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Abstract
We develop a thermodynamic framework for closed and open chemical networks applicable to
non-elementary reactions that do not need to obey mass action kinetics. It only requires the
knowledge of the kinetics and of the standard chemical potentials, and makes use of the
topological properties of the network (conservation laws and cycles). Our approach is proven to be
exact if the network results from a bigger network of elementary reactions where the fast-evolving
species have been coarse grained. Our work should be particularly relevant for energetic
considerations in biosystems where the characterization of the elementary dynamics is seldomly
achieved.

1. Introduction

Many processes in biology result from the combined effect of numerous elementary chemical reactions
obeying mass-action kinetics. Well-known examples are enzymatic reactions, signaling cascades and gene
regulations. Since their detailed kinetic characterization at the elementary level is hard to achieve, they are
often modeled with effective schemes obeying non-mass action kinetics, e.g., the Michaelis and Menten
mechanism [1, 2], Hill functions [3] and many others [4]. These models can be thought of as resulting from
a coarse graining of elementary reactions by eliminating fast-evolving species and their use is well
established [5–11].

However, characterizing the energetics at the level of these effective schemes remains an open challenge
especially out-of-equilibrium. Inspired by developments in stochastic thermodynamics [12–14], the
nonequilibrium thermodynamics of open chemical networks of elementary reactions is nowadays well
established [15–17]. Recently, a thermodynamically consistent coarse graining strategy of the dynamics of
biocatalysts was proposed in reference [18]. At steady-state this approach reproduces the correct dissipation
at the coarse grained level.

Building on this approach, in the present work we develop a thermodynamics directly applicable to
(closed and open) chemical networks of non-elementary reactions described by deterministic non-mass
action rate equations. Crucially, this approach can be validated using thermodynamics of elementary
reactions. Indeed, if the non-elementary network can be constructed from a network of elementary
reactions by coarse graining the fast evolving species, one can show that the thermodynamic quantities
evaluated in both are equivalent.

Our work is structured as follows. Starting from a network of elementary reactions and assuming time
scale separation, we derive a thermodynamics for the network obtained after coarse graining the fast
evolving species. We start by considering the dynamics of the closed network of the elementary reactions in
section 2 and of the coarse grained ones in section 3. We then proceed by building the corresponding
thermodynamics in section 4. The dynamics of the open networks is considered in section 5 and its
thermodynamics in section 6. In section 7 we discuss how our previous findings can be used to characterize
the thermodynamics of non-elementary networks when the full elementary description is not known. In
section 8 we summarize our results and discuss their implications.
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2. Elementary dynamics of closed CRNs

We consider here chemical reaction networks (CRNs) composed of chemical species α = (. . . ,α, . . .)ᵀ

undergoing elementary reactions [19],

α · ν+ρ

k+ρ−−−−−−⇀↽−−−−−−
k−ρ

α · ν−ρ, (1)

with ν±ρ (resp. k±ρ) the vector of the stoichiometric coefficients (resp. the kinetic constant) of the
forward/backward reaction ρ. The state of deterministic CRNs is specified by the concentration vector
z(t) = (. . . , [α](t), . . .)ᵀ of all the chemical species α. For closed CRNs, its dynamics follows the rate
equation

dtz(t) = Sj(z(t)), (2)

where we introduce the stoichiometric matrix S and the current vector j(z). The stoichiometric matrix S

codifies the topology of the network. Each ρ column Sρ of the stoichiometric matrix specifies the net
variation of the number of molecules for each species undergoing the ρ elementary reaction (1),
Sρ = ν−ρ − ν+ρ. The current vector j(z) = (. . . , jρ(z), . . .)ᵀ specifies the net reaction current for every ρ

elementary reaction (1) as the difference between the forward j+ρ(z) and backward reaction current j−ρ(z)

jρ(z) = j+ρ(z) − j−ρ(z), (3)

with j±ρ(z) satisfying the mass-action kinetics [20–22],

j±ρ(z) = k±ρzν±ρ . (4)

Note that we use ab =
∏

i abi
i . In the following, we will refer to equation (2) as the elementary dynamics of

closed CRNs.
Example. In all the manuscript, we illustrate our findings using a modified version of the model

discussed in reference [10]. It represents the transformation of two identical substrates S into one product P.
The process is catalyzed by a membrane enzyme E which interacts with the substrate after it is adsorbed Sm

by the membrane:

S
k+1−−−−−−⇀↽−−−−−−
k−1

Sm

Sm + E
k+2−−−−−−⇀↽−−−−−−
k−2

ES

Sm + ES
k+3−−−−−−⇀↽−−−−−−
k−3

ESS

ESS
k+4−−−−−−⇀↽−−−−−−
k−4

E + P

(5)

For this model, we introduced here the concentration vector and the current vector,

z =

⎛
⎜⎜⎜⎜⎜⎜⎝

[E]
[ES]

[ESS]
[P]
[S]

[Sm]

⎞
⎟⎟⎟⎟⎟⎟⎠ , j (z) =

⎛
⎜⎜⎝

k+1[S] − k−1[Sm]
k+2[Sm][E] − k−2[ES]

k+3[Sm][ES] − k−3[ESS]
k+4[ESS] − k−4[E][P]

⎞
⎟⎟⎠ , (6)

as well as the stoichiometric matrix

(7)
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2.1. Topological properties
As shown in reference [15, 23], the linear independent vectors {�λ} of the cokernel of the stoichiometric
matrix

�λ · S = 0 (8)

are the conservation laws of equation (2). Indeed, for each vector �λ, the scalar Lλ(z(t)) ≡ �λ · z(t) is a
conserved quantity, i.e., dtLλ(z(t)) = �λ · Sj(z(t)) = 0. The linear independent vectors {cι} of the kernel of
the stoichiometric matrix

Scι = 0 (9)

are the internal cycles of equation (2). They are sequence of reactions that leave the state of CRNs invariant.
Any linear combination of internal cycles gives a steady-state current vector, i.e., Sj = 0 with j ≡ cιψι. Note
that in all the work we use the Einstein notation: repeated upper-lower indices implies the summation over
all the allowed values for the indices, i.e., aib

i =
∑

i aib
i and aib

i =
∑

i aib
i.

Example. For the CRN (5), there are two conservation laws,

(10)

with a clear physical interpretation. The total concentration of the enzyme is given by
LE = �E · z = [E] + [ES] + [ESS], while the total concentration of the substrate is given by
LS = �S · z = [ES] + 2[ESS] + 2[P] + [S] + [Sm]. The CRN (5) has no internal cycles.

2.2. Equilibrium
Closed CRNs must be detailed balanced, namely the rate equation (2) admits an equilibrium steady-state zeq

characterized by vanishing reaction currents,

j(zeq) = 0. (11)

This, together with mass-action kinetics, implies the so-called local detailed balance condition for the kinetic
constants k±ρ of the chemical reactions

k+ρ

k−ρ
= z

Sρ
eq . (12)

It ensures that i) zeq is the only steady-state of the rate equation (2) ii) z(t) relaxes to zeq and hence the
thermodynamic consistency [23].

3. Coarse grained dynamics of closed CRNs

When the chemical species evolve over two different time scales, they can be divided into two disjoint
subsets: the fast-evolving species Q and the slow-evolving species P [7, 8]. We apply the same splitting to the
stoichiometric matrix

S =

(
S

Q

S
P

)
(13)

and to the concentration vector z = (q, p). This also allows us to split the rate equation (2) into

dtq(t) = S
Qj(q(t), p(t)), (14)

dtp(t) = S
Pj(q(t), p(t)). (15)

The coarse graining procedure provides a closed dynamical equation for the slow species only. It is based
on two assumptions collectively called time scale separation hypothesis or quasi-steady-state assumption. The
first is the existence, for every concentration p of the slow species, of the concentration vector q̂(p) such that
the current

ĵ(p) ≡ j(q̂(p), p) (16)

is a steady-state current of equation (14) or, equivalently, ĵ(p) ∈ ker S
Q. This is a topological property of

the CRN. The second is the equivalence, during the evolution of z(t) = (q(t), p(t)) according to the rates

3
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equations (14) and (15), between the actual concentration vector of the fast species q(t) and the steady-state
one, i.e., q(t) = q̂(p(t)). This means physically that the concentrations of the fast species relax
instantaneously to the steady-state corresponding to the frozen values of p(t). This occurs when i) the
reactions involving only the P species are much slower than the reactions involving only Q species and ii)
the abundances of the P species are much higher than the abundances of the Q species. This latter condition
ensures that when the P and Q species are coupled by a reaction, on the same time scale the concentrations
of the Q species can dramatically change, the concentrations of the P species remain almost constant.

Hence, j(q(t), p(t)) in (15) becomes the steady-state current ĵ(p) of equation (14). It can now be written
as a linear combination of the right null eigenvectors SQcγ = 0,

ĵ(p) = cγψ
γ(p), (17)

with p dependent coefficients {ψγ}. The specific expression of ψγ(p) is not discussed here and is not
fundamental in what follows. When the dynamics of the fast species at fixed concentrations of the slow ones
is linear, the problem is solved in references [7, 18] using a diagrammatic method developed in references
[24, 25]. Note that {cγ} includes all the internal cycles cι of equation (9) and, in general, other vectors {cε}
called pseudo-emergent cycles [15, 18, 23]. The former characterize a sequence of reactions which upon
completion leaves all species (q, p) unchanged, while the latter only leaves the fast species unchanged. Each
coefficient ψγ(p) represents a current along the cycle γ. By employing the steady-state current vector (17) in
equation (15), we obtain a closed dynamical equation for the slow species,

dtp(t) = S
P ĵ(p(t)) = S

Pcεψ
ε(p(t)), (18)

where we used S
Pcι = 0 because of equation (9). This coarse grained dynamics will be denoted as effective

for convenience. It can be rewritten in a more compact way,

dtp(t) = Ŝψ(p(t)), (19)

introducing the effective stoichiometric matrix Ŝ and the effective current vector ψ(p). The effective
stoichiometric matrix Ŝ codifies the net stoichiometry of the slow species along the pseudo-emergent cycles.
Each ε column Ŝε = S

Pcε specifies the net variation of the number of molecules for each slow species along
the ε pseudo-emergent cycle, i.e., the stoichiometry of the effective reactions. The effective current vector
ψ(p) collects the pseudo-emergent cycle currents ψ(p) = (. . . ,ψε(p), . . .)ᵀ. Unlike j(z) in equation (2),
ψ(p) does not, in general, satisfy mass-action kinetics.

Note that, if there were no pseudo-emergent cycles, (q̂(p), p) would be an equilibrium condition of the
elementary dynamics (2). The corresponding effective dynamics for the slow species would become trivial:
dtp(t) = 0.

Example. For the CRN (5), we split the chemical species as follows

{E, ES, ESS}︸ ︷︷ ︸
Q

∪ {P, S, Sm}︸ ︷︷ ︸
P

. (20)

Underlying this separation is the assumption that the concentration of the enzyme species changes much
more quickly. Since there are no internal cycles of S of equation (7), all the right null eigenvectors of SQ,

(21)

are pseudo-emergent cycles. Thus, the effective stoichiometric matrix of equation (19) is given by

(22)

4



New J. Phys. 22 (2020) 093040 F Avanzini et al

Figure 1. Elementary dynamics (el.) and effective dynamics (eff.) of the slow species of the CRN (5). Here, k±ρ = 1 for every
elementary reaction in (5) and the initial condition z(0) is [E](0) = 0.1, [ES](0) = 0.05, [ESS](0) = 0.05, [P](0) = 0.01,
[S](0) = 1 and [Sm](0) = 0.1. We use 1/k+1 and k+1/k+2 as units of measure for time and concentration, respectively.

Each column of Ŝ specifies the net stoichiometry of the following effective reactions for the slow species:

S
ads−−−−⇀↽−−−− Sm

2Sm
enz−−−−⇀↽−−−− P

(23)

In figure 1, we compare the elementary dynamics of the CRN (5) for the slow species and the effective one
obtained by solving equations (2) and (19), respectively. For this case, the effective current vector ψ(p) is
computed according to the procedure introduced in references [24, 25]:

ψads(p) = k+1[S] − k−1[Sm], (24)

ψenz(p) =
LE

D
{

k+2k+3k+4[Sm]2 − k−2k−3k−4[P]
}

, (25)

with LE the total concentration of the enzyme and

D = k+2k+3[Sm]2 + k+2k+4[Sm] + k+2k−3[Sm] + k+3k+4[Sm] + k−2k−4[P] + k−3k−4[P]

+ k+3k−4[Sm][P] + k−2k−3 + k−2k+4.
(26)

3.1. Topological properties
The conservation laws of the effective dynamics (19) are defined as the linear independent vectors of the
cokernel of the effective stoichiometric matrix

�̂ζ · Ŝ = 0, (27)

as in equation (8). Indeed, each scalar L̂ζ(p(t)) ≡ �̂ζ · p(t) is a conserved quantity of the effective dynamics,
i.e., dt L̂ζ(p(t)) = �̂ζ · Ŝψ(p(t)) = 0.

The conservation laws {�̂ζ} of (27) can be specified in terms of the conservation laws {�λ} of
equation (8) as follows. First, we split {�λ} into two disjoint subsets: the conservation laws with null entries
for the slow species {�ξ} and the other conservation laws {�ζ}. Second, we consider the projection operator
P onto the space of the slow species: Pz = p. Third, we identify each conservation law �̂ζ of equation (27) as
follows

�̂ζ = P�ζ . (28)

Indeed P�ζ · Ŝ = 0. This can be verified considering that P�ζ · Ŝε = �ζ · Scε = 0, where we only used the
definition of pseudo-emergent cycle and conservation law, i.e., SQcε = 0 and �ζ · S = 0.

Note that all the conservation laws of the effective stoichiometry matrix Ŝ can be written as in
equation (28). This follows from the rank nullity theorem for S and Ŝ, and the absence of cycles for Ŝ.
Indeed, suppose that there is a vector φ �= 0 such that Ŝφ = 0. This means that SPcεφε = 0 and,

5
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consequently, cεφ
ε is a right null eigenvector of both S

P and S
Q, i.e., an internal cycle. Since cεφ

ε is a linear
combination of only pseudo-emergent cycles {cε}, the effectively stoichiometric matrix cannot admit
cycles.

Example. For the CRN (5) and given the splitting between fast and slow species in (20), the only
conservation law of S in (7) with no null entries for the slow species is �S of equation (10). The
corresponding conservation law of the effective dynamics is

(29)

Given Ŝ in equation (22), one easily verifies that �̂S · Ŝ = 0. The corresponding quantity L̂S = �̂S · p has the
clear physical interpretation of the total concentration of substrate: L̂S = 2[P] + [S] + [Sm].

3.2. Equilibrium
The equilibrium condition peq of the effective dynamics (19) is defined by vanishing cycle currents,

ψ(peq) = 0. (30)

Its existence is granted by the local detailed balance condition (12). Indeed, the state (q̂(peq), peq) is an
equilibrium of the elementary dynamics (2) by definition: it is a steady-state of the rate equation (2) which
admits only equilibrium steady-states.

Let us discuss now the equilibrium state to which the elementary and the effective dynamics relax given
a unique initial condition z(0) = (q(0), p(0)). The concentrations of the chemical species at equilibrium
depend on the value of the conserved quantities. Therefore, to have similar concentrations for the slow
species at equilibrium, also the values of Lζ(z(0)) = lζ · z(0) and L̂ζ(p(0)) = l̂ζ · p(0) have to be similar.
This means that the concentration of the fast species involved in the ζ conservation laws must be much
smaller than the concentration of the slow species. This is consistent with the time scale separation hypothesis
requiring much higher abundances for the slow-evolving than for the fast-evolving species.

4. Thermodynamics of closed CRNs

We now derive the thermodynamics for the effective dynamics starting from the full elementary network.
We emphasize that all the resulting thermodynamic quantities (e.g., entropy production and free energy)
can be evaluated at the level of the effective dynamics, without any knowledge of the elementary dynamics.
This is the key result of our work.

4.1. Local detailed balance
The thermodynamic theory of CRNs presumes that all degrees of freedom other than concentrations are
equilibrated at temperature T and pressure of the solvent. In this way, thermodynamic state functions can
be specified by their equilibrium form but expressed in terms of nonequilibrium concentrations. The vector
of chemical potentials is thus given by

μ(z) = μ◦ + RT ln(z), (31)

with μ◦ the vector of the standard chemical potentials and R the gas constant. The local detailed balance
condition (12) can be then restated to establish a correspondence between the elementary dynamics (i.e.,
kinetic constants k±ρ) and the thermodynamics (i.e., standard chemical potentials μ◦):

k+ρ

k−ρ
= z

Sρ
eq = exp

(
−μ◦ · Sρ

RT

)
. (32)

We now formulate the local detailed balance condition for the effective dynamics (19). This is done by
taking the product of the ratio k+ρ/k−ρ along each pseudo-emergent cycle ε

∏
ρ

(
k+ρ

k−ρ

)cρε

= pŜε
eq = exp

(
− μ̂◦ · Ŝε

RT

)
, (33)

where μ̂◦ = Pμ◦ is the vector of the standard chemical potentials for the slow species P. It is important to
note that first equation (33) establishes the same correspondence between the equilibrium concentrations

6
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peq of the effective dynamics (19) and the standard chemical potentials μ̂◦ as equation (32) does between

zeq and μ◦ for the elementary reactions. Second, the effective stoichiometric matrix Ŝ plays the same role in
equation (33) as S in equation (32). Third, the derivation of equation (33) employs only the topological
properties of the CRNs and does not require the time scale separation hypothesis.

4.2. Gibbs free energy of reaction
The Gibbs free energy of the ρ elementary reaction (1), namely the thermodynamic force driving this
reaction, is given by

ΔρG(z) = μ(z) · Sρ, (34)

which becomes

ΔρG(z) = −RT ln
j+ρ(z)

j−ρ(z)
(35)

because of the local detailed balance (32). At equilibrium ΔρGeq ≡ ΔρG(zeq) = 0 since j+ρ(zeq) = j−ρ(zeq).
This means that μeq belongs to the cokernel of S.

We define now the Gibbs free energy of each effective reaction ΔεG(p). Collecting the Gibbs free
energies of the elementary reactions in the vector ΔrG ≡ (. . . ,ΔρG, . . .)ᵀ, ΔεG is given by

ΔεG(p) ≡ ΔrG(z) · cε = μ̂(p) · Ŝε. (36)

We used equation (34), SQcε = 0 and introduced the vector of the chemical potential of the slow species

μ̂(p) = μ̂◦ + RT ln p = Pμ(z). (37)

The expression of ΔεG in equation (36) is formally the same as ΔρG in equation (34). At equilibrium
ΔεGeq ≡ ΔεG(peq) = 0, because of the local detailed balance condition (33). This means that μ̂eq belongs to

cokernel of Ŝ. Unlike ΔρG(z), there is no analytical correspondence between ΔεG(p) and ψ±ε(p) and, in
general,

ΔεG(p) �= −RT ln
ψ+ε(p)

ψ−ε(p)
. (38)

Here, ψ±ε(p) are two positive defined currents such that ψε(p) = ψ+ε(p) − ψ−ε(p). This breaks the
flux-force relation at the coarse grained level as was already stressed in reference [18].

Finally, we note that, as the local detailed balance, ΔεG is defined using only topological properties of the
CRNs.

Example. For the CRN (5) and given the splitting between fast and slow species in (20), the Gibbs free
energy of the effective reactions in equation (23) is specified as

ΔadsG = μSm − μS,

ΔenzG = μP − 2μSm .
(39)

4.3. Entropy production rate
The entropy production rate of the elementary dynamics reads

TΣ̇(t) = −ΔrG(z(t)) · j(z(t)) = −ΔρG(z(t))jρ(z(t)) � 0. (40)

It quantifies the dissipation of the relaxation toward equilibrium. Because of equation (35), the dissipation
of each elementary reaction ρ is also non-negative, −ΔρG(z(t))jρ(z(t)) � 0 (without summation over ρ).

We define the entropy production rate of the effective dynamics ˆ̇Σ using the expression in equation (40),
but evaluated along the effective trajectory (q̂(p(t)), p(t)). Using equations (16), (17) and (36), we obtain
that

T ˆ̇Σ(t) = −ΔεG(p(t))ψε(p(t)) = −ΔcG(p(t)) · ψ(p(t)) � 0, (41)

where we collected the Gibbs free energies of the effective reactions in the vector ΔcG ≡ (. . . ,ΔεG, . . .)ᵀ.

The effective entropy production rate ˆ̇Σ(t) is still non-negative by definition: using equation (35) one
proves that Σ̇(t) � 0 for every j(z) including ĵ(p). However, unlike the elementary dynamics, it is not
granted that −ΔεG(p(t))ψε(p(t)) � 0 for every effective reaction ε due to the lack of a flux-force relation
(38) at the coarse grained level.

If the time scale separation hypothesis holds, namely j(z) = ĵ(p), the two entropy production rates
coincide:

ˆ̇Σ(t) = Σ̇(t). (42)

7
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Figure 2. Entropy production rate of the elementary dynamics and effective dynamics in figure 1. We use RT(k+1)2/k+2 as units
of measure for the entropy production rate.

When it does not hold, no bound constrains one entropy production rate respect to the other and ˆ̇Σ can be
lower or greater than Σ̇. This was also observed in reference [26] for driven systems.

Example. For the CRN (5) with the fast and slow species splitting (20), the entropy production rate of

the elementary and of the effective dynamics are plotted in figure 2. While ˆ̇Σ(t) < Σ̇(t) for t < 0.5,
ˆ̇Σ(t) > Σ̇(t) for t > 0.5.

4.4. Gibbs free energy
The Gibbs free energy of ideal dilute solution is given by

G(z) = μ(z) · z − RT‖z‖, (43)

with ‖a‖ ≡
∑

i ai. It is the proper thermodynamic potential of the elementary dynamics of closed CRNs
since it has been proven in reference [15] that i) dtG = −TΣ̇ � 0 and ii) G � Geq ≡ G(zeq).

We now explain why the following Gibbs free energy is the proper thermodynamic potential of the
effective dynamics:

Ĝ(p) = μ̂(p) · p − RT‖p‖. (44)

First, we notice that in general Ĝ(p) �= G(z). This means that Ĝ does not estimate the exact free energy
of CRNs. However, the time derivative of Ĝ according to the effective dynamics (19) reads

dt Ĝ(p(t)) = μ̂(p(t)) · Ŝψ(p(t)) = ΔcG(p(t)) · ψ(p(t))

= −T ˆ̇Σ(t) � 0
(45)

where we used the definition of the Gibbs free energy of the effective reactions given in equation (36) and
the entropy production rate (41). The variation of free energy in a time interval [0, t] thus satisfies

ΔĜ(t) = −T

∫ t

0
dt ˆ̇Σ(t) = −T

∫ t

0
dt Σ̇(t) = ΔG(t), (46)

as long as the time scale separation hypothesis holds and, hence, ˆ̇Σ(t) = Σ̇(t).
Second, one can prove that Ĝ(p(t)) � Ĝeq ≡ Ĝ(peq). Indeed, consider

Ĝeq = μ̂eq · peq − RT‖peq‖. (47)

As mentioned in subsection 4.2, μ̂eq belongs to the cokernel of Ŝ and, therefore, it can be expressed as a

linear combination of the conservation laws l̂ζ :

μ̂eq = fζ l̂ζ . (48)

8
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Thus, the term μ̂eq · peq in equation (47) satisfies

μ̂eq · peq = fζ l̂ζ · peq︸ ︷︷ ︸
=L̂ζ

= fζ l̂ζ · p(t) = μ̂eq · p(t), (49)

where we used dt L̂ζ = 0. This allows us to write the difference between Ĝ(p(t)) and Ĝeq as a relative entropy

Ĝ(p(t)) − Ĝeq = RTL(p(t)‖peq), (50)

with

L(a‖b) =
∑

i

ai ln

(
ai

bi

)
− (ai − bi) � 0, (51)

proving that Ĝ(p(t)) � Ĝeq.
In summary, Ĝ in equation (44) is the proper thermodynamic potential of the effective dynamics

because of equation (45) and equation (50). It also correctly quantifies the variation of the free energy of
the whole CRN because of equation (46).

5. Dynamics of open CRNs

In open CRNs some species are exchanged with external reservoirs called chemostats. We discuss in parallel
the elementary dynamics and the effective one. We consider that the concentrations of chemostatted species
are either fixed or slowly driven by the chemostats. These species are therefore treated as slow-evolving
species.

We thus split P into two disjoint subsets: the internal species X and the chemostatted species Y. The
former (as well as the fast species) evolve in time only because of the chemical reactions and their rate
equation is unchanged. The latter evolve in time because of the chemical reactions and of matter flows with
the chemostats. These are accounted in the rate equation by introducing the exchange current I(t). For the
elementary dynamics of the chemostatted species, the rate equation is given by

dty(t) = S
Y j(z(t)) + I(t), (52)

while for the effective dynamics it reads

dty(t) = Ŝ
Yψ(p(t)) + I(t). (53)

Here we applied the splitting P = (X, Y) to the substoichiometric matrix S
P and the effective stoichiometric

matrix Ŝ,

S
P =

(
S

X

S
Y

)
, Ŝ =

(
Ŝ

X

Ŝ
Y

)
, (54)

as well as the vector p = (x, y). Note that equations (52) and (53) are merely definitions for the exchange
current I(t). At the level of the effective dynamics, a slow variation of y(t) corresponds to a slow variation of
I(t). Operationally, one may therefore equally well control I(t) and determine y(t) through equation (53).
Both types of external control, on y(t) or I(t), can thus be considered.

Example. For the CRN (5) and given the splitting between fast and slow species in (20), we chemostat
the free substrate S and the product P. The adsorbed substrate Sm is now the only internal species. Using the
effective stoichiometric matrix in equation (22), we obtain the following two substoichiometric matrix

(55)

In figure 3, we compare the elementary dynamics of the CRN (5) for the internal species and the effective
one.

5.1. Topological properties
When CRNs are open, some conservation laws do not correspond anymore to conserved quantities. Hence,
we split the set of conservation laws into two disjoint subsets: the unbroken and the broken conservation
laws.

9
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Figure 3. Elementary dynamics (el.) and effective dynamics (eff.) of the internal species Sm of the CRN (5), corresponding to
figure 1, when the concentrations [S] and [P] are kept constant by chemostats (chem.).

The unbroken conservation laws are those with null entries for the chemostatted species. For the
elementary dynamics, the conservation laws {�ξ} of the fast species (see subsection 3.1) are unbroken by
definition. Then, we represent with the vectors {�ζu} ⊆ {�ζ} the other unbroken conservation laws (if any).
Indeed, the quantities Lζu (z(t)) ≡ �ζu · z(t), as well as Lξ(z(t)) ≡ �ξ · z(t), are conserved even if the CRN is
open:

dtL
ζu (z(t)) = �ζu · Sj(z(t))︸ ︷︷ ︸

=0

+
∑
α∈Y

�ζu
α︸︷︷︸
=0

Iα(t) = 0. (56)

The broken conservation laws are all the other conservation laws, {�ζb} = {�ζ}\{�ζu}. The corresponding
quantities Lζb (z(t)) = �ζb · z(t) are not conserved:

dtL
ζb (z(t)) = �ζb · Sj(z(t))︸ ︷︷ ︸

=0

+
∑
α∈Y

�ζb
α︸︷︷︸
�=0

Iα(t) �= 0. (57)

Because of the correspondence in equation (28), the unbroken/broken conservation laws of the effective
dynamics are given, respectively, by

�̂ζu = P�ζu and �̂ζb = P�ζb . (58)

Chemostatting a species does not always break a conservation law [15–17, 27]. We thus distinguish the
set of controlled species Yp ⊆ Y breaking the conservation laws from the others Yf = Y\Yp. Note that the
number of Yp species is equal to the number of broken conservation laws. This allows us to introduce the
so-called moieties. They represent parts of (or entire) molecules which are exchanged with the environment
through the chemostats. For the elementary dynamics, their concentration vector is specified as

m(z(t)) ≡ M
−1Lbr(z(t)), (59)

while for the effective dynamics it is given by

m̂(p(t)) ≡ M
−1L̂br(p(t)). (60)

We introduced the vectors of broken conserved quantities Lbr(z(t)) = (. . . , �ζb · z(t), . . .)ᵀ and
L̂br(p(t)) = (. . . , �̂ζb · p(t), . . .)ᵀ, and the matrix M with entries {�ζb

α }α∈Yp (see reference [15–17] for
details). The matrix M is square and nonsingular, and it can be inverted obtaining M

−1. Comparing
equations (59) and (60), one notices that m(z(t)) = m̂(p(t)) if Lζb (z(t)) = L̂ζb (p(t)) for every broken
conservation law, i.e., the slow-evolving species are much more abundant than the fast-evolving species. We
stress finally that the number of moieties is equal to the number of Yp species.

Example. For the CRN (5) and given the splitting between fast and slow species in (20), the conservation
law �̂S in equation (29) of the effective dynamics is broken when the free product P is chemostatted. If we
now chemostat the free substrate S, no conservation law is broken. According to this sequence of
chemostatting, the species P belongs to the set Yp and the matrix M is simply the scalar

M = 2. (61)

10



New J. Phys. 22 (2020) 093040 F Avanzini et al

The corresponding moiety,

m = [P] +
[S]

2
+

[Sm]

2
, (62)

represents the total concentration of product exchanged between the two chemostats.

6. Thermodynamics of open CRNs

We consider now the thermodynamic description of open CRNs. The semigrand Gibbs free energy

G(z) = G(z) − μYp
(t) · m(z), (63)

represents the proper thermodynamic potential for the elementary dynamics [15, 16] since
i) dtG = −TΣ̇ � 0 for autonomous detailed balanced systems and ii) G � Geq = G(zeq). In analogy to
equilibrium thermodynamics, G is defined from the Gibbs free energy (43) by eliminating the energetic
contributions of the matter exchanged with the reservoirs. The latter amounts to concentration of the
moieties m(z) of equation (59), times the reference values of their chemical potentials μYp

(t) which is the
vector collecting the values of chemical potentials fixed by the chemostats Yp. Because of the elementary
dynamics (2) and taking into account the exchange current I(t) through equation (52), the evolution of
G(z) is given by

dtG(z(t)) = −TΣ̇(t) + ẇdriv(t) + ẇnc(t). (64)

The entropy production rate Σ̇ is specified in equation (40). The driving work rate ẇdriv accounts for the
time dependent manipulation of the chemical potential of the Yp chemostats,

ẇdriv(t) = −(dtμYp
(t)) · m(z(t)). (65)

The nonconservative work rate ẇnc quantifies the energetic cost of sustaining fluxes of chemical species
among the chemostats,

ẇnc(t) = F(t) · I(t), (66)

by means of the force F(t) = (. . . ,μα(t) − (μYp
(t) ·M−1)ζb

lζb
α , . . .)ᵀ

α∈Y . In other words, this is the force
keeping the system out of equilibrium (see also appendix A).

For the effective dynamics, we introduce the following semigrand Gibbs free energy:

Ĝ(p) = Ĝ(p) − μYp
(t) · m̂(p), (67)

with m̂(p) given in equation (60). Note that μYp
(t) in equation (63) and in equation (67) are exactly the

same since they are imposed by the same chemostats. We now show that Ĝ(p) is the proper thermodynamic
potential of the effective dynamics of open CRNs.

In general Ĝ(p) �= G(z) since Ĝ(p) �= G(z). However, we will now see that their variation in time can be
very similar. According to the effective dynamics (19) and taking into account the exchange current I(t)
through equation (53), the evolution of Ĝ(p) is given by

dtĜ(p(t)) = −T ˆ̇Σ(t) + ˆ̇wdriv(t) + ˆ̇wnc(t). (68)

The entropy production rate ˆ̇Σ of equation (41) satisfies ˆ̇Σ = Σ̇ as long as the time scale separation
hypothesis holds (see subsection 4.3). The driving work rate at the effective level,

ˆ̇wdriv(t) = −(dtμYp
(t)) · m̂(p(t)), (69)

corresponds to ẇdriv of the elementary dynamics when m̂(p(t)) = m(z(t)). This occurs when L̂ζb = Lζb (see
subsection 5.1). The nonconservative work rate ˆ̇wnc has the same expression as the one for the elementary
dynamics specified in equation (66). However, the numerical values of ˆ̇wnc and ẇnc can be different because
different currents I(t) might be necessary to set the same concentrations of the chemostatted species for the
elementary and effective dynamics if the time scale separation hypothesis does not hold perfectly. We can thus
conclude that the variation of the semigrand Gibbs free energy in a time interval [0, t] satisfies

ΔĜ =

∫ t

0
dt dtĜ =

∫ t

0
dt dtG = ΔG (70)

as long as the time scale separation hypothesis holds (granting also L̂ζb = Lζb ).

11
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Figure 4. Thermodynamic quantities of the elementary dynamics and effective dynamics in figure 3. Here, μ◦
E = μ◦

S = μ◦
Sm

= 1,
μ◦

ES = μ◦
P = 2 and μ◦

ESS = 3. We use RT(k+1)2/k+2 as units of measure for the thermodynamic quantities.

If the open system is autonomous (no driving is performed, ˆ̇wdriv = 0) and detailed balance (all the

chemostatted species break a conservation law, ˆ̇wnc = 0), then dt Ĝ = −T ˆ̇Σ � 0.
Finally, we show that Ĝ(p(t)) � Ĝeq ≡ Ĝ(peq), where the equilibrium state peq is set by the Yp

chemostats (see appendix A). To this aim, consider that μ̂eq belongs to the cokernel of Ŝ and can thus be
expressed as a linear combination of the conservation laws:

μ̂eq = fζu �̂
ζu + fζb

�̂ζb , (71)

where now we distinguish between unbroken and broken conservation laws. Thus, μ̂eq · peq satisfies now

μ̂eq · peq = fζu �̂
ζu · peq︸ ︷︷ ︸
=L̂ζu

+ fζb
�̂ζb · peq

= μ̂eq · p(t) − fζb
�̂ζb · p(t) + fζb

�̂ζb · peq

= μ̂eq · p(t) − μYp
· m̂(p(t)) + μYp

· m̂eq

(72)

where we used dt L̂ζu = 0 and the last step is discussed in appendix A. This allows us to write Ĝeq as

Ĝeq = μ̂eq · p(t) − RT‖peq‖ − μYp
· m̂(p(t)) (73)

and, consequently, the difference between Ĝ(p(t)) and Ĝeq as a relative entropy

Ĝ(p(t)) − Ĝeq = RTL(p(t)‖peq) � 0. (74)

This proves that Ĝ(p(t)) � Ĝeq.
Example. For the CRN (5) and given the splitting between fast and slow species in (20), we compare the

thermodynamic quantities of the elementary and of the effective dynamics in figure 4.

7. Effective networks without elementary counterpart

Our thermodynamic framework can be applied directly to effective networks even if the full elementary
description is not available. Indeed, all the expressions (e.g., equations (36), (41), (44) and (67)) of the
effective thermodynamic quantities require the knowledge of only the effective dynamics (19) and the
standard chemical potentials μ̂◦ of the slow species. This is the key result of our work.

However, our framework should be applied only to effective models which are compatible with an
underlying elementary network satisfying the time scale separation hypothesis. Indeed, we proved the
thermodynamic consistency only in this case. On the one hand, one should have some physical evidence
supporting that the models result from elementary reactions satisfying the time scale separation hypothesis.

12
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On the other hand, the effective models must exhibit the following three properties to be
thermodynamically consistent.

First, in absence of any chemostatted species (i.e., closed CRNs), the effective model must relax to an
equilibrium (30). This is fundamental for energetic considerations. Physically, it means that every system
has to reach an equilibrium when there are no energy sources (the chemostats) balancing the dissipation.
Mathematically, it means that the effective reactions must be reversible and effective current vector ψ(p) has
to admit a nontrivial equilibrium steady-state, i.e., ∃peq �= 0 such that ψ(peq) = 0. If the effective model
relaxes to a nonequilibrium steady-state without chemostatted species, then it means that it does not
account for hidden sources of energy and any energetic consideration becomes meaningless. Second,
provided that the time scale separation hypothesis holds, there must be no cycles in the effective network as
we proved in subsection 3.1. Third, provided that the time scale separation hypothesis holds, the effective

entropy production rate (41) must be greater than or equal to zero. The property ˆ̇Σ(t) � 0 is not granted
anymore if the cycle current vector ψ is not specified according to the coarse graining procedure discussed

in section 3. In this respect, an effective dynamics giving rise to ˆ̇Σ(t) < 0 is necessarily thermodynamically
inconsistent.

We now consider two examples, one that can and the other that cannot be characterized using our
framework.

7.1. Example 1
Consider the following reactions

S
ψ1−−−−⇀↽−−−− I

ψ2−−−−⇀↽−−−− P, (75)

satisfying the dynamics
dt[S](t) = −ψ1([S](t), [I](t))

dt[I](t) = ψ1([S](t), [I](t)) − ψ2([I](t), [P](t))

dt[P](t) = ψ2([I](t), [P](t))

(76)

with

ψ1([S], [I]) =
a1,s[S] − a1,i[I]

b1,s[S] + b1,i[I] + b1,0
,

ψ2([I], [P]) =
a2,ii[I]2 + a2,i[I] + a2,ip[I][P] + a2,p[P] + a2,pp[P]2

b2,ii[I]2 + b2,i[I] + b2,ip[I][P] + b2,p[P] + b2,pp[P]2 + b2,0
.

(77)

Here {a•,•} and {b•,•} are parameters of the effective model.
The first step to study the energetics of the mechanism in equation (75) is to write the dynamical

systems (76) as in equation (19). We thus introduce the concentration vector and the stoichiometric matrix

(78)

as well as the current vector ψ(p) = (ψ1([S], [I]),ψ2([I], [P])). We then verify that the dynamical system
(76) does not admit cycles: the stoichiometric matrix in equation (78) has no right null eigenvectors. The
left null eigenvector of Ŝ is the conservation laws � = (1, 1, 1)ᵀ corresponding to the total concentration,
L = � · p = [S] + [I] + [P]. The equilibrium state of equation (76) can be identified by solving the system
of equations ψ(peq) = 0 and L = � · peq = � · p(0).

Assuming that the standard chemical potentials μ◦
S, μ◦

I and μ◦
P are known, the second step is to apply the

expression of the thermodynamic quantities given in sections 4 and 6. For instance, the dissipation can be
quantified with the entropy production rate of equation (41) which reads now

T ˆ̇Σ = (μS − μI)ψ1 + (μI − μP)ψ2. (79)

By solving the rate equation (76) for a specific set of parameters and initial condition, one can compute the

entropy production rate (79) which is shown in figure 5. Notice that ˆ̇Σ(t) � 0 for every time step of the
dynamics. With the same strategy, namely, applying the effective expressions given in this work, one can
compute also other thermodynamic quantities.
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Figure 5. Entropy production rate of the effective mechanism (75) (red dashed line), of the elementary mechanism (80) when
the time scale separation hypothesis does not hold (elementary 1) and when the time scale separation hypothesis holds (elementary
2). The initial concentrations for the slow-evolving species ([S](0) = 10[I](0) = 10[P](0) = 1) are the same for all the
simulations. The initial concentrations for the fast-evolving species are [E1](0) = [E2](0) = [E3](0) = 10[E1S](0) =
10[E2I](0) = 10[E3I](0) = 0.3 for elementary 1 and [E1](0) = 0.09, [E1S](0) = 0.02, [E2](0) = [E3](0) = 10[E2I](0) =
10[E3I](0) = 0.1 for elementary 2. Here, a1,s = a1,i = 0.11, b1,s = b1,i = 1, b1,0 = 2, a2,ii = −a2,pp = 0.22, a2,i = −a2,p = 0.44,
a2,ip = 0, b2,ii = b2,pp = 1, b2,i = b2,p = b2,0 = 4, b2,ip = 2, μ◦

S = μ◦
I = μ◦

P = μ◦
E1

= μ◦
E2

= μ◦
E3

= 1, μ◦
E1S = μ◦

E2I = μ◦
E3I = 2,

k±ρ = 1 ∀ρ. For simplicity, we use quantities scaled by some arbitrary reference unit.

Consider now the following elementary mechanism

S + E1

k+1−−−−−−⇀↽−−−−−−
k−1

E1S

E1S
k+2−−−−−−⇀↽−−−−−−
k−2

E1 + I

I + E2

k+3−−−−−−⇀↽−−−−−−
k−3

E2I

E2I
k+4−−−−−−⇀↽−−−−−−
k−4

E2 + P

I + E3

k+5−−−−−−⇀↽−−−−−−
k−5

E3I

E3I
k+6−−−−−−⇀↽−−−−−−
k−6

E3 + P

(80)

In the limit of fast-evolving enzymes (E1, E2 and E3) and complexes (E1S, E2I and E3I), the effective
dynamics for [S], [I] and [P] provided by the coarse graining procedure discussed in section 3 is consistent
with the dynamical system (76). We show in figure 5 the entropy production rate (40) of this elementary
mechanism for two different set of initial concentrations of the enzymes and the complexes. In the first case,
the concentrations are not small enough and the time scale separation hypothesis does not hold. Hence, the
entropy production rate at the elementary level does not correspond to that of the effective model (75). In
the second case, the time scale separation hypothesis holds and the entropy production rate at the elementary
level is well approximated by the effective one. The initial difference between the two is due to the relaxation
of the initial state of the elementary dynamics to the corresponding quasi-steady-state for the fast-evolving
species.

7.2. Example 2
Consider now the model of gene regulation provided in reference [28]. It represents the synthesis of two
proteins A and B via the expression of the two genes GA and GB. Each protein promotes its synthesis and
represses the synthesis of the other. Then, the proteins degrade. The corresponding chemical reaction
network is
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GA
A,exp−−−→A

GB
B,exp−−−→B

A
A,deg−−−→∅

B
B,deg−−−→∅

(81)

It evolves according to the following dynamical system

dt[A](t) = ψA,exp([A](t), [B](t)) − ψA,deg([A](t))

dt[B](t) = ψB,exp([A](t), [B](t)) − ψB,deg([B](t))
(82)

with the currents

ψA,exp([A], [B]) = gA +
a1[A]4

S4 + [A]4
+

b1S4

S4 + [B]4
,

ψB,exp([A], [B]) = gB +
a2[B]4

S4 + [B]4
+

b2S4

S4 + [A]4
,

ψA,deg([A]) = kB[A],

ψB,deg([B]) = kB[B].

(83)

Here, gA, gB, a1, a2, S, b1, b2, kA and kB are parameters of the model. The concentration of the proteins A
and B are the only dynamical variables.

This effective model (82) is designed in such a way that it cannot equilibrate. Indeed, the degradation
reactions are irreversible and the currents cannot vanish. The model always relaxes toward a
nonequilibrium steady state, but the major issue is that energy sources preventing the equilibration cannot
be accounted for. While our thermodynamic quantities can be formally defined for this model (they just
require the dynamical system and the standard chemical potential), they are meaningless.

We note that the use of irreversible reactions and/or nonvanishing currents is a very common feature of
kinetic models for biology and does not preclude per se a consistent thermodynamic analysis as recently
illustrated for the irreversible Michaelis–Menten enzymatic scheme [29].

8. Conclusions

In this work, we developed a thermodynamic theory for effective (non-mass-action) models of both closed
and open CRNs. We focused here only on deterministic models. Our approach provides the exact
thermodynamic quantities when the effective models result from underlying elementary (mass-action)
networks satisfying the time scale separation hypothesis. This was proven by exploiting the topological
properties of the CRNs. Our time scale separation hypothesis can be considered as a zero-order expansion in
the ratio between the fast and the slow time scale. Exploring higher order corrections and whether they can
be used to bound deviations in entropy production rates is left for future work.

Similar approaches might be employed in other frameworks. First, the topological properties could be
used to derive a thermodynamically consistent coarse-graining of stochastic CRNs. Second, one can exploit
weakly broken conservation laws to collect different species into effective mesostates. These mesostates may
then satisfy closed evolution equations. For example, during a catalytic process the complex
enzyme–substrate is transformed in many different species that can be considered as a unique mesostate
using the conservation of the total concentration of the enzyme. We leave also these points to future
investigations.
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Appendix A. Reference chemical potentials

We discuss here the constraints between the chemical potentials at equilibrium. We consider the case of the
effective dynamics, but the same exact reasoning applies to the elementary dynamics (see, for example,
appendix A in reference [30]). Because of the local detailed balance (33), the vector of the equilibrium
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chemical potentials μ̂eq is a left-null eigenvectors of Ŝ and, therefore, it can be expressed as a linear

combination of the conservation laws l̂ζ :
μ̂ᵀ

eq = f · L̂, (A.1)

where we rewrite equation (48) by introducing the vector f = (. . . , fζ , . . .)ᵀ and the matrix L̂ with entries
{�ζα}α∈P.

We examine the constraints imposed on the chemical potentials by equation (A.1) as if the CRN were
open. The chemical species are either internal species X, or chemostatted species Yp breaking the
conservation laws or other chemostatted species Yf. The set of conservation laws splits into unbroken

conservation laws {�̂ζu} and broken conservation laws {�̂ζb}. We show that the equilibrium chemical
potentials of the Yp species set the equilibrium chemical potentials of the Yf species. We start applying the

same splitting to L̂

(A.2)

and f = ( f un, f br). Here, we introduced the vectors f un = (. . . , fζu , . . .)ᵀ and f br = (. . . , fζb
, . . .)ᵀ, and the

matrices Lun
X with entries {�ζu

α }α∈X, Lbr
X with entries {�ζb

α }α∈X and L
br
Yf

with entries {�ζb
α }α∈Yf

. The matrix M

was already introduced in subsection 5.1. The zero matrices 𝟘 collect the entries of the unbroken
conservation laws for chemostatted species (which vanish by definition).

Using equation (A.1) and (A.2), we can recognize that the equilibrium chemical potentials of the Yp and
Yf species are given by

μ̂ᵀ
Yp,eq = f br ·M, (A.3)

μ̂ᵀ
Yf ,eq = f br · Lbr

Yf
, (A.4)

respectively. The matrix M is square and nonsingular, and it can be inverted. Hence

f ᵀ
br = μ̂Yp,eq ·M−1. (A.5)

The equilibrium chemical potentials of the Yf species thus become

μ̂ᵀ
Yf ,eq = μ̂Yp,eq ·M−1

L
br
Yf

, (A.6)

proving that they depend on the equilibrium chemical potentials of the Yp species.
In open CRNs, the chemostats fix the chemical potentials of the Y species and, so their concentrations.

The Yp chemostats set a reference equilibrium conditions, meaning

μ̂Yp,eq = μYp
, (A.7)

μ̂ᵀ
Yf ,eq = μYp

·M−1
L

br
Yf
. (A.8)

Here μYp
is the vector of chemical potentials set by the Yp chemostats. It is the same whether we consider

the elementary dynamics or the effective one. The Yf chemostats impose the chemical potentials μYf
which,

in general, do not satisfy equation (A.8). As a consequence, the nonconservative forces

F = (. . . ,μα − (μYp
·M−1)ζb

lζb
α , . . . )ᵀ

α∈Y (A.9)

of equation (66) are generated. Indeed, equation (A.9) can be rewritten as

F = (. . . ,μα − μα,eq, . . . )ᵀ
α∈Y , (A.10)

with μα,eq given in equation (A.7) and (A.8). Each entries in F represents the difference between the
chemical potential set by a chemostat and the equilibrium one. Therefore, it represents the force keeping the
system out of equilibrium.

Note that, thanks of equation (A.7), we can write f ᵀ
br = μYp

·M−1. We use this property and the
definition of the moieties (60) in the last step of equation (72).
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