Check for
Updates

A runtime infrastructure for the Continuum of Computing

Edoardo Tinto*
edoardo.tinto@phd.unipd.it
University of Padova
Padova, Italy

ABSTRACT

Devices at the Edge of the network are experiencing a considerable
increase in computational resources. At the same time, connectivity
becomes more pervasive. These phenomena jointly facilitate the
emergence of a new computational model, increasingly referred to
as the Continuum of Computing. This model aims at including Edge
resources in Cloud-like (and Cloud-inclusive) resource pooling to
accommodate computations that need reduced latency, increased
privacy, and general mobility. This model has the potential to en-
hance the power and the reach of high-performance computing
(HPC) applications, making them extend up to the Edge of the
network. However, managing a pool of resources that span across
both Cloud and Edge nodes poses new challenges. Moving data
across the network generates latency and security issues, while
national policies may outright limit data mobility. This suggests
moving computation towards data instead of the usual opposite.
Enabling migrating computation is one of key traits of the envi-
sioned Continuum of Computing. The vast heterogeneity in the
technological stacks and the lack of uniform standards, however,
hinder the deployment of applications in the Continuum. The avail-
ability of a common runtime environment across all host nodes of
the Continuum is an obvious way to circumvent those problems,
reviving the write-once-run-anywhere promise in that context. The
ability to move computations opportunistically after user-specific
performance objectives is another key trait of the Continuum model,
which also is a foundation to spatial computing, a context-aware
and space-aware computing paradigm. How to effectively orches-
trate migrating computations so that they can deliver value added
to their users is still an open question. There is a general under-
standing that Cloud-native orchestrators perform poorly when
shifting towards the Edge, due to exceedingly restrictive (Cloud-
centric) assumptions underneath their orchestration model. The
matter of efficient orchestration in the Continuum is paramount in
the envisioned model. To showcase the feasibility and viability of
a Continuum-worthy runtime infrastructure, we singled out two
emerging technologies: Rust and WebAssembly. The Rust program-
ming language’s highlight is its statically-checked memory safety.
WebAssembly’s highlights are solid guarantees of isolation and a

“Corresponding author.
TSupervison

This work is licensed under a Creative Commons Attribution International 4.0 License.
HPDC °24, June 3-7, 2024, Pisa, Italy

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0413-0/24/06.

https://doi.org/10.1145/3625549.3658832

Tullio Vardanega®
tullio.vardanega@unipd.it
University of Padova
Padova, Italy

portable bytecode format for applications compiled for its Instruc-
tion Set Architecture (ISA). To this project, WebAssembly compo-
nents written in Rust constitute the candidate building blocks for
the Continuum infrastructure, centred on memory-safe and sand-
boxed execution capsules. In addition to that, this project aims to
develop and deploy Continuum-worthy orchestration capabilities
that leverage seamless migration.

The initial results of this project suggest that applications written
in Rust and executing as WebAssembly components offer greater
isolation and memory safety compared to containerized applica-
tions. Moreover, this novel approach might easily support live mi-
gration, consisting of the migration of an executing application into
a different hosting node, preserving the state of the computation.
Live migration prevents re-execution, and, at the time of writing,
is largely unsupported in modern industrially applied container-
ized solutions. Supporting migrating computations might benefit
multiple application scenarios. For example, the ability to migrate
computation instead of freezing it during a low-energy phase may
be of interest to energy-harvesting systems, Similarly, urgent sci-
ence and Internet of Things (IoT) applications might want to move
across Cloud and Edge nodes opportunistically, seeking optimal
trade-offs between heavy and low-latency types of computation.

CCS CONCEPTS

« Computer systems organization — Cloud computing.

KEYWORDS
Continuum of Computing, WebAssembly, Rust, Migration

ACM Reference Format:

Edoardo Tinto and Tullio Vardanega. 2024. A runtime infrastructure for
the Continuum of Computing. In The 33rd International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’24), June 3-7,
2024, Pisa, Italy. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3625549.3658832

1 THE VISION: A COMPUTE CONTINUUM

The Continuum we envision entails the following key traits: (1) Re-
sources should be accessed as a single pool, encompassing both the
Cloud and the Edge. On top of this infrastructure, (2) computations
are expected to migrate, striving to maximize (or minimize when
needed) user-declared metrics, opportunistically, and not just as a
contingency response to system faults and overload situations. The
interactions between components and resource access (3) should
be web-based, leveraging HTTP-and-above protocols, in a manner
that resembles how Cloud providers handle Cloud resources. Figure
1 offers a graphical representation of the envisioned model and its
key traits. When destined to perform possibly frequent and cer-
tainly fast migrations (live redeployments), applications should be
developed as orchestrated aggregates of relatively small migrating


https://orcid.org/0009-0000-3551-6304
https://orcid.org/0000-0002-0089-0889
https://doi.org/10.1145/3625549.3658832
https://doi.org/10.1145/3625549.3658832
https://doi.org/10.1145/3625549.3658832
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625549.3658832&domain=pdf&date_stamp=2024-08-30

HPDC ’24, June 3-7, 2024, Pisa, Italy

computations. Aware of the user-defined metrics it is expected to
improve, the orchestrator of such an application should take mi-
gration decisions that accord with user-defined metric objectives.
Applications deployed on top of the envisioned infrastructure will
benefit from the following three facts:

(1) Adopting the Continuum model will simplify application
development. The heterogeneity afflicting previous models,
specifically in the Edge portion of the resource pool, could be
confronted with the aid of a common runtime layer, allowing
applications compiled once to run on virtually every node
in the systems.

(2) Migrating components will boost application performance.
This effect is due to (1) increased flexibility in orchestration
decisions, (2) centrality of user-defined metrics, instead of
a rule-based approach, and (3) the emerging capability of
closing the distance between data and computation, without
requesting the migration of possibly large amount of data.

(3) Potentially, the Continuum model could proffer application
developers a vast number of computing nodes, many of
which were previously considered just sensors and actu-
ators in the Edge. Targeting this sort of resource enforces
a frugal runtime footprint. Even if unfit for heavy-weight
computations, those nodes might still contribute to parallel
and real-time applications due to their proximity to sensed
data and interacting users.

igration

i Application |
HTTP HTTP @
i - - :
5 N L~ N &~ N |
: Component @ Component Component §

ez

_______________________ VELNL N N
Resource pool ﬂl:]} :
Edge Cloud

Figure 1: The envisioned model for the Continuum of Com-
puting. It offers (1) resource pooling across Cloud and Edge,
(2) migration for application components, and (3) web-based
interactions.

1.1 Technologies selection

Two emerging technologies promise to play a key role in the envi-
sioned model: WebAssembly and Rust. WebAssembly [1], Wasm
for short, is a virtual ISA, supported as a compilation target for sev-
eral languages, such as C, C++, and Rust. Wasm bytecode executes
within a sandboxed environment. Using a sandbox allows to isolate

Tinto, Vardanega

the executing component from the host environment, and from
other running applications. Wasm bytecode is also suited for net-
work transfer. In the words of [2], WebAssembly could be adequate
for implementing a seamless execution environment across the
entire Continuum. Rust [3], on the other hand, offers statically as-
sessed memory-safety guarantees thanks to its ownership approach.
According to [4], the Rust programming language is a promising
technology for embedded programming in the Edge. Using Rust
promotes the development of memory-safe applications, reducing
memory-related vulnerabilities, as invited in [5]. Together, these
two technologies enforce a safe-by-design approach to application
development, while contributing to the construction of a seamless
runtime infrastructure amenable to the Continuum.

1.2 Scenarios of interest

Pooling Cloud and Edge resources seamlessly might benefit high-
performance computing (HPC) applications. In this scenario, the
use of containers is limited. The reasons, according to [6], are the
following. Containerize solutions usually require root privilege
for execution, which is not feasible for HPC components shar-
ing a distributed file system. Secondly, building container images
for heterogeneous nodes is complex. It requires central support
and cross-compilation, which are unusual requirements for HPC
applications, where compilation happens on-site, pursuing high
optimization. Moreover, access to licensed libraries and compilers
is generally not possible at the local level, imposing centralized
compilation. When containers are in use, an advanced framework
is beneficial to face the complexity of such an infrastructure.

Conversely, compiling a component once, and being able to exe-
cute it on every node of the resource pool would overcome those
limitations. The work of [6] provides encouraging insights on the
use of Wasm in MPI-based (Message-Passing Interface) HPC appli-
cations. Similarly, [7] discusses the use of Rust for HPC applications.
This second study highlights some aspects of Rust that are particu-
larly suited to HPC contexts, in addition to the already-mentioned
safety concerns.

2 PROBLEM STATEMENT

This thesis strives to realize the envisioned model for the Contin-
uum of Computing. To this end, we single out three objectives for
our investigations, each of which consolidates a portion of the run-
time infrastructure described in Section 1 and constitutes a research
contribution:

(1) Develop a migration-capable runtime infrastructure. Migra-
tion should preserve the state of a running component, upon
resuming. Existing WebAssembly runtimes do not support
it. Hence, introducing the core functionalities to support
computing mobility is an objective of this work. Also, com-
ponents transiting in the network might have active connec-
tions, acting as either server or client, as discussed in [8]. The
capability of performing a connection-preserving migration,
regardless of the role in the connection, is paramount.

(2) Orchestrate migrating computations. Modern state-of-the-
art Cloud orchestrators show their limitations when applied
in the Edge, according to [9]. Moreover, we expect the orches-
trator to be able to coordinate the migration of computations,



A runtime infrastructure for the Continuum of Computing

respectfully to user-defined metrics. Enriching an existing

orchestration engine to tackle both the performance issue

and migration handling, thus exploring the orchestration
policies underneath, is an objective of this project.

(3) Assess the runtime and management cost of the proposed
solution. This experimentation should take place along three
distinct axes:

e Benchmarking between existing Wasm runtimes and the
migration-capable solution emerging in this thesis.

e Compare the performance of the Continuum-native or-
chestration strategy against a state-of-the-art Cloud or-
chestrator. A reasonable candidate for the latter is Kuber-
netes.

o Assess the applicability of said Continuum infrastructure
in a real-world High-Performance Computing (HPC) ap-
plication.

3 PRELIMINARY RESULTS

Computation mobility is already part of previous computing models
to some extent. For instance, the Fog model includes an offloading
mechanism to delegate an execution to a more resourceful node. In
that context, computations usually happen within containers. We do
not inherit this constraint. In the envisioned model, computations
should happen outside of any virtualized environment, and on top
of a common runtime. WebAssembly has the potential to embody
this runtime layer. There is another important difference between
migration and offloading. The latter happens due to necessity, in
an attempt to prevent downtime. Instead, migration is triggered by
orchestration-level decisions. Migration happens opportunistically,
while pursuing user-defined performance metrics. In this process,
orchestration plays a key role, which should be explored in depth
as the second objective of this project.

Migration could take place in two manners. Offline migration
requires re-execution. The migrating component is interrupted, in
the source node, moved towards the destination node, and then ex-
ecuted again. Doing so does not preserve any previous progress in
the computation. With live migration instead, the runtime performs
a snapshot of the component status, often referred to as checkpoint.
With a checkpoint, it is possible to resume the computation after a
migration occurs. While beneficial in terms of performance, live mi-
gration could be challenging. In the case of container technologies,
support for live migration is limited, often just as an experimen-
tal feature, as noticed in [10]. At the time of writing, neither of
those manners is supported in WebAssembly runtimes. Aiming to
extend a Wasm runtime to enable migration, we could take at least
two routes. One contemplates the migration of interpreted com-
ponents, leveraging a runtime that offers interpreting capabilities.
The other enables the migration of compiled components, which
instead requires compile-time support.

3.1 Interpreter-based migration

According to the general understanding, compiled programs are
superior to interpreted ones, in terms of run-time performance. On
the other hand, interpreter benefit from the ease of deployment, due
to their simpler structure. The startup delay for an interpreter is
generally shorter than Just-in-Time (JIT) techniques, which consist

HPDC ’24, June 3-7, 2024, Pisa, Italy

of compiling the application code straight before executing it. An in-
terpreter might start executing as soon as the migration ends. Also,
[10] suggests that interpreters could present less memory footprint
compared to compilers. These reasons motivate the investigation
towards interpreter-based migration.

To assess the viability of this path, we have selected the only
maintained Wasm runtime offering interpreter capabilities. Wasm
Micro Runtime [11], WAMR in short, targets Edge devices, with
potentially constrained resources. It could be deployed on top of a
Real-Time operating system (RTOS), and features two types of in-
terpreter. The classic_interprter works as a standard bytecode
interpreter. It executes each operand of the invoked Wasm func-
tion, without performing any conversion to an intermediate repre-
sentation (IR). The fast_interpreter instead performs rewriting,
namely, it converts the Wasm bytecode into a format more suit-
able for interpretation. The initial delay suffered by a rewriting
interpreter compared to a standard one, should be motivated by
performance improvement in the long run. For this investigation,
a standard (without rewriting) interpreter was chosen, to benefit
from the minimal initial delay.

The solution proposed consists of three additional mechanisms:

o A runtime mechanism to signal a pending migration request.
This procedure should terminate the interpreter in a consis-
tent state, aiming to resume from there once the migration
is completed.

e A mechanism to produce a snapshot of the context of the
running function. It involves preserving the function call
stack.

o A procedure to resume the interpretation from the migrated
context, without re-execution.

This solution is under active development. An experimental assess-
ment of the overall result is part of our future work.

3.2 Migrating compiled components

Migrating a compiled component across different ISAs is challeng-
ing. Two issues arise here. The first is interrupting the execution of
the component in a consistent state. The second is resuming the
execution from this consistent state but in a different host, featuring
a possibly different ISA. To tackle those criticisms, we could adopt
a checkpoint-based mechanism. The idea is to enforce an idiomatic
structure in the Wasm component. In our work, we focus on compo-
nents written in Rust. Within each Wasm module, an initialization
and a checkpoint procedure are defined. The runtime is responsible
for ensuring that the body of the checkpoint procedure is executed
atomically, preventing migration-caused termination. Also, upon
resuming the computation in the destination host, the runtime
should invoke the initialization procedure using the checkpoint
data, and then restart the computation. The checkpoint is located
in the component linear memory. Supporting those two facilities
would be enough to offer live migration capabilities. Note that,
instead of porting the execution context from one ISA to another,
as is common practice for other migration technologies, such as
CRIU [12], we rely mainly on the Wasm runtime. The former is an
error-prone procedure, and, at the time of writing, finds little use
in real-world applications, except as a debugger tool.



HPDC ’24, June 3-7, 2024, Pisa, Italy

Modern WebAssembly runtimes already offer the functionalities
required for offline migration. To prove this claim, we considered
the case of Wasmtime. Wasmtime [13] is a Rust-based runtime,
supporting Ahead-of-Time (AOT) and Just-in-Time (JIT) compila-
tion for Wasm modules. This solution could be used for embedding
Wasm components in Rust-written applications. In our work, we
have shown that offline migration could be achieved with the fol-
lowing steps:

o Take a snapshot of the linear memory. This could be achieved
by using dynamic allocation for data that need to be pre-
served in a migration. For instance, global variables.

e Serialize (and deserialize, once in the destination node) the
linear memory. Note that Wasm bytecode is already in a
network-friendly format, but that is not the case for the
linear memory segment.

o Restart the execution. This step requires (1) restoring the
migrated memory, (2) compiling the Wasm component for
the new target, and (3) invoking the desired function.

This approach permits migrating components across different ISAs
but does not preserve the computation advancement yet.

4 PROJECT’S OUTCOME

The expected outcome of this PhD research includes the following
two contributions. Firstly, a viable runtime infrastructure for the
Continuum of Computing, characterized by (1) a common execution
layer based on WebAssembly and supporting (2) live migration of
components with active connection, (3) a space and context-aware
orchestration engine for the opportunistic manoeuvring of those
computations. This infrastructure will be capable of executing appli-
cations developed as an orchestrated set of components, developed
in Rust, thus enjoying the language memory safety, and compiled
to Wasm bytecode.

Secondly, to support the claim that the Continuum model is
capable of contributing to HPC applications, this thesis should
study the application of said model in conjunction with a state-of-
the-art framework for HPC. The nature of the resulting use case,
and the kind of HPC model applied (e.g., MPI), should be formalized
over the course of the project. The resulting experimentation will
provide empirical evidence and experience on the impact of the
Continuum model for application developers.

From these premises, two main research directions arise. The
first one consists of exploring the dimension of predictability. Edge
devices are used in various contexts, often requiring guarantees on
the execution itself. Some of them, such as the Industrial Internet
of Things (IIoT) and the automotive sectors, present high critical-
ity requirements. Here, predictability and timeliness are essential.
Exploring how to support real-time execution in the Continuum
would be a valuable contribution.

The other research direction consists of investigating other use
cases for the Continuum of Computing. For instance, the capability
of migrating computations might be appealing for energy harvest-
ing systems (EHS). Those systems are made of battery-less devices,
with intermittent execution and frequent interruption due to en-
ergy shortages. Enriching EHS with migration capabilities might
enable them to migrate computations to other devices just before a

Tinto, Vardanega

low-energy phase. Doing so would enable these systems to achieve
higher levels of utilization.

REFERENCES

[1] Webassembly, 2022. https://webassembly.github.io/spec/core/index.html.

[2] James Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. Webassem-

bly as a common layer for the cloud-edge continuum. In Proceedings of the 2nd

Workshop on Flexible Resource and Application Management on the Edge, FRAME

’22, page 3-8, New York, NY, USA, 2022. Association for Computing Machinery.

Rust programming language, 2024. https://www.rust-lang.org/.

Hudson Ayers, Evan Laufer, Paul Mure, Jachyeon Park, Eduardo Rodelo, Thea

Rossman, Andrey Pronin, Philip Levis, and Johnathan Van Why. Tighten rust’s

belt: shrinking embedded rust binaries. In Proceedings of the 23rd ACM SIG-

PLAN/SIGBED International Conference on Languages, Compilers, and Tools for

Embedded Systems, LCTES 2022, page 121-132, New York, NY, USA, 2022. Asso-

ciation for Computing Machinery.

United States Cybersecurity and Infrastructure Security Agency, United States Na-

tional Security Agency, United States Federal Bureau of Investigation, Australian

Signals Directorate’s, Australian Cyber Security Centre, Canadian Centre for

Cyber Security, United Kingdom National Cyber Security Centre, New Zealand

National Cyber Security Centre, and Computer Emergency Response Team New

Zealand. The case for memory safe roadmaps. Technical report, United States

Cybersecurity and Infrastructure Security Agency, 2023.

[6] Mohak Chadha, Nils Krueger, Jophin John, Anshul Jindal, Michael Gerndt, and
Shajulin Benedict. Exploring the use of webassembly in hpc. In Proceedings of
the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, PPoPP ’23, page 92-106, New York, NY, USA, 2023. Association
for Computing Machinery.

[7] Eric Holk, Milinda Pathirage, Arun Chauhan, Andrew Lumsdaine, and Nicholas D.

Matsakis. Gpu programming in rust: Implementing high-level abstractions in

a systems-level language. In 2013 IEEE International Symposium on Parallel &

Distributed Processing, Workshops and Phd Forum, pages 315-324, May 2013.

Carlo Puliafito, Luca Conforti, Antonio Virdis, and Enzo Mingozzi. Server-side

quic connection migration to support microservice deployment at the edge.

Pervasive and Mobile Computing, 83:101580, 2022.

Giovanni Bartolomeo, Simon Béurle, Nitinder Mohan, and Jérg Ott. Oakestra: an

orchestration framework for edge computing. In Proceedings of the SSGCOMM

°22 Poster and Demo Sessions, SSIGCOMM 22, page 34-36, New York, NY, USA,

2022. Association for Computing Machinery.

[10] Ben L. Titzer. A fast in-place interpreter for webassembly. Proc. ACM Program.

Lang., 6(OOPSLAZ2), oct 2022.
[11] Webassembly micro runtime, 2022. https://bytecodealliance.github.io/wamr.dev/.
[13

——
B

—
)

8

[o

oy
e

Checkpoint/restore in userspace, 2023. https://criu.org/Main_Page.
Wasmtime, 2024. https://wasmtime.dev/.

Received 02 March 2024; revised 17 April 2024; accepted 09 April 2024


https://webassembly.github.io/spec/core/index.html
https://www.rust-lang.org/
https://bytecodealliance.github.io/wamr.dev/
https://criu.org/Main_Page
https://wasmtime.dev/

	Abstract
	1 The Vision: A Compute Continuum
	1.1 Technologies selection
	1.2 Scenarios of interest

	2 Problem statement
	3 Preliminary results
	3.1 Interpreter-based migration
	3.2 Migrating compiled components

	4 Project's outcome
	References

