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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Optimal synthesis, design and operation
of multi-energy systems including
networks.

• Development of a two-level evolu-
tionary algorithm with a MILP sub-
problem.

• Decomposition of the topological opti-
mization from the design and operation
problem.

• Design from scratch of new multi-energy
systems or retrofit of existing ones.

• Single or multi-objective optimization to
minimize total costs and carbon
emissions.
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A B S T R A C T

A realistic pursuit of decarbonization targets requires planning and designing new configurations of “multi-energy
systems” to identify the optimal number, type, location and size of the energy conversion and storage units and their
interconnectionswith the end users of different forms of energy. The common approach in the literature is to treat the
optimization problemof energy conversion and storage separately from that of energy networks, and the fewattempts
to address the two problems simultaneously have led to oversimplifications due to the very large number of decision
variables involved. To fill this gap, this study introduces “DOMES” (Design Of Multi-Energy Systems), a general opti-
mization method for the integrated synthesis, design and operation of a multi-energy system in its entirety. With the
goal of minimizing costs and reducing carbon emissions, DOMES can simultaneously find the location, type, size and
operation of the energy conversion and storage units, as well as the topology and capacity of the energy networks, to
meet the energy demand of the end users. Tomake the problem computationally solvable while ensuring sufficiently
good accuracy of the solution,mathematical techniques such as linearization, problemdecomposition and time series
aggregation have been applied. DOMES is capable of finding the global optimumof the problemeitherwhile planning
new systems from scratch or when starting from existing systems. Considering a densely populated urban district, the
investment costs of renewable conversionplants outweigh thoseof thedistrict heatingnetworkandelectricmicrogrid,
which together account for less than 10%of the total. Amuchhigher economic impact of energy networks is expected
when considering larger, less densely populated areas.
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Nomenclature

Abbreviations
CHP combined heat and power
DHN district heating network
EA evolutionary algorithm
EES electric energy storage
EMG electrical microgrid
GB gas boiler
HP heat pump
IR intermediate representation
MES multi-energy system
MILP mixed integer linear programming
MINLP mixed integer nonlinear programming
PV photovoltaic
OR optimal representation
SDO synthesis, design and operation
SOC state of charge
SR starting representation
TD typical day
TES thermal energy storage

Sets
C dispatchable energy conversion technologies
D days of a year
E energy carriers
I generation of individuals
K typical days (clusters)
N nodes of the system
P population of individuals
R non-dispatchable energy conversion technologies
S energy storage technologies
T hourly time steps of a day

Subscripts
c dispatchable energy conversion technology, c ∈ C
d day of the year, d ∈ D = {1,2,…,365}
e energy carrier, e ∈ E
j current iteration
k typical day or cluster centre, k ∈ K
m node, m ∈ N
n node, n ∈ N
r non-dispatchable energy conversion technology, r ∈ R
s energy storage technology, s ∈ S
t time step of a day, t ∈ T = {1,2,…,24}

Superscripts
best best individual
cap capital cost
char charging phase
disc discharging phase
end final set of individuals of a generation
exc import/export exchange permission
exp export
imp import
inter inter-day state of charge
intra intra-day state of charge
max maximum value
mid intermediate set of individuals of a generation
min minimum value
net energy network

off offspring generation
oper operating cost
par parent generation
sel selected part of a population
start starting set of individuals of a generation
worst worst individual
0 no upper limit on CO2 emissions

Roman symbols
a number of individuals of parent generations, positive

integer number
b termination threshold of the evolutionary algorithm,

dimensionless
f objective function, €
g map function that associates any day of the year to its

typical day, function
h timestep size, 1 h
i individual, mathematical object
J maximum number of iterations of the evolutionary

algorithm, positive integer number
l distance between two nodes, m
M large enough value for big-M constraints, positive real

number
q fitness value, €
w weight of a typical day, number of days represented
x geographical coordinate (abscissa), m
y geographical coordinate (ordinate), m

Greek symbols
α size-specific investment cost, €/kW, €/kWh or €/kW/m
β fixed investment cost, € or €/m
γ specific cost/price of a carrier, €/kWh
Δ synthesis binary variable, Δ ∈ {0,1}
δ operational binary variable (on/off state), δ ∈ {0,1}
ε epsilon constraint, dimensionless
Ζ rated capacity, kW or kWh
ζ specific emission factor, kg/kWh
η dimensionless linearization coefficient of off-design

performance, or efficiency
ϑ operational auxiliary variable, kW
ι lifetime, years
λ loss factor, dimensionless or m− 1

μ input power or charge power, kW
ν relative operation and maintenance cost, dimensionless
ξ state of charge, kWh
ο relative minimum load or charging/discharging capacity,

dimensionless or kW/kWh
π output or discharge power, kW
ρ interest rate, dimensionless
σ correction factor, dimensionless
τ actualization factor, dimensionless
υ dimensional linearization coefficient of off-design

performance, kW
φ power flow in a network line, kW
Φ CO2 emissions, kg
χ power demand, kW
ψ power import/export, kW

Other symbols
* generic time-dependent input data
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1. Introduction

The energy sector is responsible nowadays for approximately 75 % of
global greenhouse gas emissions [1]. To limit global warming to 1.5 ◦C
by the end of the century, carbon emissions must reach net zero by 2050
[2]. This calls for a paradigm shift, a transition from fossil fuels to
renewable sources that must be supported by a reduction in final energy
use [3]. Distributed generation, electrification and sector-coupling will
be crucial aspects of this renewal [4]. There is, in fact, a growing
consensus that decarbonization should not be addressed by individual
sectors (electricity, heating, transportation, etc.), but requires a holistic
approach aimed at developing smart energy systems that integrate
multiple carriers [5]. Accordingly, in recent years researchers are
increasingly focusing on multi-energy systems (MESs) [6]. A MES is an
energy system of any spatial extent that involves various energy carriers
(electricity, heat, fossil fuels, biomass, etc.) and provides energy in
various forms to the end users [7]. It generally covers the entire supply
chain from producers to consumers encompassing energy conversion,
storage, delivery and end uses. How to properly design and operate a
MES is among the main challenges in the implementation of such sys-
tems and fostered the development of dedicated mathematical optimi-
zation tools [8].

In general, energy system optimization can be broken down into
three (not always distinct) levels: synthesis, design and operation (SDO)
[9]. Synthesis refers to the layout and topology of the system, i.e., the
choice of components and their interconnections. Design refers to the
sizing of the chosen components and, finally, operation refers to the
scheduling and management over time of components load. SDO opti-
mization has been applied to different kinds of energy systems [10]. A
non-exhaustive list of examples includes thermal power plants [10–15],
bottoming thermodynamic cycles [16–20], aircraft energy systems [21],
energy systems of ships [22–24], distributed energy supply systems
[25,26] and MESs [27,28]. Focusing on MESs, SDO optimization prob-
lems generally fall into the category of mixed-integer nonlinear

programming (MINLP), due to the presence of nonlinear relationships
(e.g., off-design operation maps), binary variables (e.g., the existence of
a component, or the on/off status of a component in a given time in-
terval) and continuous variables (e.g., size of components, power flows)
[29]. The need to consider a large number of components that must be
designed and planned to satisfy a demand during their entire life cycle
makes the search for the optimal solution extremely challenging [30].
Linearization techniques simplify the problem and convert it into a
mixed integer linear programming (MILP) one [31]. The convex nature
of MILP prevents the solution from falling into a local optimum and
ensures that the global optimum can be found [32]. In addition, MILP is
a robust approach, and many solvers are commercially available [33].
However, since the computational effort increases exponentially with
increasing number of binary variables, large systems can still be
computationally intractable [34].

In order for SDO models to be solvable in an acceptable time, most of
the work in the literature has focused on optimizing specific aspects of a
MES. Many researchers developed models to optimize the selection,
placement, sizing, and operation of energy conversion and storage units
that feed the users of the MES (e.g., [35–48]) (Fig. 1a). However, they
considered energy networks as ideal sources/sinks from which to draw
or discharge any amount of energy [35–39]. For instance, Rech et al.
[37] optimized a fleet of energy conversion plants providing electrical
and thermal energy to a mountain village. Heat is delivered to the end
users via district heating network (DHN), which is modelled as an ideal
black box collecting heat from the generators to fulfil the aggregated
heating demand of the village. Alternatively, networks have been
considered as given system constraints that do not require design opti-
mization [40–48]. As an example, Wirtz [40] optimized the generation
mix of a district MES including DHN of given topology and capacity. On
the other hand, researchers who have worked on optimizing the layout
and capacity of energy networks mostly assumed already available
(mainly centralized) energy conversion plants, which do not need to be
optimized (e.g., [49–52]) (Fig. 1b). For instance, Röder et al. [50]

Fig. 1. Overview of different approaches for the optimization of a MES: (a) design (D) and operation (O) optimization of the energy conversion and storage units
considering ideal energy networks, (b) synthesis (S), D and O optimization of the energy networks for given energy conversion and storage units, (c) integrated SDO
optimization of the energy conversion and storage units, and energy networks.
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optimized the topology and capacity of a German DHN but fixed in
advance the design (location and capacity) of the generation and storage
plants of the system. It emerges the need to develop optimization tools
capable of dealing with the SDO optimization of a MES in its entirety,
thereby looking for the optimal configuration of both the energy con-
version and storage plants feeding the users, and the energy networks
supplying them with the required energy (Fig. 1c). This integrated
approach is necessary, because considering the two problems separately
may lead to non-optimal solutions at the global level. In fact, optimal
solutions for the design of energy conversion systems may not be
optimal solutions for the system as a whole, due to the costs of in-
terconnections with end users through energy networks.

Some tools for integrated SDO optimization of networks and plants in
a MES have been proposed in the literature [53–69]. Söderman and
Pettersson [53] developed aMILP model that minimizes the life cycle cost
of a distributed energy system integrating DHN with combined heat and
power (CHP) plants. To make the problem computationally solvable, they
condensed the annual operation of the system (usually described by 8760
hourly intervals) into eight representative time intervals. Haikarainen
et al. [54] proposed a similar approach to the previous one including CO2
minimization in a multi-objective framework. Again, a year is described
by very few time intervals for computational purposes. Keirstead et al.
[55] also included optimization of the layout of electricity and gas net-
works in the SDO model of a distributed MES. To reduce the computa-
tional load, the daily operation of the system is described here by two
representative time intervals. In general, such coarse representations of
the simulated time frame are not sufficient to depict the short-term
variability of time-dependent quantities. Mehleri et al. [59] developed a
MILP model for SDO optimization of a neighbourhood system integrating
DHN with CHP units and distributed photovoltaic (PV) generation. To
properly consider the short-term variability of solar radiation, they used a
representative day for each month of the year with a temporal resolution
of one hour. However, they simplified the network representation by
considering the pipelines as direct, straight connections between adjacent
buildings, regardless of the actual topology and geographic configuration
of the neighbourhood. In addition to DHN, Yang et al. [60] and Sidnell
et al. [61] also introduced SDO optimization of an electrical microgrid
(EMG), keeping the same simplified approach as in the previous case to
model both networks. A more detailed representation of the system to-
pology was provided by Girardin et al. [65] who constrained DHN pipe-
lines to follow only predetermined paths such as roads in a district, thus
avoiding impractical connections between nodes. Lerbinger et al. [66]
considered a DHN expansion problem with the possibility of connecting
some neighbourhoods in a city to the existing DHN, with the goal of
integrating a larger share of renewable generation. Again, DHN optimi-
zation is based on the actual geography of the system, with city streets as
the only available routes for the pipes. Morvaj et al. [67] demonstrated
that a “street-following approach” to DHN design provides more reliable
solutions than a “green-field approach” that allows all possible connec-
tions between buildings while ignoring the actual geography of the sys-
tem. Note that the street-following approach is applied here only to DHN.
Comodi et al. [68] optimized theMES of a university campus in Singapore
to find the mix of energy conversion and storage systems and internal
network infrastructure needed to fulfil electricity and cooling demand.
However, the only internal network considered is the cooling network.
Finally, Dos Santos et al. [70] studied the design optimization of the
electrical microgrid of a university campus in São Paulo, Brazil, by
considering the sizing and placement of distributed generation units and
battery energy storage systems, as well as the sizing of the microgrid
cables. In this publication, however, the authors considered only the
electrical system and not a MES configuration.

1.1. Object, novelty and goal of the work

The gaps emerging from the literature review are associated with
excessive simplifications of the SDO problem of a MES, which includes

an extremely high number of continuous and binary decision variables.
These simplifications are required to make the problem computationally
solvable and are listed below:

• The chosen temporal resolution is often too coarse [53–58]. The
entire system life cycle is aggregated into a few representative time
intervals, and this is not acceptable if short-term variability in input
data (energy demand, availability of intermittent renewable sources,
prices) is to be taken into account;

• The system topology is often modelled in an oversimplified way
according to a “green-field approach” [59–64]. Network lines are
considered as direct, straight connections between adjacent build-
ings, regardless of the path they must follow in the real system. A
more proper approach is to plan networks on the basis of the
geographical map where the system is located, on which the possible
paths that the lines must follow are identified (e.g., “street-following
approach” [50]). This avoids unfeasible interconnections;

• In most cases, beside many energy conversion and storage technol-
ogies, only the DHN or cooling network is considered [65–69]. Other
networks, such as the electrical one, are regarded at most as system
constraints and are not optimized in terms of layout and capacity
[42,43].

This paper presents a novel optimization method for the SDO of a
MES in its entirety: “DOMES” (acronym for Design Of Multi-Energy Sys-
tems). DOMES is able to find the location, type, size, and operation of the
energy conversion and storage units that meet the energy demand of end
users, together with the topology and capacity of the energy networks
delivering to them the useful energy. It overcomes the three above-
mentioned gaps, respectively, as follows:

• The multi-year time framework of the optimization problem is rep-
resented by typical days (TDs) with hourly resolution that accurately
reproduce both the long-term and short-term variability of the time
series;

• The energy networks are modelled according to the “street-following
approach” in order to generate system layouts that comply with the
actual geographical configuration of the system;

• Multiple energy networks can be optimized in combination, poten-
tially, with any kind of energy conversion and storage technology,
renewable-based or not, dispatchable or not.

The novelty of this integrated approach is that it comprehensively
solves an optimization problem that so far has been only partially
addressed in the literature because of the strong simplifications required
for computational feasibility. Moreover, DOMES is capable of designing
the new MES “from scratch” or performing “retrofit design” of an
existing one, where retrofit design refers to the possibility of adding new
components to an existing system or new capacity to the components
already available [71]. However, other simplifications are still needed in
order to find solutions in reasonable computational times. These sim-
plifications must ensure a sufficiently good accuracy of the solution,
which may be improvable, but is the only one that can be practically
achieved.

The final goal is to develop an optimization tool that can provide
decision makers with clear and accurate information on how to properly
plan, design, and schedule the operation of a MES in the context of a
sustainable energy transition towards a decarbonized economy.

As mentioned above, the combinatorial nature of binary variables in
a MILP problem causes the computational requirements to increase
exponentially with their number, thus making large-scale problems
computationally unsolvable [72]. To overcome this inherent limitation
of MILP, DOMES combines two mathematical techniques: time series
aggregation [73] and problem decomposition [74]. Note that an SDO
model of a MES mainly contains two types of binary decision variables:
synthesis variables (existence of a plant or network line), which are
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time-independent, and operational variables (e.g., the on/off status of a
plant), which are time-dependent. On the one hand, to reduce the
temporal dimension of the problem, time-dependent input data, gener-
ally available for one year with an hourly resolution, are aggregated into
representative TDs using a K-medoids clustering technique [75]. On the
other hand, the SDOmodel is decomposed into two levels bymeans of an
evolutionary algorithm (EA) that isolates the synthesis variables from
the rest of the optimization problem. The developed bilevel EA governs
the two levels as follows:

• Upper level: synthesis. The upper level sets all the binary variables
associated with the synthesis problem, i.e., the inclusion/exclusion
of a certain plant at a certain node, the inclusion/exclusion of a
network line between two nodes. This upper level then provides the
lower level with a set of possible combinations of synthesis variables;

• Lower level: design and operation. For each combination of synthesis
variables provided by the upper level, the lower level optimizes the
sizing and operation of the energy conversion and storage plants and
network lines included in the system with a MILP approach. This
allows many MILP optimizations containing a small number of bi-
nary operational variables to be performed in parallel, thereby
drastically reducing the computational load of the overall problem.

The developed optimization method introduces some novel features
in the context of decomposition techniques for MES optimization. First,
the two-level decomposition separates the synthesis problem from the
design and operation problem to reduce as much as possible the number
of binary variables in the MILP framework at the lower level. In contrast,
the common approach in the literature (see, e.g., Casisi et al. [69]) is to
separate time-independent variables (synthesis and design) from time-
dependent variables (operation). However, design variables are
continuous and, with proper linearization, can be optimized in the MILP
problem at the lower level along with operation. This speeds up the
solving procedure because MILP solvers are faster than meta-heuristic
solvers. Second, a strict set of rules is introduced in the EA to mini-
mize inconsistent topological configurations at the upper level, thus
reducing the number of infeasible solutions and further decreasing the
computational time. Fig. 2 schematically depicts the optimization al-
gorithm of DOMES, which is discussed in detail in Section 2. Note that
the EA requires a number of iterations to converge to the optimal
solution.

A case study based on a district MES located in Padova, Italy, dem-
onstrates the potential of the proposed method. PV panels, gas-fired CHP
internal combustion engines (ICEs), air-water heat pumps (HPs), gas
boilers (GBs), thermal energy storage (TES) and electric energy storage
(EES) systems are considered along with heating and electrical net-
works. The goal consists in minimizing the life-cycle cost of the MES to
meet the heat and electricity demand of the users, with the possibility of
setting an upper limit on CO2 emissions as a secondary objective.

The rest of the paper is structured as follows. Section 2 describes the
proposed method in detail. Sections 3 and 4 present the case study and
obtained results, respectively, considering both “design from scratch”
and “retrofit design”. Section 5 discusses the findings and limitations
that have emerged. Finally, Section 6 summarizes the conclusions.

2. Method

This section provides detailed information about the DOMES archi-
tecture. Before describing the complete optimization problem and its
MILP framework (Section 2.2), general information about the mathe-
matical modelling is given (Section 2.1). Finally, the decomposition of
the problem is introduced, and the proposed two-level EA is discussed
(Section 2.3).

2.1. General modelling information

The purpose of DOMES is to model the geographic area of the system
with satisfactory spatial resolution and to identify the possible locations
of buildings, energy conversion and storage units, and network lines.
Thus, a MES is considered as a multi-nodal system, where N is the set of
nodes in the system. Each node n ∈ N is described by a pair of co-
ordinates xn and yn representing the location of the node “on the map”
with respect to a reference point. Nodes represent buildings, places
where energy conversion plants can be installed, points of intercon-
nection with external systems (e.g., main electricity and gas grids), and
any other type of a relevant point (e.g., road crossings). Allowable
connections between nodes define the paths where network lines can be
placed. The set N, which contains the required geographic information,
is provided as input to the model. Additional input information associ-
ated with each node includes the following data.

Fig. 2. Structure of the DOMES optimization method.
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• The power demand χe over time associated with each energy carrier
e ∈ E, where E is the set of energy carriers considered (e.g., heat,
electricity, natural gas, etc.). Note that only nodes associated with an
end user have actual energy demand. The demand is zero for all other
nodes.

• Permission to import/export energy carrier e ∈ E from/to the
external systems (e.g., electric or gas grid).

• Dispatchable energy conversion technologies that can be installed (e.
g., ICE, GB, HP, gas turbines, etc.), chosen from the set C.

• Non-dispatchable energy conversion technologies that can be
installed, chosen from the set R, which mainly includes technologies
based on intermittent renewable sources (e.g., PV, wind turbines,
etc.).

• Energy storage technologies that can be installed (e.g., batteries, hot
water tanks), chosen from the set S.

Other inputs required by the model are technical and economic data
associated with energy conversion and storage technologies (off-design
maps, operating limits, capital costs, etc.), prices of energy carriers that
can be imported/exported from/to external systems, weather and other
relevant time series that provide, for instance, resource availability (e.g.,
solar irradiation).

2.1.1. Time series aggregation
To properly plan a system over its entire life cycle, it is necessary to

consider the variability of time-dependent input data over a sufficiently
long period with satisfactory temporal resolution. The usual approach in
MES modelling is to consider annual time series with an hourly resolu-
tion, by using a representative year of the system operation [29].
Accordingly, time dependent data are defined for each hour t ∈ T =

{1,2,…,24} of each day of the year d ∈ D = {1,2,…,365}, for a total of
8760 timesteps. However, the computational load of the optimization
problem increases at least linearly with the total number of timesteps.
Thus, SDO problems may become computationally unsolvable, espe-
cially when many binary variables are required.

The proposed method makes use of K-medoids clustering to reduce
the total number of timesteps and, in turn, the computational re-
quirements of the problem [75]. K-medoids clustering allows extracting
from the set D = {1,2,…,365} a subset K ∈ D of TDs representing the
entire year. This reduces the temporal dimension of the problem form
T × D to T× K. The number of elements k ∈ K is an input data of the
clustering algorithm and must be chosen as a trade-off between reducing
computational load and preserving satisfactory accuracy of the aggre-
gated time series.

The outputs of the clustering algorithm are:

• The set of TDs K ∈ D and the corresponding aggregated time series of
dimension T× K;

• The weight wk of each TD k ∈ K, i.e., the number of annual days
represented by k;

• The map function g : g(d) = k that associates each day of the year d to
the TD k representing it.

2.2. Optimization problem

The overall SDO optimization problem is formulated as a MILP
problem. This section introduces the decision variables, objective
function and constraints.

2.2.1. Decision variables
Decision variables can be grouped into three categories: synthesis,

design, and operational. While synthesis and design variables are not
time dependent, operational variables depend on time and are therefore
defined for each timestep of the problem. Continuous variables are
defined in the domain of non-negative real numbers. Binary variables
belong to the binary domain {0,1}.

All synthesis variables (see Table 1) are binary and indicate the ex-
istence (1) or nonexistence (0) of a component. The user can decide
about part of the synthesis variables before performing the optimization.
This allows (i) to avoid impractical connections between nodes or
impractical placement of components and (ii) to declare components
that are already available in the system or that must be installed for sure.
Note that if a bidirectional flow is allowed in a network, the corre-
sponding decision variables are symmetrical (Δnet

e,n,m = Δnet
e,m,n: if node n is

connected to node m, the reverse is also true).
All design decision variables (see Table 2) are continuous and indi-

cate the size (rated capacity) of components in terms of power (for en-
ergy conversion plants and network lines) or energy (for storage
systems).

Operational decision variables (see Table 3) can be either continuous
or binary and are defined for each timestep of the problem. Continuous
variables include power flows within network lines, power input and
output of energy conversion and storage units, power import/export
from/to external systems, state of charge (SOC, i.e., energy content) of
storage systems and auxiliary variables. Binary variables include the on/
off status of dispatchable energy conversion technologies.

2.2.2. Objective function
The objective function set by default is the system life-cycle cost, i.e.,

the sum of capital and operating costs over the entire lifetime of the
plants and networks under consideration. However, any other type of
objective function can be implemented, provided the necessary data are
available. Eq. (1) defines the objective function in terms of annual lev-
elized investment costs (Γcap, i.e., capital costs), and annual operating
costs (Γoper).

f = Γcap +Γoper (1)

Capital costs of components are expressed as linear function of the
rated capacity to consider economy-of-scale effects. This linearization is
required to keep the problem computationally solvable, and its range of
application is limited to a given maximum size for each component. Eq.
(2) defines the total capital cost, where τ is the actualization factor
calculated according to Eq. (3) (where, in turn, ρ is the interest rate and ι
is the expected lifetime in years), α is the size-specific investment cost
expressed in €/kW for energy conversion technologies, €/kWh for stor-
age technologies and €/kW/m for energy networks, β is the fixed in-
vestment cost expressed in € for energy conversion and storage
technologies and €/m for energy networks, ν is the relative operation

Table 1
Synthesis decision variables, all binaries.

Variable Description

ΔC
c,n Existence of the dispatchable energy conversion technology c at node n

ΔR
r,n

Existence of the non-dispatchable energy conversion technology r at node
n

ΔS
s,n Existence of the energy storage technology s at node n

Δexc
e,n

Permission of node n to import/export the energy carrier e from/to
external systems

Δnet
e,n,m

Existence of the energy network line associated with the carrier e from
node n to node m, n ∕= m

Table 2
Design decision variables, all continuous.

Variable Description

ΖC
c,n

Rated capacity of the dispatchable energy conversion technology c at
node n

ΖR
r,n

Rated capacity of the non-dispatchable energy conversion technology r at
node n

ΖS
s,n Rated capacity of the energy storage technology s at node n

Ζnet
e,n,m

Rated capacity of the energy network line (carrier e) from node n to node
m, n ∕= m
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and maintenance cost, and l(n,m) is the distance from node n to node m
expressed in m and calculated according to Eq. (4).

Γcap =
∑

n∈N

{
∑

c∈C

[

τCc
(

αC
c ΖC

c,n + βC
c ΔC

c,n

)(

1+
νCc
τCc

)]

+
∑

r∈R

[

τRr
(

αR
r ΖR

r,n + βR
r ΔR

r,n

)(

1+
νRr
τRr

)]

+
∑

s∈S

[

τSs
(

αS
s ΖS

s,n + βS
s ΔS

s,n

)(

1+
νSs
τSs

)]

+
∑

e∈E

∑

m∈N,m∕=n

[

τnete

(
αnet
e Ζnet

e,n,m + βnet
e Δnet

e,n,m

)(

1+
νnete
τnete

)

l(n,m)

]}

(2)

τC(R,S,net)c(r,s,e) =
ρ(1+ ρ)ιC(R,S,net)c(r,s,e)

(1+ ρ)ιC(R,S,net)c(r,s,e) − 1
(3)

l(n,m) = l(m, n) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xn − xm)2 + (yn − ym)2
√

(4)

Eq. (5) defines the annual operating costs considering expenses for
imported (superscript imp) energy and revenues for exported (super-
script exp) energy, where γe is the specific cost/price of carrier e in
€/kWh, and h is the considered timestep size, which is equal to one hour.

Γoper =
∑

n∈N

∑

e∈E

∑

k∈K
wk

∑

t∈T
h
(

γimpe,k,tψ
imp
e,n,k,t − γexpe,k,tψ

exp
e,n,k,t

)
(5)

2.2.3. Constraints
The constraints of the problem include the power balances of each

energy carrier at each node and the off-design maps of the components,
which have been linearized according to MILP. An additional constraint
can be imposed on the maximum amount of CO2 produced directly and
indirectly by the system.

Power balances
Eq. (6) defines power balances, where λnet is a network-specific loss

factor in m− 1, and σnet(*) is a correction factor as a function of generic
(time-dependent) input data * (e.g., DHN losses may vary as the ground
temperature changes).

The sum of all power flows of a certain carrier entering a node must
equal the sum of all power flows of the same carrier exiting that node.
Note that the power flow entering a node through a network line is equal
to the power flow exiting the other extreme node of that line reduced by
the losses.

Non-dispatchable energy conversion technologies
The output power of the non-dispatchable energy conversion tech-

nology r in terms of carrier e (πR
r,e) depends on its rated capacity and,

possibly, some (time-dependent) input data, as given in Eq. (7), where
σR(*) is a correction factor that depends only on input data (e.g., it
represents the influence of solar irradiance on the electrical output
power of a PV module).

πR
r,e,n,k,t = ΖR

r,nσR
r,e,k,t(*) ∀ n ∈ N, k ∈ K, t ∈ T (7)

Moreover, the rated capacity is upper bounded by the maximum
value that it can take, ZR,max, as given in Eq. (8).

ΖR
r,n ≤ ΖR,max

r,n ΔR
r,n ∀ n ∈ N (8)

The following considerations hold true also for dispatchable con-
version and storage technologies:

• If ΖR(C,S),max
r(c,s) is unknown, it can be set to a “large enough” value;

• The output power is always zero if the technology is excluded
(ΔR(C,S)

r(c,s),n = 0);

• σR(C,S)
r(c,s),e(*) = 0 if carrier e does not concern the considered technology.

Dispatchable energy conversion technologies
The output power of the dispatchable energy conversion technology

c in terms of carrier e depends on a linear combination of the power
inputs of the considered carriers as given in Eq. (9), where ηCc,e and υCc,e
are constant coefficients that linearize the off-design performance, and
σC(*) is a correction factor that depends only on input data (e.g., it
represents the influence of ambient temperature on the performance of a
gas turbine).

Table 3
Operational decision variables, either binaries or continuous.

Variable Description Type

πC
c,e,n,k,t Power output in terms of energy carrier e of the dispatchable energy conversion technology c at node n during the timestep t of typical day k continuous

μC
c,e,n,k,t Power input in terms of energy carrier e of the dispatchable energy conversion technology c at node n during the timestep t of typical day k continuous

δCc,n,k,t On/off state of the dispatchable energy conversion technology c at node n during the timestep t of typical day k binary

ϑC
c,n,k,t Auxiliary variable associated with the dispatchable energy conversion technology c at node n during the timestep t of typical day k continuous

πS
s,e,n,k,t Discharge power in terms of energy carrier e of the energy storage technology s at node n during the timestep t of typical day k continuous

μS
s,e,n,k,t Charge power in terms of energy carrier e of the energy storage technology s at node n during the timestep t of typical day k continuous

ξintras,e,n,k,t Intra-day state of charge in terms of energy carrier e of the energy storage technology s at node n during the timestep t of typical day k continuous

ξinters,e,n,d Inter-day state of charge in terms of energy carrier e of the energy storage technology s at node n during the day of the year d continuous

ξintra,maxs,e,n,k Maximum intra-day state of charge in terms of energy carrier e of the energy storage technology s at node n during typical day k (auxiliary variable) continuous

ξintra,mins,e,n,k Minimum intra-day state of charge in terms of energy carrier e of the energy storage technology s at node n during typical day k (auxiliary variable) continuous

ψ imp
e,n,k,t Power imported from external systems in terms of energy carrier e at node n during the timestep t of typical day k continuous

ψexp
e,n,k,t Power exported to external systems in terms of energy carrier e at node n during the timestep t of typical day k continuous

φnet
e,n,m,k,t Power flow in the network line (carrier e) from node n to node m, n ∕= m, during the timestep t of typical day k continuous

ψ imp
e,n,k,t +

∑

c∈C
πC
c,e,n,k,t +

∑

r∈R
πR
r,e,n,k,t +

∑

s∈S
πS
s,e,n,k,t +

∑

m∈n,m∕=n
φnet
e,m,n,k,t

[
1 − λnete l(nm)σnet

e,k,t(*)
]
= χe,n,k,t + ψexp

e,n,k,t +
∑

c∈C
μC
c,e,n,k,t +

∑

s∈S
μS
s,e,n,k,t

+
∑

m∈n,m∕=n
φnet
e,n,m,k,t ∀ e ∈ E, n ∈ N, k ∈ K, t ∈ T

(6)
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πC
c,e,n,k,t = σC

c,e,k,t(*)
∑

e∈E

(
ηCc,eμC

c,e,n,k,t + υCc,eδCc,n,k,t
)
∀ n ∈ N, k ∈ K, t ∈ T (9)

Note that most technologies have a single input energy carrier. Thus,
the correction factor σC

c,e(*) is set equal to zero for all carriers except the
input one. Moreover, the output power is upper and lower bounded
according to the rated capacity and the relative minimum load οC

c , as
shown in Eqs. (10)–(13), which make use of the auxiliary variable ϑC

c to
avoid nonlinear constraints [76].

ΖC
c,n ≤ ΖC,max

c,n ΔC
c,n ∀ n ∈ N (10)

ϑC
c,n,k,t ≤ δCc,n,k,tΖ

C,max
c,n ∀ n ∈ N, k ∈ K, t ∈ T (11)

ΖC
c,n − ϑC

c,n,k,t ≤
(
1 − δCc,n,k,t

)
ΖC,max
c,n ∀ n ∈ N, k ∈ K, t ∈ T (12)

οC
c ϑC

c,n,k,t ≤ πC
c,e,n,k,t ≤ ϑC

c,n,k,t∀n ∈ N, k ∈ K, t ∈ T (13)

Note that if ΔC
c,n = 0, the power output is zero for all timesteps,

whereas if δCc,n,k,t = 0, the power output is zero only during timestep t of
TD k (ϑC

c,n,k,t = 0). Otherwise, if both ΔC
c,n = 1 and δCc,n,k,t = 1, the output

power is upper bounded by the rated capacity (ϑC
c,n,k,t = ΖC

c,n) and lower
bounded by the minimum load (οC

c ΖC
c,n).

Energy storage technologies
Energy storage technologies are modelled according to Kotzur et al.

[77] in order to allow both daily (intra-day) and seasonal (inter-day)
storage. Furthermore, a storage technology s is assumed to have only one
input and one output of the same carrier e.

Eq. (14) shows the upper and lower bounds of the storage capacity,
while Eqs. (15) and (16) limit the charge and discharge power, respec-
tively, according to the capacity-relative coefficients οS,chars and οS,discs in
kW/kWh.

ΖS
s,n ≤ ΖS,max

s,n ΔS
s,n∀n ∈ N (14)

μS
s,e,n,k,t ≤ οS,char

s ΖS
s,n∀n ∈ N, k ∈ K, t ∈ T (15)

πS
s,e,n,k,t ≤ οS,disc

s ΖS
s,n∀ n ∈ N, k ∈ K, t ∈ T (16)

The SOC is composed of two terms, the intra-day SOC (ξintras,e ) and the
inter-day SOC (ξinters,e ). The first is defined for each timestep t of each TD k,
whereas the latter is defined for each day of the year d.

Eq. (17) reports the dynamic energy balance of the intra-day SOC,
which is assumed to be zero at the beginning of the day, as in Eq. (18),
where λSs,e is the SOC-relative coefficient of self-discharge losses, σS

s,e is a
correction factor that depends only on input data (e.g., self-discharge of
TES may depend on ambient temperature), ηS,chars,e is the charging effi-
ciency, and ηS,discs,e is the discharging efficiency.

ξintras,e,n,k,t+1 = ξintras,e,n,k,t

[
1 − λSs,eσS

s,e,k,t(*)
]
+ ηS,chars,e μS

s,e,n,k,th

−
πS
s,e,n,k,th
ηS,discs,e

∀ n ∈ N, k ∈ K, t ∈ T
(17)

ξintras,e,n,k,t=1 = 0 ∀ n ∈ N, k ∈ K (18)

The intra-day SOC is bounded by two auxiliary variables (ξintra,mins,e and
ξintra,maxs,e ), as Eq. (19) shows.

ξintra,mins,e,n,k ≤ ξintras,e,n,k,t ≤ ξintra,maxs,e,n,k ∀ n ∈ N, k ∈ K, t ∈ T (19)

Eq. (20) gives the dynamic energy balance of the inter-day SOC,
which is constrained to assume the same value during the first and last
day of the year, as Eq. (21) shows.

ξinters,e,n,d+1 = ξinters,e,n,d

[
1 − λSs,eσS

s,e,d(*)
]24

+ ξintras,e,n,k=g(d),t=24 ∀ n ∈ N, d ∈ D (20)

ξinters,e,n,d=1 = ξinters,e,n,d=365 ∀ n ∈ N (21)

Thus, the inter-day SOC associated with a day of the year (d+ 1) is
given by the sum of the inter-day SOC of the previous day (d) net of self-
discharge losses and the residual intra-day SOC at the end of the typical
day (k) representing it. Eqs. (22) and (23) define the upper and lower
bounds of the overall SOC, respectively, which is the sum of the inter-
day and intra-day SOC.

ξinters,e,n,d + ξintra,maxs,e,n,k=g(d) ≤ ΖS
s,n ∀ n ∈ N, d ∈ D (22)

ξinters,e,n,d

[
1 − λSs,eσS

s,e,d(*)
]24

+ ξintra,mins,e,n,k=g(d) ≥ 0 ∀ n ∈ N, d ∈ D (23)

Import and export of energy carriers
Power import/export of carrier e at node n from/to external systems

is allowed only if the binary variable Δexc
e,n is set to 1, as reported in Eqs.

(24) (import) and (25) (export), where M is a “large enough” value.

ψ imp
e,n,k,t ≤ Δexc

e,nM ∀ k ∈ K, t ∈ T (24)

ψexp
e,n,k,t ≤ Δexc

e,nM ∀ k ∈ K, t ∈ T (25)

Energy networks
The capacity of the energy network line transporting the carrier e

from node n to node m (with n ∕= m) is upper bounded by a “big-M
constraint”, where M is a “large enough” value, as given in Eq. (26).

Ζnet
e,n,m ≤ Δnet

e,n,mM (26)

If bidirectional flow is allowed, the line capacity is the same in both
directions, as given in Eq. (27); otherwise, the flow is only allowed in
one direction, as reported in Eq. (28).

Ζnet
e,n,m = Ζnet

e,m,n (27)

or

Δnet
e,n,m +Δnet

e,m,n ≤ 1 (28)

Eq. (29) imposes the upper bound on the power flow in the network
line.

φnet
e,n,m,k,t ≤ Ζnet

e,n,m ∀ k ∈ K, t ∈ T (29)

Limit on CO2 emissions and epsilon-constrained multi-objective
optimization

The carbon emissions attributable to the system operation are given
by Eq. (30) as a function of the imported and exported energy carriers,
where ζ is a specific emission factor in kg/kWh.

Φ =
∑

n∈N

∑

e∈E

∑

k∈K
wk

∑

t∈T
h
(

ζimpe,k,tψ
imp
e,n,k,t − ζexpe,k,tψ

exp
e,n,k,t

)
(30)

Carbon emissions represent direct and indirect production of CO2.
Direct production is associated, for instance, with natural gas imported
and subsequently burned in gas engines/boilers. Indirect production is
associated, for instance, with the carbon intensity of imported elec-
tricity. Emission factors are generally time-dependent and may differ
between imported and exported carriers, which usually reduces the CO2
emissions attributable to the system.

Eq. (31) allows an upper limit to be imposed on CO2 emissions,
where ε is a dimensionless coefficient defined in the range from 0 to 1,
and Φ0 represents the CO2 emissions produced if no upper limit is
considered.

Φ ≤ εΦ0 (31)

By decreasing ε successively from 1 towards 0, it is possible to
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perform a so-called “epsilon-constrained” multi-objective optimization
[78], thus obtaining as the solution to the problem the Pareto front
having life-cycle cost and CO2 emissions as conflicting objectives.

2.3. Decomposition of the problem by a two-level evolutionary algorithm

To isolate the synthesis decision variables (all binary) from the
design and operation decision variables (binary or continuous), DOMES
decomposes the full problem into two parts. As introduced in Fig. 2, a
two-level EA allows the synthesis variables to be set in the upper level
and sent to the lower level, which solves the design and operation
problem according to the objective function. EAs are population-based,
iterative algorithms. Thus, the upper level defines many combinations of
synthesis variables at each iteration, and an equal number of design and
operation problems are solved at the lower level by a MILP algorithm. A
series of iterations is required to achieve convergence to the optimal
solution. This section explains the reasons for choosing the two-level
architecture and describes how the EA is structured and solved.

2.3.1. Choice of the two-level architecture
Since the computational complexity of a MILP problem grows

exponentially as the number of binary variables increases, the compu-
tational load of the lower-level problems is drastically smaller than that
of the full problem (in addition, the number of operational binary var-
iables is also reduced due to time series aggregation). Moreover, since
the different lower-level problems are independent of each other, they
can be solved in parallel, thus further reducing the computational load.
As a result, decomposition can reduce the computational time required
to solve the SDO optimization of a MES by orders of magnitude, as
demonstrated by Casisi et al. [69]. The drawback of this approach is that

the meta-heuristic nature of EAs does not provide “internal” mathe-
matical proof that the optimal solution found corresponds to the global
optimum [79]. Thus, an “external” procedure is needed to evaluate the
“quality” of the obtained solution. Considering the optimization method
proposed here, one possibility is to solve the SDO problem of the MES
entirely by MILP, thus avoiding decomposition, then comparing the
solution obtained with that provided by the two-level EA. In fact, MILP is
convex and guarantees finding the global optimum. Therefore, if the
result of the EA is sufficiently close to that of MILP, it can be said that the
EA has found the global optimum as well. However, especially for large-
scale problems, it is rarely possible to solve the SDO optimization
entirely by MILP in a reasonable time. To overcome this problem, an
alternative validation procedure is presented in Section 5.2.

2.3.2. General concepts and definitions
An “individual” i of the proposed two-level EA is defined as a

mathematical object containing all the synthesis decision variables, to
which a value is assigned in the upper level. Thus, an individual is
associated with a specific system topology. The optimal value of the
objective function obtained in the lower level by solving the design and
operation MILP problem for that topology is the “fitness value” q of that
individual i.

A “generation” is a set I of individuals belonging to the same iteration
j. The “parent generation” (Ipar) refers to a starting generation from
which a new generation, the “offspring generation” (Ioff ), can be ob-
tained through proper evolutionary operators. The set of a parent gen-
eration and the corresponding offspring generation is called a
“population” (P = Ipar ∪ Ioff ).

There are three kinds of evolutionary operators: “crossover”, “mu-
tation” and “selection” (note that the application of crossover and

Fig. 3. Flowchart of the two-level EA embedded in DOMES.
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mutation operators is limited to the current synthesis decision variables,
thus excluding those fixed in advance by the user).

• Crossover combines two “parent individuals” to obtain an “offspring
individual”. For each synthesis (binary) variable, equal correspond-
ing values in the two parent individuals (1-1 or 0-0) result in the
same value in the offspring individual as well (1 or 0, respectively).
Different initial values (1-0 or 0-1) cause the corresponding value of
the offspring individual to be chosen between 1 and 0 with a 50 %
probability.

• Mutation randomly alters the synthesis variables of an individual.
Each binary variable has a certain probability (5 % in this case) of
changing value.

• Selection groups the best (fittest) individuals in a population based
on their fitness values.

2.3.3. Structure of the algorithm and solving procedure
Fig. 3 depicts the flowchart of the two-level EA, which is described

below.
In the upper level of EA, the initial generation (generation zero, j =

0) is populated with a set Istartj=0 containing a quantity a of randomly
created individuals (i.e., for each individual i ∈ Istartj=0 a random binary
variable is assigned to each synthesis decision variable). These random
data structures are called “starting representations” (SRs) of individuals
and may contain inconsistencies that would result in infeasible or
nonoptimal solutions. A rigorous set of rules is introduced to fix in-
consistencies and, in turn, reduce the number of meaningless in-
dividuals, thus speeding up the EA. Specifically, four rules are applied in
the following order.

(1) Detect whether a network line is not connected to any end user,
import/export node, or energy conversion/ storage plant. If so,
remove that network line and iterate if another line has the same
inconsistency.

(2) Detect whether an isolated part of a network does not include at
least one end user and any other end user, import/export node, or
conversion/storage plant. If so, remove that isolated part of the
network and iterate to fix all similar inconsistencies.

(3) Detect whether an end user is isolated without the availability of
energy conversion plants to meet its demand. In this case, no
general solution is available. Only case-specific solutions can be
applied (e.g., adding a GB to an isolated end user with heat de-
mand). If not even a case-specific solution is available, the
inconsistency remains.

(4) Detect whether an energy conversion or storage plant is isolated.
If so, remove that energy conversion or storage plant and iterate
until there are no more isolated plants.

The data structure of an individual after checking and possibly fixing
the inconsistencies is called the “intermediate representation” (IR). IRs
are checked again to identify clones (i.e., individuals with the same IR),
which are removed from the set Istartj=0 to obtain the new set Imidj=0.

The IRs of the set Imidj=0 are then provided as input to the lower-level
design and operation problem, which, for each individual i ∈ Imidj=0,
finds all the design and operational decision variables and calculates the
corresponding fitness value q. Individuals with infeasible solutions (due,
for example, to residual inconsistencies) are removed from Imidj=0 to obtain
the new set Iendj=0. The data structure of individuals i ∈ Iendj=0, which now
also contains the optimal value of all design and operational decision
variables along with the associated fitness value q, is called the “optimal
representation” (OR).

Individuals of Iendj=0 populate the parent generation of the first iteration
Iparj=1 with their SRs, IRs, and ORs. At this point the iterative cycle of the

two-level EA begins and follows the steps given below:

(1) A quantity a of pairs of individuals is randomly selected from the
set Iparj . For each pair, the crossover operator is applied to the SRs
to obtain a new individual. Then, the mutation operator is
applied to the new individual. Thus, a quantity a of new in-
dividuals with their SRs is obtained. These populate the offspring
generation in the upper level of the current iteration j, thus
defining the new set Ioff ,startj ;

(2) Each individual i ∈ Ioff ,startj is checked for inconsistencies that may
arise due to the random nature of the crossover and mutation
operators. The inconsistencies are eventually fixed according to
the above-mentioned set of rules, resulting in the IRs. Then Ioff ,startj

is checked to find any clones, which are removed, thus obtaining
the new set Ioff ,midj ;

(3) The IRs of individuals from Ioff ,midj are sent to the lower level,
where the design and operation problem is solved for each indi-
vidual i ∈ Ioff ,midj , thus obtaining the optimal value of all design
and operation decision variables along with the associated fitness
value q. Individuals associated with infeasible solutions are
removed from Ioff ,midj , thus obtaining the new set Ioff ,endj including
the new ORs;

(4) The population Pj = Ioff ,endj ∪ Iparj is generated. Individuals in Pj
are then ranked from best to worst according to their fitness
values;

(5) The selection operator extracts the first (best) a individuals of Pj,
thus obtaining the new set Pselj ∈ Pj;

(6) The termination criteria are evaluated. If the relative difference
(gap) between the fitness value of the best (first) individual of Pselj ,

q
(
ibest ∈ Pselj

)
, and that of the worst (last) individual,

q
(
iworst ∈ Pselj

)
, is less than a certain threshold b, or if the number

of iterations j reaches the maximum allowed number J, then the
algorithm stops and the values of the synthesis, design and
operational decision variables of ibest , together with its fitness
value, represent the optimal solution to the problem. Otherwise,
the iteration counter is updated (j = j+ 1) and the individuals of
Pselj populate the new parent generation Iparj with their SRs, IRs
and ORs. Then, the algorithm returns to step 1.

The number of individuals a populating the parent generations and
the termination tolerance b are critical parameters to choose. The larger
a, the wider the search space of the optimization problem and the lower
the chance of obtaining a local optimum as the final results, but also the
higher the computational requirements. The lower b, the higher the
probability of finding the global optimum with good accuracy while
avoiding suboptimal solutions, but, again, the higher the computational
time. It is also possible to set a maximum number of iterations J to stop
the EA in case the termination tolerance is not reached in a reasonable
time. However, the farther the gap of the last iteration from the termi-
nation tolerance b, the lower the probability of finding the global opti-
mum.

3. Case study

Fig. 4 shows the geographic layout of the case study considered here,
which represents a district in the city of Padova, Italy. Meteorological
data of solar irradiation and ambient temperature are available for one
year with hourly resolution [80]. The district is modelled as a multi-
nodal system with a total of 36 nodes. The possible connections be-
tween pairs of nodes define the allowed path for the network lines. The
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system includes 12 public, commercial and residential end users, shown
in Table 4 with their heat and electricity demands (available for one year
with hourly resolution). This study considers PV, GB, CHP ICE, air-water
HP, EES and TES as energy conversion and storage units that can be
installed to meet the user demands, and DHN and EMG as networks. The
EMG is assumed to operate at low voltage (400 V), while the DHN is
assumed to operate with pressurized hot water with constant supply and
return temperatures of 70 ◦C and 40 ◦C, respectively. In addition to

electricity and heat, natural gas is considered as an energy carrier.
However, the gas network has not been modelled, assuming that it is
already available. Thus, energy conversion technologies that require
natural gas are assumed to import it directly from the external gas grid.
The local EMG can be connected to the external power grid at node 24.
In contrast, the DHN remains isolated in the district. Energy conversion
and storage units, with the exception of ICEs, can be installed directly at
the end-user-building level. Alternatively, three energy hubs have been
identified to install larger plants, including ICEs, according to Table 5.
Table 6 shows the investment cost coefficients of the considered plants
and networks and their expected lifetimes. Table 7, Table 8 and Table 9
report the operating parameters of energy conversion technologies,
storage technologies and networks, respectively. Finally, Table 10 re-
ports the specific costs/prices and emission factors of energy carriers,
assumed as constant values throughout the year. A more detailed anal-
ysis of the considered components can be found in Refs. [71, 81].

Two types of problems have been considered and solved to show the
potential of DOMES in optimizing the SDO of a MES:

• Design from scratch (Section 4.1). Starting with a blank system, the
goal is to find the location, type, size, and operation of energy con-
version and storage units and the network topology that minimize
the life cycle cost of meeting the demand of end users;

• Retrofit design (Section 4.2). A set of energy conversion and storage
plants and network lines are already available in the system. The goal

Fig. 4. Layout of the considered MES.

Table 4
End users of the considered MES with their energy demand.

Node Type of
building

Annual
electrical
demand,
MWh

Electrical
demand
peak, kW

Annual
heat

demand,
MWh

Heat
demand
peak, kW

2 Restaurant 91.3 20 49.4 30
4 Offices 112.8 45 24.2 70
9 Residential 574.5 160 429.0 350
12 University 192.4 75 66.6 125
14 University 230.9 90 79.9 150
15 University 218.1 85 74.6 140
18 Restaurant 68.5 15 36.2 22
22 University 269.4 105 95.9 180
28 Hotel 213.9 50 235.7 110
30 Hotel 427.8 100 471.4 220
31 Shop 52.9 12 21.0 18
34 Shop 132.2 30 49.0 42

Table 5
Energy hubs of the considered MES and connections with external systems.

Node Type of
node

Allowed technologies (maximum capacity), Energy carriers
that can be exchanged

6 Energy hub PV(50kWp), ICE(200kWel), GB(2MWth), HP(300kWth), TES
(300kWh), EES(50kWh)

24 Connection Electricity import/export from/to the main power grid
32 Energy hub ICE(1MWel), GB(2MWth), HP(1MWth), TES(1MWh)

35 Energy hub
PV(2MWp), ICE(1MWel), GB(2MWth), HP(1.5MWth), TES
(1.5MWh), EES(500kWh)

Table 6
Linearized investment costs and lifetime of the considered technologies and
carriers [81–83].

Technology Size-specific cost (α) Fixed cost (β) Lifetime (ι), years

PV 1250€/kWp 0 20
ICE 1740€/kWel 32.0k€ 20
GB 65€/kWth 1.6k€ 20
HP 117€/kWth 2.1k€ 20
TES 244€/kWh 1.0k€ 20
EES 880€/kWh 3.5k€ 20
EMG 10€/kW/km 34€/m 40
DHN 200€/kW/km 103€/m 40
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is to improve the economic and environmental performance of the
initial system configuration by installing new components and/or
adding capacity to existing ones.

Annual time series of energy demand and weather data are aggre-
gated into 10 typical days that include the two days of the year with the
maximum peak of electricity and heat demand, respectively. Consid-
ering EA, the number of individuals per generation (a) is set to 100, the
termination tolerance (b) to 10− 3 and the maximum number of itera-
tions to 100. These assumptions are discussed in Section 5.

4. Results

The DOMES framework is developed in Python and uses Gurobi as
MILP optimizer. Optimizations have been performed by a machine with
an Intel(R) Core(TM) i9-12900K 3.20 GHz processor and 64 Gb RAM.

4.1. Design from scratch

The design from scratch has been solved in about 6 h, reaching
termination tolerance in 50 iterations.

Fig. 5 shows the optimal layout of EMG and DHN obtained by design
from scratch. Both networks are radial and not meshed. This is due to the
effects of economies of scale, which favor the installation of fewer lines
of higher capacity to reduce the investment cost. The EMG connects all
end users with the energy hubs at nodes 6 and 35 and with the main
power grid at node 24, thus highlighting that working in island mode is
not cost-effective for the system. The DHN also connects all end users
with the energy hubs at nodes 6 and 35, with the exceptions of the users
located at nodes 12, 14, and 15, which must therefore provide for their
heat demand individually.

Fig. 6 shows how the capacity of the networks is distributed among
the EMG and DHN lines and how the capacity of the installed energy
conversion and storage units is distributed among the nodes. The energy
hub at node 35 includes the largest PV plant in the system (613 kWp)
along with an ICE of 174 kW rated electrical capacity, a HP of 183 kW
rated thermal capacity, and a TES of 231 kWh rated capacity. Smaller PV
systems are distributed among all end-user buildings. The energy hub at
node 6 includes a GB of 291 kW rated thermal power, a HP of 196 kW
rated thermal power, and a TES of 37 kWh rated capacity. The end users
not connected to the DHN install independently GB, HP, and TES to meet
their heat demand, while the users connected to the DHN draw the
required heat entirely from the network. The largest DHN pipelines (up
to 511 kW capacity) are those near the energy hubs because they take
over the heat supply for the entire network. In fact, the DHN has a “tree”
shape, with heat streams flowing only from the hubs (roots) to the users
(leaves). Thus, end users are not allowed to inject thermal energy into
the network but only to withdraw it. In contrast, the energy flows within
the EMG are bidirectional. In this case, the largest lines (up to 516 kW
capacity) are those near node 24, i.e., the point of connection to the
main power grid, which takes over the entire import and export of
electricity for the system. Note that no EES is installed because it is not
cost-effective due to its relatively high investment cost. The coupling of
PV, HP and TES turns out to provide sufficient flexibility at lower costs
than installing EES.

The levelized annual cost of the MES is 509.8 k€, and the annual CO2
emissions are 618.6 t. These results can be compared with a reference
case in which users meet the entire heat demand with gas-fired boilers

Table 7
Operational parameters of the considered energy conversion technologies [81–83].

Parameter PV ICE GB HP

Type Non-dispatchable Dispatchable Dispatchable Dispatchable
Input carrier – Natural gas Natural gas Electricity

Input time series affecting the operation (*) Solar irradiation Н, kW/m2 – – Ambient temperature Θ, K
Minimum load (ο) – 0.7 0 0.5

First output

Carrier (e) Electricity Electricity Heat Heat
Flow-specific output coefficient (ηe) – 0.41 0.9 0.56
Fixed output coefficient (υe), kW – − 4.55 0 − 2.10

Correction factor (σe) Нk,t/Нstd 1 1 1
(
Θs − Θk,t

)
/Θs 2

Second output

Carrier (e) – Heat – –
Flow-specific output coefficient (ηe) – 0.51 – –
Fixed output coefficient (υe), kW – − 7.29 – –

Correction factor (σe) 0 1 0 0

1 Нstd: standard solar irradiation at peak conditions (1000 W/m2).
2 Θs: supply temperature (343.15 K).

Table 8
Operational parameters of the considered energy storage technologies [81–83].

Parameter TES EES

Input and output carrier (e) Heat Electricity
Input time series affecting the operation (*) – –
Charging capacity (οchar), kW/kWh 1 1
Discharging capacity (οdisc), kW/kWh 1 1
Charging efficiency (ηchar) 1 0.95
Discharging efficiency (ηdisc) 1 0.95
Relative self-discharge losses (λ) 0.04 0
Correction factor (σe) 1 1

Table 9
Operational parameters of the considered energy networks [81–83].

Parameter EMG DHN

Carrier (e) Electricity Heat
Input time series affecting the operation (*) – –
Relative loss-factor (λ), 1/m 5.4 × 10− 5 5.0 × 10− 6

Correction factor (σe) 1 1

Table 10
Specific costs/prices and emission factors of the considered energy carriers
[81,84,85].

Carrier Import cost
(γimp),

€/MWh

Export price
(γexp),

€/MWh

Import emission
factor (ζimp), kg/

MWh

Export emission
factor (ζexp), kg/

MWh

Electricity 234 50 356 0
Natural
gas 98 n.d. 197 n.d.

Heat n.d.1 n.d. n.d. n.d.

1 n.d. = not defined.
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Fig. 5. Optimal layout of the considered MES, design from scratch.

Fig. 6. Capacity distribution: (a) energy networks, (b) conversion and storage plants, design from scratch.

E. Dal Cin et al. Applied Energy 377 (2025) 124702 

13 



and the entire electricity demand with the main power grid. In this case,
the annual costs and CO2 emissions are 737.3 k€ and 1277.6 t, respec-
tively. Thus, the optimized MES results in a 31 % reduction in costs and
52 % reduction in emissions, suggesting that decarbonization is cost-
effective at least up to a certain share of avoided CO2 emissions. Note
that no constraint is imposed here on CO2 emissions. Thus, the decar-
bonization process is completely driven by cost-effectiveness in this
case.

Fig. 7 shows how the total annual costs are distributed among the
cost categories. Operating costs amount to 286.4 k€, of which 45 % is
due to natural gas import. The remaining 55 % is due to electricity
import net of exported electricity, the negative contribution of which is
about 15 % of the total operating costs. Capital costs are 223.4 k€, with
PV responsible for 64 % of the total. The second and third largest con-
tributors to capital costs are ICE (12 %) and DHN (5 %). The limited

impact of energy networks on capital costs is due to the small
geographical extent of the system and the proximity of end users (the
area under consideration is highly populated).

Fig. 8 shows the annual energy balances (electricity and heat), where
each day of the year is replaced by the typical day representing it. PV is
predominant in terms of supplied energy, especially during the summer
period, with an annual production of 2055.9 MWh of renewable elec-
tricity, corresponding to 75% of the total electricity generated on site. In
contrast, CHP generation of the ICE is more prominent during the winter
period. ICE produces 664.6 MWh of electricity annually, as if it were
working 44 % of the year at rated power, and 814.3 MWh of heat, ac-
counting for about 50 % of the annual demand. Note that the ICE is
constrained to operate in CHP mode (it cannot release useful heat to the
environment) in order to improve the overall efficiency of the system.
The rest of the heat demand is almost entirely covered by HPs (807.4
MWh/year of thermal production, i.e., about 1700 equivalent hours at
rated capacity per year), while GBs are used only to cover peaks (91.1
MWh/year of thermal production, i.e., less than 150 equivalent hours at
rated capacity per year). Note that the DHN losses account for about 5 %
of the total heat generated. Imported electricity is 767.2 MWh/year (30
% of demand), while exported electricity is 696.3MWh/year, or 34 % of
the electricity generated by PV. Overall, more than 70 % of electricity
demand is covered by electricity generated locally.

4.2. Retrofit design

The retrofit design problem has been solved in about 2.5 h, reaching
termination tolerance in 21 iterations. The shorter computation time
compared with design from scratch is due to the fact that a larger
number of binary synthesis variables has been fixed in advance, thus
reducing the combinatorial complexity.

Fig. 9 shows the initial layout of energy networks and how it has
changed after retrofit optimization. Accordingly, Fig. 10 shows (a) the
initial distribution of network line capacity and how it has changed and
(b) the mix of energy conversion and storage technologies before and

Fig. 7. Cost distribution of the optimal MES layout, design from scratch.

Fig. 8. Annual energy balances, design from scratch.
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after the retrofit optimization. The initial layout of the EMG is meshed
and connects all nodes except the energy hubs located at nodes 6 and 35.
The initial layout of the DHN connects the energy hub located at node 32
to the end users at nodes 28, 30, and 31. The other users are independent
in terms of heat demand, which they meet with GBs and/or HPs. In
addition, some of them have availability of PV systems. The energy hub
located at node 32 initially includes an ICE of 135 kW rated electrical
power, a GB of 400 kW rated thermal power, and a TES of 100 kWh
capacity. Regarding EMG, the optimized retrofit design results in the
addition of the network line connecting node 25 to node 35, where an
energy hub is located. That hub now includes a 561 kWp PV plant, which
is the largest in the system. PV plants with much lower capacities (below
150 kWp) are also added in all nodes where they can be installed. DHN
has been extended to all end-user buildings, with the exception of node
4, which is the most distant from the hubs and continues to meet its heat
demand by GB. A HP of 222 kW nominal thermal power has been added
to node 32 to meet the increased heat demand covered by DHN. In
addition, 37 kW of rated electrical power has been added at the same
hub to the already available ICE and 87 kWh of rated capacity to the
already available TES. Finally, 10 kWh of rated capacity has been added
to the 30 kWh of EES available at node 9. Note that the capacity of EES is
still very limited, indicating that it is more cost-effective to provide the
demand flexibility required by the system with other resources (such as
PV coupled with HP and TES).

The annual cost associated with the initial configuration of the MES
(before retrofit) is 577.3 k€ and is composed of operating costs only, as
the available plants and networks are considered to have been installed
previously. The annual CO2 emissions are 1047.8 t. The goal of retrofit
design is to improve the performance of the MES by decreasing both the
annual cost and the carbon emissions. As a result, the optimal annual
cost after retrofit design is 439.6 k€ and corresponds to a 24% reduction,
despite including capital costs. The resulting CO2 emissions are 635.8 t,
corresponding to a 39 % reduction. Note that no upper limit on carbon
emissions is considered, so that the CO2 reduction is determined only by
cost-effectiveness.

Fig. 11 shows how the annual costs are distributed in the optimized
MES layout. The operating costs account for 66 % of the total, with
imported gas and electricity contributing almost equally (128 k€/year is

due to natural gas, 144 k€/year is due to electricity import net of reve-
nues for exported electricity). The capital costs are due to newly
installed components and additional capacity. PV is the main contrib-
utor with 119 k€, accounting for 80 % of the total. The second largest
contributor is DHN, with 6 k€ (4 % of the total). The EMG contribution
to capital costs is almost negligible because most of the network lines
were already available in the starting configuration of the MES.

4.2.1. Epsilon-constrained multi-objective optimization
The proposed optimization method allows imposing a variable

constraint on the maximum amount of CO2 produced in order to perform
a so-called “epsilon-constrained” multi-objective optimization between
life-cycle cost minimization and emission minimization. Successively
reducing ε in Eq. (31) means limiting CO2 emissions to increasingly
stringent targets. This results, for the retrofit problem, in the Pareto front
shown in Fig. 12a. Further reductions in annual emissions compared to
unconstrained optimization result in increased life-cycle costs, the two
objectives being in conflict. Moreover, the relationship between the two
objectives is not linear. Reducing emissions by 64 t from 636 t to 572 t
increases the cost by 6 k€. In contrast, reducing emissions by the same
amount from 447 t to 383 t increases the cost by 21 k€. Note that 383 t/
year is the minimum limit of CO2 produced. In fact, the emission
reduction is mainly driven by increasing the installed capacity of PV and
EES, as shown in Fig. 12b. However, PV capacity is upper limited by the
area available for plant installation, thus limiting, in turn, the possible
reduction of CO2 produced. The increase in installed capacity of PV and
EES is also the main cause of the cost increase on the Pareto front. A 40
% emission reduction (the maximum possible) requires installing an
additional 1344 kWp of PV (+100%) and an additional 1270 kWh of EES
(over 30 times more than the starting capacity).

Considering energy networks, the additional PV capacity installed to
reduce carbon emissions requires upgrading the EMG. Specifically, the
capacity of the line connecting nodes 24 and 25 grows from 570 kW
when CO2 emissions are not capped to 1307 kW (+130 %) when CO2
emissions are reduced by 40 %. Moreover, the capacity of the line
connecting nodes 25 and 35 grows from 439 to 1374 kW (+213 %)
under the same conditions. These increases are justified by the fact that
all the additional PV capacity (1344 kWp) is installed at node 35. The

Fig. 9. Initial and optimal layout of the considered MES, retrofit design.
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expanded EMG lines are in fact those connecting node 35 to the interface
with the national grid at node 24 (see Fig. 9). DHN, on the other hand,
undergoes only minor changes.

Fig. 12 shows also cost, emissions and capacities of the baseline
system, i.e., the MES before retrofit. It is worth noting that, for this case
study, even the most expensive configuration of the Pareto front is
cheaper than the baseline, thereby highlighting the wide margin avail-
able to decarbonize the system.

5. Discussion

5.1. Choice of the number of typical days

One of the critical parameters that must be chosen properly to obtain
reliable solutions of the SDO optimization problem is the number of
representative TDs to be provided as input to the K-medoids algorithm
for time series aggregation. Indeed, it is necessary to find a suitable
compromise between (i) limiting the computational load and (ii)
ensuring adequate accuracy of the solutions. In general, the higher the
number of TDs, the more accurate the aggregated time series in repre-
senting annual ones, but the higher the computational requirements,
which increase at least linearly with the total number of timesteps. In
this study, 10 TDs have been chosen to represent the entire year, addi-
tionally including the two days of the year when the peaks for heat and
electricity demands occur.

This choice has been validated by considering the “design from
scratch” problem, which is the most time-consuming one. First, a MILP

Fig. 10. Capacity distribution: (a) energy networks, (b) conversion and storage plants, retrofit design.

Fig. 11. Cost distribution of the optimal MES layout, retrofit design.
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design and operation problem is set up by fixing the optimal synthesis
variables obtained from the full SDO optimization problem described in
Section 4.1. Then, the MILP problem is solved several times by pro-
gressively increasing the number of TDs obtained from the K-medoids

algorithm by (i) not including the peak demand days and (ii) including
the peak demand days. Fig. 13 shows the results of this analysis, where
the relative optimum is the ratio between the value of the objective
function obtained from the MILP design and operation subproblem and

Fig. 12. (a) Pareto front between life cycle cost and CO2 emissions, (b) capacity variation with emissions.

Fig. 13. Variation of the optimum (relative to design from scratch solution) with the number of typical days.

Fig. 14. Sensitivity analysis to the EA parameters “number of individuals” a and “termination tolerance” b: (a) value of the optimum, (b) computational time.
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that obtained from the complete SDO problem. Note that a certain
number of TDs is required for the optimum to reach stability. A very low
number of TDs (2 to 5) leads to solutions that deviate up to 20 % from
the stable optimum. The inclusion of peak periods allows the stable
optimum to be reached with a lower number of TDs. In the range of 5 to
30 TDs, not including peaks means deviating from the stable optimum
by about 4 % more than when including them. It can be seen that the
chosen option (10 TDs peaks included) is still not in the stable region,
which starts at about 20 TDs. However, the error with respect to the
stable optimum is less than 1 %. This error is assumed to be acceptable,
considering that using 20 TDs would mean at least doubling the
computation time.

5.2. Validation of the evolutionary algorithm

The accuracy of the solution of the two-level EA depends on the
parameters set by the user. Indeed, it is expected that, by increasing the
number of individuals per generation and/or decreasing the termination
tolerance, the solution gradually approaches the global optimum. If
beyond certain threshold parameters the resulting value of the objective
function stops changing, it is reasonable to assume that the obtained
solution is “satisfactorily close” to the global optimum. To this end, a
sensitivity analysis has been conducted on the EA parameters (number
of individuals per generation a, termination tolerance b) considering the
design from scratch problem, which is the most computationally
demanding. Fig. 14 shows the results. A termination tolerance b of 0.01
or 0.005 is not sufficient to stabilize the optimum, even for a large
number of individuals (a > 100). In contrast, by considering b = 0.001
the value of the optimum remains stable between 100 and 140 in-
dividuals per generation. Thus, it can be assumed with reasonable
confidence that the optimal solution obtained imposing b = 0.001 and
a ≥ 100 (509.8 k€) is close to the global optimum. Accordingly, the
parameters chosen in Section 3 (a = 100, b = 0.001) are consistent with
reaching global optimality.

In general, the computation time increases as a increases and b de-
creases. It corresponds to 23,175 s, or 6.4 h, for b = 0.001 and a = 100.
For the same number of individuals and b = 0.005, the computation
time drops to 3.5 h, and the optimum deviates by less than 1 % from the
supposed global optimum.

As discussed in Section 2.3.1, the previous validation is not a
rigorous mathematical proof that the global optimum has been found,
because the metaheuristic nature of two-level EA does not inherently
guarantee global optimality. Global optimality can be achieved and
proved mathematically by solving the complete SDO problem with a
MILP approach, without decomposition. However, it is not possible to

solve the considered case studies without decomposition because of to
the limitations of available computational capacity. Thus, to strengthen
the validation of the proposed method, a simpler test case including a
smaller number of nodes has been considered. Due to the lower number
of nodes, it is possible to solve the test case with a MILP approach
without decomposing the problem. The global optimum obtained
(global optimality is guaranteed by the MILP approach) is then
compared with the solution obtained with the two-level DOMES algo-
rithm for the same system.

Fig. 15 shows the simplified system topology of the considered test
case. It consists of six nodes, four end users (multi-apartment residential
buildings), an energy hub and is interconnected with the main power
grid. PV, GB, HP, TES and EES can be installed at the end-user nodes,
while an ICE (CHP unit), a GB and TES can be installed in the energy
hub. The nodes can be connected via DHN and EMG. The objective
function consists in minimizing the total annual costs for investment and
operation. The techno-economic input data are the same as in the pre-
vious case studies, as shown in Tables 6–10. The same system location
and weather data are also assumed.

The optimization of the test case is solved in about 3 h with the non-
decomposed MILP approach and in about 3.5 h with the DOMES
framework. In the first case, the value of the optimum is 234.4 k€ (this is
the global optimum according to MILP features). In the second case, the
value of the optimum is 235.7 k€ (+ 0.55 %). Thus, the gap between the
two-level EA solution and the global optimum is less than 1 %. Table 11
shows the differences in the installed capacities of the considered
technologies between the two optimization approaches. The differences
are large when considering thermal power generators (GB, HP) and TES,
with a peak of 28 % relative difference for GB. In all other cases the
deviations are close to or less than 10 %. The effect of these deviations
on the objective function is almost negligible, as shown by the gap be-
tween the achieved optima. This can be explained by the relatively low
investment cost of technologies with larger deviations (especially GB
and TES), which have a minor impact on the objective function.

5.3. Limitations of the proposed method

In order for the design and operation problem of a MES to be solved
as MILP in the lower level of the EA, some modelling simplifications
need to be made. In particular, off-design maps of dispatchable energy
conversion technologies have been linearized between nominal capacity
and minimum load conditions. This approximation is acceptable for
most technologies, since they show a fairly linear behaviour under off-
design conditions. However, linearization introduces some distortions
into the results. Thus, some precautions have been taken to limit these
distortions as much as possible. First, linearization concerns the rela-
tionship between the “fuel” and the “product” of the conversion unit.
Because of the known term in the linear equation, the efficiency (defined
as the product/fuel ratio) is not linear with the product, showing a
steeper decrease at lower partial loads, as expected for real systems.
Second, the part-load operation of the components is limited to a narrow

Fig. 15. Topology of the simplified test case.

Table 11
Installed capacity of the considered technologies, emissions and resulting value
of the objective function in the test case: comparison between non-decomposed
MILP problem and the DOMES algorithm.

Technology MILP DOMES Gap [%]

PV [kWp] 524.1 474.3 − 10.5
ICE [KWel] 103.4 102.3 − 1.1
GB [kWth] 186.3 260.2 +28.4
HP [kWth] 277.3 238.2 − 16.4
TES [kWh] 174.1 154.7 − 12.5
EMG [kWel.km] 56.4 53.5 − 5.5
DHN [kWth.km] 55.1 57.1 +3.4
Annual CO2 emissions [t] 306.2 312.9 +2.1
Objective function [k€] 234.4 235.7 +0.55
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range in which the efficiency varies only slightly (e.g., CHP units operate
in the range of 100 % to 70 % of rated load). This choice preserves the
efficient and safe operation of the components, as commonly occurs in
real applications. Note also that the inclusion of nonlinear constraints to
better model off-design conditions would require more sophisticated
optimization techniques (capable of handling nonconvexity) and, in
turn, significantly higher computational effort. An alternative to keep
the model linear while better modelling the nonlinearities is piecewise
linearization. In practice, nonlinear curves would be approximated by
linear segments. However, an additional binary variable must be added
to the model for each segment, thus exponentially increasing the
computational requirements.

The model of energy networks has also been linearized. Namely, only
power flows within network lines are modelled here, assuming the other
operational parameters as constants. This is a recognized approach in
the literature for topological optimization. For instance, Röder et al.
[50] assumed constant supply and return temperatures and pressure
levels in the topological optimization of a DHN. In this way, heat
transport in the network is directly proportional to the circulating mass
flow rate, and pipelines can be sized according to their maximum mass
flow rate (i.e., maximum thermal power that can be transferred). The
same approach is followed here. A similar approach has also been
chosen for EMG. In this case, the node voltages have been set as constant
values. The power transferred is therefore directly proportional to the
electric current, which is the sizing parameter.

Because of the above-mentioned simplifications, DOMES is intended
for the preliminary planning and design phase of a MES. It can provide
useful guidance to decision makers on how to plan a system to minimize
cost and/or reduce carbon emissions, while providing an overall picture
of the system performances. This justifies the assumed simplifications.
More detailed simulations, including nonlinear behaviours, can be run
on specific parts of the system to gain insights.

Moreover, the proposed method does not evaluate how uncertainty
in the input data (demand profiles, investment costs, energy carrier
prices, resource availability, etc.) affects the results. A sensitivity anal-
ysis is out of the scope of this paper, which focuses on describing the
optimization methodology. However, as a further development, un-
certainties could be taken into account by means of stochastic pro-
gramming techniques. This approach wouldmaintain the linearity of the
model, which would still be treated as MILP, but would increase
computational complexity due to the consideration of different proba-
bilistic scenarios.

Finally, the EA described here has so far been tested only on MESs of
limited spatial extent. How expanding the geographic area and number
of nodes may affect the practicality of finding the global optimum re-
quires further investigation. Some guidance is provided by comparing
the test case and the case study related to design from scratch. The MES
of the first case includes 6 nodes and is solved in 3.5 h. The second one
contains 36 nodes and is solved in 6 h. This suggests that the number of
nodes can be further increased without compromising computational
feasibility. However, larger systems with hundreds or thousands of
nodes would not be solvable in acceptable time. Thus, the DOMES
framework can be scaled to larger geographic areas, provided that the
number of nodes is kept small enough (the larger the system, the lower
the spatial resolution). One possibility for modelling large systems while
keeping the number of nodes small is to apply clustering techniques not
only for time series aggregation, but also for spatial aggregation.

6. Conclusions

This paper presents “DOMES” (acronym for Design Of Multi-Energy
Systems), a general optimization method for the integrated synthesis,
design and operation (SDO) of a multi-energy system (MES) in its en-
tirety. It simultaneously identifies the type, size, location, and sched-
uling of energy conversion and storage units, along with the topology
and capacity of the energy networks, to fulfil the energy demands of the

end users. For this purpose, an evolutionary algorithm has been devel-
oped. It decomposes the entire SDO problem into two levels with the aim
of reducing the computational complexity, which would otherwise make
the problem unsolvable within a reasonable time frame. Most of the
binary decision variables are thus isolated in the upper level, which
defines the system topology, while the lower level optimizes the size and
operation of the included components with a mixed integer linear pro-
gramming (MILP) approach.

The case study considered has demonstrated the ability of DOMES to
address both the “design from scratch” of new MESs and the “retrofit
design” of existing ones. The design from scratch problem has been
solved in about six hours of computation and the retrofit problem in less
than three hours by using a common computer. The computation times
are therefore acceptable compared to the complexity of the problem and
demonstrate the effectiveness of the proposed two-level algorithm in
optimizing the SDO of a MES. In addition, the accuracy of the obtained
solutions has been verified by sensitivity analysis on user-settable pa-
rameters of the evolutionary algorithm. It has been demonstrated with
reasonable confidence that the proposed optimization method is able to
find the global optimum of the problem that would be achieved without
decomposition.

Considering a district MES located in Padova, Italy, the optimal
system configuration resulting from retrofit design reduces annual costs
by 25 % and CO2 emissions by 40 % compared to the original system
layout. This share of avoided CO2 emissions is determined exclusively by
cost-effectiveness, thus demonstrating the wide margin available to
decarbonize current energy systems. CO2 emissions can be further
reduced by 40 % if multi-objective optimization is carried out, with
annual costs concurrently increasing by less than 15 %. The electrical
microgrid makes it possible to cover more than 70 % of the electricity
demand with energy generated on-site from photovoltaic (PV) panels
and combined heat and power internal combustion engines. In general,
the coupling of PV with heat pumps and thermal energy storage turns
out to be a crucial source of flexibility to decarbonize heat demand,
which is in fact covered about 50 % by PV-powered heat pumps and the
rest almost entirely by cogenerated heat. PV dominates in investment
costs with 80 % of the total, while the second largest contribution of
about 5 % comes from district heating. Less than 10 % of the total in-
vestment is due to district heating network and electric microgrid
together. However, the consideration of an urban district is an extreme
case that suggests a much higher economic impact of energy networks
when considering larger and less densely populated areas.

It is worth emphasizing again that some simplifications, such as
linearization, problem decomposition, and time series aggregation, are
required to make the SDO problem of a MES computationally solvable,
at the expense of slightly reducing the accuracy of the results. However,
these simplifications are necessary to find a solution to the problem that,
although improvable, is the only one that can be practically achieved.

In conclusion, DOMES can provide decision makers with useful in-
formation on how to properly plan, design, and schedule local MESs to
meet increasingly stringent decarbonization targets. The possible in-
clusion of other networks (e.g., gas network, cooling network), as well as
the enlargement of the spatial extent of the MES, would not alter the
general approach proposed here, which can handle also more complex
systems provided that sufficient “computing power” is available.
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