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I.   INTRODUCTION 

The growth rates preservation (GRP) benchmarking procedure by Causey and Trager (1981; 
see also Trager, 1982, and Bozik and Otto, 1988) is based on a movement preservation 
principle, according to which the sum of squared differences between the growth rates of the 
target and of the preliminary series is minimized1.  
 
This benchmarking procedure basically looks for a solution to a constrained non linear 
program (NLP), according to which ( )f x , a smooth, non-convex function of the n unknown 
items of vector x , has to be minimized subject to a set of m linear equality constraints, 

Ax b , where A  is a known, full row rank (m x n) matrix, m<n, and b is a known (m x 1) 
vector containing the benchmarks. 
 
Both the original algorithm by Causey and Trager (1981) and a recent proposal by Brown 
(2010) are first-order (i.e., gradient-based) feasible directions methods, which use the 
steepest descent (SD) and the non-linear conjugate gradient (CG) algorithms, respectively, to 
solve the above NLP problem. However, using only first-derivatives information may result 
in poorly efficient procedures, characterized by slow convergence and possible troubles in 
finding actual minima of the objective function. 
 
Still remaining at first-order techniques, more performing unconstrained quasi-Newton (QN) 
optimization procedures may be considered, which exploit approximate rather than exact 
second derivatives, provided the original constrained problem be transformed into an 
unconstrained one. In addition, improvements in both efficiency and robustness may be 
obtained by considering the true Hessian matrix of the objective function. 
 
In this paper, (i) we present the explicit expression of the Hessian matrix of the GRP 
objective function, (ii) show how the original constrained benchmarking problem can be 
transformed in an equivalent unconstrained non-linear problem, (iii) propose a Newton’s 
method with Hessian modification (MN) to calculate GRP benchmarked estimates, 
and (iv) compare the performance of MN with gradient-based procedures (SD, CG, QN), in 
order to show the effectiveness of the proposed benchmarking procedure in terms of both 
computational efforts and quality of the results. 
 
The paper is organized as follows. In section II the GRP benchmarking procedure is 
described, and the way it takes into account a movement preservation principle is discussed, 
as compared to the classical benchmarking procedure by Denton (1971), modified 
by Cholette (1984). The benchmarked estimates through this procedure, which is 
based on a constrained quadratic minimization problem and can be expressed in closed form, 
are generally considered as a good approximation of the GRP benchmarked estimates (this 
issue is discussed by Di Fonzo and Marini, 2010). 

                                                 
1 Bloem et al. (2001, p. 100) claim that this objective function is grounded on is an “ideal” movement 
preservation principle, formulated as an explicit preservation of the period-to-period rate of change of the 
preliminary series. 
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In section III analytic expressions of gradient vector and Hessian matrix of the GRP criterion 
are presented, and by exploiting the Hessian we check the non-convexity of the objective 
function. While the gradient vector can be deduced by Causey and Trager (1981, see also 
Fagan, 1995), as far as we know the result concerning the Hessian matrix is new. 
 
In section IV it is shown how a linear equality constrained problem can be transformed in an 
unconstrained problem with a reduced number of variables. This permits the user to exploit 
unconstrained optimization techniques. In addition, numerical results to efficiently transform 
and reduce the problem are presented. 
 
Line-search algorithms for unconstrained minimization are reviewed in section V. The focus 
is on Newton-type methods as long as on classical first-order algorithms, namely steepest 
descent and nonlinear conjugate gradient. Feasible directions algorithms are considered in 
section VI, where the “projected versions” of the steepest descent and of the nonlinear 
conjugate gradient algorithms are described. 
 
In order to analyze the distinctive features of the considered procedures, in section VII are 
presented applications to the artificial series used by Denton (1971), and to several real-life 
series, namely 61 quarterly series from the EU Quarterly Sector Accounts (EUQSA), and 236 
monthly series from the Canadian Monthly Retail Trade Survey (MRTS). Section VIII 
presents some final remarks and conclusions, and draws future research lines. 
 

II.   GROWTH RATES PRESERVATION AND TEMPORAL BENCHMARKING 

 
Let Tb , 1, ,T m  , and Tp , 1, ,t n  , be, respectively, the temporal benchmarks and the 

high-frequency preliminary values of an unknown target variable tx . Let s be the aggregation 

order (e.g., 4s   for quarterly-to-annual aggregation, 12s   for monthly-to-annual 
aggregation, 3s   for monthly-to-quarterly aggregation), and let A  be a (m x n) temporal 
aggregation matrix, converting n high-frequency values in m low-frequency ones (we assume 
n s m  ). 
If we denote with x  the (n x 1) vector of high-frequency values, and with b the (m x 1) 
vector of low-frequency values, the aggregation constraints can be expressed as Ax b . 
 
Depending on the nature of the involved variables (e.g., flows, averages, stocks), the 
temporal aggregation matrix A usually can be written as 
 
 T

m A I a   (1) 

 
where the (s x 1) vector a may assume one of the following forms: 
 

1.      flows:  1 1 1
T

s a 1  , 

2.      averages: 
1

ss
a 1 , 
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3.      stocks (end-of-the-period):  0 0 1
Ta  , 

4.      stocks (beginning-of-the-period):  1 0 0
Ta  . 

Denoting by p the (n x 1) vector of preliminary values ( Ap b ), we look for a vector of 

benchmarked estimates *x  which should be “as close as possible” to the preliminary values, 
and such that * Ax b (e.g., for flows variables, * , 1, ,t T

t T

x b T m


   ). 

 
To this end, some characteristics of the original series tp  should be kept into consideration. 

For example, in an economic time series framework, the preservation of the temporal 
dynamics (however defined) of the preliminary series is often a major interest of the 
practitioner. For flows series, Causey and Trager (1981; see also Monsour and Trager, 1979, 
and Trager, 1982) consider a criterion to be minimized explicitly related to the growth rate, 
which is a natural measure of the movement of a time series:  
 

 
2

2 1 1

( )
n

t t

t t t

x p
f

x p  

 
  

 
x , (2) 

 
and look for values *, 1, , ,tx t n   which minimize the criterion (2) subject to the aggregation 

constraints , 1, ,t T
t T

x b T m


   . In other words, the benchmarked series is estimated in 

such a way that its temporal dynamics, as expressed by the growth rates 
*

*
1

, 2, ,t

t

x
t n

x 

  ,  be 

“as close as possible” to the temporal dynamics of the preliminary series, where the 

“distance” from the preliminary growth rates 
1

t

t

p

p 

 is given by the sum of the squared 

differences. 
 
In this paper we consider a more general formulation of the GRP benchmarking problem, 
valid not only for flows variables linked by a simple summation, that is: 
 
 min ( ) subject to  f 

x
x Ax b  (3) 

where A is the temporal aggregation matrix (1). The criterion (2) is clearly a non-linear and, 
as we shall see in the following, non-convex function. The constrained minimization problem 
(3) has not linear first-order conditions for a stationary point, and thus it is not possible to 
find an explicit, analytic expression for the solution. On the other hand, provided that both 

tp  and , 1, , 1tx t n  , be different from zero, ( )f x  is a twice continuously differentiable 

function, making it possible the use of several iterative minimization algorithms (Nocedal 
and Wright, 2006). 
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A.   Modified Denton PFD 

Denton (1971) proposed a benchmarking procedure grounded on the Proportionate First 
Differences between the target and the original series. Cholette (1984) slightly modified the 
result of Denton, in order to correctly deal with the starting conditions of the problem. The 
PFD benchmarked estimates are thus obtained as the solution to the constrained quadratic 
minimization problem 
 

 

2

1

2 1

min subject to  
t

n
t t

x
t t t

x x

p p


 

 
  

 
 Ax b . (4) 

 
In matrix notation, the PFD benchmarked series is contained in the (n x 1) vector PFDx
solution to the linear system (Di Fonzo and Marini, 2010) 
 

 
PFD


    

    
    

M A 0x

A 0 b
, (5) 

 
where  is a (n x 1) vector of Lagrange multipliers, 1 1T

n n
 M P Δ Δ P , ( )diagP p , and nΔ  

is the ((n1) x n) first differences matrix: 
 

 

1 1 0 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 1 1

 
  
 
 
 
  




     



. 

 
Notice that T

n nΔ Δ  has rank n1 (Cohen et al., 1971, p. 122), so M is singular. However, 

given that matrix A has full row rank, and provided no preliminary value is equal to zero2,  
the coefficient matrix of system (5) has full rank (Di Fonzo and Marini, 2010). 
 
Causey and Trager (1981) use PFDx  as starting values of the iterative algorithm developed to 
solve the NLP problem (3). This basically depends on two facts: 
1.      the optimization procedure starts at a feasible point, as PFDx clearly is, and at each 
iteration moves to another feasible point; 

                                                 
2 When some 

t
p  is null, a standard practice in the benchmarking literature (see, for example, Cholette and 

Chhab, 1991, p. 413) consists in setting the originally null preliminary data at a very small value, e.g. 

0.001
t

p  . 
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2.      in the literature (Cholette, 1984, Bloem et al. 2001, Dagum and Cholette, 2006) it is 
often claimed that the PFD procedure produces results very close to the GRP benchmarking, 
and thus PFDx , which is considered as a “good” approximation to the GRP estimates, is a 
natural candidate to be used as starting point. 

Di Fonzo and Marini (2010) discuss this latter issue, showing that PFD and GRP 
benchmarked estimates are close when the variability of the preliminary series and/or its bias 
are low with respect to the target variable. When this is not the case (e.g. preliminary series 
with large growth rates and/or bias), the quality of the approximation worsens. 
In addition, GRP benchmarking almost always results in a better movement preservation as 
compared to Denton PFD3. 
 

III.   GRADIENT VECTOR AND HESSIAN MATRIX OF THE GRP CRITERION 

Computational studies on a number of test problems of varying complexity demonstrate that 
the calculation and treatment of the Hessian matrix are fundamental to the observed 
performance of NLP optimization algorithms.  Second order information though costly, 
because its calculation is often cumbersome, leads to quadratic convergence 
to a (possibly local) optimal solution, whereas gradient information leads to convergence 
with a linear convergence rate. There are various alternatives for exploiting second order 
information about the function of interest. Basically, the Hessian matrix can be calculated 
analytically or approximated by using finite differences techniques. 
 
In this section we present the analytical expression of the gradient vector of the GRP 
criterion (2), which has been originally derived by Causey and Trager (1981, see also Fagan, 
1995). Then we calculate the analytical expression of the Hessian matrix of the criterion, 
which can be exploited by Newton-type NLP optimization procedures. 
 
The gradient vector of function (2) is the (n x 1) vector 
 

   1
( ) ( )

n

t t
f g g


  x x , 

 
where 
 

                                                 
3 Empirical comparisons between the Cholette-Dagum regression based benchmarking approach, which can be 
seen as a generalization of the PFD procedure (Dagum and Cholette, 2006), and the Causey and Trager 
approach, are shown in Harvill Hood (2005) and Titova et al. (2010). 
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2 2 2
1 2

1 1 1

1 1 1
2

1 1 1

1 1 1

2

2
2 2, , 1

2
.

t t t t t
t

t t t t t t

n n
n

n n n

x x p
g

x x p

x p x x p
g t n

x x p x x p

x p
g

x x p

  

  

  

 
   

 
   

        
   
 

  
 

  

 
Let us denote the elements of the Hessian matrix, 2 ( ) ( )f x H x , as 
 

 
2 ( )

, , 1, , .i
ij

i j j

gf
h i j n

x x x


  
  

x   

 
Notice that the Hessian matrix is both symmetric and tri-diagonal, that is its non-zero items 
are , 1,, 1, , , , 2, , ,t t t th t n h t n   and 1, , 1, , 1t th t n   . After some calculations, we find: 

 

 

2 2 2
11 3

1 1 1

1 1 1
, 2 3

1

, 2
1

2

2 3 2

2
2 3 2 2, , 1

2

2
2 1, 1, , 1 1, 2, , .

t t t
t t

t t t t

n n
n

j j
ij

i i i

x x p
h

x x p

x x p
h t n

x x x p

h
x

x p
h i j j n i j j n

x x p

  





 
  

 
 

     
 



 
           

 



 

 

 
For example, assuming 4n  we have: 
 

 

2 2 2
2
1 1 1

3 3 32 2
2

1 1 1 2 2 2

3 3 4 4 4
2

2 2 2 3 3 3

4 4

3 3 3

2

2
2

( ) ,
2

2

2

x x p

x x p

x x px p

x x p x x p

x p x x p

x x p x x p

x p

x x p

  
   

  
                

        
    

  
  

   

g x  

 
while the lower triangle of the Hessian matrix is: 
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2 2 2
3
1 1 1

3 3 32 2
2 2 3
1 1 1 1 2 2 2

3 3 4 4 4
2 2 3
2 2 2 2 3 3 3

4 4
2 2
3 3 3 3

2 3 2

2 2
2 2 3 2

( )
2 2

0 2 2 3 2

2 2
0 0 2

x x p

x x p

x x px p

x x p x x x p

x p x x p

x x p x x x p

x p

x x p x

  
  

  
                 

         
    

  
   

   

H x . 

 
This last formula can be used in a simple numerical example to check that the GRP criterion 

(2) is non-convex. Consider the (4 x 1) vectors  1 2 3 4
Tx and  5 6 7 8

Tp , 

respectively. Simple calculations give 
 

 

19 6.75 0 0

6.75 3.575 0.9 0
( ) ,

0 0.9 0.9938 0.3333

0 0 0.3333 0.2222

 
   
  
  

H x    and   ( ) 0.9660 H x . 

 
Because its Hessian has a negative determinant, the GRP criterion (2) is non-convex. In 
addition, the upper left (3 x 3) 
 

 

19 6.75 0

6.75 3.575 0.9

0 0.9 0.9938

 
   
  

 

has a positive determinant, equal to 6.8345, thus H(x) is an indefinite (neither positive nor 
negative definite) matrix. Thus, unlike the convex case, function f(x) is not guaranteed to 
have a unique, global minimum. This is an important feature of the minimization problem (3)
, to be taken into considerations when, in order to solve it, we use minimization procedures 
which are generally local. 
 

IV.   FROM A CONSTRAINED TO AN UNCONSTRAINED MINIMIZATION PROBLEM 

One possible approach to solving the linear equality constrained minimization problem (3) 
is to eliminate the constraints, and to solve the resulting problem with algorithms for 
unconstrained minimization. 
 
In this section we show that the equality constrained problem (3) can be transformed into 
an equivalent unconstrained problem, after which an unconstrained minimization method can 
be used to solve it. 
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As we shall see, the process of eliminating the equality constraints (and reconstructing the 
solution of the original problem from the solution of the transformed problem) involves 
standard linear algebra operations. Moreover, for most temporal benchmarking problems the 
pattern of the constraint matrix A (see section II) makes it possible to develop a simple and 
numerical stable approach to the elimination of the variables, which requires neither complex 
nor time consuming computation programs. Thus, unlike the cases where it is better to retain 
the equality constraints, since eliminating them can make the problem harder to understand 
and analyze, or ruin the efficiency of an algorithm that solves it4, for our problem the 
proposed approach turns out to be simple, cheap and effective in computational terms. 
 

A.   Eliminating the Linear Equality Constraints 

We start by assuming that the temporal aggregation matrix A defining the constraints in 
problem (3) has full row rank m < n, which means that the constraints are independent (i.e., 
not redundant). It should be noted that this property is always satisfied by matrices A as 
defined in (1). 
 
As many variables (m out of n) as independent constraints can be eliminated by considering a 
re-parameterization of the affine feasible set defined by the constraints: 
 
  : .nF   x Ax b  (6) 

 
Since any n-dimensional vector can be written uniquely as the sum of a range-space and a  
null space-component, we can write (Nocedal and Wright, 2006): 
 
  x y z , (7) 

with ( )TRy A  and ( )Nz A , where 
 

 ( ) : for some T n T mR    A y y A λ λ   

and 
 
  ( ) :nN   A z Az 0 , 

 
denote the range-space of matrix TA and the null-space of matrix A, respectively. 
If we denote by Y a (n x m) basis matrix for ( )TR A , and by Z a (n x (nm)) basis matrix for 

( )N A , expression (7) can be written as 
 
 Y Z x Yx Zx , (8) 

 

                                                 
4 This could happen, for example, when x has very large dimension, and eliminating the equality constraints 
would destroy sparsity of some other useful structure of the problem (Boyd and Vandenberghe, 2004, p. 143). 
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where Yx and Zx  are (m x 1) and ((nm) x 1) vectors, respectively. Notice that matrix Z is 

such that AZ 0 . 
 
For any feasible point x, the pre-multiplication by A of expression (8) gives Y AYx b , 

which means that, for any choice of matrix Y, Yx is uniquely determined as 

 
 1( )y

x AY b . (9) 

 
Ultimately, it follows that any feasible x can be written as 
 
 Z x x Zx , (10) 

where 1( )x Y AY b  is a feasible (n x 1) vector (i.e., Ax b ). In other words, the n 

constrained variables in x have been transformed into the nm unconstrained variables in Zx . 

 
B.   Generating an Elimination Matrix by QR factorization 

Matrix Z in (10) is called elimination matrix (Boyd and Vandenberg he, 2004, p. 524). It is 
not uniquely defined, and its choice should be made carefully, because it could have a deep 
impact on the performance of the optimization procedure (Nocedal and Wright, 2006, pp. 
430-431). 
 
We propose to compute a null-space matrix for A by a QR factorization of matrix TA , which 
permits to define an orthonormal basis of n  “ideal from the point of view of numerical 
stability” (Nocedal and Wright, 2006, p. 433)5. We discuss how this result can be obtained, 
and show that for A as defined by (1), this factorization involves simple and readily available 
matrices, which need not to be calculated by any numerical procedure6. 
 
Let us consider the orthonormal QR factorization (Nocedal and Wright, 2006): 
 
 T A Π QR , (11) 
 
where Π  is an (m x m) permutation matrix, Q is an (n x n) orthogonal matrix (i.e., 

T T
n Q Q QQ I ), and R is an upper triangular (n x m) matrix, respectively. 

Now, let us partition matrices Q and R as: 
 

   1
1 2

 
   

 

R
Q Q Q R

0
, (12) 

                                                 
5 Other methods for generating null-space matrices can be found in Griva et al. (2009, pp. 86-91). 

6 This fact prevents problems deriving from possible large dimensions of the series to be benchmarked, since in 
practice no computing effort is required to perform the QR factorization. 
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where 1 2 1, and Q Q R are (n x m), (n x (nm)) and (m x m) matrices, respectively. Since both 

Π  and Q are orthogonal matrices, it follows that TAQ ΠR , or  
 
 1 1 2andT AQ ΠR AQ 0 . 

 
Thus, 1Y Q  is a basis for the range-space of TA , and 2Z Q  is a basis for the null-space 

of A, with T
mY Y I  and T

n mZ Z I . 

The pattern of the constraint matrix, T
m A I a (see section II), makes it possible to 

compute a QR factorization of TA  involving matrices formulated in compact form and once 
for all, ready to be implemented in a program code without any further (possibly complex 
and time consuming) elaboration. 
A simple, and effective choice for the matrices involved in (11)-(12) is the following: 
 
 1

1 2 1, , , ,m m s m m        I Q I 1 Q I K R I  

 
where the scalar quantity  and the (s x (s1)) matrix K depend on the type of aggregation: 
 

Flows Average Stocks 
(End/Begin-of-

period) 
1

s
    

s

s
    

1   

   
Flows and average End-of-period 

stocks 
Beginning-of-period 

stocks 

1
0 0

1 2
0

( 1) 1

1 1
0

( 1) ( 1)( 2)

1 1 1

( 1) ( 1)( 2) 2

1 1 1

( 1) ( 1)( 2) 2

s

s

s

s s s

s s s s

s s s s

s s s s

 
 
 
 
 

  
 
  
   
 
 
 
   

   
 
      

K







   





1s
T
 

  
 

I
K

0
 

1

T

s

 
  
 

0
K

I
 

 
Notice that in any case it is 1

T
sK K I , while for both types of stocks we have 1

TQ A . 
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It can be easily shown that, according to this choice of 1Q  and 2Q ,  matrix Q is orthonormal, 

as one can see by checking the following relationships: 
 

1 1

2 2

1 2

2 1

,

T
m

T
n m

T

T

T T
n











 

Q Q I

Q Q I

Q Q 0

Q Q 0

QQ Q Q I

 

 
where the zero matrices have dimensions (m x m(s1)) and (m(s1) x m), respectively. 
 
For example, for flows variables and 4s  , as for the quarterly-to-annual benchmarking, it is 
 

 

0.8660 0 0

0.2887 0.8165 0
0.5 and ,

0.2887 0.4082 0.7071

0.2887 0.4082 0.7071



 
    
   
   

K  

 
while for 12s  , as for the monthly-to-annual benchmarking, it is 0.2887   and 
 

 

0.9574 0 0 0 0 0 0 0 0 0 0

0.0870 0.9535 0 0 0 0 0 0 0 0 0

0.0870 0.0953 0.9487 0 0 0 0 0 0 0 0

0.0870 0.0953 0.1054 0.9428 0 0 0 0 0 0 0

0.0870 0.0953 0.1054 0.1179 0.9354 0 0 0 0 0 0

0.0870 0.0953 0.1054 0.1179 0.1336 0.9258 0 0 0 0 0

0.0870 0.09



 

  

   

    

 
K

53 0.1054 0.1179 0.1336 0.1543 0.9129 0 0 0 0

0.0870 0.0953 0.1054 0.1179 0.1336 0.1543 0.1826 0.8944 0 0 0

0.0870 0.0953 0.1054 0.1179 0.1336 0.1543 0.1826 0.2236 0.8660 0 0

0.0870 0.0953 0.1054 0.1179 0.1336 0.

   

      

       

      1543 0.1826 0.2236 0.2887 0.8165 0

0.0870 0.0953 0.1054 0.1179 0.1336 0.1543 0.1826 0.2236 0.2887 0.4082 0.7071

0.0870 0.0953 0.1054 0.1179 0.1336 0.1543 0.1826 0.2236 0.2887 0.4082 0.7071

  

          

         

































 
 
 
 

. 
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C.   The Reduced Unconstrained Minimization Problem 

The optimization problem with equality constraints (3) can be transformed into an equivalent 
unconstrained problem by incorporating the constraints into the objective function. For, we 
need only to consider the restricted variables Z x x Zx , and the function 

 
 ( ) ( )Z Zf f x x Zx . (13) 

 
The argument of this function, Zx , is a vector with nm elements, instead of n as in the 

original function f. The unconstrained minimum of f , say Zx , is however the solution to the 

original constrained problem. 
 
Since T

n mZ Z I  and 2 1
T T Z Y Q Q 0 , Zx  can be written as T

Z x Z x , and thus the 

Jacobean of the transformation is 
 

 TZ
T





x

Z
x

. 

 
If we assume differentiability of f, gradient and Hessian of the reduced function can be 
expressed in terms of the original function: 
 

 
2 2

( ) [ ( )]

( ) [ ( )] .

T
Z

T
Z

f f

f f

  

  

x Z x

x Z x Z



  (14) 

 
The relationship of the properties of stationary points to the derivatives (14) are the 
conditions that determine a minimum of the reduced objective function (13). Thus 

* *
Z x x Zx  is a minimum if and only if 

 *[ ( )]T f Z x 0  

 2 *[ ( )]T fZ x Z  is positive definite, and 

 * Ax b . 

The first two relationships are standard conditions for a minimum, while the third condition 
derives from the constrained nature of the problem. Considered together, these relationships 
provide the basis for the solution to the original optimization problem (3). 

V.   LINE-SEARCH ALGORITHMS FOR UNCONSTRAINED MINIMIZATION 

A general algorithm for solving the unconstrained minimization problem 
 
 min ( )

Z
Zf

x
x  (15) 
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can be stated as follows: 
 
1.      Specify some initial guess of the solution: ,0 0

T
Z x Z x 7; 

2.      For 0,1,k  , if ,Z kx is optimal, then stop. Otherwise: 

a. determine a search direction kd ; 

b. determine a step length k  that leads to an improved estimate of the solution 

 , 1 ,Z k Z k k k  x x d . (16) 

 
Once the direction kd  has been computed, the step length k  is found by solving some 

auxiliary one-dimensional problem (Nocedal and Wright, 2006). It is typically required that 
the search direction kd  be a descent direction for the function f  at the point ,Z kx . This 

means that for “small” steps taken along kd  the function value is guaranteed to decrease: 

 

 , ,( ) ( ) for 0Z k k Z kf f     x d x   

 
for some 0  . 
This algorithm with its three major steps - the optimality test, computation of kd , and 

computation of k  through a line-search approach - has been the basis for many successful 

optimization algorithms, and has been used to develop many software packages for nonlinear 
optimization. However, it is not the only approach possible. Another effective nonlinear 
optimization approach is the trust-region method (Nocedal and Wright, 2006). In this paper 
we follow the line-search approach due to its effectiveness and simplicity, also in terms of 
software implementation. 
 

A.   Newton’s Method with Hessian Modification 

In its classical form, Newton’s method basically consists in determining kd in (16) as the 

solution to the Newton equations 
 

 2
, ,( ) ( )Z k k Z kf f         x d x  . (17) 

 

                                                 
7 In agreement with Causey and Trager (1981), we assume 0

PFDx x , solution to system (5). 
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Since it can fail or diverge, and even if it does converge, it might not converge to a 
minimum, Newton’s method is rarely used in its classical form. Possible solutions to 
guarantee that the method will converge to a stationary point and possibly a local minimum, 
if one exists, is to use the Newton direction within the general recursion (16), and to consider 
a modification of the Hessian matrix in order to have a positive definite matrix in the Newton 
equations (17). Thus, a practical version of Newton’s method, that is guaranteed to converge 

and does not assume that 2
,( )Z kf x  is positive definite for all values of k, can be 

summarized as follows. 
 
1.      Specify some initial guess of the solution, ,0Zx , and specify a convergence tolerance  . 

2.      For , 1
0,1, , if ( )Z kk f   x , then stop. Otherwise: 

a. Compute a modified factorization of the Hessian: 

 2
,( ) T

Z kf  x E LDL , 

where L and D are lower triangular and diagonal, respectively, (nm) x (nm) 
matrices. Then, solve 
 

   ,( )T
k Z kf    LDL d x  

 

for the search direction kd . Notice that E will be zero if 2
,( )Z kf x  is positive 

definite. 
b. Perform a line search to determine the new estimate of the solution (16). 

 
A principal advantage of the Newton’s method with Hessian modification is that it converges 
rapidly when the current estimate of the variables is close to the solution. Its main 
disadvantage is represented by possible high computational costs, since it requires the 
derivation, computation, and storage of the Hessian matrix, and the solution of a system of 
linear equations. This last task could give raise to high computational costs if the 
dimension of the problem (nm) is not small and/or the problem is not sparse. 
 
However, for the problem in hand, in section IV we have shown the analytical expressions 
and the patterns of gradient and Hessian matrix of the problem, so we can take advantage of 
sparsity, and greatly reduce the computational costs of Newton’s method, making it an 
effective tool in practice. 
 

B.   Steepest Descent and Quasi-Newton Methods 

Both steepest descent and quasi-Newton methods can be seen as compromises to Newton’s 
method (Griva et al., 2009), that reduce one or more of its costs. In exchange, these methods 
generally have slower convergence rates. 
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These methods can be interpreted as computing the search direction kd by solving the linear 

system 
 

 ,( )k k Z kf    B d x , (18) 

where kB  is a positive-definite matrix. Since in the case of Newton’s method, 
2

,( )k Z kf B x , assuming that the Hessian matrix is positive definite, intuitively kB should 

be some approximation to 2
,( )Z kf x . 

 
Steepest Descent Method 
 
The steepest-descent method computes the search direction by assuming k n mB I , which 

gives the search direction ,( )k Z kf    d x , and then uses a line search to determine the 

updated approximate solution , 1Z kx according to (16). 

 
This is an old, widely known and cheap method, whose performance is usually very low. It is 
much simpler than Newton’s method because it does not require the computation of second 
derivatives, no system of linear equations must be solved to compute the search direction, 
and no matrix storage is needed. On the negative side, it has a slower convergence rate than 
Newton’s method, and sometimes it converges so slowly that , 1 ,Z k Z k x x is below the 

precision of computer arithmetic and the method fails. 
 
Quasi-Newton Methods 
 
Quasi-Newton methods are currently among the most widely used Newton-type methods for 
nonlinear optimization problems of moderate size, where matrices can be stored. They are 
incorporated in many software libraries, and they are effective in solving a wide variety of 
small to mid-size problems, in particular when the Hessian is hard to compute. 
 
There are many different quasi-Newton methods, but they are all based on approximating the 

Hessian 2
,( )Z kf x  by another matrix kB  that is available at lower cost. Then the search 

direction is obtained by solving equation (18). If the matrix kB  is positive definite, then this 

is equivalent to minimizing the quadratic model 
 

 , ,

1
( ) ( ) ( )

2

T
T

k Z k Z k k k k kq f f     d x x d d B d  . 

 
There are several advantages to this approach. First, an approximation kB can be found using 

only first-derivative information. Second, the search direction can be computed using only 
2( )O n  operations (vs. 3( )O n for Newton’s method in the nonsparse case). There are also 

disadvantages, but they are minor. Quasi-Newton methods do not converge quadratically, 
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but they can converge superlinearly (Nocedal and Wright, 2006). At the precision of 
computer arithmetic, there is not much practical difference between these two rates of 
convergence. Also, quasi-Newton methods still require matrix storage, so they are not 
normally used to solve large problems8. 
 
The various quasi-Newton methods differ in the choice of kB . A variety of methods are 

obtained by imposing conditions on the approximation kB . These conditions are usually 

properties of the Hessian matrix that the approximation should share, like symmetry and 
positive definiteness. Due to its effectiveness, the most widely used expression for kB  is the 

update formula by Broyden, Fletcher, Goldfarb, and Shanno (BFGS): 
 

 1

( )( )T T
k k k k k k

k k T T
k k k k k

   
B s B s y y

B B
s B s y s

, (19) 

 

where , 1 , , 1 ,, ( ) ( ),k Z k Z k k Z k Z kf f     s x x y x x   and 0 n mB I . 

 
C.   Nonlinear Conjugate Gradient 

Conjugate gradient methods are generally considered as an excellent choice to solve a 
nonlinear unconstrained minimization problem, since they do not require the evaluation of 
the Hessian matrix neither the storage of an approximation of it. Nonlinear conjugate 
gradient algorithms are of a considerable interest from both theoretical and practical points of 
view,  particularly for their convergence properties (Hager and Zhang, 2006), a very easy 
implementation effort in computer programs, and their efficiency in solving large-scale 
problems. 
 
Starting from an initial guess ,0Zx , the nonlinear conjugate gradient method generates a 

sequence ,Z kx  according to the relationship (16), where the positive step size k is obtained 

by a line search, and the direction kd  is recursively defined by 

 

 0

1

for 0

for 1k
k k k

k

k 

 
   

g
d

g d




, (20) 

 

where ,( )k Z kf g x , and k  is the CG update parameter. Different CG methods correspond 

to different choices for the scalar k  (Hager and Zhang, 2006, Andrei, 2008). Table 1 

provides a (partial) list of some choices for the CG update parameters. 
 

                                                 
8 This drawback can be overcome by using a “limited” version of the algorithm, like the limited BFGS 
(LBFGS) method (Nocedal and Wright, 2006). 
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Table 1. Various choices for the CG update parameter ( 1k k k y g g  ) 

 
CG update parameter Authors 

1

1 1

T
HS k k
k T

k k

 

 


g y

d y


 Hestenes and Stiefel (1952) 

1 1

T
FR k k
k T

k k


 


g g

g g

 
 

 Fletcher and Reeves (1964) 

1

1 1

T
PRP k k
k T

k k

 

 


g y

g g


 

 Polak and Ribière (1969) and Polyak (1969) 

1max{0, }
T

PRP k k
k T

k k

  
g y

g g


 

 Powell (1984) 

1

1 1

T
CD k k
k T

k k

 

 




g g

d g

 


 Fletcher (1987) (CD stands for Conjugate Descent) 

1 1

T
DY k k
k T

k k


 


g g

d y

 
 Dai and Yuan (1999) 

 
Notice that if f  is a strongly convex quadratic, then in theory all six choices for the update 
parameter in table 1 are equivalent with an exact line search. For non-quadratic functions, 
however, each choice for the update parameter leads to different performance. 
 
Since numerical experience indicates that the PRP+ algorithm tends to be more robust and 
efficient (Gilbert and Nocedal, 1992; Nocedal and Wright, 2006, pp. 122-124), in this paper 
we use PRP  as CG update parameter. We consider also a restarting strategy9 suggested by 

Powell (1977), which consists in setting 0k   whenever two consecutive gradients are far 

from orthogonal, as measured by the condition (Nocedal and Wright, 2006, p. 125) 
 

 
1

0.1
T
k k

T
k k

 
g g

g g

 
 

. (21) 

 
VI.   PROJECTED STEEPEST DESCENT AND CONJUGATE GRADIENT DIRECTIONS 

Causey and Trager (1981) developed a benchmarking procedure grounded on a constrained 
Steepest Descent (SD) algorithm. Brown (2010) suggests a similar procedure can be applied 
by using the non-linear Conjugate Gradient (CG) algorithm. 
In both cases the minimization problem is solved in the original variables x, by using a 
feasible directions method according to which the iterations are given by 

                                                 
9 As Nocedal and Wright (2006, p. 124) stress, “Restarting serves to periodically refresh the algorithm, erasing 
old information that may not be beneficial”. 
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 1k k k k  x x v , 

where k  is a positive step length, and kv  is such that k Av 0 . Thanks to this property, if 

kx is feasible ( k Av b ), then 1kx is feasible too (i.e, kv is a feasible direction). 

 
The main idea is to “project” at each iteration the unconstrained search direction n

k d 
onto the null-space of matrix A by means of the (n x n) orthogonal projection matrix 
 

 11 1
( )T T

k n
k k 

    V I A AA A N , 

where 
1

2( )T
k k k  d Nd , and to compute k k k v V d . Since k Av 0 , kv  is a feasible 

direction. It can be shown (see the Appendix 1) that matrix kV  is an orthogonal projection 

matrix onto the affine feasible set F defined by the constraints. 
 
Causey and Trager (1981) compute the unconstrained search direction as the steepest descent 
direction, namely k k d g . Brown (2010) suggests the update formula 1

PRP
k k k   d g d , 

within a non-linear CG-PRP algorithm with a restart procedure (Powell, 1977; see section 
V). 
 

VII.   SOLVERS’ EFFICIENCY AND QUALITY 

 
In this section we present numerical results about the performance of the techniques  
considered so far on the artificial series used by Denton (1971) in his seminal paper 
on benchmarking (section VII-A), and in benchmarking 61 quarterly series and 236 monthly 
series to their annual counterparts (section VII-B). 
 
The GRP-benchmarked series are computed by applying the following unconstrained non-
linear optimization algorithms to the reduced problem (15) obtained by transformation and 
elimination of some original variables: 
 Steepest Descent (SD), 

 Conjugate Gradient (CG), 

 Quasi-Newton BFGS (QN-BFGS), 

 Newton’s method with Hessian modification (MN). 

 
Even though this is not the main focus of the paper, when presenting the results we will look 
at the ability of the GRP benchmarked estimates in preserving the dynamics of the 
preliminary series, as compared to the Denton’s PFD solution. We use the two indices (Di 
Fonzo and Marini, 2010): 
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 (22) 

 
where the series GRPx has been calculated using the algorithms described so far. 
 
Index 1r  can be seen as the ratio between two mean absolute differences between the growth 

rates of the benchmarked (GRP and PFD, respectively) and the preliminary series. 
Sometimes this index can be larger than 1, thus indicating that, according to this metric, the 
movement is better preserved by Denton PFD. When 2q  , the index (22) is simply the 
square root of the ratio between the Causey and Trager movement preservation criteria (2), 
computed for the GRP and the PFD benchmarked estimates, respectively. Obviously, we 
expect the GRP technique always reaches a lower (or at least equal) value of the chosen 
criterion than PFD, and thus the index 2r  should be never larger than 1. 

 
We have used the Matlab function minFunc (Schmidt, 2006), which is a free analogous of 
the fminunc of the Optimization Toolbox of Matlab (The Mathworks, 2009). A valuable 
feature of minFunc is that the scripts of the function are available to the user, who can change 
them according to her/his needs10. 
 
As for the options used, the conjugate gradient’s update parameter ( k ) is computed 

according to the PRP+ formula (see table 1), and the restart condition (21) is considered. 
Convergence is achieved when the norm of the reduced gradient of the objective function is 
negligible. More precisely, a GRP benchmarked series * *

Z x x Zx is obtained when 

 

 * * 7

1
1

( ) ( ) 10
n m

Z i Z
i

f g






  x x  , (23) 

 
where *( ),1, ,i Zg n mx  , is the generic element of the reduced gradient vector *( )Zf x . If 

condition (23) is not satisfied after 5,000 iterations, the algorithm ends, and returns the most 
recent (feasible) solution11. 
 
For comparisons’ completeness, we consider also the GRP benchmarked series produced by 
the DOS-executable programme BMK1.exe, based on the projected steepest descent 
                                                 
10 For example, the original function does not compute the PRP+ variant of the CG algorithm, and considers a 
restart condition slightly different from (21). 

11 The experiments were run on a PC equipped with a 32-bit Intel I5 processor with 4GB of RAM memory and 
Windows 7 Professional. 
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algorithm by Causey and Trager (1981, see section VI), which has been used for a long time 
by the U.S. Bureau of the Census. 
 
The convergence condition of this programme is  
 

 1( )
1.00001

( )
k

k

f

f
 

x

x
, 

 
which must be fulfilled within 200 iterations. No information on the number of function 
evaluations is given, and the PFDx series is returned as the final solution if the algorithm has a 
breakdown (this never happened for the series we consider in the paper). 
 
Due to the limited possibilities of “tuning” the optimization options of BMK1, we used it as a 
sort of “black-box”. The comparisons could thus seem rather unfair. Indeed, in our view such 
comparisons should only serve to give an idea of the improvements (if any) we can obtain by 
using the procedures we present in this paper, as compared to the only (as far as we know) 
currently available tool for GRP benchmarking. 
 
According to the specialized literature (Mittelmann and Pruessner, 2006), in order to 
compare different solvers/algorithms for NLP problems we should consider (i) efficiency, (ii) 
robustness, and (iii) quality of solution of the solvers. 
 
Efficiency, which refers to the amount of computation resources needed to find the solution, 
is generally measured in terms of solver resource time (runtime). Robustness refers to the 
ability of the solver to succeed in finding one solution, and is generally measured by the 
number of problems for which a feasible solution is produced (the labelling of a solution as 
either “successful” or not, is usually summarized by a solve status return code). While 
considering these two aspects is sufficient when dealing with convex minimization problems 
(such as in linear programs or for certain quadratic programs), where the found minimum is 
generally the global one, for non-convex models, which may admit several local minima, 
other factors involving solution quality play an important role as well. For example, 
one solver may indeed be more efficient (i.e., faster), but the solution may be worse than that 
of a solver which is slower in terms of elapsed time. 
 
For the problem in hand, however, robustness is not a concern, since all the techniques we 
consider are “feasible point methods” - i.e. at each iterate they produce series in line with the 
temporal aggregation constraints - designed in such a way as they always give solutions “not 
worse” than PFDx . In other words, in any case a feasible solution, say x , is obtained, such 
that Ax b , and ( ) ( )PFDf fx x . 
 
Therefore, if we were only interested in the efficiency in finding a local minimum, we would 
simply look for the fastest solver. Instead, if we wish that the comparison takes into account 
also the quality of the solution, it seems sensible to consider the best solution within the 
available ones, 
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 ˆ arg min ( )f
x

x x


  

 
and to refer to the relative objective value error between x  and x̂ . More precisely, given a 
positive small tolerance  , the expression12 
 

 
ˆ( ) ( )

ˆ( )

f f

f



x x

x


 (24) 

can be used to define a simple quality ranking between the solutions provided by different 
solvers, which turns out to be effective when a large number of problems has to be 
considered. Clearly, the “true” best objective value corresponds to a choice of 0  , but 
actually a tolerance close to 0 is used (e.g., 0.0001  ). Thus we say that the solution x is 
 
1.      the best, if expression (24) holds for 0.0001  ; 

2.      very accurate, if expression (24) holds for 0.001  ; 

3.      accurate, if expression (24) holds for 0.01  ; 

4.      acceptable, if expression (24) holds for 0.1  . 

In other words, we consider very accurate a solution whose objective function is within 0.1% 
of the best possible solution, accurate within 1%, and acceptable within 10%. 
A solution for which the objective value is 10% larger than the best one, is considered 
of bad quality. 
 
The main concern in presenting an efficiency comparison involving several solvers, is in 
removing some of the ambiguity in interpreting the results, mostly if the number of problems 
is high (in our case, each series to be benchmarked gives rise to a NLP problem). At this end, 
we accompany the above quality information with the performance profiles (Dolan and 
Morè, 2002), a descriptive tool providing a wealth of information such as efficiency, 
robustness and probability of success of the technique in a very impressive graphical form, 
which can also include information on quality of solution, as it has been previously defined. 
We briefly summarize this effective tool in the next section. 
 

A.   Performance Profiles 

Dolan and Morè (2002) define an efficiency comparison13 in terms of a set P of pn problems 

to be solved, and a set S of sn  optimization algorithms (solvers). Let ,p st be (say) the solver 

resource time used by solver s on problem p. A performance ratio can be defined as  
                                                 
12 The relative objective value error is usually defined by considering the absolute values of both the numerator 
and denominator of expression (24). Here this is not necessary, because it is always ˆ( ) ( )f fx x and ˆ( ) 0f x . 

13 In order to avoid confusion in the terminology, we changed the original term “benchmark”, used by Dolan 
and Morè (2002), with “efficiency comparison”. 
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,

,min{ :1 }
p s

p s
p s s

t

t s n
 

 
. (25) 

 
For solvers s that do not solve problem p, we adopt the convention ,p s    (in practice, 

we set a value ,2 maxM p s  ). The performance profile of a solver s S is defined as the 

fraction of problems where the performance ratio is at most  : 
 

 ,

1
( ) size{ : }s p s

p

p P
n

      . (26) 

 
Thus ( ) : [0,1]s    is the probability that a performance ratio ,p s is within   of the best 

ratio. The function in equation (26) is the cumulative distribution function for the  
performance ratio in equation (25). Furthermore, it is piecewise constant, monotonically 
increasing and continuous from the right at each of the breakpoints. Note that the best solver 
for a particular problem attains the lower bound , 1p s  . 

 
A performance profile seeks to capture how well the solver performs relative to the other 
solvers in S on the set of problems in P. Note, in particular, that (1)s  is the fraction of 

problems for which solver s S performs the best and that for   sufficiently large, ( )s  is 

the fraction of problems solved by s S . In general, ( )s   is the fraction of problems with a 

performance ratio ,p s bounded by  , and thus solvers with high values for ( )s  are 

preferable. 
 
The profile gives much information, including information about solver robustness and 
efficiency. If a user is only interested in solver efficiency, then he can examine profile values 

( )s   for 1   of different solvers s. The values (1)s  specify the probability that a solver 

will `win' over all other solvers. For the profile defined in terms of computing time, 
we define a `win' as the solver who finds any optimal solution in the least amount 
of time. It is clearly possible to choose different definitions of “win” based on different 
performance ratios (e.g., defined in terms of number of iterations, of function evaluations, of 
objective functions at the minimum). 
 
If a user is only interested in the probability of success of a solver for the problem set P,  
then the user may examine 
 
 lim ( )s

 


 (27) 

For ratios  approaching  , we are looking at the probability of success of a solver given 
unlimited resource time. 
 
If the user is also interested in information on quality of the solution returned by a solver 
(which is of particular interest for non-convex problems, as the one of interest for us, see 
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section III), the ratio (25) can be modified as follows. If ,p so  is the value of the objective 

function at the solution found by solver s for problem p, and pb  is the best value within those 

found by all solvers s S for problem p, we define a new performance ratio as 
 

 

, ,
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, (28) 

 
where  is, as before, a user-defined relative objective function difference threshold,  and 

M is an upper bound on ,p s  over all problems p and solvers s. The ratio (25) is similar as 

before, except that we consider a solver successful only if the returned solution is within   
of the best solution found. 
 

B.   Denton (1971) series 

 
The first example we consider is the series used in the seminal paper of Denton (1971). It 
consists of a five-year artificial quarterly series, with a fixed seasonal pattern invariant from 
year to year. The values are 50, 100, 150 and 100 in the four quarters, for a total yearly 
amount of 400. The annual benchmarks are assumed to be 500, 400, 300, 400 and 500 
in the five successive years. The corresponding discrepancies (i.e., the differences between 
the known benchmarks and the annual sums of the preliminary series) are therefore 100, 0,     
-100, 0 and 100, respectively. 
 
The performance of the GRP benchmarked series as compared to the PFD one has been 
analyzed by Di Fonzo and Marini (2010). Here suffice to say that, as expected, the GRP 
procedure shows better results as regards the movement preservation ( 1 0.539r   and 

2 0.553r  ). 

 
Figure 1 and Table 2 show the different performances obtained by the considered 
procedures14. The Newton’s method, which uses the analytic Hessian formula, need very few 
iterations and function evaluations (in both cases, 4) to converge, whereas after 4 iterations 
the other algorithms are rather far from the minimum. However, all the procedures succeed in 
finding the minimum of the objective function. According to the quality ranking defined in 
section VII, all solvers yield “very accurate” solutions, the “best” being given by quasi-
Newton and modified Newton’s methods. 
 

                                                 
14 In figure 1 BMK1 is not present, because it does not provide the needed information. 
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The steepest descent (as we implemented it) appears to be less performing as compared to the 
conjugate gradient (a larger objective function, 36 iterations vs. 15, and 113 function 
evaluations vs. 57). Notice that the two steepest descent-based techniques - BMK1 and SD - 
show very similar performance, with a slight preference for BMK1, both in terms of target 
criterion and number of iterations. As for the quasi-Newton BFGS performance, the objective 
function and the number of function evaluations are less than SD and CG, but the number of 
iterations is larger. 
 

Table 2: Denton series: iterations, function evaluations and final GRP function  
 

Algorithm n. of 
iterations 

n. of function 
evaluations 

Objective 
function 

Steepest descent (SD-BMK1)         30 n.a. 0.04412603 
Steepest descent (SD)                  36 113 0.04412774 
Conjugate gradient (CG)                15 57 0.04412700 
Quasi-Newton (QN-BFGS)  39 41 0.04411658 
Newton with Hessian modification (MD) 4 4 0.04411656 
 
 

Figure 1: Denton (1971) series: GRP objective function in the first 14 iterations steps 
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C.   EUQSA and MRTS series 

 
The EUQSA dataset consists of 61 raw (not seasonally adjusted) quarterly series from the 
European Quarterly Sector Accounts, which are not in line with their known annual 
counterpart. The preliminary series span the period from 1999-Q1 to 2005-Q4 (28 quarters), 
and annual benchmarks are available for each variable15. 
 
As shown in Di Fonzo and Marini (2011b, Appendix 2), these variables present temporal 
discrepancies which are in some cases very small (less than 0.5% of the original level) and in 
other cases rather large (up to 50% of the original level). As it is usual in National Accounts, 
the temporal discrepancies for a single variable are often either all negative or all positive, 
which is a clear indication that the preliminary quarterly series are biased with respect to the 
annual benchmarks. 
 
We consider also 236 monthly series of the Canadian Monthly Retail Trade Survey. For 226 
out of 236 series, the dataset covers the period from January 1991 to December 2003, while 
the remaining 10 series start on January 1999. When these flow series are seasonally adjusted 
(SA), the temporal aggregation constraints valid for the raw series are typically “destroyed”, 
since the annual sum of the SA series might show differences with the annual totals from the 
raw series, due to the fact that a non-deterministic seasonal component is normally assumed. 
 
We mimic the situations faced by a data-producer wishing to restore the temporal additivity 
relationships between the SA and the raw data. The X12-ARIMA procedure was applied to 
the 236 monthly series with automatic options. Obviously, we did not use the optional spec 
FORCE (U.S. Census Bureau, 2009), so the yearly sums of the SA series are in general 
different from those of the original series16. 
 
The computations have been done using the interface program Demetra (version 2.2, see 
Eurostat, 2007). The SA series resulting from X12-ARIMA have thus been considered as 
preliminary SA series to be temporally benchmarked. 
 
The temporal discrepancies are quite variable (see Di Fonzo and Marini, 2011b, Appendix 3), 
but less marked than those of the EUQSA series. In fact, the mean absolute percentage 
discrepancy ranges from 0.02% to 4.52%. 
 
Table 3 reports on the quality, according to the previously defined metric, of the solutions 
found for the 61 EUQSA series and the 236 MRTS series. The first column refers to the 
series benchmarked according to Denton PFD, which is used as starting point by all the NLP 
                                                 
15 A complete description of both EUQSA and MRTS datasets can be found in Di Fonzo and Marini (2011a). 

16 We stress that the quality of seasonal adjustment is not a primary concern of the paper. We have replicated 
the exercise performing the seasonal adjustment by TRAMO-SEATS, and the results we found as regards the 
different impact of the GRP and PFD benchmarking procedures on the temporal profiles of the SA series, were 
not significantly affected. 
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solvers considered in this work. Clearly, Denton PFD is not a true GRP benchmarking 
procedure, but it is generally considered a good approximation of it. In this comparison it is 
used as a sort of “baseline”: for the whole set of 297 series, and with reference to the GRP 
objective function (2), Denton PFD yields solutions which are acceptable in about 80% of 
cases, accurate in about 37% and very accurate in about 2%, thus confirming the good 
approximation property generally claimed in literature. Anyway, in about 20% of cases this 
does not hold true, as the solutions by Denton PFD attain a GRP criterion which is more than 
10% larger than the best one. 
 

Table 3: EUQSA and MRTS series: quality of the solutions found with different GRP 
benchmarking procedures 

 
Quality of Denton SD   QN  

solution (tol.%) PFD BMK1 SD CG BFGS Newton

EUQSA (61 series) 
Bad (>10%) 26 1 4 3 1 0

Acceptable (10%) 35 60 57 58 60 61
Accurate (1%) 15 60 49 51 54 61

Very accurate (0.1%) 3 60 30 34 44 61
Best (0.01%) 0 51 21 25 38 61

  MRTS (236 series) 
Bad (>10%) 33 7 6 1 0 0

Acceptable (10%) 203 229 230 235 236 236
Accurate (1%) 96 227 207 216 218 236

Very accurate (0.1%) 3 212 102 125 162 236
Best (0.01%) 0 94 46 74 153 235

  TOTAL (297 series) 
Bad (>10%) 59 8 10 4 1 0

Acceptable (10%) 238 289 287 293 296 297
Accurate (1%) 111 287 256 267 272 297

Very accurate (0.1%) 6 272 132 159 206 297
Best (0.01%) 0 145 67 99 191 296

TOTAL (%) 
Bad (>10%) 19.87 2.69 3.37 1.35 0.34 0

Acceptable (10%) 80.13 97.31 96.63 98.65 99.66 100
Accurate (1%) 37.37 96.63 86.20 89.90 91.58 100

Very accurate (0.1%) 2.02 91.58 44.44 53.54 69.36 100
Best (0.01%) 0.00 48.82 22.56 33.33 64.31 99.66

  



 29 

Passing now to consider the “true” NLP solvers, the a priori expectation of a predominance 
of the Newton’s method with Hessian modification is fully confirmed by the results: the 
Hessian-based procedure never results in solutions of bad quality, and produces by far the 
best results for almost all series, the unique exception being one of the MRTS series, for 
which the solution is very accurate, but cannot be considered as the best. 
 
All the gradient-based procedures produce some solutions of bad quality (1 series out of 296 
for QN-BFGS, 4 for CG, 8 for SD-BMK1 and 10 for SD). Furthermore, we note that the SD-
BMK1 algorithm is uniformly better than the SD solver, and produces very accurate 
solutions in over 91% of cases, a very good performance as compared to more sophisticated 
optimization algorithms, as CG and QN-BFGS are. 
 
Table 4 presents some information on the computational efforts made by each solver, namely 
median, standard deviation and maximum values of number of iterations, function valuations, 
and elapsed time. We restrict this comparison on very accurate solutions only (reported in the 
first column), that is on those problems where solvers achieve a final objective function 
satisfying condition (24) with 310  . It is confirmed the good performance of the 
Newton’s method, that solved all problems within few iterations and function evaluations, 
with a maximum runtime under 0.1 seconds. 
 

Table 4: EUQSA and MRTS series: statistics on iterations, function evaluations and 
runtime for very accurate solutions ( 310  ) 

 
      Iterations Func. Evaluations Runtime 

Algorithm # series med std max med std max med std max

EUQSA (61 series) 

SD-BMK1 60 11 18 70 n.a. n.a. n.a. 0.06 0.26 2.04

SD 30 35 95 352 219 693 2578 0.08 0.21 0.79

CG 34 10 499 2922 84 1031 6094 0.03 0.33 1.92

QN-BFGS 44 13 40 263 20 40 264 0.01 0.01 0.08

MN 61 1 1 4 2 1 7 0.00 0.01 0.10

MRTS (236 series) 

SD-BMK1 212 13 11 64 n.a. n.a. n.a. 0.07 0.01 0.12

SD 102 38 662 3307 262 2487 10004 0.08 2.43 13.39

CG 125 17 590 4967 128 1244 10001 0.04 2.56 27.67

QN-BFGS 162 37 154 1060 45 153 1061 0.03 0.17 1.57

MN 236 1 1 6 2 1 8 0.01 0.00 0.03

SD: steepest descent; CG: conjugate gradient; QN: quasi-Newton; MN: modified Newton 
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Table 5 shows the same statistics on the subset of series for which each solver did not 
achieve a very accurate solution. For these problems, SD-BMK1 often reached the maximum 
number of iterations allowed by the programme (201). Steepest descent algorithms often 
display slow convergence rates and zigzagging when the objective function is flat around the 
minimum, as it might be the case for these series and other cases where SD shows a similar 
behavior. On the other hand, very often CG and QN-BFGS stop after few iterations, when a 
significant descent direction is not found. 
 

Table 5: EUQSA and MRTS series: statistics on iterations, function evaluations and 
runtime for not very accurate solutions ( 310  ) 

 
    Iterations Func. Evaluations Runtime 

Algorithm # series med std max med std max med std max

EUQSA (61 series) 

SD-BMK1 1 201 0 201 n.a. n.a. n.a. 0.09 0.00 0.09

SD 31 1 897 5000 1 1459 8152 0.01 0.81 4.54

CG 27 1 2 8 1 15 59 0.00 0.00 0.02

QN-BFGS 17 1 1 7 1 3 15 0.00 0.00 0.01

MN 0 - - - - - - - - -

MRTS (236 series) 

SD-BMK1 24 103 59 202 n.a. n.a. n.a. 0.11 0.02 0.16

SD 134 1 1169 5000 1 1714 10001 0.01 5.00 27.24

CG 111 1 604 4990 1 1335 10001 0.01 3.17 27.72

QN-BFGS 74 1 29 254 1 30 258 0.01 0.02 0.16

MN 0 - - - - - - - - -

SD: steepest descent; CG: conjugate gradient; QN: quasi-Newton; MN: modified Newton 

 
Looking at these solutions, the movements in the original series are better preserved by the 
Newton’s method. Tables 6 and 7 report median, standard deviation, minimum and 
maximum values of 1r  and 2r  indices, as defined by (22). The median value of MD is always 

smaller than those of other algorithms. Gradient-based solvers do not move away from the 
starting condition (i.e. the Denton PFD solution), and thus 2 1r   in most cases. However, it 

should be noted that the impact of these differences in the movements of the benchmarked 
series is relatively small, since it is practically impossible to detect them on a time-series 
graph. 

 
Figures 2 and 3 show the performance profiles, where the X-axis is expressed in 2log -scale, 

based on runtime for, respectively, 0.1   and 0.001   in formula (28). The profiles refer 
to all series (297), and show the performance, as measured by the resource time17, when 
                                                 
17 In Appendix B we present the performance profiles distinct by dataset, based on runtime and also on number 
of iterations and of function evaluations. In this last case, SD-BMK1 is missing, since the programme does not 
provide the needed information. 
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acceptable solutions ( 0.1  ) and very accurate solutions ( 0.001  ) are considered. The 
former case gives us information about the efficiency of the solvers, while the latter shows 
their quality. 
 
The best performance of the Newton’s method, both in terms of efficiency and quality, is 
now confirmed also visually: the solutions are almost always of better quality ( (1)s is about 

0.6 for acceptable solutions, and 0.7 for very accurate solutions), and required less 
computation efforts than the other solvers. The quasi-Newton algorithm shows a valuable 
level of efficiency (almost all successful solutions in less time) as compared to the other 
gradient-based methods, followed by the conjugate gradient solver. It is also confirmed the 
good quality performance of SD-BMK1: for 0.001  and large , its curve is higher than 
the other gradient based methods18. 
 

Table 6: EUQSA series: statistics on 1r  and 2r  indices for not very accurate solutions  

( 310  ), and comparison with modified Newton’s results 
 
  # series 1r 2r  

Algorithm out of 61 med std min max med std min max

SD-BMK1 1 0.323 0.000 0.323 0.323 0.233 0.000 0.233 0.233

MN 0.133 0.000 0.133 0.133 0.108 0.000 0.108 0.108

SD 31 1.000 0.186 0.230 1.004 1.000 0.198 0.181 1.000

MN 0.979 0.213 0.133 1.005 0.987 0.212 0.108 0.999

CG 27 1.000 0.153 0.389 1.000 1.000 0.155 0.361 1.000

MN 0.979 0.169 0.306 1.005 0.988 0.162 0.324 0.999

QN-BFGS 17 1.000 0.108 0.556 1.000 1.000 0.095 0.609 1.000

MN   0.981 0.106 0.552 1.005 0.997 0.094 0.608 0.999

SD: steepest descent; CG: conjugate gradient; QN: quasi-Newton; MN: modified Newton 

 
 
  

                                                 
18 We think that one possible reason for this interesting result could be the line-search procedure worked out by 

Causey and Trager (1981), which looks for a step-length 
k

 within a specific bounded interval, whose limits 

depend on the objective function. This point is currently under study. 
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Table 7: MRTS series: statistics on 1r  and 2r  indices for not very accurate solutions  

( 310  ), and comparison with modified Newton’s results 
 
  # series r1 r2 

Algorithm out of 236 med std min max med std min max

SD-BMK1 24 0.908 0.122 0.614 1.005 0.859 0.222 0.195 0.971

MN            0.874 0.158 0.449 1.015 0.845 0.238 0.146 0.971

SD 134 1.000 0.071 0.595 1.000 1.000 0.122 0.206 1.000

MN            0.996 0.089 0.449 1.015 0.996 0.130 0.146 0.999

CG 111 1.000 0.047 0.526 1.000 1.000 0.082 0.163 1.000

MN            0.996 0.054 0.449 1.003 0.996 0.084 0.146 0.999

QN-BFGS 74 1.000 0.018 0.843 1.000 1.000 0.029 0.747 1.000

MN         0.997 0.018 0.847 1.000 0.997 0.029 0.745 0.999

SD: steepest descent; CG: conjugate gradient; QN: quasi-Newton; MN: modified Newton 

 
 
 

Figure 2: EUQSA and MRTS series: performance profiles  
for acceptable solutions ( 110  ) 
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Figure 3: EUQSA and MRTS series: performance profiles  
for very accurate solutions ( 310  ) 
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techniques focussed on growth rates preservation principles other than GRP, for example by 
considering the absolute value instead of the square of the difference between target and 
preliminary growth rates: 
 

 
2 1 1

n
t t

t t t

x p

x p  

 , 

 

 (iii) considering also the `annual' growth rates in the movement to be preserved (i.e., t

t s

x
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instead of, or combined with, 
1

t

t

x

x 

, see Fagan, 1995), and (iv) investigating the possibility of 

including the GRP principle in a reconciliation framework, where a system of time series has 
to be benchmarked in order to be in line with both temporal and contemporaneous constraints 
(Dagum and Cholette, 2006; Fortier and Quenneville, 2009; Di Fonzo and Marini, 2011a). 
 
As regards the first point, we are also studying the “GRP-analog” of the regression-based 
benchmarking model by Dagum and Cholette (2006), according to which (in a simplified 
form) the benchmarked estimates are the solution to the constrained minimization problem of 

an objective function in the proportionate corrections t t
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where 0 1   is a smoothing parameter, usually fixed by the user, which turns out to be 
useful mostly in extrapolation situations (Quenneville et al., 2003). A rather natural 
extension would in fact consider  
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APPENDIX A. Feasible direction according to Causey and Trager (1981) 
 
 Given an (n x 1) (unconstrained) direction vector d, we are looking for an (n x 1) vector v, 
 solution to the following constrained linear problem: 
 
 min . . 1 and   =T Ts t 

v
v d v v Av 0 . (29) 

 
 In other terms, we wish that the direction v have unitary norm ( 1T v v ), and be feasible  
( Av 0 ). 
 
 Consider the Lagrangean function 
 

  
*

1 ( )
2

T T TL
    v d v v Av  (30) 

 
where *  and   are a scalar and a (m x 1) vector of Lagrange multipliers, respectively. 
The first order condition is given by 
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v v
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 (31) 

 
Pre-multiplying the first equation in (31) by matrix A and solving for  , we find 
 
 1( )T   AA Ad , (32) 
 
and, by sostitution in (31), 
 
 * 1( )T T

n     v I A AA A d  (33) 

 
Noting that matrix 1( )T T

n
   N I A AA A  is idempotent ( )T N N N , and given that 

T v v 1 , by taking the square of both sides of (33), we obtain: 
 

  
1

* 2 * 2( ) T T T     v v d Nd d Nd  . 

Finally, by denoting 
1


V N , and after substitution in (33), we obtain the result: 

  v Vd . 
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APPENDIX B. Performance Profiles 
 

Figure 4: EUQSA series: performance profiles for acceptable solutions ( 110  ) 
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Figure 5: EUQSA series: performance profiles for very accurate solutions ( 310  ) 
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Figure 6: MRTS series: performance profiles for acceptable solutions ( 110  ) 
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Figure 7: MRTS series: performance profiles for very accurate solutions ( 310  ) 
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