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Simple Summary: This review highlights SerpinB3’s multifaceted roles in liver disease, from fibrosis,
carcinogenesis and immune modulation to cell death protection. In different types of cancer its
overexpression correlates with tumor aggressiveness; however, in acute oxidative stress conditions,
SerpinB3 promotes cell survival. Novel therapeutic strategies targeting SerpinB3 through its upstream
regulators are under development, while its therapeutic potential in acute medical conditions has
also been proposed.

Abstract: SerpinB3, a member of the serine-protease inhibitor family, has emerged as a crucial player
in various physiological and pathological processes. Initially identified as an oncogenic factor in
squamous cell carcinomas, SerpinB3’s intricate involvement extends from fibrosis progression and
cancer to cell protection in acute oxidative stress conditions. This review explores the multifaceted
roles of SerpinB3, focusing on its implications in fibrosis, metabolic syndrome, carcinogenesis and
immune system impairment. Furthermore, its involvement in tissue protection from oxidative stress
and wound healing underscores its potential as diagnostic and therapeutic tool. Recent studies have
described the therapeutic potential of targeting SerpinB3 through its upstream regulators, offering
novel strategies for cancer treatment development. Overall, this review underscores the importance of
further research to fully elucidate the mechanisms of action of SerpinB3 and to exploit its therapeutic
potential across various medical conditions.
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1. Introduction

Serine-protease inhibitors (serpins) are a large superfamily of proteins mostly acting
as inhibitors of the chymotrypsin family, with some of them having other roles such as
inhibiting cysteine proteases [1]. The typical structure of a serpin comprises approximately
350–400 amino acid residues and features three beta-sheets (A, B and C) and nine alpha-
helices (A through I). The secondary structure elements are arranged into three main
regions: the reactive center loop (RCL), the shutter domain and the helical domain [2]. Of
note, some serpins do not exhibit inhibitory activity [2]. Serpins can be both extracellular
and intracellular proteins, localizing in various cellular compartments and exhibiting
different functions depending on their subcellular localization [2]. Human serpins are
classified into nine clades (A to I) as recently described in detail by Janciauskiene et al. [2]
and summarized in Table 1.

The biological role played by different members of this family is extensive, as an-
tithrombin (AT or SerpinC1) and plasminogen activator inhibitor-1 (PAI-1 or SerpinE1)
exhibit antifibrinolytic and anticoagulant activity [3]. AT also operates as a cardioprotective
molecule by upregulating AMP-activated protein kinase pathways [4]. Another important
serpin is α-1 antitrypsin (SerpinA1), which can inhibit the neutrophil elastase (NE), thus pre-
venting NE-related injury [5]. It is noteworthy that some serpins do not operate as inhibitors
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but as hormonal transporters and molecular chaperones [6]. Clade B (or ovalbumin-serpins)
consists of 13 serpins which lack the N-terminal signal sequence, thus acting mostly as in-
tracellular proteins [7]. The most-studied members of this clade are SerpinB2 (plasminogen
activator inhibitor-2 or PAI-2), SerpinB3/4 and SerpinB5 (maspin). SerpinB2 or PAI-2 in
normal conditions is highly expressed in keratinocytes, activated monocytes and placenta,
playing a role in fetal development, keratinocyte proliferation/differentiation and mono-
cyte differentiation [8]. This serpin is also involved in host defense against virus infection
and the metastasis of head, neck, breast and lung cancer [8]. SerpinB5 or maspin is involved
in many anti-oncogenic mechanisms such as inhibiting cell invasion and angiogenesis and
promoting apoptosis [8].

Table 1. The nine clades of human serpins. The names, localization and protein names are listed.

Clade Name Localization Protein Name

A Extracellular

α1 antitrypsin, antitrypsin-related protein, α1 anti-chymotrypsin, kallistatin, protein C
inhibitor, centerin, protein Z-dependent proteinase inhibitor, SerpinA11

antiprotease-like, vaspin, SerpinA13, corticosteroid-binding globulin, thyroxine-binding
globulin, angiotensinogen

B Intracellular

Leukocyte elastase inhibitor, plasminogen activator inhibitor-2, squamous cell
carcinoma antigen-1, squamous cell carcinoma antigen-2, S proteinase inhibitor, megsin,
cytoplasmic antiproteinase 8, cytoplasmic antiproteinase 9, bomapin, epipin, yukopin,

headpin, maspin

C Extracellular Antithrombin

D Extracellular Heparin cofactor II

E Extracellular Plasminogen activator inhibitor-1, protease nexin I, serpin family E member 3

F Extracellular Alpha-2 antiplasmin, pigment epithelium-derived factor

G Extracellular C1 esterase inhibitor, C1 inhibitor

H Intracellular Heparin cofactor II

I Extracellular Neuroserpin, myoepithelium-derived serine proteinase inhibitor (PI14) pancipin

SerpinB3, previously known as squamous cell carcinoma antigen 1 (SCCA1) is a
highly conserved cysteine protease inhibitor that is normally expressed in the basal and
parabasal layers of normal squamous epithelium, where it plays an important role in
regulating differentiation of the squamous epithelium [7]. It was initially isolated by Kato
and Torigoe [9] in the squamous cell carcinoma of the uterine cervix. What at first was
thought to be one single protease was later revealed to be two different isoforms, one neutral
(SerpinB3) and one acidic (SerpinB4), which share 98% identity at the nucleotide level and
92% identity in their amino acid sequences, the main difference residing in the active
site loop [7]. Both SerpinB3 and B4 belong to ovalbumin-serpins and, from a structural
point of view, possess nine α-helices, three antiparallel β-sheets and a hydrophobic c-
terminal reactive site loop [7] (Figure 1). The physiological role played by SerpinB3 and B4
remains largely unknown, in part due to the lack of adequate animal models, as there is
no genetic match for human serpins in rodents [10]. They are frequently co-expressed in
different tissues, including the lung, trachea, prostate, uterine cervix and testis, while in the
bladder and thymus only SerpinB3 is expressed. In other tissues, both SerpinB3 and B4 are
usually undetectable, but their expression increases in conditions of chronic inflammation,
likely as a protective mechanism against cellular stress conditions [7]. Despite these two
serpins exhibiting high sequence homology, they are characterized by different biochemical
properties and substrate affinities [11]. In vitro, human SerpinB3 mostly targets papain-like
cysteine proteases (such as cathepsin L, S and K and papain), whereas SerpinB4 inhibits
chymotrypsin-like serine proteases (such as chymase and cathepsin G) [7]. Both SerpinB3
and B4 inhibit proteolytic activity by forming an SDS-resistant complex with the target
protease through an acyl-oxyester bond.
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Focusing on the topic of this review, SerpinB3 has a protective role in acute damage [12], but
its chronic overexpression acts as an oncogenic factor, leading to apoptosis resistance [13,14], cell
proliferation and fibrosis (Figure 1). SerpinB3 expression increases in response to Tumor Necrosis
Factor (TNF)-α and Ras-driven inflammation [15,16] leading to NF-kB activation, IL-6 produc-
tion and tumor growth [16,17]. The prevention of apoptosis is achieved through interactions
with lysosomal proteases upon lysosomal leakage [10]. Moreover, one of the main properties of
SerpinB3 is its ability to induce an epithelial–mesenchymal transition (EMT), facilitating cell
invasion and metastasis formation [18]. Recently, Chen et al. [19] highlighted a potential role
of SerpinB3 in the regulation of the immune response, favoring an immunosuppressive tumor
microenvironment in cervical cancer.

This review is mainly addressed to analyze the role of SerpinB3 as both a positive and
negative molecule, focusing especially on liver disease.

2. SerpinB3 in Fibrosis and Carcinogenesis

The first study that connected SerpinB3 and the progression of a fibrogenic chronic
disease was made by Calabrese et al. [20] as they investigated the role of SerpinB3 in
metaplastic epithelial cells in idiopathic pulmonary fibrosis (IPF), a progressive chronic
disease with a poor prognosis. In this study, SerpinB3 was identified as significantly
overexpressed in patients with IPF vs. controls, with a positive correlation shown between
SerpinB3 levels and the expression of both Transforming Growth Factor (TGF)-β1 and the
extension of fibroblastic foci, also suggesting for the first time the possible induction of
proliferation and activation of lung fibroblasts in a paracrine way [20].
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SerpinB3 has also been related to liver inflammation and fibrosis. Chronic liver
disease (CLD) is a major contributor to global mortality, morbidity and healthcare resource
utilization [21]. Liver cirrhosis currently results in 1.16 million deaths annually, with liver
cancer responsible for 788,000 of these deaths [22,23]. These conditions are among the
top twenty causes of death worldwide, accounting for 3.5% of all global mortality [22,23].
Primary liver cancer is the seventh most common cancer and the second leading cause of
cancer-related deaths, with hepatocellular carcinoma (HCC) making up over 75% of liver
tumors [24,25]. The incidence of HCC increases with age, peaking at 70 years, and shows
a 2–3 times higher incidence and mortality in males [24,26,27]. Notably, while mortality
rates for other cancers are declining, HCC remains one of the fastest-growing causes of
cancer-related deaths worldwide.

In chronic liver disease, SerpinB3 was proven to upregulate the expression of TGF-β1
by directly activating the expression of pro-fibrogenic genes (such as collagen type 1A1, α-
smooth muscle actin [α-SMA], TGF-β1, tissue inhibitor of metalloproteases type 1 [TIMP-1],
the platelet-derived growth factor B [PDGF-B] and its β receptor [PDGFRβ]) in human liver
myofibroblasts in vitro [28,29]. In the same study by Novo et al. [29], SerpinB3 promoted
the oriented migration of the myofibroblast-like cells in a reactive oxygen species (ROS)-
dependent manner through the activation of Akt and c-Jun-aminoterminal kinases (JNK).
TGF-β is also involved in impaired immune response, and its upregulation by SerpinB3
requires the integrity of the antiprotease activity, as deletions in the reactive site loop of
this serpin inhibit this effect [28], whereas a single amino acid substitution (Gly351Ala) in
the reactive center loop of the protein, such as in the polymorphic variant SCCA-PD or
SerpinB3-PD (SB3-PD), determines a gain of function [30]. The gain of function attributed
to SB3-PD was observed to be particularly potent in inducing higher expression of TGF-β
in HepG2 and Huh-7 cells, leading to increased levels of both inflammatory and fibrogenic
cytokines [31]. Furthermore, SB3-PD exhibited greater efficacy compared to its wild-type
counterpart also as a paracrine mediator, inducing higher levels of TGF-β in both human
stellate cells and THP-1 macrophages. Notably, in THP-1 cells, SB3-PD induced more
prominently a mixed M1/M2 profile [31]. In addition, a cohort study involving outpatients
with advanced chronic liver disease was also carried in the same report, documenting that
patients carrying the SB3-PD variant had signs of a more severe portal hypertension and
a higher incidence of both first episodes of decompensation and then further episodes of
cirrhosis complications [31].

Of note, the expression of TGF-β and SerpinB3 has been related to the activation of the
WNT/β-catenin pathway in both hepatocellular carcinoma (HCC) and colorectal cancers,
associating with more aggressive tumors, with an earlier recurrence and a worse progno-
sis [32,33]. The importance of the WNT/β-catenin pathway lies in its role in embryogenesis,
cell renewal and tissue homeostasis but also in tumor growth and dissemination [34,35].
SerpinB3 has been linked with the WNT pathway as it induces the overexpression of
β-catenin and the Myc oncogene, a downstream gene of the WNT pathway [36]. The
WNT pathway can also be upregulated by SerpinB3 through the overexpression of the
low-density lipoprotein receptor-related protein (LRP) family, in particular LRP-1, LRP-5
and LRP-6 whose upregulation leads to an increased β-catenin translocation in the nu-
cleus [37]. LRPs, especially LRP-5 and LRP-6, are crucial co-receptors for the activation of
the canonical WNT-signaling. When phosphorylated, axin is recruited to the cytoplasmic
tail of LRP-6 and prevents β-catenin phosphorylation and proteasomal degradation, lead-
ing to its accumulation in the cytoplasm and subsequent translocation to the nucleus [38].
SerpinB3 is also able to upregulate LRP-1, which is involved in carcinogenesis through its
promotion of cell migration, invasion and survival [39].

Interestingly, as hypoxic conditions have been linked to the progression of fibrosis and
chronic liver disease [40–45], a possible correlation with SerpinB3 levels was investigated.
Hypoxia Inducible Factor (HIF)-1α and -2α are the main players in cell response to hypoxia,
with HIF-1α being involved in cell proliferation, metabolic changes, angiogenesis and
metastasis [46–51] and HIF-2α being involved in cell proliferation, resistance to radio- and
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chemotherapy, self-renewal capability and stem cell phenotype in non-stem-cell popu-
lations [52–57]. Hypoxic environments stimulate a higher expression of SerpinB3, with
HIF-2α directly binding to its promoter [58]. Foglia et al. [59] found a strong association
between HIF-2α and SerpinB3 in human specimens of HCC, with HIF-2α being positively
related with an increased YAP and c-Myc signaling. Furthermore, SerpinB3 was able to
inhibit c-Myc degradation and to increase YAP expression leading to an activation of the
Hippo pathway [60], also acting as a paracrine mediator by upregulating even in normoxic
conditions both HIF-1α and HIF-2α [61]. Thus, the transcriptional upregulation of HIF-1α
supports cell survival in hypoxic environments by inducing an early cellular metabolic
switch to the glycolytic phenotype, and the stabilization through NEDDylation of HIF-2α
has been proposed as a mechanism to promote cell proliferation in liver cancer [61].

The pro-fibrogenic role of SerpinB3 was also investigated both in vitro and in animal
models of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic
dysfunction-associated steatohepatitis (MASH). In a study by Novo et al. [62], transgenic
mice either overexpressing SerpinB3 or carrying a deletion in the reactive site loop were
fed a methionine- and choline-deficient (MCD) diet or a choline-deficient and amino-
acid-refined (CDDA) diet to induce MASLD. In these experiments, mice overexpressing
SerpinB3 showed a marked increase in macrophage infiltrates and a higher level of pro-
inflammatory cytokines, whereas these changes were not evident in knockout mice [62].
Additional in vitro experiments exposed phorbol-myristate acetate-differentiated human
THP-1 macrophages to SerpinB3, leading to an increased production of M1-cytokines
(TNF-α, IL-1β, TGF-β1, vascular endothelial growth factor [VEGF] and ROS) through the
activation of NF-kB. In a murine model of MASH, genetically modified mice with a SerpinB3
defective in the reactive site loop showed less TGF-β expression and a reduced macrophage
infiltration in the liver [62]. Moreover, transgenic mice overexpressing SerpinB3 presented
a higher expression of TGF-β, an increase in Triggering Receptor Expressed on Myeloid
cells (TREM)-2 infiltration [62] which is also associated with the severity of steatosis,
inflammation, hepatocyte ballooning and fibrosis [63]. In relation to patients with MASLD
and MASH, SerpinB3 is also able to deeply affect lipid metabolism, as the stabilization of
HIF-2α plays a role in the regulation of hepatocellular lipid accumulation [59,64–66]. The
interplay between SerpinB3 and HIF-2α has been previously discussed. A study by Foglia
et al. [59] highlighted that a specific deletion of HIF-2α in a rodent model of MASH-related
liver carcinogenesis led to a significant reduction in volume and number of liver tumors vs.
controls. In this experiment, there was a reduction at the nuclear level of Ki67, a marker
of cell proliferation, and a downregulation of both Myc and YAP expression [59]. The
close relation between SerpinB3, the levels of HIF-2α and their role in the modulation of
the YAP/Myc pathway during carcinogenesis in MASH patients highlights the potential
of SerpinB3 as novel therapeutic target. These considerations could also be expanded
to MASLD and MASH, where the involvement of SerpinB3 is relevant, and MASLD is
emerging as one of the major causes of chronic liver disease, especially in patients with
obesity and type II diabetes [67,68].

As mentioned before, the role of SERPINs in carcinogenesis was initially studied in
squamous cell carcinoma (SCC) of the uterine cervix, in which SerpinB3 and B4 were first
identified [9,69]. Later, SerpinB3 was found to be highly expressed in various types of
squamous cancers other than that of the uterine cervix, including head and neck, breast,
esophageal, and primary liver cancers (HCC, cholangiocarcinoma [CCA] and hepatoblas-
toma [HB]), being associated with poor prognosis and a higher risk of recurrence [70–75].
Of note, SerpinB3 is physiologically expressed in the lung, the esophagus and the uter-
ine cervix, whereas it is almost undetectable in normal hepatocytes but was found to be
overexpressed in HCC [58,76] as well as in highly dysplastic nodules and in hepatocytes
surrounding the tumor, suggesting that its overexpression represents an early event in liver
carcinogenesis [28,58,76–78].

The role of SerpinB3 in carcinogenesis includes the induction of EMT [18,79,80], the
ability to inhibit cell death by preventing cancer cell apoptosis [81] by either inhibiting JNK
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or P38 mitogen-activated protein kinase (MAPK) and/or suppressing mitochondrial ROS
generation (Figure 2) [14,82,83]. In particular, the localization at the inner mitochondrial
compartment allows SerpinB3 to bind to the respiratory Complex I and inhibit ROS genera-
tion, preventing or reducing the opening of the mitochondrial permeability transition pore
(MPTP), thus protecting cells from the toxicity of pro-oxidant chemotherapeutic agents
such as doxorubicin and cisplatin [14]. As aforementioned, the inhibition of lysosomal
proteases was proposed as an additional carcinogenic mechanism, through the induction of
a constitutive and chronic activation of the endoplasmic reticulum stress-related unfolded
protein response [81].
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of chronic liver disease and cancer development via the release of inflammatory, angiogenetic and
pro-fibrogenic mediators. The activation of several intracellular pathways unravels the particular
aggressiveness of tumors that express this serpin. Created with BioRender.com.

Regarding its role in primary liver cancers, SerpinB3 was found to be expressed in
aggressive forms of all these tumors, since its expression is observed in the hepatic stem
cell compartment of both fetal and adult cirrhotic livers [84].

Turato et al. [85] identified SerpinB3 as a potential target gene for miR-122, the most
expressed miRNA in the liver and whose role is crucial for normal liver function [86,87].
miR-122 is downregulated in pre-neoplastic nodules and in HCC and is inversely associated
with metastasis formation and poor prognosis, although the underlying mechanisms are
still unclear [85]. miR-122 overexpression was associated with lower levels of SerpinB3
due to decreased gene activity, and on the other hand, high levels of SerpinB3 induced a
downregulation of miR-122 in both in vivo and in vitro experiments [85]. Regarding its
importance in therapy, miR-122 overexpression determined sensitization to Sorafenib in
different cell lines, whereas the presence of SerpinB3 overexpression determined resistance
to the drug [85].



Cancers 2024, 16, 2579 7 of 15

Especially in highly proliferative and poorly differentiated forms of hepatoblastoma
(HB), the most common liver malignancy in childhood, studies reported frequent acti-
vations in the β-catenin gene, leading to elevated levels of β-catenin, Myc and cyclin
D1 [88,89]. Turato et al. [36] highlighted that SerpinB3 is detectable in most HB cases, with
the highest levels being detected in the most aggressive subtypes [90]. As mentioned before,
in HB, the upregulation of SerpinB3 was significantly correlated with Myc expression, an
effect independent of the presence of the serpin reactive loop [36], potentially due to an
interaction with the surface receptor LRP-1 downstream of the reactive site loop [37].

In cholangiocarcinoma (CCA), the second most common primary liver tumor after
HCC, cancer stem cells (CSCs) have been identified as a driving force for initiation, dissem-
ination and drug resistance [91,92]. A study by Correnti et al. [93] identified SerpinB3 as a
crucial modulator of the stemness features of CCA. Experiments on cultured cells showed
that SerpinB3 expression was markedly upregulated in the subset of stem-like cells of CCA
that formed 3D spheres, with this subset of cells being able to activate macrophages towards
a tumor-associated macrophage (TAM) phenotype, thus inducing a higher tumorigenic
potential and stemness features [94,95]. These stemness features were associated with an
upregulation of the gene expression of stem-like markers (such as c-Myc, STAT3 and YAP)
and ECM remodeling-related genes (such as various isoforms of matrix metalloproteinases
(MMP), integrin beta-3, a-disintegrin and metalloproteinase) [93]. These alterations in gene
expression led to the activation of key molecular pathways, such as mitogen-activated
protein kinases like Extracellular Regulated Kinases (ERK) 1 and 2, p38, JNK-1, the phos-
phorylation of the p65 subunit of NFkB transcription factor and the upregulation of c-Myc,
NOTCH, MMP9 and β-catenin [93]. Moreover, these results were validated in vivo using
immune-deficient mice in which CCA cells transfected to overexpress SerpinB3 caused
increased tumor formation with higher weight and volume of neoplastic masses when
compared with controls [93]. In human intrahepatic CCA, the presence of high levels of
SerpinB3 was associated with lower survival and a shorter time to recurrence [93,96,97],
and these findings are in line with preliminary results described in specimens of extrahep-
atic CCA in which the presence of high levels of SerpinB3 in the bile compartment was
associated with a higher frequency of portal invasion and a higher rate of tumor recurrence
after surgery [98].

Regarding its role in the immune response, in cervical tumors, SerpinB3 was found to
protect neoplastic cervical cells against radiotherapy (RT)-induced damage by preventing
lysoptosis [99], and patients with persistently high levels of SerpinB3 before and during
RT had a higher risk of recurrence and death [73]. Cervical cancers with higher levels of
SerpinB3 secrete higher levels of chemokines that attract myeloid cells, which have an
immunosuppressive activity through inhibition of T-cell activation, thus interfering with
RT-induced antitumor immunity [19]. The high expression of SerpinB3 in these neoplastic
cells was also associated with an increase in phosphorylated STAT3, further leading to an
immunosuppressive environment through cell-intrinsic and -extrinsic mechanisms as in
other cancer types (head and neck, lung) [100–102]. Higher expressions of STAT3 inhibit
immunogenic chemokine production, induce the expression of PD-1/PD-L1 and regulate
suppressive immune activities in immune cells [103–105]. Reduced tumor sensitivity to
chemotherapy and an impairment in the immune surveillance induced by high SerpinB3
expression was also demonstrated in esophageal carcinoma with a poor prognosis [74]. In
glioblastoma, SerpinB3 was found to drive cancer stem cell survival, whereas in breast
and ovarian cancer, it promotes oncogenesis and resistance to chemotherapy [72,106].
Ohara et al. [107] also demonstrated that the SerpinB3-Myc axis is upregulated in the
basal-like/squamous subtype of pancreatic cancer. In melanoma, SerpinB3 was the most
significant response-related gene for immune checkpoint blockade therapies [108].
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3. SerpinB3 as a Promising Protective Molecule

With its role in cell proliferation, EMT and cell death regulation, SerpinB3 was also
studied for its potential role as a protective molecule, especially in acute stress conditions,
as described in Figure 3.
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In diabetic ulcers, SerpinB3 has been recently found to be involved in successful
healing due to its role in fibrogenesis and angiogenesis [29,61]. SerpinB3 was found to
be markedly downregulated in non-healing diabetic wounds when compared to rapidly
healing wounds [109,110], and a study by Albiero et al. demonstrated that the local
administration of SerpinB3 through a wet silica gel was successful in delivering the protein
to the outer skin layer and in improving ulcer healing [111].

The involvement of SerpinB3 in immune modulation was also studied in a murine
model of systemic lupus erythematosus, in which the administration of SerpinB3 resulted
in increased levels of Tregs in the spleen, leading to a more tolerant immune phenotype
and slower disease progression [112].

In the liver, as SerpinB3 levels increase in hypoxic environments, the potential role of
this protease was studied in ischemia/reperfusion (I/R) injury. I/R injury occurs after liver
resection, transplantation or hemorrhagic shock, with hypoxia and reoxygenation being
two essential phases of the process. An increase in SerpinB3 levels was also found to be
a positive biomarker after hepatic resection, as hypoxia and oxidative stress can induce
the release of SerpinB3, thus conferring resistance to apoptosis, reducing oxidative stress
and adding a stimulus for liver cell proliferation [14,113,114]. This biological effect is likely
achieved through direct interaction of SerpinB3 with the intramitochondrial respiratory
complex I, leading to a reduction in ROS generation [14]. Moreover, as mentioned before in
this review, the induction of SerpinB3 by HIF-1α and HIF-2α further supports cell survival
in hypoxic environments. HIF-2α also protects against acute liver injury through the
production of IL-6 [115].

The increased levels of IL-6, an acute phase reactant cytokine, found in this environ-
ment are also associated with high levels of SerpinB3 through its direct binding to the
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promoter [116,117]. IL-6 indeed activates STAT3 that in turn activates genes that induce
liver regeneration [116,118–120], and the binding to the promoter of SerpinB3 leads to the
induction of a positive loop [121].

4. The Future: A Novel Druggable Target for SerpinB3 Inhibition?

A member of the protease-activated receptors (PARs) family, namely PAR2, has been
linked to stress responses such as cell proliferation, differentiation and EMT in gastroin-
testinal and pancreatic cancers [122,123]. PAR2 is also involved in cholesterol homeostasis
and lipid metabolism and in suppression of glucose internalization, glycogen storage
and insulin signaling [124,125]. PAR2 is activated by trypsin-like proteases, such as
tryptase released by mast cells [126,127], matriptase [128] and coagulation factors VIIa
and Xa [128,129], when there is an upregulation of tissue factor expression [130] such as
in subjects with fibrotic liver disease. The interaction of PAR2 with these proteases estab-
lishes a microenvironment capable of initiating prolonged activation of the PAR2 signaling
pathway, which encompasses the stimulation of MAPK associated with inflammation,
proliferation and mesenchymal cell differentiation via pathways involving IL-1β, TNF-α,
TGF-β and NFκB [131].

Targeting PAR2 has been a challenge, due to the continuous changing of its conforma-
tion in response to inflammatory proteases. Different antagonistic compounds have been
developed, such as peptides, peptidomimetics, cell-penetrable pepducins, small molecules
and antibodies [132]. While the majority of them are at preclinical stage, only a small mi-
nority of these new drugs has entered the clinical phase [132]. Many problems are currently
faced in the development of molecules targeting PAR2, such as protease promiscuity, since
proteases bind with different affinities and offer unique PAR2 cleavage, making pharmaco-
logical targeting problematic. In addition, heterodimerization between PAR1 and PAR2
forces the development of hetero-bivalent ligands to inhibit signaling activation [132].

In a recent study, the small molecule 1-piperidine propionic acid (1-PPA, PubChem
CID 117782) was able to inhibit PAR2, thus blocking a positive loop that involves the
upregulation of the early transcription factor CCAAT Enhancer Binding Protein beta
(C/EBP-β) and the subsequent promotion of SerpinB3 transcription [133]. In this study,
C/EBP-β has been indeed reported as one of SerpinB3 transcription factors and plays
a role in metabolic syndrome. In particular, mice lacking the active form of SerpinB3
had at basal conditions not only lower levels of C/EBP-β and a decreased fat mass but
also presented a lower inflammatory response after an MCD or CDAA diet, whereas
transgenic mice overexpressing SerpinB3 presented higher levels of C/EBP-β than those of
control mice, highlighting the essential role of the anti-protease activity of this serpin to
achieve this effect. Notably, 1-PPA did not induce significant cell and organ toxicity, while
inhibiting PAR2, C/EBP-β and SerpinB3 synthesis in a dose-dependent manner at very low
concentrations [133]. Notably, the precise mechanism of action of this compound has been
identified, since it acts as an allosteric inhibitor of PAR2, showing the ability to stabilize the
receptor in an inactive conformation, even at high temperatures and therefore blocking the
positive loop between SerpinB3-induced PAR2 and C/EBP-β [133].

5. Conclusions

SerpinB3 is a serine-protease inhibitor deeply involved in tissue homeostasis both in
physiological and pathological conditions, from tissue repair and immune modulation to
carcinogenesis and metabolic disorders. While its involvement in fibrosis, carcinogenesis
and inflammation underscores its significance as a potential prognostic marker and thera-
peutic target in liver disease and cancer, its emerging roles in wound healing and tissue
repair suggest broader implications in diverse medical conditions. The complex interplay
between SerpinB3 and various signaling pathways highlights its relevant regulatory role
and underscores the need for further research to better understand its mechanism of action
and to unravel its full therapeutic potential. Moreover, SerpinB3 could be used as a poten-
tial biomarker for both diagnostic and prognostic purposes, especially in liver disease and
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cancer. Additionally, the promising findings regarding the therapeutic potential of targeting
SerpinB3 through its upstream regulators, such as PAR2, suggest new opportunities for the
development of novel treatment modalities in cancer and in PAR2-induced diseases.
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