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Abstract

The 5th Generation (5G) wireless networks have already been deployed worldwide, providing a
multi-fold Quality of Service (QoS) improvement, compared to 4G, by adopting new techniques,
such as Millimeter Wave (mmWave) frequency bands, advanced spectrum management tech-
niques, and the integration of licensed and unlicensed bands. The next-generation networks will
be empowered by new technologies such as Reconfigurable Intelligent Surface (RIS), Unmanned
Aerial Vehicle (UAV) communications, andCell-free (CF)massiveMultiple-Input,Multiple-Output
(mMIMO) technologies to further improve over existing technologies. In this thesis, we investi-
gate the paradigm of the future generation of wireless systems, their requirements and specifica-
tions, emerging applications, and their enabling technologies. We analyze the usage of mmWave
frequencies in indoor andoutdoor environments. Wediscuss the challenges related to the schedul-
ing of IEEE 802.11ad/ay, which provides multi-gigabit service over mmWave links, in realistic
scenarios. We also analyze the performance of outdoor mmWave transmissions by conducting a
measurement campaign in an early deployed 5GmmWave cell. We study various environmental
impacts such as the body and foliage blockage, rain, and over-water transmission on mmWave
links. Comparing our results with the simulations, we observe a performance gap between cur-
rent operational networks and the reference system modeled in simulations. The proposed tech-
nologies for future wireless systems, i.e., RIS and UAVs, still need to be optimized before being
functional. Hence, we propose some network-wide optimization schemes to increase the perfor-
mance of such systems. We propose an energy-efficient design for joint RIS and UAV transmis-
sions to provide sustainable communications in dense urban environments. We define a joint
UAV trajectory and RIS phase optimization problem that minimizes the transmission power of
UAV and Base Station (BS) while guaranteeing a certain level of data rate for users. Finally, we
discuss CF mMIMO networks and propose pilot reuse strategies to optimize the system’s rate.
We formulate the pilot assignment problem in CF mMIMO as a diverse clustering problem and
propose an iterative optima search scheme to solve it.
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Sommario

Le reti wireless di quinta generazione (5G) sono già state distribuite in tutto il mondo e forniscono
unmiglioramento della qualità del servizio (QoS) dimolte volte rispetto al 4G, grazie all’adozione
di nuove tecniche, come le bande di frequenza a onde millimetriche (mmWave), tecniche avan-
zate di gestione dello spettro e l’integrazione di bande con e senza licenza. Le reti di prossima
generazione saranno potenziate da nuove tecnologie come i RIS (Reconfigurable Intelligent Sur-
face), le comunicazioni UAV (Unmanned Aerial Vehicle) e le tecnologie CF mMIMO (Cell-free
massiveMultiple-Input,Multiple-Output), permigliorare ulteriormente le tecnologie esistenti. In
questa tesi, analizziamo il paradigma della futura generazione di sistemi wireless, i loro requisiti
e specifiche, le applicazioni emergenti e le tecnologie abilitanti. Analizziamo l’utilizzo delle fre-
quenze mmWave in ambienti interni ed esterni. Discutiamo le sfide legate alla programmazione
di IEEE 802.11ad/ay, che fornisce servizi multi-gigabit su collegamenti mmWave, in scenari real-
istici. Analizziamo inoltre le prestazioni delle trasmissioni mmWave all’aperto conducendo una
campagna di misura in una cella mmWave 5G di prima implementazione. Studiamo vari impatti
ambientali, come l’ostruzione dovuta a corpi e fogliame, la pioggia e la trasmissione via acqua sui
collegamenti mmWave. Confrontando i nostri risultati con le simulazioni, osserviamo un divario
di prestazioni tra le reti operative attuali e il sistema di riferimento modellato nelle simulazioni.
Le tecnologie proposte per i futuri sistemi wireless, cioè RIS e UAV, devono ancora essere ottimiz-
zate prima di essere funzionali. Pertanto, proponiamo alcuni schemi di ottimizzazione a livello
di rete per aumentare le prestazioni di tali sistemi. Proponiamo un design efficiente dal punto di
vista energetico per le trasmissioni congiunte di RIS e UAV per fornire comunicazioni sostenibili
in ambienti urbani densi. Definiamo un problema di ottimizzazione della traiettoria dell’UAV e
della fase del RIS che minimizza la potenza di trasmissione dell’UAV e della stazione base (BS),
garantendo al contempo un certo livello di velocità di trasmissione dei dati per gli utenti. In-
fine, discutiamo le reti CF mMIMO e proponiamo strategie di riutilizzo dei segnali pilota per
ottimizzare la velocità del sistema. Formuliamo il problema dell’assegnazione dei segnali pilota
in CFmMIMO come un problema di clustering diversificato e proponiamo uno schema di ricerca
iterativa dell’ottimo per risolverlo.
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1
Introduction and Motivation

In the last years, the mobile traffic demand has grown exponentially due to the increased number
of connected devices and various data-hungry applications running on these devices. The global
mobile traffic value is increasing from 7.462 EB/month in 2010 to 5016 EB/month in 2030 [1],
which shows the necessity of improving wireless communication systems. Next Generations
(NextGs) of wireless communication systems will bring a fully connected society of automated
and intelligent systems. These systems will be used in industries, homes, vehicles, cities, and
so on. Hence, providing ubiquitous connectivity with reliable and high data rate will be essen-
tial to support these applications. The 5th Generation (5G) wireless networks have already been
deployed worldwide. The 5G provides a better Quality of Service (QoS) compared to the 4th

Generation (4G) networks, employing new techniques, such as Millimeter Wave (mmWave) fre-
quency bands, advanced spectrum management techniques, and the integration of licensed and
unlicensed bands [2], [3]. Even though 5G offers significant improvements over previous systems,
it is not expected that 5G can deliver a fully automated and intelligent network with everything
as a service and a completely immersive experience [3], [4]. The convergence of communication,
sensing, control, intelligence, and computing functionalities, which is necessary to future Inter-
net of Everything (IoE) applications [2], is indeed expected to exceed 5G network’s capabilities.
On the other hand, some specific applications, like wireless Virtual Reality (VR), that requires a
minimum of 10 Gbps data rate [5], are beyond 5G capabilities and will go for NextGs of wireless
systems.

NextGs ofwireless communication systemswill fulfill the laggings of current systems by adding
new features and technologies like ambient sensing, newhuman-to-human andhuman-to-machine
interfaces, Terahertz (THz) communications, quantum communications, holographic beamform-
ing, backscatter communication, UnmannedAerial Vehicle (UAV) communication, Reconfigurable
Intelligent Surface (RIS), Cell-free (CF) massive Multiple-Input, Multiple-Output (mMIMO) sys-
tems [6]. The 6th Generation (6G) systems need to continue the trends of previous generations
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while introducing new services and inventing new technologies. The new services include Arti-
ficial Intelligence (AI), smart wearable devices, autonomous vehicles and cars, extended reality,
wireless sensing, and 3-dimensional (3D) mapping [7].

6G systemswill further expand the 5Gparadigm, increasing the systemperformance and users
QoS by several folds compared to 5G. It is envisioned that 6G will provide global communica-
tion facilities with per-user rate up to 1 Tbps in many use cases [8], with the latency less than
1 ms in ultra-long-range communications [9]. Machine Learning (ML) and AI will be fully inte-
grated into 6G communication systems, making native-AI wireless networks to support various
network management operations from physical layer signal processing to resource and service
management. The NextG wireless communication will converge all the past features, including
network densification, high throughput, ultra-reliability, low latency, low energy consumption,
and massive connectivity [2]. Still, the most critical requirements for 6G will be the capability
of handling massive volumes of data and very high per-device data rate [5]. New technologies
are required to meet this requirement. In wireless communications, throughput is defined as
Throughput [bit/s] = Bandwidth [Hz]× Spectral efficiency [bit/s/Hz].

To increase the throughput, one can explore new technologies that improve bandwidth, spec-
tral efficiency, or both. This thesis focuses on technologies and solutions to improve the through-
put, either by increasing the bandwidth, i.e., exploring the mmWave band frequencies, both for
indoor (Wireless Gigabit (WiGig)) and outdoor (mmWave cellular networks), or optimizing the
spectral efficiency in CF mMIMO, RIS-aided UAV communications.

1.1 Trends in Wireless Communications

From the 1 st Generation (1G) of wireless cellular systems, almost every ten years, a new genera-
tion of wireless systems has been introduced, supporting new features and services and provid-
ing higher QoS metrics compared to previous generations. NextG of wireless communication
systems is also expected to improve 5G capabilities by a factor of 10-100, to be able to handle the
increasing number of connected devices and the growing traffic demands after the next ten years.

Figure 1.1 shows the estimated number of connected devices from 2020 to 2027 [10]. As can be
seen from the figure, the number of connected devices will exceed 40 B by 2027. While most of
these deviceswill be Internet of Things (IoT) deviceswith their unique connectivity characteristics
(e.g., transmitting small packets), other data-consuming devices, likemobile phones, laptops, and
tablets, will still consume a large portion of network traffic.

Also, Figure 1.2 shows the exponentially increasing mobile traffic values from 2020 to 2030,
predicted by International Telecommunication Union (ITU) [1]. As expected, in 2030, the global
mobile traffic will exceed 5 ZB per month, showing an 80× increase compared to 2020, and per
subscription, traffic demand will increase 50× to reach 257 GB/month.

It is expected that by 2030, the 5G will reach its capacity limits [2], so new architectures, tech-
nologies, and intelligent networkmanagement solutions need to be added on top of it to be able to
support applications and traffic demands after that. This will force us to enter the 6G era, where
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Figure 1.1: Estimated number of connected devices by 2027 [10].

Figure 1.2: Traffic estimates for the years 2020 to 2030 [1].

new technologies, such as UAV swarms, cell-free mMIMO, RIS come together to provide a mod-
ern and intelligent communication ecosystem and seamless ubiquitous connection to users. This
new paradigm will have some characteristics like high data rate, ultra-reliability, low latency,
high energy efficiency, new spectra, intelligent networking, and convergence between sensing,
computing, control, and communication, which will bring a fully digitally connected world.

1.2 Performance of Wireless Systems

While cellular networks were originally designed for voice communications, wireless data trans-
mission is dominant nowadays, and on-demand video service originates most of wireless traf-
fic [10]. One of the aims of the NextG of wireless systems is providing ubiquitous connectivity
with enhanced data rate for end-users, which is critical for various applications such as wireless
Augmented Reality (AR)/VR. The ubiquity can be achieved by increasing the wireless network
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coverage and improving the throughput in the coverage area, and many technologies have al-
ready been proposed to achieve this goal, e.g., Ultra Dense Network (UDN) or mMIMO. The
area throughput is a highly relevant performance factor for contemporary and future wireless
networks [11]. It is measured in bit/s/km2 and can be represented by the following high-level
formula:

Area throughput [bit/s/km2] = B [Hz]×D [cells/km2]× SE [bit/s/Hz/cell]

where B is the bandwidth, D is the average cell density, and SE is the spectral efficiency, defined
as the amount of information that can be transferred over one Hz bandwidth in one second.

These three components, thus, need to be increased to improve the area throughput of com-
munication systems. In summary, to improve the area throughput of wireless communication
systems, one should:

• Allocate more bandwidth, which can be done by exploring higher frequency bands, e.g.,
mmWave.

• Densifying the network by deployingmore andmore cells in the area, i.e., UDNs, or design-
ing new dense network architectures like CF mMIMO.

• Improving the spectral efficiency by designing the optimization schemes for utilizing the
available resources.

In this thesis, we investigate different technologies and solutions to improve the throughput
and QoS for end users, including exploring the mmWave frequency bands to provide very high
data rate for both indoor (i.e., WiGig) and outdoor applications, RIS-assisted UAV communica-
tions, and CF mMIMO networks.

The abundant free spectrum available at mmWave frequencies, spanning from 30 GHz to
300 GHz, makes mmWave communication a key enabler for 5G and beyond-5G (B5G) systems
to support bandwidth-hungry applications like online High Definition video streaming, AR/VR,
and road-side vehicular communications. In this frequency range, the amount of available band-
width is significantlymore significant than that of the legacy sub-6 GHz counterpart, allowing un-
precedented transfer speeds. Drones or UAVs are recognized as an essential part of B5Gwireless
communications. Thanks to their unique characteristics such as easy deployment, strong Line-of-
Sight (LoS) links, degree of freedom, and controlled mobility [2], UAVs can act as flying or aerial
Base Stations (BSs), providing better service compared to traditional fixed infrastructures. RIS
consist of many reflecting diode units that can reflect any incident electromagnetic signals by an
adjustable phase shift [12], [13]. In NextG era, RIS will play a critical role in controlling the prop-
agation environment by deploying very large smart surfaces to improve the network coverage
and throughput for the users that do not have LoS links to the BS.

The CF or distributed mMIMO systems are composed of a large number of distributed an-
tennas that jointly serve relatively fewer users [14]. The operation, unlike the traditional cellu-
lar network, takes place in a user-centric fashion, where each user is surrounded and served by
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multiple antennas. These antennas are connected to a Central Processing Unit (CPU) through
high-capacity channels, where the network synchronization, data detection/ precoding/ decod-
ing, and some other network management operations take place. CF mMIMO can considerably
improve the performance compared to the conventional small-cell scheme, where each user is
served by a dedicated BS. CF mMIMO has been considered one of the enabling technologies for
B5G communications [15].

The remainder of this thesis is structured as follows: Chapter 2 provides an overview of the
next generations of wireless communication systems and discusses the specifications and require-
ments of B5G and 6Gnetworks, emerging applications inNextGnetworks, and enabling technolo-
gies in future wireless communications. Chapter 3 discusses the IEEE 802.11ad/ay standards that
operate over 60 GHz of mmWave frequency bands and aim to provide multi-gigabit rates in in-
door environments. It then presents some of the challenges related to the scheduling of IEEE
802.11ad/ay devices in realistic scenarios, with the main focus on the already-standardized IEEE
802.11ad. Furthermore, it discusses some pre-existing works and proposes some research direc-
tions. The Chapter 4, the usage ofmmWaves in outdoor environments is investigated. It analyzes
the performance of an early deployedmmWave cell and studies different environmental impacts
onmmWave links, from the body and foliage blockage to rain and over-water transmission. Then
it compares the actual system performance with simulations to reveal the gap between deploy-
ments and theoretical ones.

6Gwill be supported bynew technologies and innovations such asRIS,UAVs, andCFmMIMO.
These technologies can bring multi-fold QoS improvement over the existing technologies. These
systems still need to be optimized with respect to various performance metrics such as data rate,
network coverage, and energy consumption. In Chapter 5 the usage of RIS in conjunction with
UAVs is being investigated as a way to provide energy-efficient communication to ground users
in dense urban areas. It devises an optimization scenario to reduce overall energy consumption in
the network while guaranteeing certain QoS to the ground users in the area. Due to the complex
nature of the optimization problem, we provide a joint UAV trajectory and RIS phase decision
to minimize transmission power of the UAV and BS that yields good performance with lower
complexity. Chapter 6 discusses CF mMIMO networks and proposes pilot reuse strategies to op-
timize the system’s rate. It formulates the pilot assignment in CF mMIMO as a diverse clustering
problem and proposes an iterative optima search scheme to solve it. Finally, Chapter 7 concludes
the thesis, providing some unsolved issues and some possible future research direction.
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2
Next Generation Wireless Networks

The 6th Generation (6G) systems need to continue the trends of previous generations while in-
troducing new services and technologies. The new services include Artificial Intelligence (AI),
intelligent wearable devices, autonomous vehicles and cars, eXtended Reality (XR), and smart in-
dustry [7]. New technologieswill be introduced, and the existing oneswill be further improved to
support these emerging services [6]. AI will be fully integrated into 6G communication systems,
making native-AI wireless networks to support various network management operations from
the physical layer to transport and application layers. The characteristics of previous wireless
communication systems, including high throughput, ultra-reliability, low latency, and massive
connectivity, will be converged in 6G [2]. Additional features will be incorporated with the pre-
vious ones to create a coherent communication system in 6G. Still, the most critical requirements
for 6G will be the capability of handling massive volumes of data and very high per-device data
rate [5].

In this chapter, we discuss the characteristics of the future generations of wireless communica-
tion systems, their specifications and requirements, the emerging applications that are foreseen
in 6G, and potential enabling technologies of Next Generation (NextG) networks. Figure 2.1 illus-
trates these applications and enabling technologies.

2.1 6G Specifications and Requirements

5th Generation (5G) is associated with trade-offs among various requirements such as through-
put, delay, energy efficiency, and reliability to support massive Machine-Type Communications
(mMTCs), Enhanced Mobile BroadBand (eMBB), Ultra-Reliable Low Latency Communications
(URLLCs) use cases. The main objectives of the NextG wireless communication are to improve
these aspects and add new requirements on top of them. So, beyond-5G (B5G) networks should
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Figure 2.1: Applications, use-cases and the enabling technologies in next generation networks.

Table 2.1: Copmarison of 4G, 5G and 6G communication systems [2].

4G 5G 6G
Per-device peach data rate 1 Gbps 10 Gbps 1 Tbps
End-to-end latency 100 ms 10 ms 1 ms
Maximum spectral efficiency 15 bps/Hz 30 bps/Hz 100 bps/Hz
Mobility support 350 km/h 500 km/h 1000 km/h
Satellite integration No No Fully
AI No Partially Fully
Autonomous vehicle No Partially Fully
XR No Partially Fully
Haptic Communication No Partially Fully
THz Communication No Limited Widely
Service level Video AR/VR Tactile
Architecture MIMO massive MIMO Intelligent surface
Maximum frequency 6 GHz 90 GHz 10 THz
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provide (i) a very high per-device throughput, (ii) a massive number of connected devices, (iii)
global connectivity, (iv) very low latency, (v) high reliable connectivity, and connected intelli-
gence [2]. Table 2.1 compares 6G with previous versions of wireless networks.

B5G and 6G will require new Key Performance Indicators (KPIs), besides the 5G KPIs. These
systems are expected to increase the respective capability by a factor of 10-100 compared to the pre-
vious version [2]. The following KPIs is expected from 6G [16]: up to 1 Tbps peak data rate, 0.1 ms
end-to-end latency, 20 years of battery lifetime, 100/m3 of connection density, 1000× throughput
increase, 10× energy efficiency improvement, maximum outage of 1 in 1 million devices, and po-
sitioning precision of 10 cm in indoor and 1m in outdoor. These KPIs can be categorized into two
groups: (i) technology and productivity driven KPIs, including KPIs for parameters such as jitter,
link budget, extended range/coverage, position accuracy, energy and cost, and (ii) sustainabil-
ity and societal driven KPIs, which are related to standardization, privacy/security, ethics, and
intelligence. Some KPIs, such as capacity, throughput, latency, energy efficiency, and connectiv-
ity, are the basic requirements of all communications systems, while intelligence KPIs are newly
designed for 6G.

2.1.1 Ubiquitous Enhanced Mobile Broadband

Evolving from 4th Generation (4G) Long Term Evolution (LTE) networks to 5G communication
systems, the eMBB supports a broader range of applications with higher quality. While the speed
of eMBB is being greatly enhanced in 5G, compared to 4G [17], enabling new series of exciting
immersive applications such as XR, 3-dimensional (3D) multimedia, and Internet of Everything
(IoE), will require peak rate of tens of Gbps, which is beyond the 5G capabilities [18]. 6G mobile
broadband need to be further improved to provide ubiquitous services with the peak of mobile
broadband data rate at Tbps levels [2], [19], to provide high-definition contents to the end users.

Ubiquitous Enhanced Mobile Broadband (UeMBB) will enable use-cases like (i) super fast
hotspots, where it can improve broadband services in very dense and populated regions such
as public transportation or train stations [19]; (ii) Enhanced wireless multimedia, such as online
8K ultra-high definition video streaming and video gaming.

Multiple technologies will help 6G in supporting UeMBB. Fixed Wireless Access (FWA) will
enable B5G networks to provide wireless broadband everywhere on the planet [20], where the
Millimeter Wave (mmWave) links will be replaced by optical fibers to provide high data rate ser-
vice, especially in remote areas. Terahertz (THz) communications are being considered one of the
main frontiers for B5G networks that can offer the virtually unbounded capacity to support wide
channels and super high data rates [21]. The increased complexity of modern networks prevents
traditional optimization schemes from fully utilizing the available resources. Hence, Machine
Learning (ML) has been proposed to be used in physical andMediumAccess Control (MAC) lay-
ers [22]–[24] to optimize the resource and spectrum allocation, power control, Modulation and
Coding Scheme (MCS), channel estimation, and beamforming.
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2.1.2 Extremely Massive Machine-Type Communication

5G communications are supposed to support the connectivity of 1million devices in 1 km2, which
allows millions of deployed sensors to collect and transmit their data. By entering to IoE era, this
number will increase sharply, where a trillion automated sensors and actuators will connect and
transmit their data back and forth through wireless links [25]. Existing traditional architectures
will fail to support effective and efficient connectivity on such a massive scale. So B5G and 6G
networks will need ExtremelyMassiveMachine-Type Communication (emMTC) architectures to
support connectivity in the scale of trillion of devices [26].

Several applications can be enabled by emMTC including smart buildings, smart industry,
smart supply chain management [27], air and water quality monitoring, nature/wildlife moni-
toring and surveillance [28], [29]. Some of the new technologies, such as SigFox [30] and LoRa
[31], will be among the potential candidates for connectivity and coverage in B5G era. Existing
communication infrastructure, e.g., Radio Access Network (RAN), can also be considered in the
design of new Machine-Type Communication (MTC) architecture in B5G networks. The follow-
ing two technologies can be utilized in 6G to provide a more reliable and guaranteed service to
MTC devices: (i) enhanced MTC, that provides high bandwidth data rate (e.g., up to 1 Mbps),
with the support of high mobility for 6G-enabled applications like Internet of Vehicles (IoV); (ii)
Narrow Band Internet of Things (IoT) (NB-IoT), which enables low data rate applications (e.g., in
the order of Kbps) [19], [26]. The massive Multiple-Input, Multiple-Output (mMIMO) and Cell-
free (CF) mMIMO can also be considered as potential candidates for MTC in B5G era, thanks to
their enhanced efficiency of the spectrum in multi-user environments [32], [33].

2.1.3 Extremely Reliable Low-Latency Communication

URLLC provides a reliability of 99.999  in 5G systems [34], while some critical applications such
as remote surgery will require even more reliable communications. By 2030, Extremely Reliable
Low Latency Communication (eRLLC) communication with a reliability rate of 99.99999  is re-
quired to support applications like telemedicine, XR, internet of healthcare, and autonomous
driving [7]. Various parameters must be considered in the design of eRLLC systems, such as
fast end-to-end turnaround time, intelligent framing and coding, smart uplink and downlink
communication, and efficient resource management [35].

2.1.4 Super Low-Power Communication

While the integration of traditional devices with large-scale antenna arrays brings high power
consumption [36], increasing the number of connected devices in the following years will require
highly efficient self-powered hardware to provide sustainable transmissions. 5G adopts multiple
technologies to facilitate low-power communications such as back-scatter communication, hybrid
analog/digital beamforming, sparse array, and sparse Radio Frequency (RF) link design [19].
Given the exponentially growing number of devices and traffic, these solutions may not bring
enough power efficiency for 6G systems.
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Multiple applications in 6G will require extremely low-power communications, including Un-
manned Aerial Vehicles (UAVs), IoT and etc. Recently, Reconfigurable Intelligent Surface (RIS),
also known as Intelligent Reflecting Surface (IRS), has been proposed as one of the enabling tech-
nologies for super low-power communication. Unlike the traditional relaying mechanisms, in
RIS, no power amplifier is being used to amplify and forward the received signal, and it could
potentially operate in entirely passive mode [36].

2.1.5 Long Distance and High Mobility Communication

Long Distance and High Mobility Communications (LDHMCs) is an essential requirement of
large scale 6G networks [37]. While 5G provides service for high-speed vehicles and devices,
i.e., high-speed trains up to 500 km/h, 6G will require LDHMCs services to support connectivity
for the next generation of high-speed transportation systems. It is expected that 6G supports a
mobility speed of more than 1,000 km/h [19].

2.1.6 High Area-Traffic Capacity

Area-traffic capacity refers to the total traffic throughput per geographic area (bit/s/m2) [38]. It is
expected that 5G supports the area-traffic capacity of 10 Mbps/m2. However, some applications
like 3Dmultimedia or collaborative video gaming require higher traffic capacity, which might be
beyond 5G capacity. Hence, 6G needs ten times improvement over area-traffic compared to 5G
to reach up to 1 Gb/s/m2 for real-world applications [37].

2.2 Emerging 6G Applications

The NextG wireless communication systems are expected to support new applications and ser-
vices that will build a fully connected and digital world. This section summarises some of these
emerging applications.

2.2.1 Internet of Everything

The IoE will expand IoT to include things, data, people, and processes [19], [39], [40]. It integrates
various sensing devices for identifying, monitoring, and controlling “everything” in an intelligent
way. The range of sensory data includes position, light, speed, temperature, and pressure and
can be used in various applications, from smart cities to healthcare and smart industry. 6G will
be the key enabler for IoE by providing seamless connectivity to a massive number of machine-
type communication and sensory devices [41]. The integration of 6G and IoE will support new
applications by providing better service to IoT, wireless body area networks, smart grids, and
smart cities, which all will work together to improve the quality of life. 6G needs to provide
reliable low-latency connectivity for a massive number of devices to be able to support IoE [19].
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2.2.2 Connected and Autonomous Vehicle

Researchers have explored and investigated the connected and autonomous vehicles paradigm
for years in academia and industry. This paradigm consists of several technologies such as au-
tonomousdriving, cooperative vehicle networks, IoV [42], VehicularAd-hocNETworks (VANETs)
[43], road-side communication networks [44]. IntegratingwithAI-powered autonomous vehicles,
6G networks will pave the way for Intelligent Transport System (ITS) and intelligent Vehicle-to-
everything (V2X) communications [19], which will change the shape of urban transportation by
introducing driver-less taxies, cars and public transportation [45]. 6G networks will unleash the
full potentials of V2X communications, by providing ultra reliable and low-latency (≤ 0.1ms)
communications.

2.2.3 Industry 5.0

Industry 5.0 refers to a human centric design solution where humans work together with collabo-
rative robots (cobots), and intelligent machines add personal human touch to industry 4.0 pillars
of automation and efficiency [46]. The cobots replace humanworkers in repetitive and dangerous
tasks to preserve humanworkers’ safety and health [47]. The key enablers of Industry 5.0 include
cloud/edge computing, big data, AI, and IoE, as it was in Industry 4.0. In Industry 5.0 era, a mas-
sive number of intelligent and connected devices support various services and applications that
are enabled by 6G which fully integrates cloud/edge computing, big data, IoE and AI.

2.2.4 UAV-Based Mobility

UAV-based communications will play an important role in the next generation of wireless com-
munications, thanks to their unique features compared to fixed terrestrial equipment, such easy
and fast deployment and Line-of-Sight (LoS) connectivity [48]. UAVs have been recently consid-
ered in some applications such as natural disaster management, traffic surveillance, agriculture,
and environmental monitoring and mapping [49], [50]. UAVs can also play an important role
in the integration of 6G and IoE, adopting the UAV-to-Everything (U2X) communications. U2X
network still faces some critical challenges like efficient radio resourcemanagement, power trans-
mission, and trajectory design [19].

2.2.5 Extended Reality

XR is a collective term that extends across immersive technologies including Augmented Reality
(AR), Virtual Reality (VR), Mixed Reality (MR), and everything in between [51]. XR fuse physi-
cal and virtual worlds using various wearable sensors and computers to encode human-machine
interactions. XR requires the processing of sensory data regarding location, orientation, and ac-
celeration, which requires a very reliable, low latency, and high data rate connection to provide
a fully immersive experience [19].
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2.2.6 Holographic Telepresence

Holographic Telepresence (HT) consists of a real-time 3D projection of distant people and objects
with a high level of resolution and fully-motion support [52]. In HT systems, the transmitter
captures the footage of surrounding people and objects and compresses and sends them to the
receiver over a broadband network. This information then decompresses by the receiver and is
projected by laser beams to create a 3D vision of the original object. Several applications can be
imagined for HT, including 3D video conferencing and news broadcast [19]. HT requires 0.1 ms
latency and multi Gbps data rate to provide an immersive and seamless experience [3].

2.3 6G Enabling technologies

Several technologies and ideas have been proposed to handle the massive traffic growth and the
increasing number of connected devices in B5G and 6G networks, such as exploring beyond sub-6
GHz frequencies (mmWave, THz), mMIMO and cell-free mMIMO, RIS, Large Intelligent Surface
(LIS) and UAV communication systems. While some of these technologies have already existed
in 5G communications, they need multi-fold improvement to handle 6G requirements.

2.3.1 Beyond Sub-6 GHz Communication

The increased traffic anddata demand and the limited resources in the sub-6GHz frequency range
led researchers to explore the possibility of using higher frequency bands for data transmission.
mmWave frequency band (from 30 GHz to 300 GHz) has already been explored and standard-
ized for indoor (GigabitWiFi) [53] aswell as outdoor cellular networks. Thanks to the abundantly
available bandwidth,mmWave radio technology is currently a suitable candidate for data-hungry
applications in 5G, such as wireless office docking, Ultra High Definition video streaming, wire-
less AR and VR, mobile front-hauling and offloading, etc. [54]. Due to the propagation character-
istics over mmWaves, most of these applications are suitable for controlled indoor environments.
The usage of mmWave in complex outdoor environments, instead, is still limited to some use
cases like FWA with fixed transmitters and receivers. Some critical problems need to be solved,
and more efficient solutions, i.e., very fast beamforming and beam tracking schemes, need to be
proposed to use mmWaves in more complicated scenarios such as mmWave roadside communi-
cations [55], [56].

Some B5G applications such as wireless Brain Computer Interface (BCI), HT, and XR require
data rates in the range of Tbps, which is beyond the capacity of mmWave systems [57]. Re-
searchers recently have been exploring the THz frequency band for data transmission, especially
for super high data rate communications with zero error rate in short distances [2], [19], [58], [59].
THz band, also known as submillimeter radiation, refers to the frequency band from 100 GHz
to 10 THz, with the corresponding wavelength from 0.03 to mm-3 mm. The critical characteris-
tics of THz communications include widely available bandwidth to enable very high data rates
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and high propagation loss and sensitivity to blockage, which makes the use of highly directional
antennas indispensable [5].

Designing proper beamforming and beam alignment techniques is critical to unleashing the
full capacity of THz communications. The narrow beams will also reduce the co-channel interfer-
ence among different users and so can further improve the performance. Because of the shorter
wavelength in THz communications, compared to mmWaves, a huge number of antennas can be
deployed in the same size area, generating a more directional and higher number of beams.

2.3.2 Machine Learning and Federated Learning

AI and ML will play a fundamental role in 6G communications [60]–[66]. AI/ML will be par-
tially supported by 5G systems. However, native-AI will be an essential part of 6G, enabling the
full potential of radio signals and paving the way to the transformation from cognitive radio to
intelligent radio. Advances in ML will create intelligent and more efficient networking that will
fully utilize the resources to improve the Quality of Service (QoS) for end users. ML can per-
form complex networking tasks such as handover, network selection, and resource management.
It will also play a critical role in IoT, MTC, Machine to Machine (M2M), human-to-human and
machine-to-human communications [2]. Native-AI will be supported by metamaterials, smart
infrastructures, intelligent devices, intelligent cognitive radio, and sustainable networks [2]. ML
will take the place of traditional approaches in physical and MAC layers such as RF signal pro-
cessing, spectrum sharing, encoding/decoding, channel estimation, power control, andMCS.ML
approacheswill also be considered in the link layer and transport layer for resource allocation and
traffic prediction and control tasks.

Federated Learning (FL), has been recently proposed as an AI concept to leverage on-device
processing power and improve the user data privacy [67]–[71]. The idea is to collaboratively
train a shared model so that the participating devices train the local model and share updated
weights with the central server that combines different models. FL techniques can be categorized
in three groups, horizontal FL, vertical FL and federated transfer learning [72]. FL is proposed
as an answer for the problems of centralized data collection and processing frameworks such as
privacy and huge communication overhead [67].

2.3.3 Unmanned Aerial Vehicles

Drones or UAVs are recognized as an essential part of B5G wireless communications. Thanks to
their unique characteristics such as easy deployment, strong LoS links, degree of freedom, and
controlled mobility [2], UAVs as flying or aerial Base Stations (BSs) can provide better service
compared to traditional fixed infrastructures. In emergencies and natural disasters such as earth-
quakes and floods, where the terrestrial infrastructure is destroyed and becomes unfunctional,
the UAV networks can be easily and quickly deployed to provide connectivity and help manage
the disaster. UAVs can also be used in other scenarios, as for increasing network connectivity
and coverage, on-demand broadband, environment and nature monitoring, pollution monitor-
ing, security and surveillance, and road traffic monitoring. UAV communication will bring a
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new paradigm to the wireless communication industry. A swarm of UAVs can collaborate to
overcome the limitation of UAVs operating as individual nodes in increasing the network cov-
erage to provide better service to ground users [73]–[75]. Given the limitation of UAV such as
limited payload, flight time, and communication range [74], a swarm of UAVs, where the nodes
are working together and are aware of the situation of each other, can provide more sustainable
communication.

2.3.4 Large Intelligent Surfaces

LIS, also known as metasurfaces, RIS, IRS and Software Defined Surface (SDS), consist of many
reflecting diode units that can reflect any incident electromagnetic signals by an adjustable phase
shift [12], [13], [76]–[80]. In the 6G era, very large intelligent surfaces will provide a controllable
propagation environment. LIS can play a critical role when the LoS link is blocked or experience
lowquality by turning artificial structures, e.g., buildings, into intelligent and electromagnetically
active wireless environments that can control propagation characteristics like reflection, scatter-
ing, and refraction [81], [82].

Fractional programming and gradient descent can be employed to optimize the transmit power
and intelligent surface phase shift, respectively [2]. LIS are a potential solution to maximize data
rate andminimize the transmission power in B5G networks. It is expected that LISwill go beyond
traditional mMIMO and provide advantages such as reduced noise, lower interuser interference,
and reliable communications for 6G networks.

2.3.5 Cell-Free massive MIMO

Network densification is a common technique to increase the network coverage and rate for the
User Equipments (UEs). Densification can happen both by increasing the number of the BSs, a.k.a.
Ultra DenseNetworks (UDNs), or the number of antennas at the BS, a.k.a. mMIMO. Each of these
approaches suffers from some shortages: deploying a large number of BSs increases the inter-cell
interference and hence reduces the service quality for the UEs, while in the mMIMO, UEs located
at the edge of the cell suffer from high propagation loss because of the long distance from the BS.

Distributed or CF mMIMO [14] has recently been introduced as an answer to the limits of
the technologies mentioned above by adopting the best of both. Distributed or CF mMIMO [14]
has recently been introduced as an answer to the limits of the technologies mentioned above by
adopting the best of both. In CF mMIMO systems, a huge number of geographically distributed
antennas are coherently working together to serve users in their coverage area. The massive
antenna arrays in mMIMO systems provide a very high beamforming gain and spatially multi-
plexing of users, increasing the spectral and energy efficiency and enhancing the reliability [83].
Distributed nature of CF mMIMO provides additional macro-diversity by implementing coher-
ent user-centric transmission that eliminates the inter-cell interference limitation in cellular net-
works [84], which can considerably improve performance. CF mMIMO has been considered one
of the enabling technologies for B5G communications [15], [85], [86].
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2.3.6 Non-Terrestrial Communications and 3D Networking

The ground networks will be integrated with airborne andNon-Terrestrial Network (NTN) in 6G
to support communications for the users in vertical extension [2]. This 3D networking paradigm
will be enabled by Low Earth orbit (LEO) satellites and UAVs [87], [88]. Adding the dimension
in terms of altitude makes connectivity in 3D networking considerably different and more chal-
lenging than for conventional 2-dimensional (2D) networks. Integrating ground networks, satel-
lites, UAVs in 6G will provide global connectivity and stringent seamless access across the globe.
Developing protocols and architectural solutions for New Radio (NR) operations in NTNs is con-
sidered in 3rd Generation Partnership Project (3GPP) Rel-17 and then further expanded in Rel-18
and Rel-19 [89].

2.3.7 Quantum Communication

Quantum systems play a role in wireless communication and networking in two different ways:
quantum communication and quantum computing. Quantum communication is transferring a
quantum state from sender to receiver, which enables the execution of a task that is difficult, if
not possible, for classical techniques [90]. Quantum communicationwill bring advantages to next-
generation wireless systems, such as quantum key distribution, quantum secure direct commu-
nication, and quantum teleoprations [91]. Quantum communications and quantum computing
technologies will provide rigorous security against various cyber-attacks by applying a quantum
key based on the quantum no-cloning theorem and the uncertainty principle. The information
will be encoded in the quantum state by quantum particles or photons, which can not be accessed
or cloned without tampering it due to quantum principles [92].

2.3.8 Other Technologies

Many other technologies can be listed as 6G’s potential enablers. Visible Light Communication
(VLC) as one of the promising optical wireless communication technologies that use visible lights
(frequency spectrum from 430 THz to 790 THz), will be used to support super-fast short-range
communications [6], [93]–[95]. Because of its built-in strong security nature, Distributed Ledger
Technologies (DLTs) and in particular Blockchain technology, have turned out to be an up-and-
coming technology in 6G era [96]–[99]. It can enhance the 6G’s technical aspects, such as dynamic
spectrum sharing, resource and mobility management, as well as enabling unforeseen applica-
tions like HT, XR and Industry 5.0 [19]. Integrated sensing and communications [100]–[106] is
another enabling technology for 6G. A key driver of autonomous wireless networks is continu-
ously sensing the state of the changing environment and exchanging information among different
nodes. Hence, in 6G, the sensing will be tightly integrated with communication to support this
autonomy. Ambient backscatter wireless communication allows interaction between two battery-
less devices by only using existing RF signals as the source of power [107]–[109]. Backscatter
communications can provide a reasonable data rate for short-range communications. It can be
used to transmit small monitoring signals by the sensors without consuming any power. The
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battery-less devices in the backscatter communications make it a potential candidate for massive
machine-type communications in the future 6G networks.
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3
The challenges of Scheduling and Resource

Allocation in IEEE 802.11 ad/ay

3.1 Introduction

Wi-Fi is nowadays present in many devices and is common in households, offices, public institu-
tions, and transportation. Over more than 20 years, many amendments have been made to the
original standard, updating both the Physical Layer (PHY) and Medium Access Control (MAC)
layers to provide higher bit-rate, robustness, and Quality of Service (QoS).

As users keep asking for higher data-rates, the current deployments struggle to keep up with
the demand. One key enabler for gigabit-class communications is the use of the Millimeter Wave
(mmWave) band, which loosely refers to the portion of the electromagnetic spectrum with fre-
quencies higher than 6 GHz. In this frequency range, the amount of available bandwidth is sig-
nificantly larger than that of the legacy sub-6 GHz counterpart, allowing unprecedented transfer
speeds.

As the research started to mature, the Wi-Fi Alliance introduced in 2012 the IEEE 802.11ad
amendment [110], standardizing communication in the 60 GHz Industrial, Scientific, and Medi-
cal (ISM) unlicensed band, offering data-rates up to 6.75 Gbps. As a follow-up, its successor IEEE
802.11ay is planned to be standardized by the end of 2020 [111], introducing technologies such as
Multi-User Multiple Input, Multiple Output (MU-MIMO), channel bonding, higher-order mod-
ulation, and thus even higher speeds. Such extreme data-rates make it possible to unlock new
applications, such as wireless office docking, 8K Ultra High Definition video transfer, wireless
Augmented Reality (AR) and Virtual Reality (VR), mobile front-hauling and offloading, etc. [54].

On the downside, given the higher carrier frequency, mmWave transmission suffers from an
increased propagation loss, as well as deeper diffraction shadows, and higher penetration and
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reflection losses, making communication more difficult and less stable.
On the other hand, these characteristics allow for extreme spatial reuse, e.g., transmissions in

different rooms will hardly interfere with each other unlike in legacy Wi-Fi. Moreover, the short
wavelength makes it possible to use antenna arrays with tens of elements packed in a small area,
making it is possible to counteract the increased path loss by focusing the radiated power into
directive beams, thus increasing the overall antenna gain. While this further reduces interference
even where users share the same area and improves spatial reuse, it also creates the problem of
directional deafness, worsens the hidden node problem, and makes mobility more complex to
handle.

To meet the strict QoS requirements of some new applications and partially alleviate the hid-
den node problem, the standard provides the possibility to transmit data in reserved contention-
free periods, that coexist with contention-based access periods, very similar to the legacy Carrier
SenseMultiple Accesswith CollisionAvoidance (CSMA/CA) channel accessmechanism, and the
hybrid allocation can be flexible enough to support the coexistence of traffic with vastly different
QoS requirements.

In this chapter, wepresent someof the challenges related to the scheduling of IEEE 802.11ad/ay
devices in realistic scenarios, with the main focus on the already-standardized IEEE 802.11ad.
Furthermore, we discuss some pre-existing works and propose some research directions.

In particular, in Section 3.2 the main characteristics of IEEE 802.11ad will be described. Sec-
tion 3.3 will briefly discuss the literature on channel access and scheduling. Section 3.4 will show-
case our research plan, and finally Section 3.5 will draw the conclusions.

3.2 IEEE 802.11ad Overview

To introduce the main concepts and nomenclature of IEEE 802.11ad, in this section we provide a
short summary of the standard [110], while referring to other sources for more details [112].

Sector Sweep
in A-BFT

DMG 
Beacon

PCP/AP

Sector Sweep
in BTI

STA

Figure 3.1: Graphical representation of sector structure in IEEE 802.11ad.

Being ammWave-based standard, directional communicationwith all the added overhead and
the possibility of spatially multiplexing users are included in the amendment. To simplify beam
management, both the Personal Basic Service Set (PBSS) Central Point/Access Point (PCP/AP)
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and the Stations (STAs) divide their surrounding space into sectors as shown in Fig. 3.1. STAs
and PCP/AP will then need to keep beam alignment, which increases the signaling overhead.

Fig. 3.2 shows that in IEEE 802.11ad time is divided in Beacon Intervals (BIs) of about 100 ms.
Each BI is further divided into Beacon Header Interval (BHI) and Data Transmission Interval
(DTI), briefly described in the following sections.

3.2.1 Beacon Header Interval

The PCP/AP does most of the managing, such as beaconing, beamforming training, and schedul-
ing, during the BHI. This period can last hundreds of microseconds up to a few milliseconds,
and is further divided into three subintervals: Beacon Transmission Interval (BTI), Association-
BeamForming Training (A-BFT), and Announcement Transmission Interval (ATI).

The BTI is used to send Directional Multi-Gigabit (DMG) Beacons to announce the network,
give the basic synchronization and BI structure information, start the beamforming training with
new stations, and, if needed, do some basic traffic management. Beacons are sent over the differ-
ent sectors, covering all possible directions to maximize coverage for untrained STAs.

After receiving a DMG Beacon during the BTI, new STAs can use the A-BFT to complete the
basic beamforming training by sending Sector Sweep (SSW) frames in different sectors. Beam
alignment is completed once the PCP/AP responds with an SSW Feedback.

Finally, advanced scheduling mechanisms setup and further network management can be
done during the optional ATI.

3.2.2 Data Transmission Interval

BTI A-BFT ATI CBAP SP CBAP SP

Beacon Interval

BHI

Time

DTI

Figure 3.2: Representation of a Beacon Interval (BI).

The DTI is mainly used for the actual data transmission, but it can also be used to improve
communication links and for further scheduling. The DTI comprises Contention-Based Access
Periods (CBAPs) and Service Periods (SPs), which can appear in arbitrary combinations and are
scheduled during the BHI.

Transmission in Contention-Based Access Period (CBAP) follows the rule of Enhanced Dis-
tributed Channel Access (EDCA), slightly modified to account for directional transmission, in
which STAs compete with each other in order to transmit their data.
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Instead, Service Periods (SPs) are scheduled contention-free intervals that are dedicated to ex-
clusive transmission between a pair of STAs� to guarantee QoS. The standard also allows for
spatial sharing, meaning that multiple pairs of STAs with low cross-interference can be sched-
uled in the same SPs. This, however, comes at the cost of increased overhead since interference
measurements must periodically take place.

3.3 Scheduling in IEEE 802.11ad

IEEE 802.11ad allows for great flexibility in the scheduling of radio resources, but we will hereby
describe only some of these possibilities in their simplest form.

We want to stress the fact that, unlike in traditional contention-based medium access, sched-
uled SPs guarantee QoS. Access Categories (ACs) introduced in 802.11e, in fact, only allow for
stochastic traffic prioritization according to the DiffServ paradigm, which ceases to work in con-
gested networks. For this reason, allocated traffic is especially important for those applications
with strict QoS constraints. Instead, more realistic applications, such as data transfer or asyn-
chronous bursty traffic, can simply rely on CBAP.

As shown in Fig. 3.3, a STA can set up an allocation by sending an Add Traffic Stream (AD-
DTS) Request frame to the PCP/AP during the DTI and embedding a DMG Traffic Specification
(TSPEC) element. The DMG TSPEC element is created by the requesting STA and comprises
information such as the allocation period, and the minimum and maximum allocation duration.

Based on its admission policy, the PCP/APwill either reject or accept the request, immediately
notifying the requesting STAvia anADDTSResponse. If accepted, the allocation ismade effective
by including it in the Extended Schedule Element (ESE) transmitted in the next DMG Beacons,
which will contain details such as the effectively allocated period duration and the SP start time.
In this way, STAs not involved in the communication will not create interference and will be able
to switch to power-saving mode. Otherwise, the PCP/AP can either reject or propose a change in
the DMG TSPEC. A STA can later update the DMG TSPEC by sending another ADDTS Request
with the updated element and follow again the same procedure.

Allocating the right duration to SPs is clearly a trade-off between QoS traffic, which needs re-
sources to fulfill theminimum requirements imposed by the application, and elastic traffic, which
still needs resources even though with less stringent requirements. Since resource availability, as
well as channel quality, are time-varying, the standard supports SP extension and truncation ser-
vices, which let the stations keep transmitting and/or relinquishing the unused occupied channel.
Still, these features bring extra overhead and should thus be used carefully.

A mathematical model for preliminary allocation of SP for Variable Bit Rate (VBR) flows is
presented in [113], which helps determine how to set the TSPEC parameters to meet QoS require-
ments while minimizing the amount of allocated time. Unfortunately, SPs are assumed to be
placed at the beginning of the DTI, which is not possible in general for applications with tight de-

�A PCP/AP also contains a STA, i.e., a logical entity that is a singly addressable instance of a MAC and
PHY interface to the wireless medium [110].
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Figure 3.3: Representation of ADDTS scheduling in IEEE 802.11ad.

lay constraints. For example, for virtual or augmented reality services, latencies should be below
20 ms to avoid motion sickness.

Other works in the literature consider different aspects of the DTI. For example, [114] derives
the theoretical maximum throughput for CBAPswhen two-levelMAC frame aggregation is used.
Beamforming is also considered in [115], which proposes a joint optimization of beamwidth se-
lection and scheduling tomaximize the effective network throughput, while other works, though
not specifically concerning IEEE 802.11ad, deal with transmission scheduling for mmWave com-
munications [116].

3.4 Future Research

In this section, we highlight some possible research directions. In particular, in Section 3.4.1 we
describe the main tools that are currently available to study the subject. Then, in Section 3.4.2 we
propose a possible research plan.

3.4.1 Available Research Tools

Although commercial devices supporting the IEEE 802.11ad standard are currently available,
manufacturers do not provide tools to access low-level functionalities. Ultimately, it is more
flexible, timely, and cost-effective, although arguably less realistic, to simulate the behavior of
such devices.

In particular, significant effort has already been done implementing the IEEE 802.11ad stan-
dard into Network Simulator 3 (ns-3) [117], a popular open-source network-level simulator. The
last release of the simulator also supports quasi-deterministic channel modeling based on ray-
tracing, making simulations extremely accurate and realistic at the cost of a long preliminary
channel generation phase, although someworks already tried to improve this aspect [118]. While
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the implementation already covers most parts of the standard, it is still missing the scheduling
mechanisms necessary for this project. The authors of [117] are also working on the implementa-
tion of the IEEE 802.11ay amendment [119], making their work even more valuable.

Historically, scheduling algorithms have been mainly based on heuristics, trying to balance
performance and adaptiveness versus complexity. In the last years, instead, the Machine Learn-
ing (ML) revolution has brought many innovations also to the telecommunication field at all lay-
ers of the stack and, in particular, Reinforcement Learning (RL) is especially applicable to opti-
mize or even replace legacy scheduling algorithms [120]. Following the principle of self-driving
networks [121],ML algorithms can learn from real on-line data and supersedemanually-designed
protocols, which are becoming increasingly complex. OpenAI Gym is one of the most used RL
toolkits and has been adopted by all popularML frameworks. Given their potential inmany fields
of networking and telecommunications in general, OpenAI Gym APIs have also been integrated
into ns-3 [122] with the name of ns3-gym.

With these powerful tools, it will be possible to further advance the state of the art, create a
comprehensive performance evaluation of available algorithms and further improve upon them
once the weak points are clearly identified.

3.4.2 Research Plan

One of our first goals is to extend the already existing IEEE 802.11ad ns-3 module with the neces-
sarymechanisms tomake it properly support the hybrid channel access and advanced scheduling
(see Section 3.4.1), and add the support to the ns3-gym framework. A significant development
effort will be put into the creation of a proper simulation environment, with particular attention
to the computational complexity since a high data-rate simulation of just 10 s of simulated time
may currently take one hour or more of run-time. This makes the design, evaluation, and opti-
mization of scheduling protocol a lengthy process, whichmay be even infeasible if RL is involved
since many training episodes are needed to learn even basic mechanisms.

Indeed, decisions such as admission policy, resource allocation, smart SP truncation or exten-
sion, and spatial sharing are often difficult to accurately model in terms of trade-offs and usually
comprise several tunable parameters. However, if trained correctly, an RL agent is often capable
of learning extremely complex rules and optimize the network for different networking metrics
(e.g., delay, jitter, throughput, fairness) even beyond complicated heuristics.

Resource allocation can be divided into two subproblems. Specifically, STAs have to translate
information given by the application into DMG TSPEC elements and the PCP/AP subsequently
has to efficiently schedule the DTI especially considering the Modulation and Coding Scheme
(MCS) used. Regarding the former, applications may not yield constant inter-packet arrival time
(e.g., frame-rate drop in video applications) nor packet size (e.g., when compression is consid-
ered). At the same time, transmission conditionsmay varymainly due to environmental changes,
mobility, or even blockage, thus increasing performance variability. If QoS requirements are not
met, the RL agent of a STA could thus update the TSPEC.

On the other hand, the PCP/AP has to allocate SPs for a BI based on the available resources.
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Effective scheduling must take into account, in addition to network metrics, the possible evolu-
tion of the MCS since the packet transmission time largely depends on it. Given the significant
differences in channel dynamics of IEEE 802.11ad with respect to sub-6 GHz Wi-Fi, new ones
can be proposed to account for the specific characteristics of the mmWave channel. An RL agent
could thus jointly adapt the MCS and perform scheduling to optimize the network performance
by observing the evolution of both channel statistics and network traffic.

One way to overcome the problem of slow simulations is to quickly pre-train the RL agent to
make it learn at least simple decisions, such as understandingwhen a new request does not fit the
available resources, avoid overlapping SPs during scheduling, and avoid scheduling highly cross-
interfering users with spatial sharing. Thus, we plan to build a very simple and fast simulator
that will onlymodel relevant notions, e.g., basic channel and traffic modeling and the BI structure
defined in IEEE 802.11ad, but eliminating the fine details which make ns-3 realistic but extremely
slow. In this way, the agent can learn very broadly which actions it should take and then fine-
tune its behavior via more realistic simulations. Then, to further decrease ns-3 simulation run-
time, a database of simulation results can be created and multiple agents can passively learn
from it [123] before fine-tuning their performance on ad hoc simulations. Transfer learning will
also be considered to speed up convergence to effective policies in different scenarios.

Another objectivewill be to understand the traffic behavior of target applications. For example,
it could be possible to acquire real-world traffic traces of AR/VR applications, characterizing and
modeling their traffic patterns with focus on packet size, and variability of inter-packet arrival
accounting for variable frame-rate statistics. These models would ultimately be integrated with
standardized scenarios [124], [125] to further increase simulation realism.

Furthermore, understanding how the current state of the art performs in a realistic simulator
will allow understanding the strong and weak points of the proposals in realistic settings. From
detailed studies, it will be possible to understand how the state of the art can be improved upon
with heuristics or, when modeling becomes too complex or inaccurate, ML-based approaches.

These results will then be easily transferred to the future IEEE 802.11ay standard, which will
add further complexity on top of the already existing one, by introducing channel bonding and
MU-MIMO. Even more complex schedulers will then have to be designed, but starting from the
solid ground of the proposed work further improvements will be possible.

3.5 Conclusions

In this chapter we briefly described the main characteristics of IEEE 802.11ad, mainly focusing on
the MAC layer and especially on the newly introduced scheduling mechanisms, allowing differ-
ent types of traffic to coexist and potentially improving the performance of QoS-sensitive appli-
cations. As shown in Section 3.3, some research has already been done in this direction but lacks
a common and realistic testing ground, making it unclear whether the assumptions may hold.

Our future work will focus on proposing solutions for the many open problems described in
Section 3.4.2. Models and source code that will be considered of interest for the community will
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be published, making it possible to fairly compare results from different groups in a common and
realistic simulation environment.
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4
Performance analysis of mmWave Cellular

Networks

4.1 Introduction

The abundant free spectrum available atMillimeterWave (mmWave) frequencies, spanning from
30 GHz to 300 GHz, makes mmWave communication a key enabler for 5th Generation (5G) sys-
tems to support bandwidth-hungry applications like onlineHighDefinition video streaming, aug-
mented and virtual reality, and road-side vehicular communications.

However, transmission over mmWave bands has its unique characteristics and adds new chal-
lenges, which are very different from those of sub-6 GHz communications. In the last decade, a
massive body of research has been carried out to understand and model mmWaves’ propagation
properties, mainly focusing on path-loss models, ray propagation mechanisms, material penetra-
tion, and atmospheric effects.

The first commercial 5G mmWave systems have already been deployed in the last two years,
and some early measurements [126]–[128] investigated the performance of these systems under
various urban scenarios, revealing a high variability in the systems’ performance, partially at-
tributed to the high sensitivity to the propagation environment. These studies are important
because the commercial instalmentmay require to implement some changes, adaptations, and pa-
rameters’ setting thatwere not be required nor tested in Proof ofConcept (PoC) or pre-deployment
phases and that may potentially affect the system behavior in certain situations. Evidence of
such a risk was reported, for example, in [129] where the authors observed how an unexpected
setting of some base station parameters had a dramatic impact of the energy consumption of
narrowband-IoT nodes, significantly deviating from what predicted by models based on the pro-
tocol specifications. So, further research is required to fully understand the behavior ofmmWaves
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in an operational setup. To this end, we have conducted a measurement campaign to analyze the
impact of different environmental phenomena like rain, water surfaces, foliage, and human body
blockage on the performance of an operational 5GmmWave cell. We have also studied the signal
coverage in different propagation environments for different sectors and beams. The purpose
of this study is hence to understand to what extent the expected performance of mmWaves is
fulfilled in commercial settings, with all the complexity of an actual cellular system and of a real-
world environment. In many cases, our results confirm the system behavior already observed in
previous studies based on non-commercial PoC deployments or predicted by theoretical models
and simulations. However, in a few cases, we observed some nonconforming results that may be
proxy of some problems in the deployment of the commercial solution.

The analysis of the measurement results provides guidelines for planning future deployments
and predicting the performance of 5G in different use cases, such as in case of fish farms/ aquacul-
ture [130], or when the User Equipments (UEs) are located inside forests or vegetated areas [131],
or when the Line-of-Sight (LoS) signal is blocked by buildings, moving objects or humans, as in
dense urban environments [132]. Therefore, our observations are especially helpful to industries
interested in deploying 5G over mmWave frequencies, but are not familiar with its intricacies.

In summary, our main contributions are as follows:

• We present the coverage analysis of a commercial 5G mmWave cell by measuring the Ref-
erence Signal Received Power (RSRP) in a complex real-world propagation environment
(Section 4.4.1).

• We then analyze the beam separation and gauge the difference with respect to the sector-
level transmission (Section 4.4.2).

• We study different environmental impacts from the body and foliage blockage to rain and
over-water transmission on mmWave links on the commercial setup (Section 4.4.3).

• We analyze the performance of Non-Line-of-Sight (NLoS) mmWave links in two different
sectors, representing urban and suburban areas, observing that in an urban environment
with multiple buildings and reflecting elements, the NLoS components of mmWave signals
can compensate for the lack of LoS links, while this is not the case in the suburban environ-
ment (Section 4.4.3).

• We analyze the effect of the above-mentioned scenarios on the performance of end-to-end
transmissions (Section 4.4.3).

• We compare the measurement results with 3rd Generation Partnership Project (3GPP)’s
statistical channel models for the urban and rural environment both for omnidirectional
RSRP and transceiver’s optimal antenna configuration, revealing the gap between the ideal
simulated environment and the complex propagation environment (Section 4.5).

• Finally, we discuss how the above would affect real-world applications (Section 4.7).
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Table 4.1: Related works

Ref. Year Scenario Methodology Contribution
[126] 2020 5G urban Measurement (commercial) Performance of end-to-end transmission
[127] 2021 5G urban Measurement (commercial) Performance, power consumption, QoS
[128] 2020 5G urban Measurement (commercial) 5G performance in UE-side
[133] 2020 LoS indoor corridor Measurement (testbed) Path loss model
[134] 2018 LoS indoor office Measurement (testbed) Path loss/ Large scale fading
[135] 2019 LoS/nLoS indoor Measurement (testbed) mmWaves channel characteristics
[136] 2017 Urban Simulation/Measurement Channel modeling
[137] 2017 Urban/Indoor Measurement (testbed) Spatio-temporal features of channel
[138] 2018 Urban Measurement (testbed) Feasibility of mobility
[139] 2020 Foliage/Suburb Measurement (testbed) Propagation characterization
[140] 2017 Foliage/Suburb Measurement (testbed) Propagation characterization
[141] 2017 Foliage/Suburb Measurement (testbed) Foliage propagation model
[142] 2019 Body blockage Measurement (testbed) Human blockage model
[143] 2019 Body blockage Simulation Hand grip impact
[144] 2019 Rain Measurement (testbed) Rain attenuation
[145] 2020 Rain Measurement (testbed) Rain attenuation
[146], [147] 2020 End-to-end urban Simulation Performance of TCP in mmWave
[148], [149] 2017 End-to-end urban Simulation Performance of TCP in mmWave
[150] 2019 Urban/Indoor Simulation Performance of TCP in mmWave

The remainder of this chapter is structured as follows: Section 4.2 reviews the existing litera-
ture around mmWave propagation and early 5G mmWave deployments. Section 4.3 describes
the methodology used to conduct the measurement campaign. The observations and result anal-
ysis is provided in Section 4.4, and Section 4.5 compares the measurement results with some
simple simulated scenarios. Section 4.6 summarize key findings and take-home messages and
and finally, Section 4.7 concludes the chapter.

4.2 Related work

In the past few years, several studies have experimentally investigated the behavior of mmWave
propagation in different scenarios and conditions: indoors [133]–[135]; urban environment [136]–
[138]; suburban andvegetated area [139]–[141]; humanbodyblockage [142], [143] and rain-induced
fading [144], [145]. Further, [146]–[151] study end-to-end transmissions overmmWaves. Table 4.1
presents a summary of the related work.

The studies mainly aim to characterize the propagation of mmWave signals in different envi-
ronments and under various circumstances. For example, the measurement study in [136] con-
sidered the outdoor 32 GHz microcells to extract and develop a mmWave channel model. The
empirical result is then compared and validated through simulation. Ko et al. [137] investigated
the wideband directional channel characteristic of mmWaves in both indoor and urban environ-
ments to model the spatio-temporal features of the communication channel. In [138], the authors
investigate, through ameasurement study, the feasibility of mobility for a typical vehicular speed
in the urban environment.

The propagation of mmWaves in suburban and vegetated environments, surrounded by lots
of foliage, is highly different from the urban and indoor scenarios. This matter has already been
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considered in the literature, where a vast body of research studies the effects of foliage attenua-
tion on mmWave propagation. A measurement study in [139] analyzes and extracts large-scale
and small-scale propagation properties of 5GmmWaves in various vegetated environments with
different types and density of vegetation. A real-time channel sounder is used in [140] to mea-
sure mmWave LoS and NLoS channel responses in a suburban area with lined trees. The authors
then use the measurement results to generate a foliage propagation model based on the ITU-R
terrestrial model.

The propagation of mmWaves can be highly affected by different phenomena like rain and
human body blockage. 3GPP has recognized human body as one of the main obstacles affecting
mmWave propagation and causing large radio channel variations. Human body blockage has
been considered and modeled in the literature, based on Double Knife Edge Diffraction (DKED),
wedge, and cylinder models. In [142], human body blockage is measured at 15 GHz, 28 GHz,
and 60 GHz for 15 humans with different heights and weights. They model the body blockage
as a Double-truncatedMultiple Knife-edge (DTMKE) scheme and compare the calculated diffrac-
tion with existing models such as the absorbing double knife-edge model and the 3GPP human
blockage model. The [152] is measured the human body shadowing at 28 GHz frequency and
investigated its effect on Device-to-Device (D2D) devices in an outdoor environment.

The attenuation caused by precipitation can not be neglected at mmWave bands, where rain
droplets can absorb mmWave signals whose wavelengths (1 mm to 10 mm) is comparable to the
size of a raindrop (a few millimeters). Rain attenuation in the 21.8 GHz and 73.5 GHz bands,
based on a one-year measurement campaign in tropical regions, is presented in [145]. In [144],
Huang et al. employ a custom-designed channel sounder for 25.84 GHz and 77.52 GHz frequen-
cies to measure the rain-induced signal attenuation for short-range mmWave links. To compare
the performance result from the sub-6 GHz and mmWave frequency bands, the authors in [153]
has been carried out channel measurements in 3-18 GHz in urban macro and micro-cellular en-
vironments. They have characterized path-loss, shadow fading, Root Mean Square (RMS) delay
spreads and some other channel parameters for both LoS andNLoS communications. In the other
work, the authors of [154] have performedmeasurements in 3.5 and 28 GHz. They have proposed
a statistical channel model for large scale fading and analyze the channel characteristics for both
sub-6 GHz and mmWave bands. The [155] has introduced a 28 GHz channel sounder that can
be used with both horn antennas and phased array antennas. The authors have then extracted
different multipath component properties such as path gain by comparing the antennas’ speed
when switching from one direction to another. They have also proposed passive reflectors and
active repeater to improve the received signal strength and coverage. The [156] has presented
a performance analysis for commercial sub-6 GHz 5G networks based on a cross-layer measure-
ment study over 5G New Radio (NR) in an urban environment. They have analyzed the signal
quality, coverage, and hand-off performance in the physical layer as well as end-to-end through-
put, latency, user Quality of Experience (QoE) in niche applications, and energy consumption of
the 5G smartphone.

From the user experience perspective, the efficiency of end-to-end transmission is critical when
mmWave links are part of the network, as the unsteady physical channel makes it difficult to
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support higher-layer connections. In [146], [147], Poorzare et al., presented an analysis of reliable
end-to-end communications in 5G networks by investigating the effects ofmmWave on Transmis-
sion Control Protocol (TCP) performance and discussed the factors impacting the performance
of 5G networks. They further evaluated the performance of TCP in urban environments under
different conditions. Polese et al. evaluated the performance of TCP over mmWave links, rely-
ing on simulation [148], [149]. They studied the behavior of multipath-TCP on 28 GHz mmWave
links with a secondary Long Term Evolution (LTE) or 73 GHz mmWave link. Zhang et al. [150],
analyzed the performance of TCP in mmWave networks for high-speed UEs in dense urban envi-
ronments, where the UEs are located at different geographical positions with LoS andNLoS links
to the Base Station (BS) as well as indoor UEs. They studied the performance of edge and remote
servers as well as different TCP variations. The authors in [157] analyzed the effects of different
types of blockages on congestion control mechanisms of transport layer protocol in the presence
of handovers.

Most of the previous works were conducted in test setups that were not equipped with com-
mercial 5G mmWave BSs since commercial mmWave deployments did not arrive until late 2019.
Notable exceptions are studies by Narayanan et al. [126]–[128]. The study [126] presents a first
look at the performance of two mmWave and one mid-band commercial 5G deployments in US.
Using end-to-end performance measurements, Narayanan et al. tracked the interplay between
propagation in the urban environment, blockage, and precipitation on applications performance.
They further expand their measurement campaign in [127] to include the power consumption
and application QoE of operational 5G networks by considering different deployment schemes,
radio frequencies, protocol configurations, mobility patterns and upper-layer applications. They
also investigate the possibility of predicting network throughput in commercial mmWave 5G net-
works [128]. That work identified the different factors that affect 5G performance and proposed
a context-aware throughput prediction framework based on Machine Learning techniques.

Xu et al. presented a performance analysis for commercial sub-6 GHz 5G networks based on a
cross-layer measurement study over 5G NR in an urban environment in China [156]. They have
analyzed the signal quality, coverage, and hand-off performance in the physical layer as well as
end-to-end throughput, latency, user QoE in niche applications, and energy consumption of the
5G smartphone.

Like the work of Narayanan et al., we present an evaluation of a commercial 5G cell deploy-
ment. However, to the best of our knowledge, this chapter is the first to provide a fine-grained
analysis of mmWave propagation of a commercially deployed BS. This offers concrete explana-
tions for themain causes of performance degradation sincewe are not treating the radio as a black
box. We have also investigated a range of scenarios that are known to impact mmWave propaga-
tion, including human body blockage, foliage, transmission over-water and rain. While some of
these have been investigated before, this chapter is the first to analyze all of them in a commercial
5G mmWave deployment with known parameters configuration. We also note that this chapter
is the first to look at the effect of transmission over-water. We further compare the measured
RSRP against 3GPP’s statistical mmWave channel models for the urban and rural environments,
considering both omnidirectional strongest RSRP (transceiver’s optimal antenna configuration),
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Figure 4.1: Signal coverage map of the cell site, showing the maximum RSRP among all beams and PCIs.
The zoomed-in area presents the bitrate.

to study the simulation and actual performance (Section 4.5).

4.3 Measurements Methodology

This chapter includes two measurement studies: the first study aims to analyze the coverage
aspects of commercial 5G mmWave cells, while the second study targets the end-to-end commu-
nication performance of a 5G network when mmWave links are employed as part of the system.

The 5G mmWave BS is located on the roof of a 15 meters high building in Telenor’s campus in
Oslo, Norway. The BS is equipped with two Huawei HAAU5213 radio frequency units with 768
antenna arrays providing coverage to a northern and a southern sector as shown in Figure 4.1. Its
frequency range is 26.5 GHz to 29.5 GHz with a maximum transmit power equal to 32.5 dBm. It
supports up to four carriers and can generate 16 different static beams, employing hybrid beam-
forming. The black dashed line in the Figure 4.1 showcases the topological separation of the two
sectors. The northern sector (sector 1) points towards an open square surrounded by glass and
steel buildings. The southern sector (sector 2) is directed towards a peninsula with some build-
ings on the west and sea on the east. Each sector has four 200 MHz wide channels (800 MHz
total), with center frequencies between 26.6 GHz and 27.2 GHz. We identify each channel by its
respective Physical Cell Identity (PCI), where PCIs 101-104 belong to the northern sector and PCIs
301-304 to the southern. The operator can adjust the beams’ boresight both in the horizontal and
vertical plane. We did not have any control of the beams and no prior knowledge about their
directions. However, we were able to estimate the beams’ directions based on the measurements
we collected to create the coveragemap from LoS scenarios, if a single beam has the highest RSRP
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Figure 4.2: Some measurement locations: 1) close to water, 2) 6 m above water, 3) Line of Sight, 4) rain, 5)
foliage blockage.

in all locations of a measured area is considered to have an orientation towards this area.
We collect channel quality information with a Rohde & Schwarz scanner[158] that can mon-

itor all the relevant channels simultaneously using an omnidirectional antenna. Note that our
measurements do not consider the antenna gain that is expected in a commercial receiver (e.g., as
smartphone). On the other hand, the isotropic antennamakes the measurements almost indepen-
dent of the receiver orientation. Sincewe are interested in howdifferent factors affect propagation,
the absence of the receiver gain does not influence our evaluation. The scannerwas used to gather
measurements across the site and under different conditions, collecting in total 535137 samples
betweenApril 2020 and September 2020. Each sample contains several channel quality indicators,
such as RSRP, for all the detected PCIs and beams. We create a coverage map by walking around
the site with the scanner, and perform stationary measurements at selected locations, each lasting
typically at least 5 minutes, to capture the time variations of the signal strength. Figure 4.2 shows
the scanner and some of the measurement scenarios.

We also collected the measurements to analyze the performance of 5G mmWave end-to-end
transmission. Because of BS maintenance, the northern sector was not operational, and the mea-
surements for the bitrate and delay studywere done only in the southern sector. Each experiment
was repeated at exactly the same locations and with the same BS configuration used for the chan-
nel quality measurements. This experiment focused on the user experience, so we evaluated the
end-to-end bitrate and Round Trip Time (RTT). The measurements were performed with a pre-
production Huawei 5G CPE, supporting 2 × 2 MIMO and operating in Non-Standalone (NSA)
mode, which can reach data rates of up to 1 Gbps. A Gigabit Ethernet cable connects the CPE to
a laptop which acts as the client. Even though the BS can achieve approximately 3 Gbps in down-
link, the Gigabit Ethernet limits the maximum transfer rate with the laptop to 1 Gbps. This does
not pose an obstacle for our analysis, since we aremore interested on the cases where the network
performance drops well below this limit, as a consequence of obstacles or other environmental
phenomena. Figure 4.3 shows the devices and the measurement setup used for this study.

33



Gigabit

Ethernet

mmWave link

Local Server

Internet

Remote ServergNB

 5G mmWave
CPE

Figure 4.3: The measurement setup for the end-to-end communication experiment. The CPE is connected
through a Gigabit Ethernet cable to a laptop running the scripts.

The traffic sources are servers located inside the operator’s network to avoid the effect of cross-
traffic and congestion over the public Internet. The delay performance was assessed from the
RTT measurements given by ping, with packets of 64 bytes (default setting) and of 1500 bytes
(maximum size allowed by the Ethernet connection without requiring IP fragmentation). Note
that, to be transmitted over the wireless link, the bigger ping packets have to be split into multi-
ple Transport Blocks when the system experiences bad signal, which results in the use of robust
(but not very spectrum efficient) modulation and coding schemes. The bitrate performance is
evaluated through iPerf3�, a cross-platform tool for network performance measurement. We
use ten parallel TCP connections, lasting at least 10 seconds, to get an estimation of the bitrate
achieved at each measurement location.

4.4 Measurement Results

4.4.1 Coverage analysis

We first focus our analysis on the measured Synchronization Signal Reference Signal Received
Power (SS-RSRP), which is the average power of the Resource Elements (REs) that carry the Sec-
ondary Synchronization Signal (SSS) transmittedwithin a Synchronization Signal (SS) (SSB) [159].
The beams are time-multiplexed, thus there is no interference between the beams when the SS-
RSRP is measured. For simplicity in the sequel wewill refer to SS-RSRP as RSRP. Each SSB/beam
is assigned a unique number, called SSB index. Note that the values of the SSB index were not
contiguous. Thus, in the subsequent plots, the numbering of SSB indexes has gaps.

Figure 4.1 presents themmWave coveragemap. At each location, wewere able to detect all the
PCIs of the relevant sector and most of the beams. Since a UE would be attached to the dominant
beam, i.e., that with the highest RSRP among those detected by the UE, in Figure 4.1 we report
only this maximum RSRP values.

InmmWave bands, the RSRP is dominated by the signal’s LoS components: missing these com-
ponents can lead to significant attenuation. This can be easily seen in area A of Figure 4.1, where

�https://iperf.fr/
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Figure 4.4: Dominant beams (lines) and the related RSRP values (points) in a subset of the locations.

the LoS link is blocked by buildings and the RSRP drops below -113 dBm. Although the avail-
ability of LoS components of a mmWave signal is an important factor in determining coverage,
other effects like signal diffraction, reflections from surrounded objects, and multipath propaga-
tion can compensate for their absence. These effects are likely responsible for the relatively large
RSRP measured in Area C of sector 1, between the two buildings, where the LoS link is blocked
by the roof edge of the building hosting the BS. In contrast, in absence of reflecting or diffracting
elements, there are no NLoS components of mmWave signals. This is the case of area A, where
the signal propagates in a vegetated area without many reflecting elements, and of area D, where
we did not record any significant RSRP value at most of the locations.

As expected, we did not observe a significant difference between PCIs for the same beam.
Moreover, in presence of LoS, we did not record a strong dependency between signal power and
distance to the BS. The attenuation due to the increasing distance is indeed marginal compared
to the rest of the factors that affect the RSRP, which fluctuates within a certain range as long as
the receiver remains in the main lobe of the dominant beam. This behavior can be observed by
considering a straight LoS line in Area B and sampling locations at a distance from the BS ranging
from 200 m to 450 m. At such LoS locations, the median RSRP value of the dominant beam is
always between -94 dBm and -100 dBm, regardless of the distance. We hypothesize that it is the
vertical antenna gain pattern that is causing this behavior. At short distances we were located
significantly below the boresight of the BS antenna, hence the antenna gain was low. As we
moved further away we got closer to the boresight and the antenna gain increased. So the effects
of larger pathloss and increasing antenna gain as the distance increased approximately cancelled
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Figure 4.5: On rare occasions, we observe multiple dominant beams. Static measurements over a 5-minute
period at a location 250 m away from the BS, where several beams could be considered dominant (high-
lighted with red circles).

each other. We discuss in more detail the relationship between RSRP and distance in Section 4.5,
where Fig. 4.11b visualises our measurements and compares the maximum measured RSRP to
state of the art models.

To construct the bitrate map, we launched 10 parallel continuous TCP connections andwalked
around the cell site with normal speed, while tracking the location by external GPS. Simultane-
ously, tcpdump captured the generated traffic. We were able to get an estimate of the observed
bitrate at each location by correlating the timestamps of the packet capture and the GPS log. The
packet capture is split into 100 ms bins and all the packets received during a bin are grouped
together. The bandwidth values are estimated by dividing the total number of bytes of all the
packets in a bin by 100 ms. Then, we assign this bandwidth value to the closest, by time, GPS en-
try. As shown in Figure 4.1, the bitrate in different locations is highly correlated with the RSRP:
the higher the RSRP, the higher the bitrate. As seen in the figure, in the LoS locations, the maxi-
mum possible bitrate is achieved. Even in area E, which is relatively far from the BS, the bitrate is
high. Note that, theGigabit Ethernet connecting the CPE to the Laptop is the bottleneck and limits
the network speed to 1 Gbps. In a very bad channel state (area D), TCP still keeps the connection
open but with a very low bitrate.

4.4.2 Beam separation

A sharper beam can improve spatial separation between users, hence increasing MU-MIMO per-
formance, aswell as reduce interference inmulti-cell deployments. To showcase beam separation,
we select a few locations, creating a perimeter at the ground level around the BS. Figure 4.4 color
codes the dominant beam at each location. The beam lines drawn on the map are hypothetical,
connecting the BS and receiver location and the actual beams are not as narrow as we have shown
in the figure: signals from different beams can be detected at a much wider angle (side lobes) and
even at the backside of the transmitter (back lobes). According to [160], the RSRP should be above
-110 dBm to be detectable by 5G NR UEs, thus we filter out values below this threshold. For each
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Table 4.2: Summary of the body blockage effect on bitrate.

Position Bitrate [Mbps]
Line of sight 822
No line of sight (2 sitting 2 meters away from the CPE) 613
No line of sight (2 standing right in front of the CPE) 755

sector, we have also displayed only three out of 16 beams and have not considered the beams
that overlap in the vertical plane. We observe a similar beam separation pattern across the verti-
cal axis, by performingmeasurements on several floors at the building opposite of the BS at sector
1. The dominant beams at the ground level, third floor, fourth floor and roof are different.

As commented in Section 4.4.1, within a certain range, the actual distance between transmitter
and receiver is not of much relevance as long as the receiver is within the main lobe of the domi-
nant beam. Therefore, it is possible to get good signal even at long distances. The furthest point
from the BS we could detect RSRP higher than -110 dBm was 902 meters. We can assume a com-
mercial UE would be able to achieve an even bigger range, because of the receiver antenna gain.
At almost all the studied locations, a single beamhad consistently andmarkedly higher RSRP than
the rest for the whole measurement duration, so beam selection was trivial. However, it is possi-
ble to have multiple dominant beams in some locations, as shown in Figure 4.5, where the RSRP
values for different beams are presented at a single location for one PCI over a 5 minute period.
We can observe that three beams, marked with red circles, have about the same median value.
The number of simultaneous beams is limited by the number of Transmit/Receive (transceiver)
units in the BS, so only one beam is transmitted in any given time/frequency slot for each PCI.
This time multiplexing avoids inter-beam interference, but beam selection becomes more compli-
cated. In such cases, it might be better to have a secondary criterion for beam selection, such as
choosing the beam with the lowest standard deviation of RSRP. Even more sophisticated beam
selection algorithms [161], [162] might be required in a more complicated and dynamic propaga-
tion environment. On the other hand, the slightly overlapped coverage regions of the SSB beams
are good for robustness (body blockage, moving cars, etc), where there is a higher chance of hav-
ing at least a good beam at any time. The other benefit of this slight overlap (or closely spaced
beams) is to have a smooth user experience as a UE moves from one beam’s coverage region to
another beam’s.

4.4.3 Environmental impact on mmWave propagation

In the following, we analyze the effect of different environmental factors such as human body
blockage, communication over-water surfaces, foliage and rain-induced attenuation onmmWave
propagation.

Human body blockage effects To analyze the impact of human body blockage, we placed the
scanner at a LoS location 260 meters away from the BS. We then blocked the direct link from the
BS in two different ways. First, by standing 10 cm away from the scanner, and later by folding
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Figure 4.6: Body blockage effect on mmWave propagation at a location 260 m away from the BS with a LoS
link.

Table 4.3: Summary of the effect of different types of foliage to bitrate and delay.

Position Bitrate
[Mbps]

RTT
[ms]

RTT big
[ms]

LoS baseline besides the trees 891 14.6 15.7
Besides a small tree 831 13.4 16.6
Behind a single branch 785 14.8 17.5
Behind big tree with sparse leaves 451 14.8 19.6
Behind big tree 323 15 17.8

the hand around the scanner’s antenna, which are typical behaviors of smartphone users. As
shown in Figure 4.6, we observed a 20-30 dB drop in RSRP in the first experiment, which is in
line with the literature [143]. In the latter case, all the signal components were removed, and we
were unable to detect any signal. In the first case, the received signal was likely due to the NLoS
components reflected or scattered from the surrounding objects, or diffracted from the person
were standing in front of the scanner. Folding the hands around the scanner’s antenna, instead,
completely shielded the receiver from all the signal components, which explains the absence of
significant RSRPmeasurements. The human body blockage effects onmmWave communications
have already been investigated andmodeled in variousways, and the interested readers can refer
to [142], [163] for more information. Our experiments hence confirm this critical aspect also in
commercial cell deployments.

The effect of body blockage on bitrate is presented in Table 4.2. We measured the bitrate with
10-parallel TCP connections as above, while 1) two average-size people were sitting about 2 me-
ters away from the CPE, completely covering the LoS link, and 2) two people standing right in
front of the CPE. As seen in the table, the bitrate dropped from 822 Mbps to about 613 Mbps
and 755 Mbps for the first and second scenarios, respectively. This shows that despite the partial
occlusion of LoS, the performance at TCP layer seems to remain acceptable.
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Figure 4.7: Foliage attenuation scenarios compared to LoS. Locations A, B, C and D suffer from different
types of foliage blockage. Distance from BS: ≈220 m for all locations.

Foliage Attenuation The propagation characteristics of mmWave frequencies in suburban and
vegetated environments are very different from those in urban and indoor scenarios. Foliage
attenuation could significantly affect communication over this frequency range and should be
considered in network planning for such suburban areas [139]. We carried out a set of measure-
ments to investigate the effect of blocking the path between transmitter and receiver by vegetation
and trees. During the measurements, nearby weather stations reported wind intensity between
4.7 and 5.9 m/s, which is considered a “gentle breeze” according to the Beaufort scale. The leaves
and the twigs on small trees were in constant motion.

Figure 4.7 shows the RSRP at 4 different locations where the LoS path is blocked by different
types of trees. The recorded RSRP exhibits significant attenuation at all four locations, typically
15 dB to 30 dB lower than our measurements at a nearby reference LoS location. The intensity of
attenuation highly depends on the type and shape of the blocking trees, with bigger trees causing
higher attenuation. As Figure 4.7 illustrates, the smaller trees at location A attenuate the signal by
17.7 dB, while the bigger ones at location D decrease the received signal power by up to 26.4 dB.
This result is comparable with similar studies, where the authors reported 22.48±0.92 dB foliage
attenuation in 26.5 GHz [164]. The high variations in RSRP are likely due to wind that constantly
moved trees’ branches and leaves, which resulted in varying blockage and reflection patterns.

Table 4.3 summarizes the result for the foliage effect on bitrate and delay. The measurements
take place under a gentle breeze (wind speed between 2.4 to 5.1 m/s). As was expected, the
bitrate drop and delay are highly correlated with the result from the RSRP measurement. The
bigger trees with more dense branches and leaves cause a more significant drop in RSRP, and
these unreliable links result in decreasing the bitrate and increasing the RTT. Based on the type
of foliage and tree, communication speed dropped from 891 Mpbs at the LoS baseline location to
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Table 4.4: Water effect on mmWave propagation, across all the southern sector’s PCIs. Instances with high
std are highlighted.

Beam
type

Distance
(m)

PCI-301 PCI-302 PCI-303 PCI-304 TCP
mean
[dBm] std mean

[dBm] std mean
[dBm] std mean

[dBm] std Bitrate
[Mbps]

RTT
[ms]

RTT big
[ms]

Over water
(close to the sea level) 792 -103.2 2.33 -105.2 3.12 -103.7 2.62 -105.9 3.35 903 13.9 17.5

Over water
(6m above sea level) 813 -111.4 4.61 -110.6 4.70 -107.7 3.16 -105.8 3.25 885 15.5 16.6

Ground 573 -94.3 0.29 -94.7 0.33 -93.0 0.30 -92.3 0.29
Ground 256 -103.0 0.54 -102.1 1.21 -100.1 0.66 -100.7 0.76
Ground 213 -91.3 0.56 -94.2 0.76 -96.4 0.84 -92.2 0.59
Ground 323 -93.1 0.80 -94.8 1.57 -103.7 3.20 -97.5 1.87

426 Mbps when being behind small trees and further dropped to 323 Mbps when being behind
big trees. Also, the delay is larger for big packets than for small packets, as they may break
into multiple Transmission Blocks and be retransmitted multiple times under challenging signal
conditions.

Rain-caused attenuation We collected measurements on two different days, with dry and rainy
weather, at the same location. During the rainy day, nearby weather stations reported precipita-
tion between 0.1 and 0.2 mm per minute, which is a moderate to heavy rain intensity. Figure 4.8
presents the RSRP values measured for different weather conditions for a single PCI, grouped
per beam. Results for the other PCIs are similar. As it can be seen from the figure, rain causes a
notable drop in the mean RSRP and increases its variability in particular for the weaker beams.

The increased variability for the weaker beams is probably caused by multi-path signal propa-
gation where no single signal component is significantly stronger than all others. The most signif-
icant components will consist of signals reflected by e.g. buildings and vegetation, and usually
also of the LoS signal. Strong beams point towards the scanner and the BS antenna gain for the
LoS signal will be high. Therefore the LoS signal will be much stronger than the reflected signals,
and the received signal power will have little variability. Weak beams, on the other hand, do not
point directly towards the scanner and the BS antenna gain for the LoS signal is therefore low. In
this case the strength of the reflected beams might be comparable to or larger than the strength of
the LoS component. This results in multi-path fading that gives large variability in the received
signal power.

Over-water communication Wealso investigate howwater surface scattering and reflection affect
mmWave signals. This scenario could be relevant when mmWaves are used for providing high
capacity communications on the shore. For example, fish farms plan to use mmWaves for high
definition video communications between fish cages and on-land data centers where advanced
signal processing and analytics are used to, e.g., control feeding and monitor fish health [130].

We performed the measurements at locations with good LoS of the BS antenna, on the far side
of a small bay. From the BS, the mmWave signal first travels over the ground for about 630 me-
ters and then over-water for 160 meters before reaching the scanner. The measurements were
collected at two locations. First, we put the scanner at the shoreline about 50 cm from the wa-
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Figure 4.8: Comparison of received power during rain (left element per boxplot pair) and dry (right element
per boxplot pair) weather for a single PCI. Distance from BS: 214 meters.

ter. Second, we placed the scanner approximately 6 meters above the water surface. We could
not assess the water wave height directly, but during the measurements, nearby weather stations
reported a wind intensity between 4.9 m/s and 5.6 m/s, which typically corresponds to wave
heights of 0.6 m to 1.2 m. The measurement location is relatively sheltered, though, so we can as-
sume that the wave height is closer to the lower limit of this range. For comparison, we alsomade
correspondingmeasurements at LoS locations with different distances to the BS where the propa-
gationwas solely over-ground (due to terrain and building blockage, wewere not able to do over-
ground propagationmeasurements at exactly the same distances as for the over-water measures).
Table 4.4 summarizes our measurements. The RSRP standard deviation for over-water propaga-
tion is significantly larger than for over-ground propagation. The increased standard deviation
for the over-water communications can be explained by a model where the received signal con-
sists of a direct LoS component and one or more components (specularly or diffusely) scattered
from the water surface. Since the water surface moves, the scattered components’ strength varies
with time, thereby causing signal power variations at the receiver.

Another observation from Table 4.4 is that the difference between the mean RSRP values for
PCIs with different frequencies are much larger at 6 meters above the water than at the sea level.
This can be explained by the same propagation model. When the scanner is located close to the
water surface, the scattered components of the signal are coming from the water immediately in
front of the scanner. In contrast, these components are originated much further out when the
scanner is placed far above sea level, so the scattered components’ delay compared to the LoS is
more variable. In frequency domain, this translates to flatter fading (i.e., attenuation is almost
the same across neighboring frequencies) when the scanner is at sea level than when placed at a
higher location. A consequence of the increased signal variation for over-water reception is that
it will be necessary to use a higher link margin in the link budget calculations than when the
communication is solely over-ground. The smaller signal variation for the scanner located at sea
level suggests that mmWave antennas should be placed close to the water, e.g., on a fish cage.

Table 4.4 also presents the bitrate and RSRP values for the over-water transmission. The bi-
trate and the delay at 6 meters above the water are significantly worse than at sea level. This
observation was also expected, as the high-level performance is indeed correlated with the RSRP
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values.

nLoS measurement scenarios In mmWave communications, LoS links can be easily blocked by
buildings, moving cars and other obstacles. In this case, the RSRP depends on the NLoS compo-
nents, such as reflected, scattered and diffractedwaves. To get an indication of theNLoS coverage
we performedmeasurements at four locations where the LoS path to the BS antenna was blocked
by the roof of the building with the BS (See Figure 4.9). Locations S1 and S2 in Figure 4.9 are sur-
rounded by high buildings and a large number of rectangular columns placed in a regular pattern
in the plaza between the buildings, representing an urban environment. Locations S3 and S4 are
surrounded by trees and some distant buildings, representing a suburban and vegetated envi-
ronment. Figure 4.10 presents the RSRP distribution of the best beam (written in parenthesis) for
every carrier (PCI) of the BS at these locations. Even though the orientation of the beams is the
same for all the PCIs at the BS, we observe that at locations S2 and S4 the dominant beam is dif-
ferent for some of the PCIs. Further, at location S2, PCI 101 has degraded performance compared
to the rest of the PCIs. Both observations are in contrast to what we measure at LoS locations. It
can be due to the property of different scattering and diffractingmaterials at different frequencies
(i.e., reflection coefficients and penetration losses), but we are unsure about the exact source of
these behaviors.

At locations S1 and S2 the received signal is quite strong, indicating good NLoS coverage. This
is thought to be due to the rich scattering environment, possible reception of diffracted (i.e., from
the edge of the roof) signal components and the relatively short distances involved. At locations
S3 and S4 the received signal level is very low and there is little or no NLoS coverage. This is
thought to be due to a much poorer scattering environment. The buildings that might act as good
reflectors for the signals are located far away from both the BS antenna and the scanner, hence
the signal paths will be very long. The trees in the surrounding area further attenuate both the
reflected and the diffracted signal components. These results show that in an urban environment,
with multiple buildings and scattering elements, the NLoS components of the mmWave signals
could compensate for the lack of a LoS link to the BS. In contrast, in vegetated areas, the LoS link
is necessary to establish reliable communication.

Finally, we study the end-to-end communication performance over NLoS 5G mmWave links.
To do so, we collect measurements in different locations, close to the buildings, where there is
no LoS path to the BS. These locations are marked as P1-P5 in Figure 4.9. Table 4.5 reports the
bitrate and RTT values for the mentioned locations. It is evident that the bitrate sharply drops
and the delay increases by moving toward the buildings. This is an expected observation as
fewer diffracted elements reach the locations close to the building, which results in lower RSRP
and therefore bitrate.

4.5 Comparison with Simulations

This section compares our measurement results with simulations based on empirical models to
check how accurately statistical models can predict the received signal at different locations. The
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Figure 4.9: The locations where the nLoS measurements were performed.

Table 4.5: Summary of the effect of nLoS links to Bitrate and delay.

Position Bitrate [Mbps] RTT [ms] normal size RTT [ms] big size
P1 845 15.4 17.8
P2 573 16.5 33.9
P3 176 15.6 22.1
P4 87 18.0 48.0
P5 177 15.4 18.1

complexity of the propagation environment, makes impossible the use of accurate channel mod-
els, i.e., ray-tracing based quasi-deterministic channel models [165], [166], to accurately obtain
the NLoS components of the propagated signal is not possible. We hence used 3GPP’s statistical
channelmodel formmWave frequencies [167] to estimate the path loss for different scenarios. For
Sector 1, we use the Urban Micro (UMi) and Urban Macro (UMa) channel models [168], [169], as
the BS is pointed towards a square surrounded by large buildings and the topology is similar to
a typical urban environment, while for Sector 2, we employ the Rural Macro (RMa) model [170],
as it represents a suburban area with more trees and vegetation and fewer or no buildings. The
omnidirectional path loss model used in our simulations is:

PL[dBm](d) = 20 log10(
4πd0
λ

) + 10n log10(
d
d0

) + SF, (4.1)

where, d is the distance from transmitter, λ = c/(109f) [m] is the wavelength, c = 3 × 108 [m/s]
is the speed of the light, SF [dB] indicates the shadow fading, whose standard deviation is σSF, n
represents the path loss exponent and d0 = 1 [m] is the free space reference distance. The values
for σSF and n at different scenarios are presented in Table 4.6.
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Figure 4.10: RSRP in different locations with NLoS links to the BS.

Table 4.6: Simulation parameters.

Parameter RMa UMa UMi
LoS nLoS LoS nLoS LoS nLoS

n 2.3 3.1 2 2.9 2 3.2
σSF 1.7 6.7 4.0 7.0 4.0 7.0

Figure 4.11 shows the maximum measured RSRP of the dominant beam at different distances
for Sector 1 and Sector 2 and compares it to the RSRP achieved using the omnidirectional path-loss
model in (4.1), as is perceived from two omnidirectional isotropic transmit and receive antennas
with 0 dBi gain.

The strongest measured RSRP in Sector 1 is≈-78 dBm, which is a bit higher than the strongest
RSRP in the other sector (≈-84 dBm). As shown in Figure 4.11a, our measurements can barely
fit with the 3GPP UMi and UMa models. The RSRP varies between -78 dBm and and -130 dBm
which is always lower than the predicted values by the LoS models and only at larger distance
is lower than the NLoS models. This figure clearly shows that statistical channel models are not
always capable of predicting theRSRP accurately in every propagation environment. Figure 4.11b
shows that the LoS RMa can estimate the RSRP in locations with clear sight to BS. Even in Area
E, where the signal propagates overwater, this model predicts the RSRP relatively well (≤ 5 dBm
error). On the other hand, NLoS RMa fails to accurately predict the RSRP for NLoS locations.

44



0 50 100 150 200 250 300 350 400

Distance [m]

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30
R

S
R

P
 [

d
B

m
]

3GPP LoS UMa/UMi

3GPP nLoS UMi

3GPP nLoS UMa

Our Measurements

(a) Sector 1

0 200 400 600 800 1000

Distance [m]

-140

-120

-100

-80

-60

-40

-20

R
S

R
P

 [
d

B
m

]

3GPP LoS RMa

3GPP nLoS RMa

Our Measurements

Area EnLoS between

 Area B and D

nLoS Area A

(b) Sector 2

Figure 4.11: Comparing themaximummeasured RSRPwith simulated 3GPPmodels for different distances
in (a) Sector 1, and (b) Sector 2.

The variation in measured power in NLoS is mainly due to changes in the type of the obstacles,
scattering objects, and topography of the environment, rather than pure distance. Referring to
Figure 4.1 and Figure 4.9, the type and shape of obstacles blocking LoS in area A and the area
between B and D are very different and composed of buildings with various shape that highly
affect the RSRP in these areas.

Table 4.7 compares the RSRP recorded during the measurement campaign against the 3GPP
channel models which are used to estimate the RSRP, both on case of omnidirectional and direc-
tional antenna gain patterns at transmitter and receiver. To obtain the values for the strongest
RSRP, we use the NYUSIM simulator [171], which searches for the best pointing angle among all
possible pointing angles employing the specified antenna details (i.e., azimuth and elevations of
receiver and transmitter antennas) in both transmitter and receiver. The details of the procedure
is out of the scope of the this chapter and interested readers may refer to [171], [172] and the ref-
erences therein for more details. For this simulation, we assumed that BS and UE are equipped
with 16 and 4 uniform linear array antenna elements, respectively.

As seen in Table 4.7 and Figure 4.11, only in limited LoS scenarios, the omnidirectional path
loss models perform well in predicting the mmWave channels. In complicated environments,
especially in NLoS locations with many complex scattering objects, using more advanced ray-
tracing-based models is difficult, if not impossible, so some extent of measurement is needed to
estimate the RSRP accurately. It is also seen that in the best case, the received power at different
locations is as good as the omnidirectional power. The gap between the measurement (and omni-
directional power) with the Strongest power is significant for all scenarios (≈ 50 dBm). This vast
gap reveals how much an adaptive dynamic beamformer can improve performance. This specif-
ically makes more sense in some mmWave use-cases where the UEs are stationary, i.e., Fixed
Wireless Access (FWA) or do not move fast. Some codebook-based beamforming techniques can
be employed for these use-cases where the optimal transmitter/receivers antenna configuration
can be learned and saved for future uses.

45



Table 4.7: Comparing the measured RSRP [dBm] with simulations for different scenarios.

Scenario Distance
[m] Measurement Simulation

Omni Strongest
RMa LoS 160 -84.5 -80.8 -31.5
RMa LoS 250 -87.7 -85.2 -36.0
RMa LoS 350 -85.6 -88.8 -39.6
RMa LoS 450 -90.6 -91.4 -42.2
RMa LoS 570 -93.0 -94.0 -44.8
RMa LoS 810 -97.5 -97.7 -48.4
RMa nLoS 80 -103.9 -90.4 -41.2
RMa nLoS 120 -102.7 -93.4 -44.2
RMa nLoS 590 -114.4 -117.6 -68.4
RMa nLoS 690 -120.3 -117.5 -68.3
UMa LoS 60 -79.0 -64.5 -17.2
UMa LoS 160 -88.0 -73.4 -26.1
UMa LoS 250 -88.6 -77.0 -29.6
UMa LoS 500 -97.8 -83.2 -35.9
UMa nLoS 15 -91.6 -63.7 -16.6
UMa nLoS 300 -114.3 -100.5 -53.4
UMa nLoS 450 -123.6 -106.0 -58.8

4.6 Summary of Results and Discussion

This section summarizes and discusses the results of our measurement campaigns to provide
an overview and guidance for different verticals considering 5G mmWave networks for various
communication solutions.

Based on our measurement results, we can confirm that the range of mmWave cells is strongly
affected by obstacles, such as buildings, trees, or human bodies, as already observed in the litera-
ture. As expected, the LoS beam is generally the most robust in all situations. These observations
are against employing 5G mmWave in NLoS and dynamic environments, where the LoS line is
constantly blocked; at least with current TCP protocols and for time-critical applications. Some
examples of these use cases are large industrial environments, where LoS links get blocked by
hefty mobile machinery, and cell phones, where the antennas can easily be covered and blocked
by the user’s hands, head, and body. For these cases, combining 5G mmWave with multi-path
TCP [148] or TCP proxy architecture [173] can provide more reliable solutions. One interesting
use case for 5G mmWave networks that network operators have recently considered is FWA,
which aims to provide high-speed internet for houses, especially in rural environments. Internet
providers can highly benefit from this solution, as it can decrease costs by replacing the expensive
optical fibers with 5G mmWave links.

The solutions concern different environmental impacts, from rain to foliage, on communica-
tions over mmWave links; in general, these phenomena can highly degrade the received signal
and hence service quality. Regarding the effect of foliage, we observed signal quality drops when
the LoS is obstructed by trees, particularly when moved by (even light) wind. However, this
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generally affects all beams so that the dominant beam remains the same. Therefore, the beam
tracking solutions that have been widely analyzed in the literature may turn out to be ineffective
in these scenarios. The measurements have also revealed that wide water surfaces, especially in
the presence of waves, can generate time-varying scattering phenomena that affect the stability
of the received signal. This is pronounced if the receiver is higher than the water surface and thus
collects more water-reflected waves. The propagation of mmWave on water surfaces is, hence,
critical and would require further investigation to determine the limitations of links involving
floating stations.

The take-out message for the network planners that are deploying 5G mmWave solutions for
applications like forest surveillance and monitoring system, fish monitoring systems, ship-hull
inspection systems, and anti-grounding service [174], which involve communications in forest
areas, fish-farms, and harbors, is that deploying such a system based on 5G mmWaves needs
careful design, as ignoring some environmental factors, like rain or wind, can lead the system
to fail. Comparing the measured RSRP with the simulated omnidirectional (based on 3GPP’s
path loss models) and strongest RSRP (optimal antenna configuration) shows the necessity of
measurement in especially complex NLoS environment, in predicting cell coverage and recogniz-
ing coverage holes. It also reveals the considerable improvement that mmWaves can achieve by
employing a perfect beamformer, as by utilizing the beamforming gain, network operators can
highly increase the power and the service rate for final users.

4.7 Conclusions

Our empirical analysis of a commercial 5G cellular system has confirmed the validity of previous
studies carried out on prototypal or PoC deployments or via simulations. Clearly, general theo-
retical models cannot perfectly capture the complexity of real installments, and some significant
deviations from model predictions and real-world measurements have been observed in certain
cases. This will require the implementation of self-tuning capabilities on commercial installations
to adapt the BS configuration to the specificities of the environments, though a first, rough per-
formance estimate can be done using the theoretical models. The effects of body blockage, rain,
and trees on the propagation of mmWave signals previously reported in the literature have been
mostly observed also in our study. This confirms that the commercial version of the mmWave
communication interface does not show any significant limitationwith respect to pre-commercial
versions, which was not guaranteed. On the other hand, it does not bring any improvement ei-
ther. Finally, we noticed that beam selection in a real commercial setting is likely less critical
than feared, since the strongest beam appears to remain rather stable in time and space, also in
bad weather conditions, so that beam swiping techniques should be able to track the best beam
direction rather easily.

The above observations should help interested stakeholders make more informed decisions
when deploying 5G solutions utilizing the mmWave spectrum. Our next steps involve testing
verticals’ use cases at the same cell site to check if their service requirements are met.

For futureworks, wewill extend the result for the end-to-end transmission study, investigating
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the performance of TCP variants over unreliable mmWave links in various scenarios. We will
also investigate the performance of delay-sensitive applications such as live broadcasting (i.e. a
special case of online video streaming) and networked music over 5G networks. Finally, some
of the mentioned scenarios can be repeated over operational networks in different customer sites
like fish farms, factories, etc.
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5
Energy-Efficient Design for RIS-assisted UAV

Communications

5.1 Introduction

Increasing demand for sustainable and flexible connectivity specifically for either semi-urban or
rural areas [13], [175] or disaster scenarios for monitoring and surveillance [176], [177], has led
to focus on the usage of Unmanned Aerial Vehicles (UAVs) and Reconfigurable Intelligent Sur-
face (RIS) for enhancing the network coverage and, thereby, the service availability of cellular
networks. The conceptual design of RIS consists of several reflective elements which can be con-
figured so as to reflect and, in particular, beamform a signal towards a particular direction. Re-
cently, there have been certain works that have provided definitions and optimization scenarios
to tackle the direct links between UAVs and User Equipments (UEs) as well as links between
UAV and UE with the aid of RIS [178]–[181]. However, the issues of the existence and capacity
limitation of the link from Base Stations (BSs) to UAVs have not been considered so far in con-
junction with the issue of optimizing the UAV movement and RIS configuration. This should
not be overlooked as the performance of the system clearly depends on the whole path from BS
to the UEs. Indeed, UAVs and RIS can be used to create mobile micro cells to serve temporary
hotspots, i.e., areaswith very high service requirement at a certain time. Additionally, the joint us-
age of UAVs and RIS can also enable to learn and adapt the network based on information such
as user mobility and density to satisfy the user service requirements [182]–[184]. Additionally,
the availability of high frequency communication technologies, such as mmWave [185], to satisfy
the higher bandwidth requirements in beyond 5G networks has increased the interest on exploit-
ing the unconstrained mobility of UAVs to provide dynamic coverage where and when needed.
Also, the enhanced beamforming capabilities of RIS can be exploited to increase the coverage
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Figure 5.1: The problem scenario.

for mmWave networks [186]. These new technologies have individually provided significant im-
provement in terms of service availability in semi-urban/rural areas or disaster scenarios, while
potentially reducing the energy consumption of the system [187]. But the usage of high frequency
technologies in conjunctionwith both UAV and RIS raises new challenges in terms of network op-
timization. In particular, a significant issue regards the trade-off between communication range
and quality of service in a dense urban scenario.

One of the major hurdles while using both these technologies is the energy consumption of
the system as a whole. UAVs, especially quadcopters, generally run on small batteries and the
energy consumption is very high when the UAV is in flight. Therefore, to provide sustained
coverage to the UEs with high Quality of Service (QoS) requirements, the trajectory of the UAV
has to be optimized. The use of RIS, which can improve the coverage in certain areas, may help
reducing the need for UAVs to travel further, with a small trade-off on the energy consumed
for RIS operation [79], [178], [188]. As the energy consumption in RIS is still a research problem,
we need to parametrize it by assuming ERIS joules per unit for reconfiguration, with the goal of
finding how small the energy should be in order to obtain an overall net benefit.

To summarize, in this chapter we explore the possibility of the combined usage of UAVs and
RISs to reduce the energy consumption of the entire system, while providing a certain level of
QoS to the UEs in the area. Figure 5.1 denotes the overall scenario in question. The UAV acts as a
mobile BS relay that can establish Line-of-Sight (LoS) links with the UEs and the RIS, something
that might not be always possible for the fixed BS. The UAV hence extends the area of coverage
of the BS, while optimizing the energy consumption for in-flight movement and signal transmis-
sion due to the inclusion of the RIS. If the RIS position is optimal, which is another open research
problem, the UEs can be served either directly by the UAV or with the help of the RIS or there-
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downlink communication system respectively.

fore combination of both, potentially reducing the energy consumption for in-flight movement of
the UAVs. This can potentially extend the area of coverage (i.e., of the area of satisfactory QoS),
also in situations where a BS could not be relied upon for service, such as emergency or disaster
scenarios [177]. The chapter is structured as follows: Section 5.1 provides introduction and moti-
vation for the usage of UAVs and RIS in cellular networks. Section 5.2 explains the optimization
scenario and provides a brief formulation of the optimization problemwhose solution is outlined
in Section 5.3. Section 5.4 reports the simulation results for the obtained solution and the related
discussion. Section 5.5 provides the conclusion and future research directions.

5.2 Scenario Definition and Problem Formulation

Consider a network environment with K UEs randomly spread in the area with a RIS in fixed and
known position. We assume that the user association and additional control information needed
for data transfer are exchanged between BS and UEs by means of a dedicated long range control
channel. We also assume that the UEs are aware of their own position (e.g., calculated through
triangulation with respect to the BSs in the area) and UAVs as well as the UEs periodically com-
municate this information to the BS. We also assume BSs and UAVs are equipped with Uniform
Planar Square Array (UPA) antennas so as to perform concurrent beamforming in different direc-
tions and UEs are equipped with omnidirectional antenna. Additionally, for RIS, an eXtra Large
scale massive MIMO (XL-MIMO) RIS deployment is considered in which every UE is served by
a specific region of the surface. This holds when the RIS dimensions is large and the UEs are
sufficiently spaced apart to have partial observability of the surface [189].
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5.2.1 Channel Models

As visible from Figure 5.1, there are four channels in the scenario: BS to UAV, UAV to UE, UAV
to RIS and RIS to UE.

BS to UAV (hBU) Channel We consider the channel model proposed in [190], which provides
a relation between the position and height of the UAV with respect to the position and height
of the BS. We assume a LoS channel based on the UAV-UE channel model from [178]. From
Figure 5.1, we devise dBU[n] =

√
∥ZBS − Z[n]∥2 as the Euclidean distances between UAV and BS

where Z[n] = [xU[n],yU[n],HU] and ZBS = [xB,yB,HB] are the coordinates of UAV and BS at a
particular time instant n. So, the LoS channel from BS to UAV is given by

hBU[n] =
√

α0
(dBU[n])2 [1, e

−j 2π∆Bx
λc sin θBU cos ξBU ,

. . . , e−j 2π∆Bx
λc (MBx−1) sin θBUk cos ξBU ]H

⊗ [1, e−j
2π∆By

λc sin θBU sin ξBU ,

. . . , e−j
2π∆By

λc (MBy−1) sin θBU sin ξBU ]H ∈ CMB×1

(1)

where, hBU[n] is the channel vector based on the Angle of Departure (AoD). ∆Bx and ∆By are the
separation between antenna elements in x-direction and y-direction for UE. Also, MBx andMBy is
the number of antenna elements in x and y-direction for BS, MB = MBx ×MBy is total number of
antenna elements for BS andλc is the carrierwavelength. θBU and ξBU are theAoD for the link from

BS to the UAV. From Figure 5.2, it can be observed that sin θBU =
∥HB∥
dBU , sin ξBU =

∥xB − xU[n]∥
∥lB − lU[n]∥

and cos ξBU =
∥yB − yU[n]∥
∥lB − lU[n]∥

where, lB = [xB,yB] and lU[n] = [xU[n],yU[n]].

UAV to UE (hUG) Channel For the link between UAV and UE, which is LoS and between UAV
and UE through RIS, we adopt the channel model from [178]. The UAV, RIS and UE, as previ-
ously mentioned, have a UPA antenna with MU,MR and MG elements, respectively. Due to our
XL-MIMORIS assumption, the channelmodelwe propose corresponds to each subsection/group
of elements in the XL-MIMO RIS that we are using to serve different UEs, similar to the approach
proposed in [191] to reflect sharp beams towards specific destinations. We assume that these
groups have sufficient spatial separation thereby neglecting interference among them. From Fig-
ure 5.1, we devise dUR =

√
∥ZRIS − Z[n]∥2, dUGk =

√
∥ZUE

k − Z[n]∥2, and dRGk =
√
∥ZRIS − ZUE

k ∥2

as the Euclidean distances between UAV and RIS, UAV and kthUE and RIS and kth UE respec-
tively, where ZRIS = [xR,yR,HR] and ZUE

k = [xG,k,yG,k, 0] are the coordinates of RIS and kth UE.
So, the LoS channel from UAV to UE is given by
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hUGk [n] =
√

α0

(dUGk [n])2
[1, e−j 2π∆Ux

λc sin θUGk cos ξUGk ,

. . . , e−j 2π∆Ux
λc (MUx−1) sin θUGk cos ξUGk ]H

⊗ [1, e−j
2π∆Uy

λc sin θUGk sin ξUGk ,

. . . , e−j
2π∆Uy

λc (MUy−1) sin θUGk sin ξUGk ]H ∈ CMU×1

(2)

where, hUGk [n] is the channel vector based on the AoD and λc is the carrier wavelength. θUGk and
ξUGk are theAoD for the link fromUAV to kthUE. FromFigure 5.2, it can be observed that sin θUGk =
∥HU∥
dUGk

, sin ξUGk =
∥xG,k − xU[n]∥
∥lG,k − lU[n]∥

and cos ξUGk =
∥yG,k − yU[n]∥
∥lG,k − lU[n]∥

where, lG,k = [xG,k,yG,k] and

lU[n] = [xU[n],yU[n]].

UAV to RIS to UE (hURG) Channel Similarly, the channel from UAV to RIS is defined as follows

HUR[n] = hRU[n]⊗ (hUR[n])H

=

√
α0

(dUR[n])2 [1, e
−j 2π∆Rx

λc sin θRU cos ξRU ,

. . . , e−j 2π∆Rx
λc (MRx−1) sin θRU cos ξRU ]H

⊗ [1, e−j
2π∆Ry

λc sin θRU sin ξRU ,

. . . , e−j
2π∆Ry

λc (MRy−1) sin θRU sin ξRU ]H

⊗ [1, e−j 2π∆Ux
λc sin θUR cos ξUR ,

. . . , e−j 2π∆Ux
λc (MUx−1) sin θUR cos ξUR ]

⊗ [1, e−j
2π∆Uy

λc sin θUR sin ξUR ,

. . . , e−j
2π∆Uy

λc (MUy−1) sin θUR sin ξUR ],∈ CMR×MU (3)

where, hRU[n] and hUR[n] are the channel vectors based on the Angle of Arrival (AoA) and AoD
respectively, dUR[n] is the distance between the UAV and RIS, ∆Rx and ∆Ry is the separation be-
tween antenna elements in x-direction and y-direction for RIS and∆Ux and∆Uy is the separation
between antenna elements in x-direction and y-direction for UAV.

Also, MRx and MRy is the number of antenna elements in x and y-direction for RIS and MUx

andMUy are the number of antenna elements in x and y-direction for UAV, λc is the carrier wave-
length. θRU and ξRU are the AoA and θUR and ξUR are the AoD for the link fromUAV to RIS. From

Figure 5.2, it can be observed that θRU = θUR and ξRU = ξUR. So sin θRU = sin θUR =
∥HU −HR∥

dUR ,
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sin ξRU = sin ξUR =
∥xR − xU[n]∥
∥lR − lU[n]∥

and cos ξRU = cos ξUR =
∥yR − yU[n]∥
∥lR − lU[n]∥

where, lR = [xR,yR].

Subsequently, the channel from RIS to kth UE is defined as follows

hRGk =

√
α0

(dRGk )2
[1, e−j 2π∆Rx

λc sin θRGk cos ξRGk ,

. . . , e−j 2π∆Rx
λc (MRx−1) sin θRGk cos ξRGj ]H

⊗ [1, e−j
2π∆Ry

λc sin θRGk sin ξRGk ,

. . . , e−j
2π∆Ry

λc (MRy−1) sin θRGk sin ξRGk ]H,∈ CMR×1 (4)

where, hRG[n] is the channel vector based on the AoD respectively, dRGk [n] is the distance between
the RIS and UE, ∆Rx and ∆Ryis the separation between antenna elements in x-direction and y-
direction for RIS. Also, MRx and MRy is the number of antenna elements in x and y-direction for
RIS and λc is the carrier wavelength. Additionally, θRG and ξRG are the AoD for the link from RIS

to kth UE. From Figure 5.2, it can be observed that sin θRGk =
∥HR∥
dRGk

, sin ξRGk =
∥xG,k − xR∥
∥lG,k − lR∥

and

cos ξRGk =
∥yG,k − yR∥
∥lG,k − lR∥

. Additionally, the phase shift introduced in the reflected signal by RIS is

defined as

Φk[n] = diag(ejΦ1,1,k[n], . . . , ejΦmRx,mRy,k[n],

. . . , ejΦMRx,MRy,k[n]) ∈ CMR×MR , (5)

where ΦmRx,mRy,k[n] ∈ [0, 2π),mRx = {1, . . . ,MRx},mRy = {1, . . . ,MRy} represents the phase con-
trol introduced to the (mRx,mRy)

th reflecting element of the RIS. Hence, end-to-end effective chan-
nel between the UAV and the kth UE reflected by the RIS is given by

(HURG
k [n])H = (hRGk [n])HΦk[n]HUR[n] ∈ C1×MU . (6)

Hence, the Signal-to-Noise Ratio (SNR) is given by

γU[n] = PTU|hBU[n]|
2

σ2n
, (7)

γk,1[n] =
PT1,k|hUGk [n]|2

σ2n
, (8)

γk,2[n] =
PT2,k|HURG

k [n]|2

σ2n
, (9)

where, PTU is the transmit power for BS towards the UAV, PT1,k is the transmit power for the UAV
towards the kth UE over the LoS link, PT2,k is the transmit power for the UAV towards the kth UE
over the RIS link, and σ2n is the white noise power. Communication using (7) and assuming a
Gaussian channel, the maximum achievable rate for the channel between BS to UAV, UAV to UE
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Table 5.1: Notation for Energy Consumption Model[178]

Symbol Meaning Simulation Values
Ω Blade Angular Velocity 300 rad/s
r Rotor radius 0.4 m
ρ Air Density 1.225 kg/m3

s Rotor Solidity 0.05 m3

Ar Rotor Disc Area 0.503 m3

v0 Forward Flight Rotor Induced velocity 4.03 m3

d0 Fuselage drag ratio 0.3
P0 Blade profile power in hovering status 79.86 W
Pp Induced power in hovering status 88.63 W

with and without RIS is given by the Shannon bound

RU[n] = log2(1+ γU[n]) [bits/s/Hz], (10)
Ri
k[n] = log2(1+ γk,i[n]) [bits/s/Hz]. (11)

where i ∈ {1, 2}, RU[n] is the rate achieved by the UAV over the BS-UAVLoS channel and Ri
k[n] ∀ i

is the rate achieved by the kth UE over the corresponding UAV-UE and UAV-RIS-UE channels
respectively. Note that, to use the above formula, wemust assume that BS, UAVandUEknow the
channel between them and can determine the rate based on the available SNR. Also, we assume
that the UEs are sufficiently spread apart to avoidmutual interferencewhen communicatingwith
the UAV.

5.2.2 Energy Consumption for UAV

The power consumption for UAV is critical due to its limited battery capacity. In the chapter, we
use the distance-based energy consumption model from [192] given by

PU[n] = Po
(
1+ 3∥v[n]∥2

Ω2r2

)
︸ ︷︷ ︸

Bladeprofile

+
Piv0
∥v[n]∥︸ ︷︷ ︸
Induced

+
1
2d0ρsAr∥v[n]∥3︸ ︷︷ ︸

Parasite

, (12)

where v[n] is the velocity vector, and the other terms of the equation are explained in Table 5.1.
We only considered the energy consumption for the in-flight movement of the UAV for now and
keep the impact of take off and landing on energy consumption for further research.

5.2.3 Optimization Problem

Considering the assumptions, the objective is to find an energy efficient UAV path and corre-
sponding RIS phase shift in order to minimize the overall transmission power consumption of
UAV and BS under minimum QoS constraints and maximum UAV energy budget which is de-
fined as
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min
P,Z,V,Φ

N∑
n=1

PTU[n] +
N∑
n=1

K∑
k=1

2∑
i=1

PTi,k[n] (13)

s.t.

C1 :
2∑

i=1
Ri
k[n] ≥ Rmin,∀ k,n;

C2 : RU[n] ≥
K∑

k=1

2∑
i=1

Ri
k[n], ∀ n;

C3 : 0 ≤ Φ[n] ≤ 2π;

C4 :
N∑
n=1

PU[n] ≤ EUAVmax ;

C5 : Z[n+ 1] = Z[n] + v[n]τ, n = 1, . . . ,N− 1;
C6 : ∥v[n]∥ ≤ Vmax, ∀n;
C7 : ∥v[n+ 1]− v[n]∥ ≤ Vaccτ, n = 1, . . . ,N− 1;
C8 : ∥v[n]∥ ≥ 0 ∀n;
C9 : Z[1] = Z0;

C10 : Z[N] = ZF.

Optimization Variables

The terms of this optimization problem are explained below:

• P: UAV (PTk) and BS (PTBS) transmission power.

• Z: UAV trajectory, represented as the sequence of geographical coordinates of the UAV at
each timestep.

• V: UAV velocity over the trajectory.

• Φ: RIS phase configurations.

Objective Function

The objective is to minimize the overall energy consumption of UAV and BS for transmission
during the N timesteps taken by the UAV to cover its trajectory.

56



Constraints

C1–Guaranteed Rate Constraint C1 is devised to provide a guaranteed service rate to each one
of the K UEs. We recall that Rk is the sum rate achieved over the LoS and RIS link, which has to
stay above the guaranteed rate Rmin.

C2–Backhaul Capacity Constraint C2 ensures that the backhaul link capacity is greater than or
equal to the aggregate minimum guaranteed rate for all the UEs, i.e., that the UAV has enough
bandwidth capacity towards the BS to provide at least the minimum guaranteed rate to all the
UEs.

C3–Phase Shift Constraint C3 limits the phase shift with respect to the incident signal from 0 to
2π. With the assumption of XL-MIMO surface for RIS, the phase shift can be considered almost
continuous from 0 to 2π.

C4–UAV Energy Budget C4 requires that the total energy consumption of the UAV over N
timesteps does not exceed the threshold EUAVmax that defines the maximum energy the UAV can
spend before recharging and, implicitly, the maximum length of the UAV path.

C5–Timestep Position Constraint C5 constraints the positionZ[n] in successive timesteps, thereby
limiting the movement of the UAV in one timestep.

C6–Maximum Velocity Constraint C6 is devised to constraint the velocity v[n] of the UAV in one
timestep to be lower than or equal to the maximum velocity Vmax, thereby limiting the maximum
distance the UAV can travel in one timestep.

C7–Timestep Velocity Constraint C7 is devised to determine the velocity v[n] of the UAV in
successive timesteps based on the maximum acceleration Vacc of UAV in one timestep.

C8–Minimum Velocity Constraint C8 constraints the velocity v[n] of the UAV, thereby limiting
the minimum distance the UAV can travel over one timestep. Note that, if the UAV can hover at
one place in one timestep, then the minimum velocity is zero.

C9/C10–Initial/Final Position Constraint C9 and C10 fix the starting and ending points of the
trajectory otherwise determined by the optimization problem.

We remark that, as shown in Figure 5.1 the UAV has two parallel links to each UE: one direc-
tional and the other with the RIS sector associated to the UE. The multipath approach offers a
greater chance to satisfy the service requirement by jointly optimizing the UAV trajectory Z[n]
and RIS phase configuration Φ, while minimizing the transmission power of the entire system.
To facilitate the UEs to determine the multipath connections, the BS has to continuously commu-
nicate the beams to be used to the UE taking into account the mobility information of the UEs and
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the trajectory of the UAV. As mentioned before, the BS may communicate this information over
long-range low-rate technologies such as LoRa [193].

5.3 Analytical Solution

The optimization problem discussed in the previous section is clearly non-convex and, hence,
quite difficult to solve in itself. But we can determine a feasible solution by considering the initial
transmission powers for the UAV and BS so as to jointly optimize the UAV trajectory and RIS
phase and, then, minimize the transmission powers for the given trajectory and phase configura-
tion within the constraints in (13). This method is explained in detail in the following subsections.

5.3.1 Joint UAV Trajectory and RIS phase optimization

JointUAVTrajectory andRIS phase optimization can be facilitated considering a particularP over
different links [194]. As shown in the Figure 5.2, the BS to UAV, UAV to UE, UAV to RIS and RIS
to UE links are assumed to be deterministic LoS channels. For ease of notation, in the following
we indicate the nodes involved in a link using the subscript U, B, R and G for UAV, BS, RIS and
(ground) UE, respectively. The channel information is supposed to be available at the UAV and
the UEs. Hence, to maximise the transmission efficiency, a Maximum Ratio Transmission (MRT)
is applied, i.e., the transmission beamformer for any kth UE as well as for the UAV can be defined
as wBU = 1√

MB
hBU,wUG

k = 1√
MU

hUG and wUR = 1√
MU

hUR. The overall channel gains can hence be
obtained as

HBU[n] = (hBU[n])HwBU[n] =
√
MBα0
dBU[n] ; (14)

HUG
k [n] = (hUGk [n])HwUG

k [n] =
√
MUα0

dUGk [n]
; (15)

HURG
k [n] = (hRGk [n])HΦk[n]HUR[n]wUR[n]

=
√
MU(hRGk [n])HΦk[n]hRU[n]

=

√
MUMRα0

dRGk dUR[n]
. (16)

To determine the HURG
k [n] coefficients correctly, the optimal phase control policy for the phase

shift in every timestep (which maximizes the reflection-mode channel gain by aligning the phase
of the RIS to match those of the channel), defined in [178], is given by

ΦmRx,mRy,k =
2π∆R
λc

[(mRx − 1)(sin θRU cos ξRU

+ sin θRGk cos ξRGk ) + (mRy − 1)(sin θRU sin ξRU

+ sin θRGk sin ξRGk )], (17)
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where θRU and ξRU are the AoAs and θRG and ξRG are the AoDs as defined in Figure 5.2. The
assumption for RIS phase configuration is that there is a wired direct link to the RIS controller
and that, delay and imperfect phase configuration are negligible.
Note that, the problem is still non-convex due to C1 and C2 w.r.t. Z. In order to overcome this
issue, we add three slack variables λk,i[n] and π[n]. In this way, we keep the constraints C1-9, and
the problem can be reformulated as follows

min
Z,V,Λ,M,Π

N∑
n=1

PTU[n] +
N∑
n=1

K∑
k=1

2∑
i=1

PTi,k[n] (18)

s.t.
C1− C10;
C11 : ∥ZUE

k − Z[n]∥2 ≤ λk,1[n],k ∈ {1, ...,K};

C12 : ∥Ẑ
RIS
k − Z[n]∥2 ≤ λk,2[n],k ∈ {1, ...,K};

C13 : ∥ZBS − Z[n]∥2 ≤ µ[n];
C14 : ∥v[n]∥2 ≥ π2[n];
C15 : π[n] ≥ 0;

where Λ = {λk,i[n],∀ n,k, i}, M = {µ[n],∀ n} and Π = {π[n],∀ n}. Similarly to what proposed
in [178], we overcome the non-convex constraints C1 and C2 via Successive Convex Approxima-
tion (SCA) in an iterative way. We can compute a lower bound of the instant achievable rate
for each user by modifying λk,i[n], µ[n] and π[n] and calculating the first-order Taylor expansion
which is a global under-estimator of the rate convex function [195]. Hence, omitting the argument
[n] for notation clarity, we redefine the SNR expression as

γU =
γ̂U

µ
; (19)

γk,i =
γ̂k,i

λk,i
, ∀ i = {1, 2}, (20)

where,

γ̂U =
PTUMBα

2
0

σ2n
; (21)

γ̂k,1 =
PT1,kMUα

2
0

σ2n
; (22)

γ̂k,2 =
PT2,kMUM2

Rα
2
0

(dRGk )2σ2n
. (23)

Using (19) and (20) in (10) and (11) respectively and applying the first-order Taylor expansions
in the j-th iteration for a particular value of λjk,i[n], µj[n] and vj[n], the lower bound for the rates is
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given by

R̂
i
k[n] ≥

(R̂
i
k[n])j = log2

(
1+ γi,k[n]

λ
j
k,i[n]

)

−
γi,k[n](λk,i[n]− λ

j
k,i[n])

λ
j
k,i[n](λ

j
k,i[n] + γi,k[n]) ln 2

, (24)

R̂
U
[n] ≥

(R̂
U
[n])j = log2

(
1+ γU[n]

µj[n]

)
− γU[n](µ[n]− µj[n])
µj[n](µj[n] + γU[n]) ln 2 , (25)

∥v[n]∥2 ≥ ∥vj[n]∥2 + 2[vj[n]]T(v[n]− vj[n]). (26)

where (R̂
i
k[n])j and (R̂U[n])j are the lower bound achievable rates for the kth UE and UAV respec-

tively, in the jth iteration of SCA.

The in-flight power consumption for UAV can be written as

PU[n] = Po
(
1+ 3∥v[n]∥2

Ω2r2

)
+
Ppv0
π[n] +

1
2d0ρsAr∥v[n]∥3. (27)

Applying the lower bounds in (24), (25) and (26) in (18) we obtain a convex problem defined as

min
Z,V,Λ,M,Π

N∑
n=1

PTU[n] +
N∑
n=1

K∑
k=1

2∑
i=1

PTi,k[n] (28)

s.t.

Ĉ1 :

2∑
i=1

(R̂
i
k[n])j ≥ Rmin,∀ k;

Ĉ2 : (R̂
U
[n])j ≥

K∑
k=1

2∑
i=1

(R̂k,i)
j[n];

Ĉ14 : ∥vj[n]∥2 + 2[vj[n]]T(v[n]− vj[n]) ≥ π2[n];
C3− C15,

which solving it provides an upper bound of the problem in (18). We iteratively update the fea-
sible solution Zj[n], λjk,i[n], µj[n],vj[n] and πj[n] by solving the convex problem in (28) using the
CVX standard optimization solver [196] in the j-th iteration.
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5.3.2 Transmission Power Control

For a determined UAV trajectory and RIS phase, the UAV and BS transmission power can be
minimized. To define the transmission power minimization with a predefined trajectory Z, the
optimization problem in (13) can be rewritten with constraints C3−C10 already satisfied for the
pre-defined trajectory Z. So the optimization problem can be written as

min
P

K∑
k=1

N∑
n=1

3∑
i=1

PTi [n] (29)

s.t.

C1 :
2∑
i=1

Ri
k[n] ≥ Rmin,∀ k,n;

C2 : C[n] ≥
K∑

k=1

2∑
i=1

Ri
k[n], ∀ n.

The constraints C1 and C2 are concave with respect to the P. Hence it can be easily solved by
employing SCA using the Taylor’s expansions, which are global over-estimators of the concave
functions [195]. To do so, the SNR expressions are rewritten as

γU[n] = PTU[n]κU[n]; (30)
γi,k[n] = PTi,k[n]κk,i[n],∀ i ∈ {1, 2}, k; (31)

where,

κU[n] =
{√

MBα0
dBU[n]σ

}2
, (32)

κk,1[n] =
{√

MUα0
dUG[n]σ

}2
, (33)

κk,2[n] =
{ √

MUα0
dURG[n]σ

}2
. (34)

Using (30) and (31) in (10) and (11) respectively and applying the first-order Taylor expansions,
we get
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R̂
U
[n] ≤

(R̂
U
[n])j = log2

(
1+ (PTU)j|κU[n]|

2
)

+
|κU[n]|2(PTU − (PTU)j)

(1+ (PTU)j|κU[n]|
2
) ln(2)

, (35)

R̂
i
k[n] ≤

(R̂
i
k[n])j = log2

(
1+ (PTi,k)j|κk,i[n]|

2
)

+
|κk,i[n]|2(PTi,k − (PTi,k)j)

(1+ (PTi,k)j|κk,i[n]|
2
) ln(2)

, ∀ i ∈ {1, 2}. (36)

Hence, the optimization problem (29) can be rewritten as

min
P

N∑
n=1

PTU[n] +
N∑
n=1

K∑
k=1

2∑
i=1

PTi,k[n] (37)

s.t.

C1 :

2∑
i=1

(R̂
i
k[n])j[n] ≥ Rmin,∀ k,n;

C2 : (R̂
U
[n])j[n] ≥

K∑
k=1

2∑
i=1

(R̂
i
k)

j[n], ∀ n.

Similar to the UAV trajectory and RIS phase optimization problem, this optimization can be
solved using the CVX standard optimization solver. Algorithm 5.1 provides the pseudocode to
solve the optimization problem. Note that, we are aiming to minimize the transmission energy
consumption of the UAV and BS by iteratively choosing a UAV route aided by the phase shifting
involved in the RIS, which satisfies a target minimum rate for all the users, taking into account
the rate aggregation of all the users is achievable, fulfilling the backhaul link capacity limitation,
something not addressed in the literature to the best of the authors’ knowledge.

Determination of Initial Trajectory The major hurdle for SCA is the existence of an initial trajec-
tory that satisfies the constraints i.e. a feasible solution for the designed optimization problem.
To the best of the authors’ knowledge, there has not been a clear procedure to obtain an initial
trajectory for trajectory optimization aside from arbitrary trajectory initialization. To overcome
this hurdle, we consider the optimization problem in Eqn (13) with a constant objective function
instead of minimizing the power so as to determine a initial feasible solution that satisfies the
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constraints.
The major hurdle are the constraints C1 and C2 which are inherently non-convex and can only

be made convex by using SCA. To overcome this, we translate the constraints from rate received
at the UE to the power necessary for transmission at the base station and the UAV. To do such,
in case of constraint C1, we assume that, the UAV has all the data it needs to transmit, i.e. the BS
transmits at a very high power to satisfy C2 constraint, and then divide the constraint C1 into two
different parts with respect to the two links, i.e. LoS and RIS link and devise the C1 constraint
such that at least one of the links satisfies the overall C1 constraint. In the sameway, for constraint
C2, we assume that the UAV is able to provide the required rate to the UEs at a very high transmit
power and the devise the constraint C2 such that it satisfies the combinedminimum rate received
by theUEs. We then solve this optimization problemwith alteredC1 andC2 constraintswithCVX
standard optimization solver to obtain the initial trajectory which is a feasible solution.

Algorithm 5.1 Joint Trajectory, RIS Phase Configuration and Transmission Power Control algo-
rithm.
Output UAV Trajectory Z, UAV VelocityV, PTotal
Initialize trajectoryZ,V, maximum number of iteration Jmax, Initial iteration index j = 0, Partic-
ular UAV and BS transmission powerP , Initial trajectoryZ, Initial velocityV and convergence
tolerance ϵ

while j ≤ Jmax or
PjTotal − Pj−1

Total

PjTotal
≤ ϵ do

Set j = j+ 1 and {Pj,Vj,Λj,Mj,Πj} = {P,V,Λ,M,Π}
Solv optimization problem (28) to obtain Z,V,Λ,M andΠ for a Particular P
Solve optimization problem (37) to obtain P and PTotal for a Particular Z,V,Λ,M,Π

Update PjTotal = PTotal
end while

5.4 Results and Discussion

The solution discussed in the previous section is implemented in MATLAB simulation environ-
ment. The base simulation parameters are defined by Table 5.2. The simulation environment is
shown in the Figure 5.3. As visible from the figure, over the SCA iterations, the UAV trajectory
and transmission power is optimized using Algorithm 5.1 until it converges, i.e., UAV trajectory
and transmission power are no longer improved.

5.4.1 UAV LoS transmission power v/s UAV RIS transmission power

Different configurations in terms of static number of UEs in the network have been simulated.
Looking at the total transmission power used along the optimized trajectory, that is, the summa-
tion of the power from the BS and the transmission power for the UAV, Figure 5.4 shows now
that the power increases with the number of users in the network for different values of Rmin.
To be noted that the curve bends when the number of users increases, since their distance to the
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Table 5.2: Simulation Parameters.

Parameter Value
Area 500m × 500m
Number of Users (K) 3
Position of Users [20, 450; 250, 0; 500, 200]
Position of Base Station [0, 0]
Position of RIS [200, 500]
Number of RIS Elements per user 64
Number of UAVs 1
Initial/Final Position of UAV (Z0/ZF) [0, 0; 500, 500]
Maximum Velocity 20 m/s
Maximum Acceleration 4 m/s2
Height of the [UAV, BS, RIS] [20,15,10] m
Path Loss (α0) 61 dBm
Noise Power Spectral Density (σ2) -174 dBm
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Figure 5.3: Optimization of the UAV trajectory and transmission power over SCA iterations. The marked
lines represent the UAV trajectories obtained during the execution of the iterative algorithm. The straight
line is the initial solution, while the darkest one is the final solution.

BS, UAV and RIS reduces. Also, the total power increases with the minimum rate requirement.
Another significant observation is the change in average power consumption per set of users for
different rates. The change in principle should be exponential, i.e., linear increase in rate should
require exponential increase in power. But, to follow this criteria, the distance has to be constant,
i.e., the trajectory of the UAV has to be constant for all the different rates. But, as visible in Fig-
ure 5.5, which shows the optimal trajectories for different values of Rmin, the optimal trajectory for
Rmin = 0.057 is able to deviatemore from the straight line trajectory as it can still satisfy the low re-
quired minimum rate for the UEs. On the contrary, the optimal trajectory for Rmin = 0.757 is able
to deviate less from the straight line trajectory than that for Rmin = 0.057 as the requiredminimum
rate is higher. Note that, we only show optimal trajectories for Rmin = {0.057, 0.257, 0.557, 0.757}
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Figure 5.4: Total transmissionpower (UAVandBS)when increasing the numberKof staticUEs for different
values of Rmin.

to be able to visually distinguish between the optimal trajectories for the different values of Rmin.
The optimal trajectories for the remaining values of Rmin are between the optimal trajectory for
Rmin = 0.057 and Rmin = 0.757. This trend for optimal trajectories is also true for the scenarios
involving one, two, four and five UEs. Hence, the average power consumption for UEs, as shown
in Figure 5.4, does not follow an exponential criteria due to change in optimal trajectory for dif-
ferent values of Rmin. Additionally, the system is very sensitive to the network configuration, i.e.,
it is inherently limited with respect to number of UEs that can be served simultaneously in a sin-
gle flight. To improve the scalability of the system, the usage of reinforcement learning can be
explored, which has been left for future work.

5.4.2 Impact of UAV Energy Budget on UAV Trajectory

To study the impact of the energy budget on the UAV trajectory optimization, we determine the
UAV trajectories for different energy budget values. The energy consumed by the UAV over the
straight line path (i.e, shortest path) is the minimum in-flight energy consumption necessary for
the UAV to reach its final destination and is hence set as a reference minimum Emin. Hence, the
energy budget for the UAV is defined as a multiple of Emin. Figure 5.6 denotes the impact of UAV
energy budget on the trajectory optimization. As visible from the figure, when increasing the
budget, the UAV is able to deviate further away from the shortest path trajectory. But eventually,
it cannot go much further as it would risk not serving the users on the opposite side (as discussed
previously). Once the UAV energy is sufficient to draw the optimal trajectory across the area, any
further increase of the UAV energy would likely allow the UAV to slow down its speed or hover
on the optimal location for a longer time, thus improving the transmission energy efficiency of
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Figure 5.5: Different optimal trajectories for the UAV for three UEs and for different values of Rmin.
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Figure 5.6: Impact of UAV energy budget on the UAV trajectory.

the system. The minimum amount of energy required to reach the optimal trajectory is hence
important to dimension the UAV battery capacity.

5.4.3 Impact of RIS Position on UAV Trajectory

We analyze the impact of the different positions of RIS on the optimal UAV trajectories as shown
in Figure 5.7. The first discernible observation is that the UAV attempts to go as close as possible
to the RIS. This is because the transmission power necessary to satisfy the rate requirement of

66



0 100 200 300 400 500
x

0

100

200

300

400

500

y

Ground UE

RIS

Base Station

Figure 5.7: Impact of RIS position on UAV trajectory for a fixed UE and BS positions

the UEs is considerably lower when using the RIS compared to directly transmitting to the UEs.
This, however, is compensated by the higher path loss that is encountered by the signal i.e. the
total distance the signal has to cover using the RIS is higher than that along the LoS channel. Due
to this fact, the UAV cannot use the RIS to serve all the UEs at all timesteps. Hence some UEs
has to be served directly. This creates a push-pull effect on the UAV that prevents the UAV to
venture very close to one UE to avoid violating the QoE requirements of the other UEs. Hence,
determining an optimal position for RIS is important while designing the network.

5.4.4 Impact of RIS Position on UAV Transmission Power

As concluded in previous subsection, the UAV has a tendency to move towards the RIS. To deter-
mine the impact of the RIS position on the UAV transmission power consumption, we obtained
the optimal trajectory for different network service requirements i.e. spectral efficiency or Rmin

per UE randomly chosen between 0.01 and 0.757 bits/s/Hz. Figure 5.9 shows the boxplot for the
average UAV power consumption over LoS and RIS links for different positions of the RIS, as
denoted in Figure 5.8, obtained for 50 different sets of values of Rmin randomly chosen between
0.01 and 0.757 bits/s/Hz.

As visible from the figure, the RIS position is crucial with respect to not only the UEs but also
the initial trajectory of the UAV. When in position 3, the RIS is closer to both the UEs and the
UAV initial trajectory and hence the optimization problem uses the RIS link to serve the UEs. On
the other hand, in position 2, the RIS is closer to the UE but is further away from the UAV initial
trajectory and hence the RIS link is not much used by the UAV. In the other two positions, the
RIS is extremely far away from the UEs and hence is also not much used.

So the optimal solution is able to use the RIS to serve the users when the RIS is closer to the UEs
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Figure 5.8: Different RIS positions configuration.
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Figure 5.9: Average transmission power consumption of the UAV over the LoS and RIS link for different
positions of the RIS as shown in Figure 5.8, for 50 different network service requirements.

as well as the UAV initial trajectory. This also signifies that, the SCA is extremely sensitive to net-
work configurations especially with respect to UAV initial trajectory and RIS and UEs positions.
To use SCA to determine the optimal UAV trajectory, RIS phase and UAV transmission power, it
is really necessary to define an initial state (a.k.a trajectory) that a complete and feasible solution
for the optimization problem. Additionally, the position of the RIS has to be optimal with respect
to both UAV initial trajectory and position of the UEs. Hence, the usage of data driven methods
such as reinforcement learning techniques to jointly optimize the UAV trajectory, RIS phase and
UAV transmission power can be extremely lucrative and pursued for further work, as it would
provide a more generalized solution regardless of the specific network configuration.
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5.5 Conclusion

Beyond 5G and 6G Networks are expected to provide a certain service level while reducing the
power consumption of the system. To this end, we discussed the usage of UAVs and RIS as a
way to guarantee certain service requirements while trying to minimise the power consumption
of the system.

In this work, we devised jointly, a method to roughly optimize UAV trajectory, RIS phase and
UAV transmission power consumption to provide a certain guaranteed service rate to the UEs
on the ground. We showed the usage of convex approximation techniques can provide a feasible
solution. Moving forward, the usage of reinforcement learning seems very attractive especially
due to the sensitive nature of convex approximation schemes to different network configurations.
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6
Pilot Reuse Strategies in Cell-Free Massive

MIMO Systems

6.1 Introduction

Distributed or Cell-free (CF)massiveMultiple-Input, Multiple-Output (mMIMO) [14], [84], [197]–
[201] has been considered as one of the potential technologies for beyond-5th Generation (5G)
(B5G) and 6G wireless networks thanks to its capability of providing relatively uniform service
to the User Equipments (UEs) in the coverage area. As the name implies, CF systems, unlike
traditional cellular networks, do not consider the concepts of cell or cell boundaries, where a
Base Station (BS) serves multiple UEs within its cell coverage. In CF mMIMO, UEs are jointly
served by a relatively larger number of geographically distributed Access Points (APs) over the
same time-frequency resource. CF mMIMO lies at the intersection of different technologies like
mMIMO [202]–[205], CoordinatedMultiPoint (CoMP) [206], [207] andUltraDenseNetwork (UDN)
[208], [209], combing the best of each technology, while eliminating their deficiencies [199]. CF
mMIMO adopts its physical layer from cellular mMIMO, which brings 10x Spectral Efficiency
(SE) improvement over legacy cellular networks [199]. This gain comes from deploying a mas-
sive number of antennas at each BS, that provide spatial multiplexing for many UEs by digital
beamforming. CF mMIMO is inherently a distributed implementation of co-located mMIMO,
where densely developed APs provide service for a smaller number of UEs with a coherent joint
transmission and Time Division Duplexing (TDD) operation. The procedure takes place in a
user-centric (as opposed to network-centric) fashion, where the UEs are surrounded and served
by several APs. The APs are connected to one or multiple Central Processing Units (CPUs), i.e.,
edge-cloud processors or Cloud Radio Access Network (C-RAN) [210] data centers [211], by high-
capacity fronthaul links where data precoding/decoding operations, synchronization, and other
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network management operations take place. The acquisition of accurate Channel State Informa-
tion (CSI) is critical for different CF mMIMO operations. Hence, it employs Uplink (UL) pilots
to estimate the channel at the AP while eliminating the Downlink (DL) pilot training phase by
considering channel reciprocity. However, due to the limited number of channel uses in each co-
herence interval, only a limited number of orthogonal pilots are available, typically smaller than
the number of UEs. The number of available pilots is independent of the number of UEs and
is limited due to the natural channel variation in the time and frequency domains [212]. Hence,
reusing the same pilot for different UEs is inevitable, which introduces undesirable effects known
as pilot contamination: due to the co-pilot interference among UEs, the fading channel at the APs
can not be accurately estimated.

Different pilot assignment strategies have already been proposed in the literature to solve this
issue. The most straightforward approach is random pilot assignment [14], where each AP in-
dependently assigns a random pilot to its associated UEs. This is a fully distributed procedure
and requires a minimum degree of centralization and knowledge of the pilots of other UEs, but
has the worst performance among different pilot reuse strategies. Hence, a better pilot assign-
ment policy needs to know other UEs’ (at least its neighbors) pilots to reduce the effects of pilot
contamination. A greedy pilot assignment is proposed in [14], that iteratively updates the pilot
of the UE with minimum rate. A structured pilot assignment scheme is proposed in [213], that
maximizes the minimum distance of the co-pilot UEs. The location information of the UEs is uti-
lized in location-based greedy pilot assignment [214] to improve the initial pilot assignment. The
pilot assignment is also considered as an interference management problemwith multiple group-
casting messages in [215] and then solved by topological pilot assignments where both known
and unknown UE/AP connectivity patterns are considered.

Graph theory has also been used to model pilot assignment in CF mMIMO, where graph col-
oring [216] and weight graphic [217] schemes created and employed an interference graph to
assign pilots to different UEs. The authors in [218], [219] used tabu search pilot assignment in
CF mMIMO. Pilot assignment can also be considered as a graph matching problem and then
solved by the Hungarian algorithm [220]. A weighted count-based pilot assignment is presented
in [221], that uses the UEs prior geographic information and pilot power to maximize the pilot
reuse weighted distance. A scalable pilot assignment scheme is presented in [222] to grant mas-
sive access in CF mMIMO. Another scalable pilot assignment algorithm based on deep learning
is presented in [223], that uses UEs geographical locations as an input. The authors in [224] pre-
sented a pursuit learning approach for joint pilot allocation and AP association. A pilot assign-
ment strategy based on quantum bacterial foraging optimization is proposed in [225]. The pilot
assignment is also considered as a balanced diverse clustering problem in [226] and solved by a
repulsive clustering approach.

The co-pilot interference, in principle, is caused by pilot reuse for similar UEs, i.e., in terms of
geographical proximity and/or similar channel coefficient. Hence, an intelligent pilot assignment
scheme could employ the similarity information to avoid pilot reuse for similar UEs. Motivated
by this consideration, in this chapter, we consider pilot assignment as a Diverse Clustering Prob-
lem (DCP), which forms the clusters of UEs with maximized intra-cluster diversity. We then
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propose a repulsive clustering and an iterative maxima search methods to solve this problem.
These clusters are then used for pilot assignments.

The main contributions of this chapter are summarized as follows:

• We formulated the pilot assignment as a DCP: a clustering problem with arbitrary capacity
constraints on cluster size, aiming to maximize the intra-cluster heterogeneity and inter-
cluster homogeneity.

• We propose a repulsive clustering and an iterative maxima search approaches composed of
a local search and weak and robust perturbation procedures to sufficiently cover the search
space and balance between quality and diversity of solutions.

• We evaluate and compare the performance of the proposed approach under different situ-
ations and scenarios with respect to average and per-user UL and DL rates.

The remainder of this chapter is summarized as follows. Section 6.2 provides the systemmodel
for the CF mMIMO. We formulate the pilot assignment problem in Section 6.3 and then propose
the repulsive clustering in Section 6.4 and iterative maxima search procedure in Section 6.5. The
numerical results are presented in Section 6.6, and finally, Section 6.7 concludes the chapter.

6.2 System Model

We consider a typical CF mMIMO system, where K single-antenna UEs are jointly served by M
geographically distributed APs each equippedwith L antennas (K≪M), as shown in Figure 6.1a.
The APs are connected to one or multiple CPUs by unlimited and error-free fronthaul channels.
TheCPUs are connected through very fast optical fibers and share the information, and every time
one arbitrary CPU is responsible for the pilot assignment. So, our approach is fully centralized,
and the study of distributed pilot assignments is left for future work.

The channel coefficient gmk ∈ CL×1 between the m-th AP and the k-th UE is given as

gmk = β
1/2
mk hmk, (6.1)

where {βmk} represent the Large-Scale Fading (LSF) coefficients, i.e., pathloss and shadowing,
and {hmk} indicate the small-scale fading coefficients which are assumed to be independent and
identically distributed (i.i.d.) normal random variables CN (0, IL). We adopt the block fading
model, shown in Figure 6.1b, where time-frequency resources are divided into coherence inter-
vals of τc channel uses in which the channel can be approximately considered as static. The du-
ration of the intervals is defined based on propagation environment, UEs mobility, and carrier
frequency.

Each interval is further divided into three sub-intervals such that: τc = τp+ τu+ τd, where τp is
used for UL pilot training, and τu and τd are used for UL and DL data transmission, respectively.
We assume that hmk stays constant during a coherence interval and is independent in different
coherence intervals. We eliminate the DL pilot training phase by assuming channel reciprocity,
i.e., the same channel coefficients for the UL and DL transmissions.

73



(a)

τ
τ τ

T

B

τ

(b)

Figure 6.1: (a) A CF mMIMO system, where M distributed APs jointly serve K UEs (K ≪ M). (b) A
coherence block with UL pilot training, and UL and DL data transmission phases.

6.2.1 Uplink Pilot Training

We assume that there are only τp mutually orthogonal pilot sequences with length τp each repre-
sented as a column ϕϕϕ ∈ Cτp×1 of a matrix Φ, for which we have ∥ϕϕϕHpkϕϕϕpk′∥ = 1 if pk = pk′ , and
∥ϕϕϕHpkϕϕϕpk′∥ = 0, otherwise, and pk ∈ {1, . . . , τp} indicates the index of the pilot assigned to the kth
UE.

In the UL pilot training phase, all UEs simultaneously transmit their pilots. The m-th AP re-
ceives

Y
p
m =

√
τpρp

K∑
k=1

gmkϕϕϕ
H
pk +W

p
m, (6.2)

where ρp is the normalized Signal-to-Noise Ratio (SNR) of a pilot sequence with respect to the
noise power, andW

p
m is the L× τc additive noise matrix with elements following i.i.d. ∼ CN (0, 1)

random variables.
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As shown in [14], [227], the effective channel coefficients between UE k and AP m can be esti-
mated employing the Minimum Mean Square Error (MMSE) estimator after projecting Y

p
m onto

ϕϕϕHk as

ĝmk= E
{
gmky̌

pH
mk

}(
E
{
y̌
p
mky̌

pH
mk

})−1
y̌
p
mk = cmky̌

p
mk, (6.3)

where y̌pmk ≜ Y
p
mϕϕϕpk , and

cmk ≜
√
τpρpβmk

τpρp
∑K

k′=1 βmk′
∣∣∣ϕϕϕHpkϕϕϕpk′ ∣∣∣2 + 1

. (6.4)

The l-th component’s mean-square of the estimated channel vector ĝmk can be calculated as

γmk ≜ E
{∣∣[ĝmk]l

∣∣2} =
√
τpρpβmkcmk. (6.5)

6.2.2 Uplink Data Transmission

In CF mMIMO, all APs and UEs share the same time-frequency resources for data transmission.
In the UL, all UEs simultaneously transmit their data to the APs. The AP m receives

yum =
√
ρu

K∑
k=1

gmk
√
ηkqk +wu

m, (6.6)

where qk is the signal transmitted by UE k with power E
{
|qk|2

}
= 1, ηk ∈ [0, 1] shows the power

control coefficient, ρu indicates the normalized UL SNR and wu
m ∼ CN (0, 1) is the additive noise

at the receiver.

The Mixed Reality (MR) combining scheme can be applied to decode the desired signal for a
certainUE k. APm sends ĝ∗mky

u
m to the CPU for data detection. The CPU combines all the received

signals for UE k as

ruk =
M∑

m=1

L∑
l=1

[ĝmk]
∗
l [y

u
m]l . (6.7)

75



Following the same procedure as in [14], the signal then can be decomposed at the CPU as

ruk =
√
ρuηkqkE

{ M∑
m=1

L∑
l=1

[ĝmk]
∗
l [gmk]l

}
︸ ︷︷ ︸

DSk

+
√
ρuηkqk

( M∑
m=1

L∑
l=1

[ĝmk]
∗
l [gmk]l − E

{ M∑
m=1

L∑
l=1

[ĝmk]
∗
l [gmk]l

})
︸ ︷︷ ︸

BUk

+
√
ρu

M∑
m=1

K∑
k′ ̸=k

L∑
l=1

√
ηk′ [ĝmk]

∗
l [gmk′ ]l qk′︸ ︷︷ ︸

CPIk

+
M∑

m=1

L∑
l=1

[ĝmk]
∗
l [w

u
m]l ,

(6.8)

where DSk, BUk and CPIk denoted the desired signal (DS), beamforming uncertainty (BU) and
co-pilot interference (CPI), respectively.

The UL achievable rate for UE k can be calculated as

Ru
k = log2

1+ L2ρuηk
(∑M

m=1 γmk

)2
L2ρu

∑K
k′ ̸=k ηk′

(∑M
m=1 γmk

βmk′
βmk

)2 ∣∣∣ϕϕϕHpkϕϕϕpk′ ∣∣∣+ Lρu
∑K

k′=1 ηk′
∑M

m=1 γmkβmk′ + L
∑M

m=1 γmk

 .

(6.9)

6.2.3 Downlink Data Transmission

In DL, APs receive encoded data from their CPUs and carry out the transmit precoding, based on
the local CSI. The kth UE receives signal

rdk =
√
ρd

M∑
m=1

K∑
k′=1

η
1/2
mk′g

T
mkĝ

∗
mk′qk′ +wd

k , (6.10)

where ρd is the normalized UL SNR, and wd
k ∼ CN (0, 1) is the additive noise at the kth UE. Then

qk will be detected from rdk .

Employing a similar methodology as in the UL, the achievable DL rate for the kth UE can be
derived from

Rd
k = log2

1+ L2ρd
(∑M

m=1 η
1/2
mk γmk

)2
ρd
∑K

k′ ̸=k

(∑M
m=1 η

1/2
mk′γmk′

βmk
βmk′

)2 ∣∣ϕϕϕHk′ϕϕϕk∣∣2 + Lρd
∑K

k′=1
∑M

m=1 ηmk′γmk′βmk + 1

 .

(6.11)
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6.3 Pilot Assignment in CF mMIMO

6.3.1 Problem formulation

The goal of the UL pilot training phase is to increase the number of effectively estimated channels
or to improve the quality of the UL channel estimation, which can be interpreted as a UL rate
maximization problem. So, an efficient pilot reuse scheme should assign pilots to UEs so that the
sum of the UL rates is maximized. Mathematically the pilot reuse problem in CF mMIMO can be
formulated as

max
p

K∑
k=1

Ru
k (6.12a)

s.t.
p = [p1, . . . ,pK]T, (6.12b)

ϕϕϕpk = colpk(ΦΦΦ), (6.12c)
pk ∈ {1, . . . , τp}, (6.12d)

where the p is the pilot assignment vector and coli(ΦΦΦ) indicates the ith column of matrixΦΦΦ.
The co-pilot interference originated from reusing the same pilot for similar UEs, i.e., geograph-

ical closeness, common serving APs, and similar channel coefficients. So, an intelligent pilot as-
signment scheme should consider the similarity among the UEs and reuse the same pilotϕϕϕ in UEs
that have higher dissimilarities, i.e., geographically far apart or with fewer common serving APs.
We hence formulate the pilot assignment in CF mMIMO as a diverse clustering problem, where
we form τp (number of available orthogonal pilots) clusters in such a way that UEs belonging
to the same cluster have a high “dissimilarity” or “diversity”. In the following subsection, we
formulate and discuss the problem.

6.3.2 Diverse Clustering Problem

TheDCP consists of the assigning of a set of K elements, i.e., UEs, into τpmutually disjoint subsets
or clusters, i.e., pilots, while the diversity among the elements in each subset, i.e., intra-cluster
diversity, and inter-cluster similarity is maximized. The inter-cluster diversity is calculated as
the sum of the individual distances between each pair of elements in clusters, where the concept
of distance depends on the specific application context. The objective is to maximize the overall
diversity, i.e., the sum of the diversity of all subsets. From the graph theory perspective, DCP
can be considered as partitioning the vertices of a complete weighted undirected graph into τp

subgraphs in such a way that the total weight of the subgraphs is maximized while applying
optional constraints on the number of nodes in each subgraph.

An illustration of DCP and of the conventional clustering problem is presented in Figure 6.2 for
a small configuration with four data points and two clusters. Figure 6.2a shows a conventional
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(a) (b) (c)

Figure 6.2: Illustrated example and comparison of the conventional clustering (a), and feasible (b) and
optimal (c) solutions for diverse clustering, with four data points and two clusters.

clustering problem, where clusters are formed in such a way to minimize inter-cluster similarity
(intra-cluster diversity).

In contrast, Figure 6.2b-c show two DCPs, where data points with higher dissimilarities are
joining the same cluster. Figure 6.2b represents a feasible solution for DCP, in which the diversity
score of one cluster (blue data points) is relatively higher than the other, while in the optimal
solution, all clusters should have relatively similar diversity score, as it is the case in Figure 6.2c.

In general DCP can be considered as a capacitated clustering [228], [229] or maximally diverse
grouping problem [230], [231] and then formulated as a quadratic integer program as

max
X

τp∑
p=1

K−1∑
k=1

K∑
k′=k+1

xk,pxk′,pdk,k′ (6.13a)

s.t.
τp∑
p=1

xk,p = 1, k = 1, . . . ,K, (6.13b)

Lk ≤
K∑

k=1
xk,p ≤ Uk, p = 1, . . . , τp, (6.13c)

xk,p ∈ {0, 1}, k = 1, . . . ,K,p = 1, . . . , τp, (6.13d)

where X ∈ {0, 1}K×τp is a binary association matrix, and xk,p = 1 if element (UE) k belongs to
cluster (pilot) p, and xk,p = 0 otherwise. dk,k′ is the diversity measure between k and k′ elements,
and Lb and Ub show the minimum and maximum size of each set, respectively. The constraint
(6.13b) guarantees that each element is assigned to only one cluster, and (6.13c) forces the size of
the clusters to be in the specified range. The diversity measure can be a predefined distance func-
tion, i.e., Euclidean distance and cosine similarity, or can be defined as a parameterized kernel
and then learned by, e.g., neural networks.
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This formulation favors forming fewer large-size clusters against many small-size clusters.
Considering the full interference among the nodes in each cluster (orthogonal pilot), in the pilot
reuse problem, fewer large-size clusters increase the co-pilot interference among the co-cluster
UEs. So we multiply a regularization term by the objective of the optimization problem to penal-
ize the large-size clusters by dividing their score by the size of clusters. This will avoid wasteful
growth of the size of some clusters. Adding a new node to a N-size cluster is interpreted as inter-
ference with all N nodes and penalized. Hence, the new formulation will be

max
X

τp∑
p=1

1
|Cp|

K−1∑
k=1

K∑
k′=k+1

xk,pxk′,pdk,k′

s.t.
(6.13b)− (6.13d)

(6.14)

where Cp is the cluster set p, and | · | shows the size of a set.
DCP is a combinatorial optimization problem and is proved to be NP-hard [232]. Typically

finding the exact solution for these problems is not computationally possible, at least when K is
large.

DCP has already been investigated in the literature under different names, such as maximally
diverse grouping problem [230] and anticlustering [233], [234]. Several algorithms have already
been proposed to solve DCP, including tabu search with strategic oscillation [235], genetic algo-
rithm [236], [237], artificial bee colony [238], variable neighborhood search [231]. In this chapter,
we propose repulsive scheme and an iterative maxima search method, adopted from [239], for
pilot reuse in CF mMIMO based on DCP problem.

6.4 Repulsive Clustering for Pilot Assignment

Repulsive clustering is a simple iterative algorithm that directly maximizes (6.13a), assuming a
stringent constraint on the size of clusters, forcing the algorithm to form balanced clusters. This
algorithm first randomly assigns data points to different clusters and then iteratively swaps the
UEs among clusters as long as it improves the overall repulsion score.

6.5 Iterative Maxima Search for Pilot Reuse

The proposed approach employs an iterative maxima search procedure that integrates a local
neighborhood search procedure with a weak perturbation operator to improve the intensity or
quality of solutions and a robust perturbation operator to improve the diversity of the solutions
by moving the search to a distant region to avoid local optimum solutions. Before going to the
details of the proposed scheme, some concepts need to be defined.
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Algorithm 6.1 A Heuristic Algorithm for Repulsive Clustering
Input: Number of clusters (pilots) τp, Set of UEs K
Output: Pilot assignment vector p
Randomly divide K UEs into τp equal-sized clusters C,
while Performance is improving do

for C1,C2 ∈ C do
for u ∈ C1 and w ∈ C2 do

if exchanging clusters of u and w increases the overall diversity measure then
Swap the clusters of u and w,

end if
end for

end for
end while
for p = 1 : τp do

Assign pilot ϕp to UEs in cluster p
end for

Definition of neighborhoods

We define two different types of neighborhood: OneMove (N1) neighborhood and SwapMove
(N2) neighborhood. Given the pilot assignment vector p�, N1 returns all possible solutions ob-
tained by changing the assigned pilot of a single UE (OneMove) in such a way that the pilot reuse
capacity constraints are satisfied, while N2 returns the possible solutions obtained by exchanging
the pilots of a pair of UEs (SwapMove).

M matrix

To improve the computational efficiency of the local search procedure, we employ a K×τp matrix
M, where mk,p ∈ M shows the sum of diversity between UE k and all UEs with pilot index p, and
having the pilot assignment vector p, calculates asmk,p =

∑K
k,k′=1,
pk′=p

dk,k′ . Calculation of thismatrix

can be done in order of O(K2).

Definition of a solution

The tuple< p, c, s > refers to a solution in search space, where c is a vector that saves the diversity
index of each cluster, and s is a vector that stores the size of each cluster for a given solution.
Basically, for each solution in the search space, we save and update the tuple where the two last
elements are used to speed up the search procedure, as we will discuss later.

The overall procedure is presented in Algorithm 6.2. The algorithm starts by generating Is ran-
dom initial feasible solutions (Algorithm 6.3), followed by a local neighborhood search procedure
(Algorithm 6.4). The best solution among the initial solutions is then saved for later use. It then
repeats amaxima search procedure (lines 9-20) followed by a robust perturbation procedure until

�The pilot assignment vector p is equivalent to the association matrix X in (6.13a), and in fact, X is the
one-hot encoding version of p.
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Algorithm 6.2 Iterative Maxima Search for Pilot Reuse
Input: Is, tmax, α
Output: Pilot assignment vector p∗
1: Initialize empty set P0
2: for i = 1 to Is do
3: Generate initial solution p0 employing Algorithm 6.3.
4: Update p0 employing the local search in Algorithm 6.4.
5: Add p0 to P0.
6: end for
7: Get the best solution from P0 and save it in p
8: p∗ ← p
9: while Time() ≤ tmax do
10: Set ctr← 0
11: while ctr < α do
12: Apply weak perturbation operator in Algorithm 6.5 on p.
13: Update p employing local search Algorithm 6.4.
14: if f(p) > f(p∗) then
15: p∗ ← p
16: Reset ctr← 0
17: else
18: Increase ctr← ctr+ 1
19: end if
20: end while
21: Update p employing the robust perturbation in Algorithm 6.6.
22: end while
23: Return p∗

a certain time budget is exceeded. This iterative maxima search procedure is composed of a weak
perturbation procedure (Algorithm 6.5) followed by a local search procedure (Algorithm 6.4),
which will be discussed in the following subsections. In each iteration, after employing the weak
perturbation and local search procedures, the quality or fitness of the current solution p (f(p)) is
compared and used to replace the incumbent solution p∗ in case of improvement (lines 14-19).
The fitness of a solution is calculated as:

f(p) =
τp∑
p=1

1
|Cp|

∑
pk=pk′ ,
k<k′

dkk′ , (6.15)

where, dkk′ represents the diversity among k and k′ UEs. This fitness function basically is a
weighted average of the diversity score of different clusters, where the weight is the inverse of
the cluster size.

6.5.1 Initial Feasible Solution

The Initial feasible solution procedure is presented in Algorithm 6.3. The procedure starts by
randomly assigning each pilot to Lb UEs and then for the remaining UEs assigns a random pilot
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Algorithm 6.3 Initial Feasible Solution
Input: Set of Pilots P , Set of UEs K, Lb, Ub
Output: Initial Pilot Assignment Vector p
1: for p ∈ P do
2: Randomly select Lb UEs from K and name it K′

3: Assign pilot p to UEs in K′ and update K = K \ K′

4: end for
5: while K ̸= ∅ do
6: Get k ∈ K and randomly select pilot p ∈ P
7: if |C|p < Ub then
8: Assign pilot p to k and update K = K \ {k}
9: end if
10: end while
11: Return assignment vector p.

p while being sure that the number of UEs with pilot p, |Cp|, is less than an upper bound Ub. The
complexity of this algorithm is O(K+ τp).

6.5.2 Local Neighborhood Search

The local neighborhood search procedure is presented in Algorithm 6.4. Given the current as-
signment p, the procedure probes N1(p) (lines 3-11) and N2(p) (lines 12-19) neighborhoods and
iteratively updates the incumbent solution with the better neighbor solution. The procedure re-
peats until the incumbent solution finds the local optimum and can not be further improved.
Given a solution < p, c, s >, the fitness of a neighbor solution can be easily computed using the
defined above matrixM. For N1 neighbors, changing the pilot index of UE k from i to j does not
change the diversity values of the UEs, except those with pilot index i and j. Here the value of a
OneMove can be determined by

∆f =
cj +mkj

sj + 1 −
cj
sj
+
ci −mki
si − 1 −

ci
si
, (6.16)

where mk,i and mk,j are the entries of matrix M and c, and s are the elements of vectors c and s,
respectively.

Also for N2 neighbors, the value of a SwapMove (exchanging the pilot index of UEs k and k′)
is determined by

∆f = (mk,pk′ −mk,pk)+(mk′,pk
−mk′,pk′

)−2dkk′ . (6.17)

6.5.3 Weak and robust perturbation

The weak and robust perturbation procedures are presented in Algorithm 6.5 and Algorithm 6.6,
respectively. The weak perturbation operator aims to jump out of the current local optimum
within the iterative search procedure by applying some assignment deterioration. The strength of
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Algorithm 6.4 Local Search Procedure
Input: Set of Pilots P , Set of UEs K, p, Lb, Ub
Output: Local optimum assignment p∗
1: p∗ ← p
2: InitializeM ∈ RK×τp

3: while solution improves do
4: for k ∈ K ∧ p ∈ P do
5: if (p∗

k ̸= p) ∧ (Cp∗
k
> Lb) ∧ (Cp < Ub) then

6: Calculate∆f by (6.16)
7: if∆ > 0 then
8: Set p∗

k ← p and updateM
9: end if
10: end if
11: end for
12: for k, k′ ∈ K ∧ k′ > k do
13: if p∗

k ̸= p∗
k′ then

14: Calculate∆f by (6.17)
15: if∆f > 0 then
16: Swap the pilots of k and k′ and updateM
17: end if
18: end if
19: end for
20: end while
21: Return p∗

theweak perturbation is controlled by ηw, representing the number of randomneighbor solutions
to be checked by this operator. For each perturbation step, the best solution among ηw2 randomly
selected neighbors is compared, and the incumbent solution is replaced in case of improvement
(lines 3-7). This incumbent solution is used for the next iteration of perturbation. The large values
of ηw2 cause less deterioration of the current sample and can be set to K to adjust the problem size.

The weak perturbation helps the search procedure discover the neighborhood of the current
area better, while it is still possible that the search is trapped in a deep local optimum that weak
perturbation can not jump out of. The robust perturbation procedure consequently performs
ηs moves regardless of their values. ηs controls the strength of the robust perturbation and is
empirically set to ηs = θ × K

τp
, from [239], where θ is chosen from {1, 1.5}.

6.6 Numerical results

6.6.1 Simulation setup

Let us considerMAPs with L antennas and K single antenna UEs that are independently and uni-
formly distributed in a 1× 1 km2 square area. The wraparound technique is adopted to mitigate
the network edge and boundary effects and to model the network as if operating over an unlim-
ited area. The large-scale fading coefficient βmk in (6.1) is calculated by βmk = PLmk · 10σshzmk/10,
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Algorithm 6.5 Weak Perturbation
Input: Pilot assignment vector p, ηw, ηw2
Output: Perturbed assignment p
1: for i = 1 to ηw do
2: Randomly select a neighbor solution p′ ∈ N1(p) ∪N2(p)
3: for j = 1 to ηw2 do
4: Randomly select a neighbor solution p′′ ∈ N1(p) ∪N2(p)
5: if f(p′′) > f(p’) then
6: p′ ← p′′

7: end if
8: end for
9: p← p′

10: end for
11: Return assignment vector p.

Algorithm 6.6 Robust Perturbation
Input: Pilot assignment vector p, ηs
Output: Perturbed assignment p
1: for i = 1 to ηw do
2: Randomly select a neighbor solutions p′ ∈ N1(p) ∪N2(p)
3: p← p′

4: end for
5: Return assignment vector p.

where 10σshzmk/10 represents the shadow fading with standard deviation σsh and zmk ∼ N (0, 1)
and PLmk represents the pathloss fromUE k to APm. In this chapter, we use the three-slope path
loss model presented in [14] as

PLmk =


−L− 15 log10 (d1)− 20 log10 (d0) , if dmk ≤ d0
−L− 15 log10 (d1)− 20 log10 (dmk)

if d0 < dmk ≤ d1
−L− 35 log10 (dmk) , if dmk > d1

(6.18)

where dmk indicates the distance between AP m and UE k, d0 and d1 are the distance thresholds,
and L is given by

L ≜ 46.3+ 33.9 log10(f)− 13.82 log10 (hAP)
−
(
1.1 log10(f)− 0.7

)
hu +

(
1.56 log10(f)− 0.8

)
,

(6.19)

where f (MHz) is the carrier frequency, and hu (m) and hAP (m) indicate the UE and AP height
respectively.

Noise power is calculated by Pn = BkBT0W, where B is the bandwidth, kB denotes the Boltz-
mann constant, T0 is the noise temperature and W represents the noise figure. The transmission
powers of the uplink pilot and the uplink data and downlink data are set to ρp = 100 (mW),
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Table 6.1: Simulation setup.

Parameter Value Definition
B 20 MHz Bandwidth
hu 1.65 m UE height
hAP 15 m AP height
d0, d1 10 m, 50 m Path loss distance thresholds
kB 1.381× 10−23 (Joule per Kelvin) Boltzmann constant
T0 290 (Kelvin) Noise temperature
W 9 Noise figure
ρp 100 mW Pilot transmission power
ρu 100 mW Uplink transmission power
ρd 200 mW Downlink transmission power

ρu = 100 (mW), and ρd = 200 (mW), respectively. The channel estimation overhead has been
taken into account in defining the per-user uplink throughput as Tuk = B 1−τp/τc

2 log2(1+ SINRu
k),

where τc = 200 samples. The 1/2 in the above equation is due to the co-existence of the uplink
and downlink traffic. We also employed max-min power control [14] to further improve the sum
throughput.

In this chapter we consider the Euclidean distance for the diversity measure as

dk,k′ =

√√√√ |F|∑
i=1

(Uk[i]−Uk′ [i])2, (6.20)

where F is the feature set (e.g., geographical coordinates) of the UEs. The definition and analysis
of more sophisticated repulsive functions are left for future work.

6.6.2 Result and discussion

This section compares the result of the proposed Iterative Maxima Search (IMS) scheme against
different pilot assignment strategies. In particular, the random and greedy pilot assignments
from [14], the repulsive clustering [226] and the Ideal solution are chosen for evaluation. The
ideal solution represents the unreachable upper bound, where there is no pilot contamination
(i.e., CPIk = 0 in (6.8)) and the channels can be perfectly estimated only having one single pilot.
Two different variants of our algorithm are considered: equal size (ES) clusters and variable size
(VS) clusters. The former keeps Lb = Ub, while the latter does not have such constraint, and the
algorithm can form clusters of any size.

Figure 6.3 shows the per-user throughput Cumulative Distribution Function (CDF) of differ-
ent pilot reuse policies for the small-scale scenario for the sake of comparison with the exhaustive
search. (As the complexity of exhaustive search grows exponentially with the number of UEs, cal-
culating its performance for large M is not possible.) The figure shows that the proposed method
outperforms other approaches both in UL and DL and works almost as well as the optimal pilot
reuse obtained by exhaustive search, but with far less complexity.

85



0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.3: Cumulative distribution of the per-user uplink and downlink throughput for different pilot
assignment strategies for a small-scale scenario, M = 50, K = 12, L = 1, and τp = 3.
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Figure 6.4: Cumulative distribution of the per-user uplink and downlink throughput for different pilot
assignment strategies, K = 40, τp = 10, and M = 200.

Table 6.2: 95th percentile of per-user uplink and downlink throughput for different values of L, when
K = 40, τp = 10, and M = 200.

Approach UL DL
L=1 L=3 L=1 L=3

Random 2.93 6.49 1.43 3.31
Greedy 3.49 7.59 1.68 4.16
Repulsive 4.59 10.52 2.69 6.80
IMS (ES) 4.62 10.71 2.73 6.90
IMS (VS) 4.63 10.68 2.72 6.88
Ideal 5.40 12.20 4.18 10.09
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Figure 6.5: Average uplink and downlink throughput for different pilot assignment strategies, K = 40,
τp = 10.
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Figure 6.6: Average uplink throughput for different numbers of UEs, M = 100 and τp = 10.
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Figure 6.7: Average the per-user uplink and downlink throughput for different numbers of orthogonal
pilots, M = 100, L = 1, and K = 50.

The cumulative distribution of the per-user uplink and downlink throughput of different pilot
assignment strategies for different numbers of antennas L is shown in Figure 6.4. The superior-
ity of the proposed scheme against other approaches is evident from the figure. It can also be
seen from the figure that increasing the number of antennas per AP will increase the rate in all
schemes while the gap between the proposed scheme and other algorithms also increases, which
is reasonable as our scheme generates less co-pilot interference by properly utilizing the available
resources.

Table 6.2 shows the 95th percentile of the per-user throughput extracted fromFigure 6.4, where
it can be seen that increasing the number of APs’ antennas from L = 1 to L = 3 increases the
95th percentile by 2.3x for uplink and 2.5x for downlink. Compared to other schemes, our ap-
proach performs slightly better than repulsive clustering, but it improves the 95th percentile rate
by 1.13 Mbps (≈ 32%) in uplink and 1.05 Mbps (≈ 62%) in downlink over a greedy pilot assign-
ment scheme, when L = 1. These values for L = 3 are 3.12 Mbps (≈ 38%) and 2.74 Mbps (≈ 65%).

Figure 6.5 compares the average uplink anddownlink throughput against different numbers of
APs for different pilot reuse schemes. By increasing the number of APs, the average throughput
increases in both uplink and downlink. Also, the performance of the multiple-antenna APs is
always better than that of single-antenna APs. For example, having 100 APs with three antennas
(300 antennas in total) performs better than 300 single-antenna APs. This comes from the fact that
increasing L makes the channel more favorable [240] and reduces inter-user interference. It also
increases the array gain, which has already been discussed and analyzed in mai2018cell.

The average uplink and downlink throughput of different pilot assignment schemes against
the number of UEs is illustrated in Figure 6.6. It can be seen from the figure that increasing
the number of UEs in the network, while the number of APs is fixed, will decrease the average
throughput. The throughput reduction ratio is different for the pilot assignment policies, and in
our approach it is lower than in the random and greedy schemes. This shows the reliability of
our approach in large-scale scenarios.
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Figure 6.8: Average uplink and downlink throughput for different values of error in location estimation,
M = 120, K = 50, K = 10, and L = 1.

Figure 6.7 presents the average uplink and downlink throughput with respect to the number
of orthogonal pilots (τp) for different pilot assignment schemes, while the size of the coherence
block is fixed. An interesting fact that can be seen in the figures is that increasing the number
of pilots increases the performance only up to a certain point, after which the performance starts
decreasing. This shows the necessity of finding the optimal number of pilots, which is outside
this chapter’s scope and is left for future research.

Figure 6.8 shows the 95th percentile rate of the proposed schemes in the presence of errors in
the UEs locations estimation. As seen in the figure, the proposed algorithms, until a certain level,
are robust against errors, and the system performance is not affected much when the error in the
location estimation is less than 100 meters. Even after that, the rate is higher than in random and
greedy schemes.

Figure 6.9 shows the uplink and downlink throughput for UEs when the CSI (LSF) and/or
UE’s locations are considered as input features in our clustering algorithm. The figure shows
that both features provide relatively similar results, so each can be used as input when the other
feature’s data is unavailable. It can also be seen that combining both features does not provide
better solutions, and considering only one feature space is enough.

6.7 Conclusion

CFmMIMOwill be an essential part of future wireless communication systems, given its capabil-
ity of providing uniform service for the UEs. The performance of these systems can still be further
improved before it becomes a functional and operational technology. Pilot contamination is rec-
ognized as anundesirable effect that can highly degrade the performance ofCFmMIMOwhen the
UEs share the same pilot. In this chapter, we formulated pilot assignment in CFmMIMO systems
as a DCP problem and proposed a repulsive and an iterative maxima search approach to solve
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Figure 6.9: Uplink and downlink throughput when location and/or CSI is used as input feature for clus-
tering.

it. Numerical results show the proposed scheme’s effectiveness compared to other approaches
from the literature. In future works, we will expand our approach by replacing the Euclidean
distance with more sophisticated and parameterized diversity functions, i.e., Deep Neural Net-
works (DNNs) that consider different networking factors such as AP locations, and the density of
UEs and APs. Another extension will consider pilot assignment jointly with pilot power control,
which can further improve the channel estimation performance. The scalability of different pilot
assignment strategies is another factor that should be considered in future research.

90



7
Conclusion

Next-generation wireless communication systems will create a digitally connected society of au-
tomated and intelligent systems. These systems will reshape various parts of our daily lives like
healthcare, entertainment, homes, vehicles, industries, and cities. The 5Gwireless networks have
already been deployedworldwide, providing amulti-foldQoS improvement, compared to 4G, by
adopting new techniques, such as mmWave frequency bands, advanced spectrum management
techniques, and the integration of licensed and unlicensed bands. B5G communication systems
still need to offer new technologies andmore efficient solutions to handle the rapid traffic growth
demands. In this thesis, we studied the paradigm of future-generation wireless systems and dis-
cussed their requirements, specifications, applications, and enabling technologies. High-datarate
ubiquitous transmission is considered as one of themain requirements of theNextG systems, aim-
ing to provide high-speed and reliable connectivity to anyone, anytime, anywhere.

The abundant bandwidth available in mmWave frequency bands is significantly higher than
that of the legacy sub-6 GHz counterpart. Hence, mmWave communications have already been
considered, standardized, and implemented in current wireless systems, both indoor and out-
door, to deliver multi-gigabit connections. In this thesis, we studied the current operational
mmWave networks for indoor and outdoor environments. We investigated the IEEE 802.11ad/ay
standards that operate over 60 GHz to provide high-speed connectivity in the scale of Gbps for
indoor users. User and traffic scheduling is a challenging task in these systems, highly affecting
the system’s performance. Hence, we discussed the challenges related to the scheduling in realis-
tic scenarios of IEEE 802.11ad/ay devices, studied some pre-existing works, and proposed some
research directions.

This thesis also reported the result of a measurement campaign conducted to analyze the per-
formance of an early deployed mmWave cell. Various environmental impacts on mmWave links
are studied, from the body and foliage blockage to rain and over-water transmission. The im-
pact of these phenomena over mmWaves propagations is different but generally degrades the
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received signal power and service quality. Comparing the measured RSRP with the simulated
omnidirectional and strongest RSRP (optimal antenna configuration) shows a considerable gap
between the real-world measurements and the theoretical performance. Our study showed that
network planners deploying 5G mmWave solutions for applications need carefully design their
systems, as ignoring some environmental factors, like rain or wind, can significantly affect the
system performance. Current 5G mmWave is not suitable for NLoS and dynamic environments
(where the LoS link is constantly blocked), at least with current TCP protocols and for the appli-
cations that require reliable transmissions. In these cases, combining mmWave with multi-path
TCP or TCP proxy architecture can provide better service levels, which should be considered in
future wireless communication systems. The applications of current outdoor mmWave systems
are mainly limited to the scenarios in which transmitter and receiver are stationary and have a
perfect LoS, e.g., FWA that provides high-speed internet for houses. For more complex use cases
such as large industrial environments (where LoS links get blocked by hefty mobile machinery)
and cell phones (where the antennas can easily be covered and blocked by the user’s hands, head,
and body), the usage of mmWaves is challenging and still limited. More efficient beamforming,
beam-tracking/beam-switching techniques, blockage prediction, link prediction [241], proactive
rate adjustmentmethods, smart handover techniques, and advanced scheduling, vision aided net-
work management systems [242], [243] are still required to be deployed before making mmWave
communications a standard and everyday technology for end-users.

6G will be add new new technologies and innovations such as RIS, UAVs, and CF mMIMO,
on top of the existing 5G systems, e.g. mmWave communication. These technologies will sig-
nificantly enhance performance and bring multi-fold improvement in QoS comparing the pre-
vious technologies. Most of these technologies are still under research and should be signifi-
cantly improved in terms of various performance metrics, including data rate, network coverage,
and energy consumption, before becoming standard and functional. Network optimization tech-
niques are suitable tools to ensure that these technologies efficiently utilize the available resources.
Hence, in this thesis, we designed and developed network-wide optimization schemes that can
be applied to different networking scenarios. For example, we designed an optimization scenario
to RIS-aided UAV communications to reduce network overall energy consumptionwhile guaran-
teeing certain QoS. UAV based transmissions can provide high-speed communication in dense
urban areas over mmWaves. The high energy consumption of drones makes UAV communica-
tions challenging and energy-critical. The primary source of this power consumption comes from
the UAV’s movement. RIS can be jointly used with UAV to increase its coverage and provide an
energy-efficient and sustainable transmission by reducing UAV’s need to move. The problem is
defined as a joint UAV trajectory and RIS phase optimization problem problems and the succes-
sive convex approximation employed to solve it. The convex approximation techniques could
provide a feasible solution but are very sensitive to different network configurations. Adding
more parameters to the problem, such as beamforming uncertainty andmobile users, and consid-
ering the swarm of UAVs makes the optimization problem mathematically intractable and very
hard to solve. In such scenarios, learning-based approaches such as reinforcement learning seem
very attractive and can replace the traditional convex optimization schemes.
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As another example of network optimization, we considered the pilot assignment problem in
CF mMIMO systems. We formulated the pilot assignment in CF mMIMO as a diverse clustering
problem and proposed clustering-based solutions that maximize the overall rate of the network.
The proposed solutions employ iterative local search to find the best local solutions and replace
the incumbent solution in case of improvement. These schemes perform almost as well as the
optimal solutions but with far less complexity.

Given the increasing complexity of future wireless communication systems, the traditional op-
timization schemeswill eventually fail to find optimal solutions for tasks like resource allocations
and power control, at least in real time. Hence, recently Machine Learning (ML) and especially
deep learning approach widely investigated to solve some significant problems in NextG sys-
tems. Thanks to recent advances in deep learning for natural language processing and computer
vision, these ideas can partially be adopted for specific problems in wireless communications, i.e.,
channel estimation, resource, and power control. For example, the resource allocation problem
in wireless communication can be considered a translation problem (similar to image-to-image
and natural language translation), and a deep learningmodel, i.e., transformers, can be trained to
make some predictions and assignments. This deep learning model can feed various data about
wireless network topology data, such as the location of nodes, link quality, and power level, and
the output will be a proper resource, e.g., orthogonal channel or pilot, for each node. Here the
deep learning model considers the network as a whole and learns the relations among different
network entities to reach cognition and understanding of the network and use this knowledge for
various tasks, such as resource allocation and power control. The main challenge in employing
deep learning for wireless communications is its need for labeled datasets, which could be very
expensive for wireless communication tasks, if not impossible. Reinforcement Learning (RL), on
the other hand, is an approach for sequential decision-making problems in which an agent learns
from interaction with the environment in an action-reward loop and is widely being investigated
in wireless communications.
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