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Fig. 1: The three virtual acoustic environments (VAEs) evaluated in our experiment: (a) living room [61], (b) classroom [56] and (c)
concert hall [41, 42]. Additionally, (d) the virtual reality (VR) scene with the characters and a participant during the experiment.

Abstract— In immersive Audio Augmented Reality, a virtual sound source should be indistinguishable from the existing real ones. This
property can be evaluated with the co-immersion criterion, which encompasses scenes constituted by arbitrary configurations of real
and virtual objects. Thus, we introduce the term Audio Augmented Virtuality (AAV) to describe a fully virtual environment consisting of
auditory content captured from the real world, augmented by synthetic sound generation. We propose an experimental design in AAV
investigating how simplified late reverberation (LR) affects the co-immersion of a sound source. Participants listened to simultaneous
virtual speakers dynamically rendered through spatial Room Impulse Responses, and were asked to detect the presence of an impostor,
i.e., a speaker rendered with one of two simplified LR conditions. Detection rates were found to be close to chance level, especially for
one condition, suggesting a limited influence on co-immersion of the simplified LR in the evaluated AAV scenes. This methodology can
be straightforwardly extended and applied to different acoustics scenes, complexities, i.e., the number of simultaneous speakers, and
rendering parameters in order to further investigate the requirements for immersive audio technologies in AAR and AAV applications.

Index Terms—Audio Augmented Virtuality, Co-immersion, Dynamic Binaural Synthesis, Reverberation, Virtual Acoustics

1 INTRODUCTION

The Reality-Virtuality Continuum [49] can be defined as a segment that
spans between real and virtual environments. Augmented Reality (AR)
and Augmented Virtuality (AV) can be situated along this continuum.
AR is closer to the real world while AV is closer to a pure virtual envi-
ronment, and results from capturing real-world content and bringing it
into virtual reality (VR). Jerald [36, Ch. 21] provides examples of such
real-world content, including 360° images, true 3D data captured via
depth cameras or scanners, scientific data (e.g., volumetric datasets),
and so on. We extend the AV definition to the acoustic domain and
propose the term Audio Augmented Virtuality (AAV) as the creation of
virtual environments using real-world auditory content. This is the first
contribution explicitly working on AAV to the best of our knowledge.

Specifically, we propose an innovative experimental design in AAV
aimed at evaluating how different acoustic reverberation approaches af-
fect the co-immersion of concurrent speakers rendered in the same
virtual environment. In the context of Audio Augmented Reality
(AAR, [70]), co-immersion is defined as the property of simulated
sound sources to be perceived as belonging to a real auditory scene,
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rather than artificially superimposed upon it [59]. One possible ap-
proach to quantify co-immersion in an experimental setting is to
measure users’ ability to discriminate a virtual target from the real
scene [66]. Our aim is to investigate co-immersion in a fully virtual
context. This allows for more robust and repeatable experimental set-
tings with respect to an AAR scenario involving real sound sources,
as the same AAV scene can be experienced in any real environment
using only a pair of headphones. In this case, co-immersion can be
operationalized by asking users to discriminate among synthetic targets
treated with different rendering approaches.

Realistic simulation of a virtual sound source via headphones poses
several challenges, which are addressed by the literature on dynamic
binaural auralization [7, 28]. Auralization, is the process of rendering
audible the soundfield of a source in an acoustic space, simulating the
listening experience at a given position in the modeled space [39]: a
simple auralization approach is the convolution of an anechoic audio
signal, representing a sound source, with a Room Impulse Response
(RIR) recorded in the environment of interest. Binaural refers to the
generation of two sound signals representing the sound waves reaching
the listener’s left-right ear canals. This entails accounting for the
effects of the listener’s body (head, torso, pinnae) interacting with
incoming sound wavefronts based on their direction of arrival: Head-
Related Transfer Functions (HRTFs) model this interaction. Dynamic
means that the virtual simulation is adapted as the listener moves in the
environment. Head rotations are commonly tracked with 3 degrees of
freedom (DoF), although 6-DoF simulations are also possible.

Spatial RIRs, e.g. in Ambisonics format [71], allow for dynamic
simulations by encoding directional properties of the soundfield reach-
ing the listening point. Therefore, proper use of HRTFs with spatial
RIRs provides an interactive and immersive simulation where a sound
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source is perceived as stable in the Virtual Acoustic Environment (VAE)
while the listener’s head rotates. In this work, we employ spatial RIRs
recorded in real acoustic spaces, which can be conceptually equated to
the capture of a 360° image in visual AV. When an RIR is brought into
the virtual domain, listeners can explore the auditory scene as if they
were in the place where the response was recorded.

We designed an experiment in which participants listened to 2, 3,
or 4 simultaneous virtual speakers, rendered with dynamic binaural
auralization through individualized HRTFs and Higher-Order Ambison-
ics (HOA) RIRs of real acoustic spaces. Each trial included one or no
“impostor”, i.e. a speaker rendered with a simplified RIR with respect
to the reference response, and participants were asked to detect and
identify the impostor. Two approaches for RIR simplification were
tested. In both cases, the direct sound and the early reflections (ERs)
were kept unaltered with respect to the recorded responses, while two
conditions were considered for the late reverberation (LR) part: (i) a
static binaural downmix from the HOA response, and (ii) an artifi-
cial reverberator whose parameters were automatically tuned to match
condition (i) using a recently proposed method [14]. Thus, in both
conditions the simplified LR versions were static, i.e. their rendering
was unaffected by the head movements. The rationale is that preserv-
ing dynamic spatial information in the ERs maintains sound source
localization [17] and spatial impression [46, 47], whereas directional
information in the LR should have limited perceptual influence [21,44].

We evaluated the co-immersion of impostor speakers rendered using
the two simplified LR approaches through the proposed experimen-
tal design in AAV. We analyzed the simplified RIRs both objectively,
through quantitative features accounting for the accuracy of their fit to
the reference responses, and subjectively, by investigating the exper-
iment results using Signal Detection Theory (SDT). The goal of the
evaluation can be summarized into the following research questions:
Q1 How does a static LR affect the co-immersion of a sound source

in an AAV scene?
Q2 How is the co-immersion in an AAV scene influenced if the static

LR of Q1 is approximated with an artificial reverberator?
Condition (i) and (ii) are designed to address Q1 and Q2, respectively.
The conducted experiment allows us to evaluate the previously proposed
automatic late reverberation matching method [14] in a co-immersion
scenario. To our knowledge, this is the first evaluation of synthetic LR
in a mixed reality scenario, a literature gap previously pointed out [53].
We provide the materials to replicate the experiment (both VR scene
and auditory stimuli) in a public repository [23].

The paper is organized as follows. Sec. 2 provides an overview of
related literature’s experiments and criteria to evaluate the perception
of virtual sound sources. In Sec. 3, we explain how the simplified LR
conditions are obtained. Sec. 4 describes the experiment materials and
the methods used to design and evaluate the experiment. In Sec. 5,
we report the obtained results which are discussed in Sec. 6 with the
experiment’s limitations. Sec. 7 provides a conclusion of the paper.

2 BACKGROUND

Several criteria have been proposed to evaluate whether a simulated
sound source is perceived as realistic. Among them, authenticity [13]
requires the perceptual identity of the simulation with a real external
reference. A virtual sound source is authentic if indistinguishable from
a corresponding real one in a direct comparison. Authenticity is the
most strict criterion since even small differences can be noticed by
listeners. Brinkmann et al. [16] investigated the authenticity of individ-
ual dynamic binaural simulations in an ABX test. Real stimuli were
reproduced with loudspeakers, while virtual sources were simulated
through headphones. Results varied based on stimulus—speech was
less authentic than noise—and environment, but not source position.

Only a few AAR applications require the simulation’s authentic-
ity, thus less demanding evaluation criteria exist. One of them is
plausibility, i.e. the simulation’s agreement with the listener’s expec-
tation. Plausibility relies on the listener’s internal representation of
reality, without an external reference as a comparison. Lindau and
Weinzierl [45] proposed an experimental procedure to assess plausi-
bility in VAEs by means of a 2AFC test with “real” and “simulation”
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Fig. 2: Scheme of the reverberation conditions H, B and Fd.

as choices. Participants listened to random trials of real stimuli and
non-individual dynamic binaural simulations of them. Using SDT
analysis, authors found a slight sensory difference between simulation
and reality, though it was insufficient to represent a meaningful effect.
A similar experiment was conducted by Pike et al. [57] to evaluate
the plausibility of simulated stimuli with SDT. The authors found that
participants’ sensitivity was not significantly greater than the minimum
meaningful effect. Neidhardt et al. [52] investigated the influence of
different BRIR simplification approaches on the plausibility in an in-
teractive approaching motion towards a virtual loudspeaker rendered
with dynamic binaural synthesis. Neidhardt and Zerlik [54] conducted
a two-part plausibility experiment in 6 DoF. In the first part, where all
stimuli were simulated, inexperienced listeners tend to accept virtual
simulation as real, while experienced listeners’ responses were equally
distributed. In the second part, similar to the experiment of Lindau
and Weinzierl [45], results varied for inexperienced listeners, while
experienced ones could reliably detect the simulation. Several more
studies investigated the plausibility of simplified binaural rendering
approaches [3]. Some of them employed VR environments [20] and
analyzed the role of visual cues, too [6, 10]. Also, the authenticity and
plausibility of different HRTF recording methods were assessed [55].

Between the strict authenticity based on direct comparison and the
less demanding plausibility relying only on the listener’s expectation,
there is another common scenario in AAR applications. In this scenario,
real and virtual sound sources simultaneously reproduce different but
similar stimuli. Thus, such a scenario allows a comparison of the virtual
sound source with real ones but it prevents the direct comparison with
the real counterpart. Two worth citing criteria for this scenario are co-
immersion [66] and transfer-plausibility [69]. In a scene with existing
sources, both these criteria evaluate the immersion of a simulated
source without being perceived as such. Co-immersion and transfer-
plausibility differ in their application. While transfer-plausibility is
defined only for pure AAR scenes, co-immersion also encompasses
fully artificial scenes where a sound source should be immersed among
existing virtual sources by matching their acoustic features. Wirler
et al. [69] evaluated the transfer-plausibility in a room with up to
eight loudspeakers. None or one of them was simulated with dynamic
non-individualized binaural synthesis. Results varied according to the
number of simultaneous sources and stimulus type. Stecker et al. [66]
investigated the co-immersion of a virtual speaker, represented by an
avatar in a VR environment, by varying its acoustic features (room size
and reflection coefficients) from the other speakers, virtual as well.

3 FROM AMBISONICS TO STATIC LATE REVERBERATION

In our study, we evaluated two approaches for simplifying the LR of
HOA RIRs. In the remainder of the paper, the two simplified conditions
will be referred to as B, and Fd, while the reference HOA one as H.
Fig. 2 provides a scheme of the three conditions: all use the reference
ERs in HOA format—which can be dynamically rendered based on
head rotations—whereas the LR part differs across conditions. For
reference condition H, the full HOA RIR is used. For condition B, a
simplified LR is obtained through a binaural downmix from HOA using
the HRTFs of a Neumann KU100 dummy head [11] pointing towards
the sound source. Therefore the resulting LR for B is a stereo response
and is static with respect to head rotations. For condition Fd, the LR is
generated algorithmically by the Freeverb artificial reverberator [63], a
computationally efficient Schroeder reverberator. Freeverb’s parameters
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1 INTRODUCTION

The Reality-Virtuality Continuum [49] can be defined as a segment that
spans between real and virtual environments. Augmented Reality (AR)
and Augmented Virtuality (AV) can be situated along this continuum.
AR is closer to the real world while AV is closer to a pure virtual envi-
ronment, and results from capturing real-world content and bringing it
into virtual reality (VR). Jerald [36, Ch. 21] provides examples of such
real-world content, including 360° images, true 3D data captured via
depth cameras or scanners, scientific data (e.g., volumetric datasets),
and so on. We extend the AV definition to the acoustic domain and
propose the term Audio Augmented Virtuality (AAV) as the creation of
virtual environments using real-world auditory content. This is the first
contribution explicitly working on AAV to the best of our knowledge.

Specifically, we propose an innovative experimental design in AAV
aimed at evaluating how different acoustic reverberation approaches af-
fect the co-immersion of concurrent speakers rendered in the same
virtual environment. In the context of Audio Augmented Reality
(AAR, [70]), co-immersion is defined as the property of simulated
sound sources to be perceived as belonging to a real auditory scene,
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rather than artificially superimposed upon it [59]. One possible ap-
proach to quantify co-immersion in an experimental setting is to
measure users’ ability to discriminate a virtual target from the real
scene [66]. Our aim is to investigate co-immersion in a fully virtual
context. This allows for more robust and repeatable experimental set-
tings with respect to an AAR scenario involving real sound sources,
as the same AAV scene can be experienced in any real environment
using only a pair of headphones. In this case, co-immersion can be
operationalized by asking users to discriminate among synthetic targets
treated with different rendering approaches.

Realistic simulation of a virtual sound source via headphones poses
several challenges, which are addressed by the literature on dynamic
binaural auralization [7, 28]. Auralization, is the process of rendering
audible the soundfield of a source in an acoustic space, simulating the
listening experience at a given position in the modeled space [39]: a
simple auralization approach is the convolution of an anechoic audio
signal, representing a sound source, with a Room Impulse Response
(RIR) recorded in the environment of interest. Binaural refers to the
generation of two sound signals representing the sound waves reaching
the listener’s left-right ear canals. This entails accounting for the
effects of the listener’s body (head, torso, pinnae) interacting with
incoming sound wavefronts based on their direction of arrival: Head-
Related Transfer Functions (HRTFs) model this interaction. Dynamic
means that the virtual simulation is adapted as the listener moves in the
environment. Head rotations are commonly tracked with 3 degrees of
freedom (DoF), although 6-DoF simulations are also possible.

Spatial RIRs, e.g. in Ambisonics format [71], allow for dynamic
simulations by encoding directional properties of the soundfield reach-
ing the listening point. Therefore, proper use of HRTFs with spatial
RIRs provides an interactive and immersive simulation where a sound
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are tuned by a LR matching method [14], using B as a target.
We made some changes to the matching method [14] in order to

adapt it to the current context. In particular, we dismissed the ERs
modeling and focused on LR exclusively. Then, we adapted the method
to handle HOA instead of stereo RIRs. Moreover, in order to allow
for a fair comparison, we applied a multichannel decorrelator based
on randomized time-frequency delays and cascaded all-pass filters on
the left and right channels of the artificial reverberator [40]. This is
needed since stereo width in the original Freeverb algorithm is achieved
by delaying one channel with a constant delay, thus introducing a
perceivable pattern of correlated frequencies. The artificial reverberator
resulting from our modification is a decorrelated Freeverb.

Fig. 3 depicts the block diagram to obtain the reverberation condi-
tions. The input target HOA RIR Rh represents the reference condition
H. As a first step, the binaural downmix procedure converts Rh into a
corresponding binaural RIR Rb using the dummy head HRTF. Next, the
boundary point τ̂ between the ERs and LR of Rb is estimated, which is
needed to extract the two RIR’s parts using cosine fade-out and fade-in
operations. Thus, we extracted the ERs Eh from the target HOA RIR
Rh with a cosine fade-out 128 samples long ending at τ̂ . Then, the LR
Lb is obtained through a cosine fade-in on Rb. Condition B is repre-
sented by the combination of the HOA ERs Eh and the stereo LR Lb.
In the LR matching step, we obtained the approximated LR L̂ by tuning
Freeverb’s parameters to match Lb. Finally, condition Fd is represented
by the combination of the HOA ERs Eh and the LR L̂ followed by
the decorrelation procedure. The ERs and LR separation and the LR
matching methods are described in Sec. 3.1 and Sec. 3.2, respectively.

3.1 Early reflections and late reverberation separation
A custom method is used to estimate the boundary point τ̂ between
ERs and LR of the RIR Rb. Such signal is divided into multiple time
frames where the n-th frame ranges from Rb[0] to Rb[nγ − 1], with
γ = 512. A cosine fade-out is applied at the end of each frame. Then,
we fit an autoregressive model of order 2⌊(2+ fs/1000)⌋ for each
frame n using the Yule-Walker method. The obtained autoregressive
coefficients An are used to compute the Power Spectral Density PSDn.
Next, the Logarithmic Spectral Distance (LSD) is computed for each
pair of consecutive PSD values PSDn and PSDn+1. A knee detection
algorithm [60] is applied to the LSD values to estimate the frame
containing standalone ERs, which last sample is set as the boundary
point τ̂ . The rationale is that ERs frames yield higher differences of
PSD values compared to those containing diffuse reverberation as well.

3.2 Artificial late reverberation matching
The core procedure for generating condition Fd is the LR matching
procedure depicted in Fig. 3, where Freeverb’s parameters are auto-
matically tuned to minimize the difference between the target binaural
LR Lb and the artificially generated one L̂. To obtain L̂, a Freeverb’s
impulse response is generated given a set of parameters P, then a cosine
fade-in from 0 to τ̂ is applied to remove the ERs. Bayesian optimiza-
tion is employed to tune the parameters using a Gaussian process as a
prior [64]. The objective is to minimize the loss function ℓ between the
signals Lb

s and L̂s, obtained by convolving with a 1 s long logarithmic
sweep the signals Lb and L̂, respectively. Computing ℓ on sweeps in-
stead of impulses provides a better match of the LR gain. Loss functions
used for similar tasks [22, 43] inspired the definition of ℓ as the mean
absolute difference between the multi-resolution mel-spectrograms of
Lb

s and L̂s. The mel-spectrogram in dB M f —Short-Time Fourier Trans-
form, followed by the filter-bank mapping to the mel scale and dB
conversion—aims at a perceptually motivated loss. For the STFT, we
used a Hanning window of size f with a 25% overlap. The loss function
ℓ is so defined:

ℓ(Lb
s , L̂s) = ∑

f∈F

1
T

T

∑
t=1

∣∣∣Mt
f (L

b
s )−Mt

f (L̂s)
∣∣∣ , (1)

where t is the time frame index, T is the number of frames and
F = {256,512,1024,2048,4096} are the selected spectrum frame sizes.

Before the computation of ℓ, we cut infrasonic components from Lb
s and

L̂s with a third-order high-pass filter. Further, the spectrum’s values are
truncated to the lower threshold of -60 dB. We computed the average
of ℓ values for the left and right channels to obtain a unique value.

The loss function ℓ is assumed to follow a multivariate Gaussian dis-
tribution. An acquisition function A selects the next set of parameters
Pi+1 from a range of possible values. The prior Gaussian distribution
of ℓ is modeled employing the Matérn kernel [68, Ch. 4, Sec. 4.2] as
a covariance function between the current parameters Pi and the new
candidate ones. Thus, Freeverb’s parameters are iteratively tuned to
minimize ℓ by means of the Bayesian optimization.

Finally, condition Fd is obtained by recombining the original HOA
ERs Eh and the matched stereo LR L̂, followed by the above described
decorrelation.

4 MATERIALS AND METHODS

4.1 Virtual Acoustic Environments
The three VAEs evaluated in our experiment consist of datasets of HOA
RIRs recorded in a living room [61], a classroom [56] and a concert
hall [41, 42]. These datasets contain recordings of at least four sound
sources in fixed positions. Each RIR was recorded at a 48 kHz sample
rate using an em32 Eigenmike. We specifically selected these rooms as
they represent the large variability in room acoustic properties.

The living room [61] is a small environment of 4.97×3.78×2.71
meters (width × length × height) that includes furniture such as a
sofa, armchairs, a carpet, etc. As a result, it has a short reverberation
time. From this dataset, we selected the RIRs recorded in position R1.
The selected sound sources were S5, STV, SG4 and SG6 (see Fig. 1a),
which we renamed as LI−45°, LI0°, LI+39° and LI+66°, respectively, to
clarify the angle between the receiver and the source. These sources
were placed between 1.6 m and 2.6 m from the receiver.

The classroom [56] is an empty room, slightly larger than the living
room (6.5×8.3×2.9 m), resulting in a longer reverberation time. The
recordings were made with the receiver in the middle of a 3D grid
representing the recording positions of the sound sources. We selected
the four RIRs recorded at the receiver’s height, i.e. 1.5 m, for the source
positions labeled 152, 032, 112, and 302 in the dataset (see Fig. 1b). In
this paper, they are referred to as CL−45°, CL0°, CL+45°, and CL+90°,
respectively. The source distances from the receiver were about 1.4 m
for CL−45° and CL+45° and 1.5 m for CL0° and CL+90°.

The concert hall [42], originally a church, is the largest environment
among the three, resulting in a long reverberation time. The RIRs were
recorded with the loudspeakers on the stage arranged as an ensemble
and the receiver placed in front of them. We selected the four positions
of the sound source recorded 3 m away and at the angles −30°, 0°,
+30°, and +90° with respect to the receiver (see Fig. 1c). We named
these positions CO−30°, CO0°, CO+30°, and CO+90°, respectively.

The VAEs were rendered in the same VR scene designed in Unity.
The VR scene is a mostly dark environment with a spotlight on the floor,
as shown in Fig. 1d. We designed the scene to be as simple as possible
to minimize possible biases elicited by the visible environment, and at
the same time to provide the participants with coherent sensory-motor
contingencies for head rotations.

We computed a set of acoustic parameters to provide an objective
acoustic characterization of the VAEs aimed at identifying the differ-
ences between VAEs and the various positions of the sound source
within each VAEs. We computed these parameters considering the
binaural downmixed versions of the HOA RIRs Rh with the listener’s
head oriented toward the frontal position. For this downmix, we used
again the HRTF of the Neumann KU100 dummy head [11].

The selected acoustic parameters are defined in ISO standard
3382 [26] and include reverberation time T20, early decay time EDT ,
center time TS, clarity index C80, lateral energy fraction LF80, and in-
teraural cross-correlation coefficient IACC [32]. Reverberation time
is the time it takes for the reverberation to decay by 60 dB after the
sound source stops. In particular, we measured the reverberation time
T20 by tripling the milliseconds employed by the RIR to decay from
−5 to −25 dB. Similarly, early decay time EDT measures the millisec-
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onds required by reverberation to decay by 10 dB with the purpose
of estimating the ERs decay time. The center time TS is the center of
gravity of the squared RIR. The clarity index C80 is the ratio between
the ERs and the LR energy assuming their boundary point at 80 ms.
The lateral energy fraction LF80 is the ratio between the side and middle
components of ERs assumed to be in the first 80 ms. The interaural
cross-correlation coefficient IACC measures the spatial impression of
a binaural RIR by computing the cross-correlation between the sound
signals reaching the two ears [34]. Tab. 1 shows the acoustical param-
eters computed for each position in each VAE using the AURORA
software [24, 25]. The reported values are averaged for the left and
right channels, except for IACC which is a single value by definition.

4.2 Auralization

To provide a realistic auralization of the VAEs, we convolved an ane-
choic speech signal of interest with one of the HOA RIRs. This provides
the listener with the sensation to be in the real environment where the
RIR was recorded, together with the speaker. In order to binaurally
render an Ambisonics signal through headphones, a set of HRTFs must
be applied to the decoded signal. To this end, we used individualized
HRTFs that model each listener’s spatial sound perception. The bin-
aural rendering accounts for head movements with 3 DoF (yaw, pitch,
roll) allowing for a dynamic auralization. Headphone compensation
must also be applied, in order to remove acoustic coloration effects
added by the headphone speaker responses. To this end, we used non-
individual Headphones Transfer Functions (HpTFs) based on acoustic
measurements on the Neumann KU100 dummy head [11] and applied
the corresponding compensation filters.

4.2.1 Technical setup

The used hardware components are a laptop, an Oculus Quest 2 VR
headset, a MOTU UltraLite mk3 Hybrid audio interface and a pair
of Sennheiser HD650 headphones. Software tools include the Reaper
Digital Audio Workstation (DAW), the SPARTA audio plugin suite [48],
and the Freeverb artificial reverberator implemented in JUCE [37]. The
Oculus Quest 2 was used to render the visual VR scene and to send OSC
messages for head tracking to the SPARTA AmbiBIN plugin running
in Reaper. AmbiBIN decoded the 4th-order Ambisonics speech to
binaural signals according to head tracking and individualized HRTFs.
For the Fd condition, we also applied the SPARTA Decorrelator on the
LR. Then, SPARTA MultiConv applied the compensation filter for the
HpTFs of the Sennheiser HD650 headphones. Finally, the auralized
audio signal was played through headphones with the MOTU interface.

Fig. 4: Head’s pictures as taken for the experiment’s participants to
personalize the HRTF with the measuring tape used as a reference. The
spherical model parameters are shown: (a) head width X1, (b) head
depth X3, (c) pinna contour C1, and ear canal.

4.2.2 HRTF individualization
Commonly, to model user acoustics in immersive audio, generic HRTFs
are used, e.g. recorded using dummy heads. Although this approach
is convenient, it can increase localization errors and front-back con-
fusions [50, 67] due to the large variability of listener anthropometric
traits. Individual HRTFs, along with reverberation and head tracking,
can significantly reduce these errors and improve externalization [8].
Since individual HRTF measurements are time-consuming and require
specialized facilities, a possible solution is the estimation of the individ-
ual HRTF from the listener’s anthropometry. HRTF individualization
should be based on a minimum set of parameters to balance optimiza-
tion and efficiency in terms of accuracy of synthesis and computational
complexity, as recently investigated in the literature [1, 29].

We employed the mixed structural model of HRTF proposed by
Geronazzo et al. [29], where HRTF is synthesized using structural
components associated with specific parts of the body (head and pinna).
This model requires a set of anthropometric data, namely: the ear
contour C1 that outlines the helix, the head width X1, and the head
depth X3. For each participant, we manually obtained these data from
3 pictures as shown in Fig. 4. We used a measuring tape as a reference
to guarantee a reliable measurement.

Given the anthropometric data X1 and X3, low frequency content
(up to 1 kHz) is modeled with a spherical head model with ear displace-
ment [5]. Assuming diametrically opposed ears, the Interaural Time
Difference (ITD) in the horizontal plane is estimated as:

IT D(γ,a) =

{
a
c (sinγ + γ) if 0 ≤| γ |< π

2
a
c (π − γ + sinγ) if π

2 ≤| γ |< π
, (2)
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Table 1: Acoustic characterization through a set of parameters (ISO 3382 [26]) computed with AURORA [24, 25] for each position in the VAEs.

VAE Position T20 [ms] EDT [ms] TS [ms] C80 [dB] LF80 [dB] IAAC

Living Room

LI0° 404.5 401.0 19.6 13.9 -6.4 0.599
LI+39° 425.5 367.0 15.3 14.5 -1.4 0.267
LI−45° 390.5 402.5 19.3 13.7 -0.5 0.229
LI+66° 396.0 375.0 14.4 15.9 0.2 0.143

Classroom

CL0° 1057.1 828.5 38.1 8.2 -1.2 0.732
CL−45° 1178.1 951.5 45.1 7.3 -1.4 0.240
CL+45° 1152.4 1003.0 44.3 7.5 -0.8 0.223
CL+90° 1061.4 950.0 41.4 7.8 -1.0 0.224

Concert Hall

CO0° 1635.5 19.5 6.6 15.8 -10.3 0.809
CO−30° 1654.0 479.5 14.2 12.9 -1.2 0.379
CO+30° 1640.0 461.5 12.4 13.6 0.0 0.401
CO+90° 1594.5 432.5 23.4 12.5 -0.7 0.157

where c is the speed of sound, the head radius a is computed as a =(
0.41 X1

2 +0.22 X3
2 +3.7

)
, and γ is the angle between the source vector

S⃗ and the ear vector e⃗ with origin in the center of the sphere.
To model the high-frequency content, the best-fit HRTF is selected

from the CIPIC [2] dataset according to anthropometric features. For
each participant, we manually annotated n= 15 ear contours C1 and k=
20 ear canal positions. These annotations are used to estimate the pinna
notch frequencies f0 for each elevation angle φ ∈ {1, . . . ,Nφ} [27]. The
HRTF selection is based on the mismatch between the north frequencies
f0 and the ones F0 extracted from the CIPIC HRTFs:

m(k,n) =
1

Nφ
∑
φ

| f (k,n)0 (φ)−F0(φ)|
F0(φ)

. (3)

4.3 Objective analysis
We objectively evaluated the LR matching method (see Sec. 3) by
comparing the acoustical parameters of the target reverberation and the
matched one generated by Freeverb with the automatically tuned param-
eters. The target RIR is Rb, i.e. the binaural downmix of the HOA RIR
Rh with the listener’s head oriented toward the sound source. For the
matched reverberation, the acoustical parameters cannot be computed
on matched LR L̂ alone. Therefore, to obtain the complete matched
RIR R̂b, we joined L̂ with the ERs of Rb using a cross-fade centered on
τ̂ . For this objective evaluation, we selected the reverberation time T20,
the center time TS, and the clarity index C80 as acoustical parameters.
We excluded EDT and LF80 since they are specifically defined for ERs,
which are the same for the target and the matched RIRs compared in
this evaluation. Additionally, we also included the loss function value
ℓend at the end of the iterative LR matching procedure.

4.4 Subjective Evaluation
We evaluated the co-immersion of conditions B and Fd compared to
the reference reverberation H conducting a listening experiment with
human participants in AAV. For each participant, we first took the
pictures needed for the HRTF individualization procedure. Then, we
explained the experiment procedure and we had the participant wear
the VR headset and headphones. The procedure involved a preliminary
screening test followed by the main experiment. During the experiment,
each participant performed two tasks while experiencing the dynamic
auralization of the VAEs where up to four simultaneous speakers were
rendered. Participants were seated in a soundproof room (weighted
sound reduction index Rw >= 68 dB) and were able and encouraged to
move their heads and torso during each trial.

4.4.1 Stimuli
The speech data used in our experiment were obtained from the ACE
challenge’s corpus [19], which includes English speeches recorded
in an anechoic chamber at a sample rate of 48 kHz and 16-bit depth.

Speech signals were normalized to a target loudness of −23 LUFS. The
four speakers used in our experiment were two males and two females—
with a mix of native and non-native English speakers—retrieved from
the ACE corpus. Each of their speeches was about 1 minute long.

The four speakers were associated with four characters from the
Guess Who? board game. Additionally, for each character, we created
a short backstory that was coherent with their utterances. In the prelim-
inary screening test, we introduced each character with their name and
background. During the preliminary test, in the VR scene, we showed
the characters’ faces in the voices’ direction while the participant lis-
tened to them (see Fig. 1d). Using backstories and faces, we aimed
to provide a more complete characterization of the speakers. This
was intended to help participants remember the name of each speaker,
which is needed in the main experiment where the characters’ faces
were hidden. However, we allowed participants to identify a speaker
using other features, such as physical traits and backstory insights.

4.4.2 Experiment design
We designed our listening experiment to evaluate the co-immersion
of the simplified LR approaches in an AAV scene. In particular, we
compared the perception of the three reverberation conditions described
in Sec. 3: H, B and Fd. Each trial of the experiment involved q speakers,
where q ∈ {2,3,4}. The speakers were placed in different positions
of one of the three VAEs (living room, classroom, concert hall). In
each trial, we provided the participants with one of three scenarios
None, Bin and Fv, related to the reverberation conditions H, B and Fd,
respectively. In the None scenario, all q speakers are rendered with
the H reverb condition. In scenarios Bin and Fv, q− 1 speakers are
rendered with H condition, while the remaining speaker is rendered
with B and Fd conditions, respectively. Speakers rendered with B and
Fd conditions are called impostors. Following SDT terminology, we
refer to the presence of an impostor as signal and the absence as noise.

For each trial, participants perform the following two tasks to assess
the co-immersion of the impostor conditions:

1. Detection: participants were asked to detect the presence (signal)
or absence (noise) of an impostor. Thus, we asked the following
question: “Are all the speakers talking in the same room?”.

2. Identification: only if the participants answered affirmatively to
the previous question, they were asked to identify which of the
q speakers was the impostor. This task was represented by the
question: “Which of the speakers do you think is not in the same
room as the others?”. Participants answered this question with
the name of the impostor. When q = 2, we decided to disregard
the identification task since the impostor’s identification between
two speakers is not possible without other references.

To guide participants in correctly interpreting the tasks, we provided
some recommendations before the start of the experiment and we
repeated them upon request. Participants should focus on the acoustic
and reverberation of the speeches rather than the spatial position and
distance of the speakers. We recommended detecting the presence
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Table 2: Objective evaluation through acoustical parameters of the reverb matching method averaged across the positions of each VAE. For each
metric (ℓend excluded), we report in column Rb the mean and the standard deviation of the metrics’ value for the target RIRs Rb. In column
R̂b −Rb, we report the mean and the standard deviation of the signed error between the metric values for the matched RIRs R̂b and the target
RIRs Rb. In this column, we also report between brackets the percentage of the mean error with respect to the mean metric value of Rb.

VAE ℓend [dB] T20 [ms] TS [ms] C80 [dB]
Rb R̂b −Rb (%) Rb R̂b −Rb (%) Rb R̂b −Rb (%)

Living Room 3.5 ± 0.2 405.0 ± 4.7 -110.9 ± 20.0 (-27.4) 18.8 ± 3.5 -1.2 ± 0.6 (-6.5) 14.2 ± 0.9 3.3 ± 0.9 (23.3)
Classroom 8.7 ± 0.1 1163.7 ± 31.5 -196.8 ± 40.5 (-16.9) 40.1 ± 3.5 -14.4 ± 1.5 (-35.9) 7.6 ± 0.5 3.1 ± 0.3 (40.9)
Concert Hall 6.7 ± 0.5 1629.0 ± 11.8 -256.2 ± 62.3 (-15.7) 10.8 ± 2.7 -0.2 ± 0.2 (-1.6) 13.8 ± 1.2 -0.4 ± 0.1 (-2.9)

of an impostor only if they thought that the acoustic rendering of a
speaker was incoherent with the others. We also suggested exploring
the acoustic scene in all directions by moving their head. We told
the participants that the impostor’s occurrence across the trials was
random—though their occurrence followed a precise protocol—and we
informed them in which of the three VAEs the simulation was.

4.4.3 Preliminary screening test
To ensure the ecological validity and reliability of the participants’
judgments experiencing the proposed VAEs, we conducted a prelim-
inary screening test on sound externalization. The sense of presence
refers to the feeling of being physically in the virtual environment [62].
Sound externalization is an important aspect of it because refers to
the ability to accurately create the sensation that the sound is coming
from specific external locations, rather than just being heard through
headphones [12]. In each trial of this test, participants listened to the
speech of a single speaker rendered in a given VAE with the character’s
face visible. Then, they were asked to rate the degree of perceived
externalization between three options: inside, on the edge, or outside
the head. Each speaker was repeated for three trials, one for each of
the three reverberation conditions H, B, and Fd. We excluded from the
experiment the participants who rated condition H as inside the head for
at least 50% of its occurrences. In addition to screening purposes, the
preliminary test also served to acquaint participants with the VAEs and
the VR scene, as well as to learn the association between the speakers’
voices and their names, which was necessary for the main experiment.
Thus, after the preliminary test, we asked them to guess the speaker’s
name for each speech without showing the character’s face.

4.4.4 Protocol
The experiment consisted of 27 trials, obtained by combining three
reverberation scenarios (None, Bin and Fv), three VAEs (living room,
classroom and concert hall), and three complexities (2, 3 and 4). The
trials were divided into three sessions, one for each complexity in Latin
square order. Participants were asked to take a break between each
session. Within each session, we randomly assigned the VAEs order
and, for each of them, we presented three consecutive trials, one for
each scenario, in random order.

For each complexity, we selected a set of predetermined source posi-
tions in each VAE to render the speakers. The position of the impostor
was also predetermined but varied based on the VAE, complexity, and
the Bin and Fv scenarios. The complete list of the selected positions is
reported in the supplementary materials. For each trial, the involved
speakers were randomly selected and assigned to the predetermined
source positions. Thus, even though the impostor’s position was prede-
termined, the speaker acting as the impostor was randomly selected.

In the preliminary screening test, each speaker was consecutively
repeated for each reverberation condition. With the four selected speak-
ers, the preliminary test resulted in 12 trials. Each speaker was placed
in a source position of a VAE that was the same for all participants. The
speakers were presented in a Latin square order, while the reverberation
conditions were presented randomly within each speaker’s trials.

4.4.5 Participants
We recruited 31 participants to take part in our experiment. One partici-
pant reported experiencing tinnitus and was therefore excluded from

the analysis. Other 5 participants failed the preliminary screening
test; therefore, they were excluded. The remaining 25 participants (17
males, 7 females, 1 not specified) reported normal hearing conditions
and passed the screening test, thus they were included in the analysis.
The age distribution of the participants was: 17 in 18–27, 7 in 28–37,
and 1 in 38–47. Most of the participants (16) reported an intermediate
level of experience with audio reverberation, 7 of them had no experi-
ence and the remaining 2 were self-reported experts. Regarding VR,
most of the participants (21) had no experience, 3 reported an interme-
diate level and the remaining 1 expert level. Participants completed the
experiment, including the preliminary test, between 30 and 80 minutes.

5 RESULTS

5.1 Matching accuracy
In this section, we discuss the results of the objective analysis presented
in Sec. 4.3, which are reported in Tab. 2 averaged across the positions
of each VAE. The complete values for all positions are reported in the
supplementary materials. Since ℓend exhibited small standard deviation
values, positions inside each VAE are similarly matched. On the other
hand, we noticed differences in the ℓend values of the VAEs, character-
izing a dependency on the type of RIR used. In particular, shorter RIRs,
such as the ones in the living room, tend to yield lower values. For the
sake of comparability, acoustical features can provide a more reliable
evaluation. Reverberation time T20 is underestimated in each VAE, as
well as the center time TS, especially in the classroom. Moreover, the
classroom exhibits the worst performance for clarity C80, with a mean
percentage error of 40.9%. Nonetheless, the error standard deviations
are in general quite low, suggesting that the differences in the matching
accuracy between the positions inside each VAE are limited.

5.2 Preliminary test
Fig. 5 displays the frequencies of the externalization rates collected
in the preliminary test grouped by reverberation condition. Stimuli
are more frequently perceived outside the head compared to the other
options. As expected, this tendency is emphasized for the reference
reverberation condition H compared to the impostor’s conditions B and
Fd. The condition B is more frequently perceived inside the head than
Fd, which could be a consequence of the decorrelation operation applied
to Freeverb’s output. Despite that, we also notice that B is perceived as
outside the head more frequently than Fd. The latter has received more
“on the edge” responses than the other conditions. However, the general
tendency toward externalization satisfies our requirement of providing
participants with ecologically spatialized stimuli.

5.3 Experiment results analysis
Fig. 6 shows the alluvial plot summarizing the overall participants’ per-
formances in the detection and identification tasks. As expected, Fv sce-
nario is more detectable than Bin based on their hit rates—percentage
of correct signal responses—of 64.4% and 54.7%, respectively (see
streams from the Fv and Bin nodes to the Signal one in Fig. 6). Fv is
also more identifiable according to the percentage of correct identifica-
tion responses among the Fv (33.8%) and Bin trials (22.2%). Despite
the higher hit rate for Fv, Pearson’s χ2 test showed no statistically
significant difference between the three scenarios (χ2 = 4.50, p = 0.11,
d f = 2) in predicting if the detection response was wrong or correct.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 11, NOVEMBER 20234478

0 10 20 30 40 50

Outside

Edge

Inside

Reverb condition: Overall H B F d 

Percentage of responses [%]

Fig. 5: Externalization rates frequencies in the preliminary screening
test grouped by reverberation condition.
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Fig. 6: Alluvial plot of the percentages of responses in the detection
and identification tasks. The disregarded identification responses for
complexity 2 are accounted in “n.a.”.

In addition to the overall analysis, we investigated the influence
of complexity and VAE. The alluvial plots for each combination of
complexity and VAE are reported in the supplementary materials. Tab. 3
reports the percentages of correct detection for each combination of
scenario, complexity and VAE. We conducted a logistic regression
test to assess the significance of the independent variables (scenario,
complexity and VAE) influence and their interactions. The dependent
binary variable was again the correct (1) or wrong (0) detection. We
considered the combinations of up to two variables to limit the number
of the resulting combinations. In Tab. 3, we report the significance level
of the regression coefficients (log-odds) for each variables’ combination.
A positive coefficient (light gray cells in Tab. 3) implies an increment
in the predicted log-odds of the dependent variable and vice versa
for a negative coefficient (dark gray cells in Tab. 3). Regarding all
VAEs, we noticed that the correct rejection rate—the rate of correct
noise responses for the None scenario—decreases as the complexity
increases, implying an increment of the false alarm rate. This effect
is supported by logistic regression since for the None scenario, the
coefficient is significantly positive (p < .001) and negative (p < .01)
for complexity 2 and 4, respectively. Fv scenario shows a reversed trend,
i.e. the hit rate increases with the complexity. This is supported again
by the negative and positive coefficients obtained in Fv for complexity
2 (p < .01) and 4 (p < .01), respectively. Thus, when an impostor is
rendered with reverb condition Fd, the higher the complexity, the easier
the detection task. Conversely, for Bin scenario the higher hit rate
(60%) is found in complexity 2 and it drops for greater complexities.

Analyzing the role of VAEs, the classroom exhibits a significant
positive coefficient (p < .001) with an overall correct detection rate
of 67.1%. In this VAE, the hit rate of Fv (80%) is associated with a
significant positive coefficient (p < .01). In contrast to the classroom,
in the living room, Fv has a low hit rate (48%) with a significant
negative coefficient (p < .01). For Bin a significant negative coefficient
(p < .05) is found in the concert hall where the hit rate is 44.0%. These
results suggest that the impostor is more detectable for Fv than Bin in
the classroom and concert hall. The opposite pattern is noticed in the
living room. However, in the overall case of Fv, a significant positive
coefficient was found (p < .01). Finally, another significant positive
coefficient was found for the overall case of complexity 2 (p < .01).

5.3.1 Identification task
For the identification task, the overall percentages reported in Sec. 5.3
are difficult to interpret since multiple complexities are considered.
Thus, we computed the percentages of correct responses for each com-
plexity, except for complexity 2 which was disregarded for the identi-
fication task. For complexity 3, 13.3% of the identification responses
were correct among the Bin trials, against the 42.7% among the Fv
trials. This difference decreases in complexity 4 where the percentages
are 21.3% and 28% for Bin and Fv, respectively. It is worth noticing
that for Bin scenario the percentage of correct identification is lower
for complexity 3 than 4, although the inferior number of simultane-
ous speakers which entails a higher chance level. Furthermore, these
percentages are even lower than the chance levels of both complexity
3 (33%) and 4 (25%). However, we avoid here any speculation to
explain the trends obtained in the identification task. The proposed
experimental design cannot reliably handle such complexity and it will
subject to revisions in future versions of the experiment.

5.3.2 Signal Detection Theory analysis
Signal Detection Theory (SDT) is a psychophysical approach to model
performance in decision processes by measuring the ability to detect a
certain information (signal) among noise [33]. We employed SDT to
analyze the detection task results which falls under the yes/no paradigm.
In our case, as already mentioned, the None scenario is regarded as
noise, while Bin and Fv are regarded as signals. In SDT, the noise
and signal conditions are modeled as Gaussian probability density
distributions of equal variance depending on the subject’s internal
response to the provided stimulus. The sensitivity index d′, defined as
the distance of the two distributions, measures the ability to discriminate
between the two stimuli. A d′ close to 0 denotes the subject’s inability
to discriminate between noise and signal conditions, thus, in our case,
the impostor cannot be detected. Instead, a large d′ denotes a high
discrimination ability, in our case, the impostor can be easily detected.
In SDT, the sensitivity d′ is estimated as follows:

d′ = z(pHit)− z(pFA), (4)

where z is the inverse cumulative normal distribution, while pHit is
the hit rate and pFA is the false alarm rate. Another metric provided by
SDT is the criterion c which measures the response bias, i.e. the sub-
ject’s tendency toward one of the two responses. In our case, negative
and positive values of c imply a tendency to detect the presence and the
absence of an impostor, respectively. In SDT, c is estimated as follows:

Table 3: Percentages of correct detection for each scenario, complexity
and VAE for the experiment’s participants. We also show the significant
results of the logistic regression test providing the coefficient’s sign of
the combination of variables (light gray for positive and dark gray for
negative signs) and the significance level as superscript (*: p < 0.05,
**: p < 0.01, ***: p < 0.001).

Complexity Complexity Complexity All
2 3 4 complexities

Living room

None 84.0 72.0 88.0 61.3
Bin 68.0 48.0 48.0 54.7
Fv 36.0 52.0 56.0 48.0∗∗

All 62.7 46.7 54.7 54.7

Classroom

None 68.0 56.0 44.0 56.0∗

Bin 68.0 64.0 64.0 65.3
Fv 80.0 72.0 88.0 80.0∗∗

All 72.0 64.0 65.3 67.1∗∗∗

Concert hall

None 76.0 64.0 36.0 58.7
Bin 44.0 40.0 48.0 44.0∗

Fv 56.0 68.0 72.0 65.3
All 58.7 57.3 52.0 56.0

All VAEs

None 76.0∗∗∗ 53.3 46.7∗∗ 58.7
Bin 60.0 50.7 53.3 54.7
Fv 57.3∗∗ 64.0 72.0∗∗ 64.4∗∗

All 64.4∗∗ 56.0 57.3 59.3
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Fig. 7: Distributions of the SDT metrics d′ and c for the Bin and Fv
scenarios. The dashed horizontal lines represent the distribution’s mean,
while the vertical whiskers are the 95% confidence intervals.

c =−1
2
(z(pHit)+ z(pFA)) . (5)

To avoid the occurrence of infinite values in SDT metrics, we applied
the log-linear correction that consists of adding 0.5 at both the numer-
ator and denominator used for the computation of pHit and pFA [65].
We computed the SDT metrics d′ and c independently for each experi-
ment’s participant. Further, we separately computed the SDT metrics
d′

Bin and cBin for None + Bin trials and the metrics d′
Fv and cFv for None

+ Fv trials. The distributions of such metrics are shown in Fig. 7. The
mean values of d′ distributions are d̄′

Bin = 0.35 (95% CI:[0.05,0.65])
and d̄′

Fv = 0.63 (95% CI:[0.29,0.97]). A sensitivity value d′ = 0 would
correspond to the complete inability to detect the impostor. However,
since in inferential statistics is impossible to directly prove the null
hypothesis H0 that d̄′ = 0, we rely on the minimum effect hypothe-
sis [45, 51]. Thus, we try to reject the alternative hypothesis H1 that
d̄′ > d′

min, where d′
min is a lower threshold to regard the sensitivity as

too small to be perceptually relevant. In previous works employing
SDT to assess plausibility [6, 45, 57], the acoustic simulation would
be considered plausible if the obtained detection rate was less than
55%, corresponding to a d′

min = 0.1777. Given this threshold and the
selected type I and II error levels, the authors estimated the lower bound
of the optimal sample size, under the assumption of unbiased subjects
and an equal number of noise and signal trials. Since we recruited 25
participants in our experiment, each performing 27 trials, we collected
675 samples. However, our analysis is independent for the None +
Bin and None + Fv trials, thus they account for N = 450 samples each.
Selecting the type I error level zα = .25 and the type II error level
zβ = .05, we estimated a d′

min = 0.274 with the following equation:

d′
min =

√
(zα + zβ )

2 2π
N

(6)

To find if the sensitivity mean values d̄′
Bin and d̄′

Fv represent a mean-
ingful effect, we first ascertained the normality of both d′

Bin and d′
Fv

distributions through a Shapiro-Wilk test (p > .05). Then, with a one-
sided paired t-test, we found that d̄′

Fv is significantly greater than d′
min

(p < .05), while for d̄′
Bin there is no significance (p = 0.3). Thus, the

sensitivity for Bin is not sufficient to represent a meaningful effect. We
also computed the mean values of the criterion metric c̄Bin = 0.06 and
c̄Fv = −0.08. We found that they are both not significantly different
from 0 according to a t-test (p > .05)—both cBin and cFv were normally
distributed according to a Shapiro-Wilk test. This result suggests that
there is no clear tendency toward noise or signal response.

Further, we investigated the participants’ performances indepen-
dently for each complexity. The average d̄′ values for each complexity
are reported in Fig. 8a. We noticed that d̄′

Bin decreases with the com-
plexity, while d̄′

Fv decreases from complexity 2 and complexity 3, but it
is stable between complexities 3 and 4. Further, d̄′

Fv is higher than d̄′
Bin
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Fig. 8: Mean values d̄′ with 95% confidence intervals of Bin and Fv
scenarios for each (a) complexity and (b) VAE.

for all complexities, except for complexity 2 where it is slightly lower.
The statistical significance of these differences was assessed with a
two-way ANOVA test regarding scenario (Bin and Fv) and complexity
as factors. We found a significant effect on d̄′ only for complexity
(F(2) = 6.47, p < .01). Then, we conducted a Tukey-HSD post hoc
test on the complexity levels showing a significant difference between
complexities 2 and 3 (p < .05) and complexities 2 and 4 (p < .01).

We performed a similar analysis for the VAE influence on d̄′. The
average d̄′ values for each VAE along with their 95% confidence in-
tervals are reported in Fig. 8b. The classroom is the VAE where the
impostor’s detection is easier, i.e. with the higher mean sensitivity,
confirming the results reported in Tab. 3. Conversely, the Bin scenario
is almost undetectable in the concert hall. We noticed that d̄′

Bin is lower
than d̄′

Fv except for the living room. However, no significant effect was
found with a two-way ANOVA test with scenario and VAE as factors.

6 GENERAL DISCUSSION

In the literature, the Level Of Audio Detail (LOAD) [4] refers to the
adaptation of the audio rendering complexity. LOAD techniques aim to
reduce the rendered details to save computational cost while minimiz-
ing the perceived quality degradation. Accordingly, our study can be
interpreted as an evaluation of the LOAD required for LR to preserve
the perceived co-immersion in AAV scenes. The obtained promising
results on simplified LR have a potentially relevant impact on the saving
of computational and storage resources compared to convolution with
RIR or wave and geometric acoustics-based approaches.

We found that the detection tasks for Bin and Fv scenarios are very
close to the chance level both accounting for detection rates and SDT
metrics. Such results suggest the participants’ inability to reliably
detect the impostor in the proposed experiment. For Bin scenario,
we found that the mean sensitivity d̄′

Bin is not significantly greater
than d′

min, thus it does not represent a meaningful effect. This result
suggests that the LOAD can be reduced by substituting the dynamic
rendering of an HOA LR with a static binaural version. Thus, we
can answer to Q1 that a static LR does not affect the co-immersion
of a sound source in the evaluated AAV scenes. For Fv scenario, the
mean sensitivity d̄′

Fv is significantly greater than d′
min but is still very

close to this value. To answer Q2, this finding suggests that the static
LR can be approximated with a simple artificial reverberator, such as
Freeverb, with a perceivable but limited influence on co-immersion.
It is worthwhile to notice that the LOAD is further reduced in Fv
scenario because artificial reverberators are more efficient compared
to convolution. However, it comes at the cost of a greater impact than
Bin on the perceived degradation. Finally, the LR matching method
leads to satisfactory results if evaluated with the co-immersion criterion
compared to the authenticity one reported by its authors [14]. Since in
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their study the matched reverberation was clearly distinguishable from
the reference in direct comparison, co-immersion can be considered a
narrow criterion that can be exploited in specific applications.

Although the LR simplified versions are difficult to detect, we found
important differences with respect to the overall case by analyzing
separately each VAE and complexity. A significant finding is the easier
detectability of Fv for the classroom compared to the other VAEs. A
possible explanation can be identified in the larger percentage errors
of the matched classroom’s RIRs for most of the acoustical parameters
reported in Tab. 2 (ℓend , TS and C80). On the other hand, we found that
participants were essentially unable to detect the impostor in the concert
hall with Bin scenario. From an acoustic point of view, the directivity
of LR is mitigated in a large environment, such as the concert hall.
As a result, a static LR can be perceptually indistinguishable from a
dynamic one in such an environment. For the living room, both Bin and
Fv achieved low detection performances. This could be explained by
the acoustic features of the living room whose short reverberation time
(see Tab. 1) leaves a small amount of information for the listener to
focus on. This is an advantage for the application of our findings since
indoor environments, like the living room, are common for end-users.

As in the overall case, Bin is less detectable than Fv in complexities
3 and 4, and in classroom and concert hall VAEs. This was the expected
behavior since the impostor condition Fd is an approximated version
of B. However, we noticed that this pattern is reverted for complexity
2 and the living room. Though we found some statistically significant
evidence of this pattern only for the logistic regression test (see Tab. 3)
and not for d′ values, this result represents an important finding for the
use of an artificial reverberator to approximate LR. Nevertheless, for
complexity 2, both Bin and Fv are quite detectable since is the most
simple complexity level. As the complexity increases the task is harder,
and Fv is less co-immersed than Bin which is almost undetectable.

In this paper, we proposed an experimental design in an AAV frame-
work originally intended for the case study of LR. However, it can
be exploited to evaluate the perceptual impact of an arbitrary render-
ing approach of virtual sound sources in an AAV scene. The main
advantage of designing such experiences in AAV scenes is that the chal-
lenges involved in the creation of AAR scenes with real-world sound
sources are avoided (e.g., tracking, real-time and responsive interac-
tions, high-quality simulations, to name but a few [70]). As a result,
more controlled and repeatable experimental settings can be designed
within AAV. In particular, one can decide which aspects of the physical
reality to capture and which interactions to handle in VR. Furthermore,
any real environment can be simulated with a pair of headphones by
means of the acquisition of spatial RIRs in such an environment.

Although the focus of this work is on the timbral characteristics of
the late reverb, which is mainly diffuse, we used personalized HRTFs
to improve the stimuli’s ecological validity. However, the usefulness of
personalized HRTFs is debatable and strongly influenced by context
and task. Visual “capture” effects, where visual stimuli associated with
a sound source affect its localization in space, have been extensively
studied in experimental psychology [35]. Similar effects were recently
observed in VR using generic HRTFs [9]. Thus, in future works, we
plan to investigate the effect of different approaches and degrees of
HRTF personalization, as well as to compare our acoustic simulation
approach to other auralisation engines and simulators, such as Project
Triton [58], in relation to the level of HRTF personalization.

6.1 Limitations
The encouraging results obtained from our experiment should be con-
sidered as a first step toward applying our methodology to the case
study of LR. The low detectability of Bin and Fv reveals that the im-
postor’s differences from the reference are barely perceived in our
experiment. This effect is partially caused by the perceptual similar-
ity achieved by the impostor conditions, but the experimental design
may have a non negligible impact. As reported by many participants
in a post-experiment interview, the simultaneous reproduction of the
speakers prevents the listener to focus on the single speeches and their
reverberation features. As a result, participants reported low confidence
in their responses for most of the trials. These considerations suggest

that the level of difficulty of the task was too high. Thus, changes in the
experiment’s design will be crucial in future works. In particular, the
scene with simultaneous speakers will be replaced with a conversation-
like one. In this scene, the speakers will talk in sequence with partial or
no overlapping, allowing the listener to focus on single speeches.

Another possible limitation of our experiment design is the full
VR setting involved by AAV. The reference reverberation condition
H was virtually rendered, as well as the impostor conditions B and
Fd. The AAV design could intrinsically limit the applicability of the
experiment’s findings when the reference condition is not perceived
as sufficiently authentic. For this reason, we performed all the needed
operations to render the reverberation condition H as realistic as pos-
sible (HOA RIRs, individualized HRTFs, and HpTF compensation).
Furthermore, we conducted the preliminary screening test to ascertain
that the participants experienced ecologically rendered stimuli. Despite
these precautions, the findings of our experiment cannot be directly
extended to AAR settings. For this reason, in future works, we plan to
design an experiment to transfer our results in AAR.

In the field of sonic interactions in VR/AR, the ultimate goal is the
development of systems that account for the high variability in hearing
sensitivity and characterization of the listeners [28]. Our recruited par-
ticipants were far from being sufficiently representative of the potential
user population, thus we refrain from drawing general conclusions.
Despite this limitation, we included in the supplementary materials the
experiment results grouped by the participants’ characteristics (audio
reverberation experience, age range, and sex). Even though the un-
balanced and small sample sizes prevent a quantitative analysis, some
qualitative observations can be made. In particular, we noticed that
the higher the audio reverberation experience, the higher the impostor
detectability, especially in the Fv scenario. In future works, we plan to
expand upon this limitation for better generalization of the results.

Since the participants’ screening was based on self-reported normal
hearing conditions, as in several related works [16, 29, 45, 52, 54, 55],
the generalization of the results could be further undermined. However,
the preliminary screening test was designed to discard the participants
experiencing not-ecologically valid stimuli. Despite that, a proper
hearing sensitivity test would prevent biases caused by unknown hear-
ing impairments [28, Ch. 1]. Thus, in future experiments, we plan to
include more rigorous screening tests, e.g. speech-in-noise tests [38].

Our experiment failed in providing a worthwhile investigation of
the identification task since the current protocol is inappropriate for
meaningfully interpreting the obtained results. In future works, we plan
to design an experiment protocol specific to the identification task.

7 CONCLUSION

In this paper, we described an experiment in an AAV setting to evaluate
LR simplification without degradation on the co-immersion. We found
that a static LR is perceived as co-immersed in a scene with other
dynamic reference reverberation conditions. Conversely, when such a
static LR is approximated with an artificial reverberator we found a
significant impact on co-immersion, though limited. However, these
findings are restricted to the evaluated scenario (simultaneous speakers)
and within certain circumstances (complexity and VAE). Given the
above discussion and the current experimental limitations, we plan to
apply our methodology along four main directions to evaluate the in-
fluence on co-immersion of: (a) ERs simplification following previous
related works [15, 31]. To this end, a possible artificial reverberator are
Scattering Delay Networks (SDN) [18] which model ERs according
to physical properties; (b) different listening environments, consid-
ering a wider set than the three VAEs used in the present study; (c)
different conversational scenarios, considering concurrent talking [30],
turn-taking dialogues, or partially overlapping speakers; (d) the effect
of visual elements in modulating auditory perception and cognition, e.g.
visual rendering matching the acoustics features (size, material, etc.).
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