is a convex function (see remark 3.9
in section 3.1). Therefore B2 is finite and the proof follows.

Appendix 2. Some useful results

We recall some important results used throughout the text. Straight-
forward proofs are omitted.

Proposition A.5.1 For a Gaussian random variable Z ∼ N (μ, σ),

E
[|Z − μ|p] =

{
(p − 1)!!σ p, if p is even,
0, if p is odd.

We recall (Steele 2004, Problem 8.5), correcting a small error,
used in the proof of Proposition 3.6:

Lemma A.5.2 Let m, N ∈ N and p1, . . . , pm positive real numbers.
Then

inf

{
m∑

n=1

pn

x2
n

: x1, . . . , xm ∈ (0, ∞),
m∏

n=1

xn ≤ N

}

= mN− 2
m

⎛⎝ m∏
j=1

pj

⎞⎠
1
m

,

where the infimum is attained for xn = N
1
m p

1
2
n (

∏m
j=1 pj)

− 1
2m , for all

n ∈ {1, . . . , m}.

Proof The general arithmetic-geometric inequalities imply

1

m

m∑
n=1

pn

x2
n

≥
(

m∏
n=1

pn

x2
n

) 1
m

=
(

m∏
n=1

pn

) 1
m

(
m∏

n=1

1

x2
n

) 1
m

≥
(

m∏
n=1

pn

) 1
m

N− 2
m ,

since
∏m

n=1 xn ≥ N by assumption. The right-hand side does not
depend on x1, . . . , xm, so

inf

{
m∑

n=1

pn

x2
n

: x1, . . . , xm ∈ (0, ∞),
m∏

n=1

xn ≤ N

}

≥ m

(
m∏

n=1

pn

) 1
m

N− 2
m .

Choosing x̃n = N
1
m p

1
2
n (

∏m
j=1 pj)

− 1
2m , for all n ∈ {1, . . . , m}, we

obtain

m

(
m∏

n=1

pn

N2

) 1
m

=
m∑

n=1

pn

x̃2
n

≥ inf

{
m∑

n=1

pn

x2
n

: x1, . . . , xm ∈ (0, ∞),
m∏

n=1

xn ≤ N

}

≥ m

(
m∏

n=1

pn

N2

) 1
m

,

which concludes the proof. �

Lemma A.5.3 The following hold:

(i) For any x, y> 0, |√x − √
y| ≤ ( 1√

x
+ 1√

y )|x − y|.
(ii) Set C> 0. For any x, y ∈ R, |eCx − eCy| ≤ C(eCx + eCy)|x −

y|.
Lemma A.5.4 For a positive random variable X on (�,F , P),
E[X ] = ∫ +∞

0 P(X > u) du.
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