
Foundations of Process Enhancement

Massimiliano de Leoni(B)

Department of Mathematics, University of Padua, Padua, Italy
massimiliano.deleoni@unipd.it

Abstract. Process models are among the milestones for Business Process Man-
agement and Mining, and used to describe a business process or to prescribe
how its instances should be carried out. It follows that they need to fulfill certain
properties to be useful. If they aim to represent how the process is currently being
executed, they need to be precise and recall the behavior observed in reality. If the
goal is to ensure that the process is executed according to laws and regulations,
its model should only allow the behavior that is valid from a domain viewpoint
and provides some guarantee to ensure good performance level. Process enhance-
ment is the type of Process Mining that aims at models that fulfill these proper-
ties, and the literature further splits it into two subfields: process extension and
process improvement. Process extension aims to incorporate the process perspec-
tives on data, decision, resources and time into the model: their inclusion in pro-
cess models enable designers to fine-tune the model specifications, thus obtaining
models with higher levels of precision. Process improvement passes through an
“improved” process model. If the model contains portions of behavior that lead
to unsatisfactory outcomes (high costs, low customer satisfactions, etc.) or that
violate norms and regulations, one would like those portions to be disallowed by
the model. In case some executions are observed in reality and are not allowed
by the model, they should be incorporated into the model if they are observed
to generally yield good performances. This chapter discusses these two types of
process enhancement, and illustrates some basic and some advanced techniques
to tackle it, highlighting the pros and cons, and the underlaying assumptions.

Keywords: Process improvement · Process extension · Decision discovery ·
Role discovery · Bottleneck analyses · Model repair

A process model is one of the main milestones for Business Process Management and
Mining, and may be of two natures. A first nature of process models is descriptive: they
are used by process analysts to engage process stakeholders (e.g., actors, managers,
chief officers) into discussions on how the instances of the process have typically been
executed, or how they should be. A second nature is prescriptive, and that is the case
when the models are used as input for Process-aware Information System to automate
processes and enforce how they must be carried out [10]. In both of scenarios, desirable
models need to fulfill certain properties to be of fruitful use:

1. Models need to be precise and only allow legitimate behavior (high precision). This
is especially relevant for models with a prescriptive nature: one wants to ensure that
the information systems enforce how process instances must be executed, and also
how they must not be.

c© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 243–273, 2022.
https://doi.org/10.1007/978-3-031-08848-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_8

244 M. de Leoni

2. Models should enable the executions that have been observed (high fitness), and are
valid from a business viewpoint.

3. If certain executions are proven to lead to poor performance levels, they should be
disallowed even if observed. Similarly, if certain executions have proven to reach
good performance levels, they should be allowed.

This chapter introduces a number of techniques for process enhancement, which is the
type of process mining that aims to create models that fulfill one or more of the proper-
ties mentioned above. Process enhancement starts with the provision of a process model
for which these properties are relevant. This model can be mined from data, or designed
by hand on the basis of process documentations, and/or stakeholder input. The litera-
ture proposes two types of process enhancement [25]: process extension and process
improvement.

Process extension focuses on the first property (high precision) and aims to incorpo-
rate different perspectives. The model often only defines the control-flow perspective,
which is certainly the process-model backbone, but it is insufficient to precisely encode
the behavior that a model must explicitly allow or disallow. Processes manipulate, read
and produce data (objects), their activities are performed by resources within due dead-
lines, and they take time to be carried out. In literature, these aspects are named perspec-
tives: data, resource and time perspectives. Their inclusion in process models enable
designers to fine-tune the model specifications, thus obtaining models with higher lev-
els of precision.

Process improvement focuses on the other properties, and starts from the belief that,
if a model has a prescriptive nature, process improvement passes through an “improved”
process model. Improvement can be regarded as ensuring process models (i) to better
reflect reality, and/or (ii) to only allow executions that are valid from a domain view-
point and/or are correlated to better performances.

1 Process Extension: Basic Techniques

The extension of process models to incorporate multiple perspectives relies on the pres-
ence of attributes associated with the events. The definition of simplified event log intro-
duced in [1] can be extended accordingly:

Definition 1 (Simplified Multi-Perspective Event Log). Let Uev be the universe of
events. A simplified event log L ⊂ 2U∗

ev is a set of traces, sequences of events, with the
constraint that an event can only belong to one trace: ∀σ′, σ′′ ∈ L. e ∈ σ′, e ∈ σ′′ ⇒
σ′ = σ′′.

Sections 1.2, 1.3 and 1.4 illustrates basic techniques to extend the models to incorporate
the data, resource and time perspective, respectively.

1.1 Model-Aligned Event Logs

Several techniques for process enhancement requires that the event-log traces can be
replayed on the process model (cf. [5]). This requires events to be univocally mapped

Foundations of Process Enhancement 245

a
start Enter

Loan
Application

b
Retrieve
Applicant
Data

c
Compute

Installments

Notify
Rejection

d

end

c1

c2

c3

c4

c5
e

f

Approve
Simple

Approve
Complex

c6

Fig. 1. The Petri net of the working example used in this chapter. The letters inside the transitions
identify the transition names, while the script underneath indicates the transition label, namely the
activity name. The thicker, red-coloured place and arcs identify a decision point, namely places
with outgoing arcs to multiple transitions. (Color figure online)

onto process activities; in case of Petri-net models, events must be mapped onto tran-
sitions. However, multiple process activities (e.g., Petri-net transitions) can have the
same label, and the choice of the activity to which to map each event is not necessarily
local, but it depends on the entire sequence of activities that are executed. Furthermore,
when processes are modelled via Petri nets, the model may include invisible transi-
tions, namely transitions with no associated labels that, by definition, leave no trail in
event logs. To further complicate the matter, log traces might not be compliant with the
process model: certain activities might have been executed when not expected, or not
executed when expected.

The situations above can be tackled by solving the following problem: given a log
trace σL = 〈e1, . . . , em〉 and an accepting Petri net AN = (N,Minit ,Mfinal) where
N = (P, T, F, l), we need to find the model-aligned trace σP = 〈f1, . . . , fn〉 such
that

1. the activity attribute of the events in σP is defined over the domain of transition
names, namely for each 1 ≤ i ≤ n, act(fi) ∈ T ;

2. σP is allowed by AN , namely Minit
〈#act (f1),...,#act (fm)〉→ Mfinal ;

3. an event fi ∈ σP can be mapped to an event ej ∈ σL if the activity attribute of fi

takes on a value equal to the transition of the activity of ej , namely l(#act(fi)) =
#act(ej).

4. σP is the best match to σL, namely that minimizes the number of events in σL and
in σP that cannot be mapped.

The computation of a closest model-aligned trace can be achieved through align-
ments (cf. [5]), as explained through an following example: let us consider the log trace
〈ea, eb, ee〉 where ea, eb, and ee are respectively the events for activities Enter Loan
Application, Retrieve Applicant Data, and Approve Simple the subscript indicates the
event activity (e.g. #act(ea) = a). The model is depicted in Fig. 1, where transitions
τ1 and τ2 are invisible, and the label of each transition is shown under the respective
transition. The alignment between the model and the trace is as follows

246 M. de Leoni

γ =
ea eb

 ee

a b c τ1 τ2 e

The top row and bottom row respectively identify the log component of the alignments
(namely the events), and the process/model component (the Petri-net transitions). To
create a model-aligned trace, we need to synthesize the sequence of events. For each
synchronous move between an event e and a transition t, we create an event e′ such that
#act(e′) = t, and for any other event attribute a, #a(e′) = #a(e). For each model
move for a transition t, we create an event et such that only the activity attribute is
populated #act(e′) = t. These events are then ordered according to the order of the
moves in the alignments. This means that, for the trace in question, the model-aligned
trace is 〈e′

a, e′
b, e

′
c, e

′
τ1 , e

′
τ2 , e

′
e〉where the subscript indicates the activity associated with

the event, i.e.#act(e′
x) = x. Events e′

a, e′
b and e′

e are also populated with the additional
attributes and values that are present for ea, eb, and ee, respectively: for instance, for
each attribute v of ea different from act ,#v (e′

a) = #v (ea).
Hereafter, the event log that originates from the information systems (i.e. with activ-

ity labels) is referred to as event log, while the event log defined over model transitions
is named model-aligned event log. The events of model-aligned traces that stem from
synchronous moves take on the attributes and their values from the mapped events of
the real event log, including resource and timestamp. The events that come from model
moves do not have any attribute but the activity. Note that, strictly speaking, a model-
aligned trace is not a repaired trace as discussed in [5]: the activities of model-aligned
traces are transitions names, where log traces refer to transition labels.

1.2 Data-Perspective Discovery

The data perspective focuses on how data objects are manipulated by the activities dur-
ing the execution of process instances. The study of this perspective is of high relevance
because the process-instance execution routing is affected by the characteristics of the
specific process instance, such as the amount requested for a loan or the profile of the
loan requestor, and also by the outcomes of previous steps in the process, such as the
results of a verification activity. As an example, let us consider golden and silver profiles
of potential loan requestors: a financial institute might decide to treat golden customers
via a different procedure than that for other customers. Since the data perspective affects
how decisions are made in the process, this perspective is also often referred to as deci-
sion perspective.

It is nowadays gaining momentum to represent this perspective in an integrated
model, e.g., extending a BPMN model, or as a set of separate tables, also known as
decision tables. This is also testified by the continous refinement of the Decision Model
and Notation (DMN), a standard by the Object Management Group to describe and
model decision tables [21].

Historically, the discovery of the data perspective is called Decision Mining, a name
that was introduced by the seminal work by Rozinat et al. [23]. However, this work
could not be applied on Petri nets containing invisible transitions or multiple transitions
associated to the same label. This limitation has been lifted in [8] through the use of
alignments and the construction of model-aligned tables.

Foundations of Process Enhancement 247

Table 1. A fragment of a model-complaint event log for the model in Fig. 1. The gray events have
been introduced as result of alignment model move for invisible transitions. Their case identifier
is inherited from the other trace events.

CaseId Activity Loan Loan Age Income Verification Instalment Instalment Resource

Amount Length Amount DivIncome

1 a 400000 30 30 2500 Sue

1 b TRUE Max

1 c 1225 0.49 John

1 τ1

1 τ2

1 f Jennifer

2 a 450000 30 30 3000 Mark

2 c 1380 0.46 Max

2 b FALSE John

2 τ1

2 d Sue

3 a 10000 30 71 2500 Mark

3 c 25 0.01 Max

3 b TRUE John

3 τ1

3 d Mark

4 a 400000 25 30 2700 Mark

4 b TRUE Max

4 c 1458 0.54 John

4 τ1

4 d Sue

5 a 30000 3 30 2500 Sue

5 c 925 0.37 John

5 b TRUE Max

5 τ1

5 τ2

5 e Anne

The simplest representation of the data perspective is to attach decision rules to
decision points. When processes are modelled via Petri nets, decision points are places
with arcs to multiple transitions (see, e.g., the red place with thick border and the out-
going arcs in Fig. 1). The rules explaining the choices are driven by additional process
data, which are generated by activities/transitions preceding the split. In the remainder,
this additional data is abstracted as a set of process attributes, where each attribute can
take on a value within the respective attribute domain. For these Petri nets extended
with data, a guard over these process attributes is attached to each transition, which can
possibly be identically true. A transition is enabled if every incoming place has a token
as for classical Petri nets, but also the associated guard needs to evaluatr true wrt. the
current value assignment to process attributes. As for classical Petri net, a transition is
enabled if every input place has a token; however, in this case, that is only a necessary

248 M. de Leoni

Table 2. The observation instances for the model in Fig. 1 and the event log in Table 1 to discover
the guards at decision point for place c5. The last column indicates the class feature.

Loan Loan Age Income Verification Instalment Instalment Transition

Amount Length Amount DivIncome

400000 30 30 2500 TRUE 1225 0.49 τ2

450000 30 30 3000 FALSE 1380 0.46 d

10000 30 71 2500 TRUE 25 0.01 d

400000 25 30 2700 TRUE 1458 0.54 d

400000 25 30 2700 TRUE 925 0.37 τ2

condition: the guard also needs to evaluate true. Other process-modelling notations have
equivalent constructs to represent this: for instance, BPMN models use XOR-split gate-
ways, depicted as a diamond with a X symbol inside, and conditions are represented on
the arcs going out the gateway.

The basic algorithm for guard discovery assumes that the decisions are mutually
exclusive: when a process instance reaches a decision point, one and exactly one branch
is enabled for any assignment of values to attributes.

In [8,23], the decision-mining problem is transformed into a classification problem:
which transition is expected to fire (namely is enabled) for each valid assignment of
values to process attributes. This problem can be tackled through decision-tree learning:
decision trees have the remarkable advantage to explicitly indicate the classification
criteria, namely which transition is enabled for each assignments of values to attributes.

The intuition can be given through an example related to a process modelled via
the Petri net in Fig. 1. A corresponding model-aligned event log is represented conve-
niently in tabular form in Table 1. Loan lengths are measured in years, attribute Income
is the monthly salary, InstallmentAmount is the amount of each monthly installment,
and InstalmentDivIncome is the ratio between InstallmentAmount and Income. Last,
Verification is a boolean process attribute to which a value is assigned as result of exe-
cuting the activity Retrieve Applicant Data (Petri-net transition b): if the retrieval of
applicant data confirms the information provided by applicants through the first activ-
ity, attribute Verification takes on a false value, and the loan request is going to be
rejected. Let us focus on decision point c5, which is input place of transitions d or
τ2. It follows that d and τ2 are mutually exclusive. We need to train a decision tree
that define the conditions that discriminate when d or τ2 is expected to occur, which
are going to become the guards of d and τ2. Table 2 shows the instances to be used
to train the decision-tree model. The last column holds the class values of the learn-
ing instances, whereas the others columns refer to the independent variables. Since the
model does not contain loops, exactly one token is produced in place c5, for each pro-
cess instance. The first row refers to the case with identifier 1: in this case, the transition
τ2 is observed when the following values were assigned to the process variable through
the execution of given activities (i.e. model transitions): LoanAmount = 400000,
LoanLength = 30, Age = 30, Income = 2500, InstalmentAmount = 1225,
V erification = TRUE and InstalmentDivIncome = 0.49. The second row refers

Foundations of Process Enhancement 249

Verification

InstalmentDivIncome

dAge

d
LoanLength

dτ2

≤ 10 > 10

τ2

(0,60)

(61,70)

(71,+∞)

≤ 0.5
> 0.5

d

FALSE TRUE

Fig. 2. A possible decision tree that is learned from the observation instances in Table 2.

to the second trace (id 2): in this case, d was observed with LoanAmount = 450000,
LoanLength = 30, Age = 30, InstalmentAmount = 1380, Income = 3000,
V erification = FALSE and InstalmentDivIncome = 0.46. In case values
are assigned to process attributes by different transitions, the latest observed value is
considered. Figure 2 shows a possible tree that can be learned from the observation
instances in Table 2. The guards can be extracted from the decision tree, traversing
the paths from the room to leaves. The guard for any transition t is in the form of
expr1 ∨ . . . ∨ exprn where expri refers to the i-th path that leads to a leaf labeled
as t, and is a conjunction of atoms variable operator constant (e.g., age ≤ 60 or
V erification = FALSE) of the nodes and arcs part of the path.

As an example, the guard of transition d (activity Notify Rejection)is an expression
with four subexpression: exprd

1 ∨ . . . ∨ exprd
4 . Sub-expression exprd

1 refers to the path
for the left-most node, which includes the root node V erification and the edge asso-
ciated with label FALSE, lead to expression V erification = FALSE; exprd

2 refers
to the second left-most node with label d:

V erification = TRUE ∧ InstalmentDivIncome ≤ 0.5 ∧ 61 ≤ Age ≤ 70 ∧ LoanLength > 10

and etc. Considering the four paths in the decision tree, the guard for d is as follows:

V erification = FALSE
∨(V erification = TRUE ∧ InstalmentDivIncome ≤ 0.5 ∧ 61 ≤ Age ≤ 70 ∧ LoanLength > 10)
∨(V erification = TRUE ∧ InstalmentDivIncome ≤ 0.5 ∧ Age ≥ 70)
∨(V erification = TRUE ∧ InstalmentDivIncome > 0.5)

That is a disjunction of conjunction of terms related to paths from the root to the leaves
labeled with d. One can similarly obtain the guard of τ2, which is the disjunction of two
expressions:

(V erification = TRUE ∧ InstalmentDivIncome ≤ 0.5 ∧ Age ≤ 60)
∨(V erification = TRUE ∧ InstalmentDivIncome ≤ 0.5 ∧ 61 ≤ Age ≤ 70 ∧ LoanLength ≤ 10)

250 M. de Leoni

Missing Values
Let us consider again the model-aligned event log in Fig. 1, and suppose that the event
for transition b in the trace with case identifier 1 comes from a model move. This means
that, in the real event log before computing alignment, an event for b in the first trace
was not observed. In such a case, the fact that transition b assigns a TRUE value to
Verification is lacking. As a consequence, the first decision-tree training instance has a
missing value for attribute Verification. Several techniques exist for the management of
missing values of a given variable f , such as:

1. assigning the most common (if categorical) or the average value (if numerical)
among those observed for f in the other training instances,

2. similarly as above but restricting to the instances with the same class value (i.e. the
same transition in our setting),

3. creating one training instance for each of the n observed values - say value v - and
assigning value v to the corresponding instance, with a weight that is equal to the
number of instance with value v for f divided by the number of instance with some
value for feature f .

Several implementations of decision-tree learning algorithms (e.g., of C4.5 [22]) are
already equipped with the missing-value managements. However, it is important to
think carefully about the meaning of missing values. It might be - as many schemes
implicitly assume - that the value was produced but, for quality issues, was not recorded
in the dataset. However, it could also mean that the transition did not produce that value,
due to, e.g., some concept drift or impossibility to find a suitable value for the specific
instance in question. When this is true, the missing value conveys important informa-
tion, and the learning instance should carry the information that the value was missing
via an additional boolean feature, instead of injecting random values. This additional
feature can increase the discriminative power of the guards, differentiating the situa-
tions in which the information was provided from those in which the information was
missing.

1.3 Organizational Mining

Organizational Mining focuses on the resources, which refer to anyone or anything
involved in performing activities, such as a human process participant, a software sys-
tem (e.g., a server) or an equipment (e.g., a production machine). The organization
perspective, also referred to as resource perspective, aims to model how resources are
grouped, ad how they interact to each other.

Among different goals, organizational mining aims at how resources collaborated
to carry on individual process instances. Typically, the resource collaborations can
be represented as social networks, which are graphs where nodes are the resources
and arcs, direct or indirect, indicate some form of collaboration between pairs of
resources [25,26]. Arcs can be also given weights, which is proportional to the fre-
quency/intensity of the collaborations. One of the most studied social networks in Busi-
ness Process Management relates to the hand-over of work between resources. A work
hand-over between two resources a and b exists in a process instance p, if a has executed

Foundations of Process Enhancement 251

a b c d e f
Anne 1

Jennifer 1

John 0.4 0.6

Mark 0.6 0.2

Max 0.6 0.4

Sue 0.4 0.4

(a)

Role Resources Activities
R1 Anne, Jennifer e, f

R2 John, Max b, c

R3 Mark, Sue a, d

(b)

Fig. 3. An example of application of role discovery for the process referring to the log in Fig. 1.
Table (a) is the resource-activity matrix, where colors are used to define a reasonable grouping of
rows, i.e. resources. When no value is depicted for a cell, it should be intended as zero. Table (b)
details the discovered roles. Note that the role name cannot be automatically derived.

an activity for p, which is directly followed by a second activity that is executed by b.
This implies that a has handed over the progression of the execution of p to b, which,
in turn, can later hand it over to another resource. Among the different goals, organiza-
tional mining aims to discover these social networks, and later to analyze them. Social
network analysis is very interesting in Organizational Mining because it can unveil rel-
evant information about resources. Notably, it can discover cliques of resources that
tend to work together, or critical resources that are less “replaceable”. Less replaceable
resources are characterized by a large degree of incoming and outgoing arcs, and the
removal of the corresponding nodes in the graph may create longer paths between pairs
of resources, or even yield disconnected components.

Space consideration prevents us from further discussing social-network analysis,
and forces us to rather focus on analyzing the event logs to discover roles, groups of
resources that work on the same activities. Clustering techniques are simple techniques
to discover roles within organizations, especially under the assumption that a resource
plays one single role. The starting point is to build a resource-activity matrix, such as
that in Fig. 3(a). Rows refer to different resources and columns to different activities.
The value for the row r and column a indicates the average number of times that r
executes a in a process execution. For instance, Mark executes activity a 0.6 times per
case, on average. Note that, if an activity is executed exactly once per process instance,
the sum of the values of the cells of the corresponding column is one. A sum lower or
higher than one indicates an activity to be optional or be involved in a loop.

In a resource-activity matrix, each row is a different resource and can be regarded as
a vector with as many dimensions as the number of process activities: the value of the
dimension for a given activity is equal to that of the corresponding cell in the matrix.
Rows are thus vectors, points of a cartesian space, that can be clustered, e.g., via well-
known clustering algorithms, such as K-Means or DBScan [19]). The row colors in
Fig. 3(a) illustrates a reasonable clustering for the matrix in question. As an example,
Mark and Sue belong to the same cluster and, hence, play the same role: their role allows
them to perform activities a and d. The same is for John and Max, who can perform b
and c. Anne and Jennifer form the third role that enables them to perform e and f. Note

252 M. de Leoni

that it would be equally reasonable to split the cluster with Anne and Jennifer into two,
although a simpler solution with fewer role is possibly preferable when equivalent.

1.4 Time Perspective

A process-instance execution can takes a considerable amount of time to be carried out.
Depending on the domain, it might even take months or years to conclude: consider,
e.g., a health-care process to follow up cancer diagnoses, or that to give monthly unem-
ployment benefits, or even a process to reintegrate workers who have suffered physical
issues that prevent them from going back to their original employment. It follows that
process activities are not instantaneous as we have so far considered, but they take some
time to be executed. In fact, certain activities require external inputs (e.g., the produc-
tion of documents, the arrival of materials and other goods), and the availability of
necessary machines and suitable human resources. If these requirements are not met
at the moment when the activities are ready to be started, their execution is forcibly
delayed. These delays can have a cascading effect on other activities that follow in the
process.

Within the realm of Process Mining, the time perspective focuses on the timing
of events that carry timestamp information. The time-perspective analysis can notably
be used to discover process bottlenecks, and monitor the service levels: their analysis
enables verifying whether executions are carried on within a reasonable amount of time
(e.g., a complaint is addressed within the same day in which it is filed), or whether the
temporal process constraint are fulfilled (e.g., the second shot of the COVID-19’s Pzifer
vaccine is given within 21 days from the first). The analysis of the perspectives on time
and resource is also partly overlapping: thanks to the time information, process analysts
can assess, for instance, whether resources are fairly, overly, or scantily utilized.

The verification of the satisfaction of time-related constraints is related to confor-
mance checking (see [5]) As an example, Mannhardt and Blinde illustrates an inter-
esting case study to check the conformance of the treatment of patients who suffered
from Sepsis [18]. The conformance checking of time perspective is not covered in
this chapter, which conversely focuses on extending and annotating a process model
to unveil potential time-related issues, especially process’ bottlenecks.

The presence or absence of bottlenecks can be related to (i) waiting time, namely
the difference between the timestamp of the actual start of an activity instance and the
earliest moment in which the instance could have started (cf. above discussion of delays
caused by lack of resources), or (ii) service time, i.e. the duration of an activity-instance
execution.

Several ways exists to analyse the service and waiting times of the activities of a
process model, e.g. modelled via Petri nets. The performances at the different points
of the model can be analyzed through queue mining [24]. For instance, queue min-
ing can be employed to estimate how long a token typically remains unconsumed in a
Petri-net place. This estimation is far from being easy because it requires to consider
several factors: the average length of the token queues in places, the policy of con-
sumptions of tokens (FIFO or according to some priorities), the relationships between
places (e.g., connected to the same transition), etc. Queue mining considers the process
model as a queuing network, whose characteristics are determined after analysing the

Foundations of Process Enhancement 253

information stored in event logs. A queuing network is used to determine the activity
execution policies. When a queue network is created, several off-the-shelf techniques
can be employed for its analysis.

Space limitation forces this chapter to only focus on a simple technique based on the
Petri-net token-replay game: real-log traces are transformed in model-aligned traces that
are replayed on the Petri-net model to collect waiting and service times. The transfor-
mation to model-aligned traces ensures that they are replayable on the model. However,
the firings of Petri-net transitions are atomic by definition, and hence their execution
take no time. This is clearly not realistic, and requires to explicitly model the starting
and completion of activity instances are two separate Petri-net transitions. This explicit
modelling can be simply explained through our working example of the process mod-
elled as in Fig. 1.

Each visible transition is split into the sequence of two transitions that model the
starting and completion of activity instances, yielding the Petri net in Fig. 4(a). For
instance, activity Enter Loan Application is now represented through two transitions,
named a s and a c, which respectively fire when instances of that activity starts or com-
pletes. We aim to play the token game: this means that transition a s fires upon a start
event for activity Enter Loan Application, and a c upon a complete event for the same
activity. This means that, when a token is present in the places named a r, . . . , f r, it
indicates that the activity associated with transitions a s, . . . , f s are being executed,
respectively. Note that there is no need to split invisible transitions: they are necessary
for modelling purposes, and do not represent an actual activity, and hence can be con-
sidered as instantaneous. As mentioned earlier, the real event log need to be translated
into a model-aligned event log that can be directly replayed on the Petri net of the pro-
cess model, and alignment techniques are used for this purpose. In the scenario in which
events refer to either the starting or the completion of the activities, the two transitions
that indicates the starting or completion of any activity x need both to be mapped to
events for x, but the first to events related to the starting of x and the second to events
related to the completion of x. For the model in Fig. 4(a), transition a s is mapped to
events related to the starting of Enter Loan Application, and a c to events related to the
completion of Enter Loan Application.

After computing the alignments with this mapping, it is possible to synthesize the
model-aligned event log in Fig. 4(b). Gray rows refer to the firing of invisible transi-
tions: in that case, the timestamp of the associated events is assigned to be equal to the
earliest moment in which the transition could fired. Consider transition τ1 and the first
trace: τ1 can fire when both transitions b c and c c have fired, b c fires at time 11 and
c c at time 10 for the first trace, and consequently the earliest moment in which τ1 can
fire is at time 11.

Each trace of the model-aligned event log can be replayed on the Petri net. This
allows computing the amount of time in which a token resides in a given place, i.e. the
difference between the timestamp in which the token was consumed and the timestamp
when it was produced. For example, consider the place a r: tokens are produced in that
place when transition a s fires and are consumed when transition a c fires. For trace

254 M. de Leoni

Fig. 4. An example of extending the process model with the time perspective. The left-hand side
picture shows how the process model in Fig. 1 can be annotated with temporal information wrt.
the model-aligned log shown in the right-hand side table. The gray lines in the table are the events
related to invisible transitions.

Foundations of Process Enhancement 255

with case identifier 1, a c and a s respectively fired at time 4 and 1, thus the difference
is 3. The residence of each token in each place can be computed by replaying the model-
aligned event logs: these timestamp differences are shown within the clouds associated
to the different places in Fig. 4(a). The average per place can subsequently be computed,
which is shown next to the respective cloud. One can red color each place with a color
intensity that is proportional to the mean value of time: white is associated to an average
of zero, and the color becomes closer and closer to dark red as the average is closer and
closer to the largest observed value.

Considering place a r again, the average time is 3.4 for the event log in Fig. 4(b).
This indicates that the average duration of instances of activity Enter Loan Application
is 3.4 time units (e.g., hours). Consider place c1: tokens are produced in the place after
the completion of the same activity and consumed when transition b s fires, namely
when activity Retrieve Applicant Data starts. For the first trace, the amount of time a
token is c1 is 3 time units, namely the timestamp of the event for b s, which is seven
for first trace, minus the timestamp of the event for a c, i.e. 4. After collecting the
times for each token in c1 for all traces (see the cloud connected to the place) and
computing the average, one can conclude that the average time between the starting of
activity instances of Retrieve Application Data and the completion of the corresponding
instance of the preceding activity Enter Loan Application.

Dealing with Non-compliant Traces and Missing Timestamps
So far, we have assumed that (i) activity executions leave trails in log through both
start and completion events, and (ii) every trace is compliant with the model. In partic-
ular, assumption (ii)means that the model-aligned traces only include additional events
related to firing of invisible transitions. These assumptions do not always hold in reality:
event logs often only contain the events related to the completions of activity instances,
and some traces are not fully compliant with the model (cf. the Conformance Checking
field discussed in [5]).

Assumption (i) is not met. In this case, one can employ a naı̈ve approach that assumes
that the next activity in the process starts as soon as the previous completes: in this
case, the timestamp of the starting event is the same as the timestamp of the completion
event of the activity that precedes. This is often unrealistic, as pictorially depicted in
Fig. 5. In the timeline, Completion of a indicates the moment in which activity instance
a completes and Real start of a is the actual moment in which a started, which has
left no trail in the event log. Moment Completion of the activity instance preceding a
is when the previous activity concluded. The time difference between Completion of
the activity instance preceding a and Real Start of a corresponds to the waiting time
of a. If this time difference is set to 0, no waiting time is assumed. A better estimation
can be obtained if the event log contains information about the resource perspective:
one can look at the completion event of a given activity instance a and consider the
resource r that performed the instance: the starting timestamp of the activity instance
is equal to the earliest moment after the completion of the activity instance that pre-
cedes a in which r has completed any activity instance and has become available [20].

256 M. de Leoni

Fig. 5. Representation of the scenario when the timestamp of the start event of an activity instance
a is not present in the event log and needs to be estimated. This timestamp is located between
the timestamp when a completes and the earliest timestamp when the resource r that is going to
perform a is available to start a. This time interval is represented through a green area, and the
real start of a, which is unknown, is located within the area. In case the resource information is
missing, we do not even have the earliest timestamp of availability of r: this introduces further
uncertainty, because we can only rely on the timestamp of completion of the activity instance that
precedes a in the trace.

This corresponds to the moment in figure labelled as Availability of the resource that
performed a: this introduces some waiting time, namely the time difference between
Completion of the activity instance preceding a and Availability of the resource that
performed a, thus being more realistic. The latter case is still often unrealistic in prac-
tice [11]: (a) resources work on multiple processes and continuously switch from one to
the other while event logs refer to one process, (b) take breaks during the working days
(e.g., when tired), (c) carry on additional duties that lead no trail in the event logs (e.g.,
when answering the phone). Let us consider Fig. 5 again: the actual start is in a moment
between when the resource has become available and when the activity instance has
been completed. The choice of estimating different start moments leads to estimating
different activity-instance durations. In [14], Fracca et al. proposes a technique to esti-
mate the starting event where different activity-duration configurations are simulated,
and the resulting simulated event log is compared with the real event logs to assess
the similarity with respect to time-related aspects (activity-instance waiting times and
process-instance durations): the more similar are the real and simulated event log is, the
more realistic are the estimation of activity instance durations. The simulation of dif-
ferent activity-duration configurations requires a simulation model, which consists of
a process model that is extended with additional information related to the simulation
aspects, such as the inter-arrival time, the routing probabilities at the XOR gateways,
the roles and the resource-activity allocation, potential work calendar, and more. The
simulation model can be constructed by combining different process mining techniques,
as also discussed in [14].

Assumption (ii) is not met. This can be clearly caused by not meeting the assumption
(i): the starting events are missing, yielding model moves for every Petri-net transition
linked to the starting of activity instances. We consider the situation hereafter in which
assumption (i) is met. In this case, the deviations are related to the activities that have
not been performed in accordance to the process model. In this case, both the starting
and completion events are missing. If the number of non-compliant traces is limited,

Foundations of Process Enhancement 257

these can be excluded from the analysis. Otherwise, the log traces are aligned to cre-
ate model-aligned traces, without adding the timestamps to the events that come from
model moves for visible transitions: in this case, statistics are computed for reliability
by only considering pairs of subsequent events that have a timestamp associated.

2 Process Extension: Advanced Techniques

This section introduces some advanced techniques to overtake the limitations of the
basic algorithms for decision mining and for role discovery: In particular, the basic
algorithm for decision mining introduced in Sect. 1.2 is only able to discover with atoms
of form var-op-const where var is a variable, op is a comparison operator and const is
a constant (e.g. Age ≤ 60 or V erification = FALSE), while the basic algorithm for
role discovery in Sect. 1.3 assumes a resource to be able to play one single role, only.
Sections 2.1 and 2.2 discussed some advanced techniques that aim to overcome these
limitations.

2.1 Data-Perspective Discovery of Guards with Variable Comparison

Let us consider a variant of the event log in Table 1 where InstalmentAmount is
present but attribute InstalmentDivIncome is missing. As mentioned above, the basic
guard-discovery algorithm will be unable to discover guards that include an atom
InstalmentAmount/Income > 0.5, or its negation. The work by de Leoni et al. [7] reports
on an extension to the basic algorithm that can discover atoms of form var-op-var, such
as InstalmentAmount > 0.5 · Income.

The algorithm builds on some oracle that discovers invariants in a set of observa-
tion instances, such as the Daikon system [6]. Analogously to the basic algorithm, the
algorithm is applied for each place p of the Petri Net modelling a process, and consists
of five steps:

1. The basic algorithm in Sect. 1.2 observation instances Ψ for p (e.g., those in Table 2).
2. For each transition ti with outgoing arcs to p, we extract the observation instances

Ψti ⊂ Ψ with class ti (e.g., those in Table 2 with transition\class τ2). In fact,
Ψt1 , . . . , Ψtn is a clustering of Ψ where t1, . . . , tn are the transitions with outgoing
arcs to p.

3. A set Vti of invariants that hold in Ψti is computed (for instance,
InstalmentAmount/Income > 0.5).

4. For each invariant v ∈ Vt1 ∪ . . . ∪ Vtn , one boolean feature fv is added to every
observation instance ψ ∈ Ψ , and it takes on a true or false value depending whether
invariant v holds with the variable-to-value assignment defined in ψ. For instance,
invariant InstalmentAmount/Income > 0.5 holds in the fourth instance in Table 1, and
does not for the others (recall that attribute InstalmentDivIncome is assumed to not
be present).

258 M. de Leoni

Verification

InstalmentAmount/Income > 0.5

dAge

d
LoanLength

dτ2

≤ 10 > 10

τ2

(0,60)

(61,70)

(70,+∞)

FALSE
TRUE

d

FALSE TRUE

Fig. 6. The possible decision tree that is learned from the observation instances in
Table 2 augmented with boolean features related to discovered invariants, such as
InstalmentAmount/Income > 0.5.

5. A decision tree is trained using the set of augmented observation instances.

For the working example, such a decision tree as in Fig. 6 is learnt: the invariant is
now able to discriminate between the instances of d and of τ2.

2.2 Discovery Roles with Overlapping Resources

The basic organization-mining technique discussed in Sect. 1.3 relies on clustering, and
thus assumes each resource to play exactly one role. In many settings, this assumption
does not hold: resources can associated with multiple roles. Burattin et al. [4] lift this
assumption, by clustering activities instead of resources: the clustering puts together the
activities that require to be executed by resources playing the same role.1 The starting
point is a process model and its dependencies of form a → b, i.e. activity b can follow
a but a cannot follow b. Clustering is obtained by removing all the dependencies a → b
for which the handover is larger than a given threshold τw:2

Definition 2 (Resource Handover for a Model Dependency). Let a → b be the
dependency between two activities a and b. Let L be an event log and Ra→b =
σ∈L 〈ei,ej〉∈σ.#act (ei)=a∧#act (ej)=b (#res(ei),#res(ej)) be the multiset of pairs of
resources in L where the first resource executes a and is immediately followed by the
second resource executing b. Let Ra

a→b and Rb
a→b be the projection over the first and

1 The terminology and formalization used hereafter slightly different those in [4], to harmonize
with the rest of the chapter.

2 Given two multisets X and Y , the interection X ∩ Y returns a multiset that contains every
element z present in X and Y with the lowest cardinality for z between that of X and of Y .
Symbol � indicates the union of multisets: the cardinality of each element in the union of two
multisets X and Y is equal to the sum of the cardinalities of the element in X and in Y . Given
a sequence σ, a second sequence σ′ ∈ σ if σ′ is a sub-sequence of σ.

Foundations of Process Enhancement 259

second component ofRa
a→b, respectively. Let R=

a→b be the pairs with the same resource
value on both components. The resource handover for dependency a → b for L is
defined as follows:

wab(L) = 1 − |Ra
a→b ∩ Rb

a→b| + |R=
a→b|

|Ra
a→b| + |Rb

a→b|

The definition states that wab(L) is closer and closer to zero if it is more and more
frequent that two activities a and b are performed by the same resources. If activities
belong to the same cluster, the resources that perform them can play the same role.

As an example, let us consider the dependency a → c for the model in Fig. 1
and the log in Table 1. It follows Ra→c = [(Mark,Max)2, (Sue,Anne)1] where
the superscript indicates the cardinality; hence, Ra

a→c = [Mark2, Sue1] and Rc
a→c =

[Max2, Anne1]. Therefore, the resource handover for the dependency is wac(L) = 1.
Value 1 is obtained when the set of resources are totally disjoint, as the case is for a
and c: the dependency is hence removed, making a and c belong to different clusters.
Repeating the reasoning on dependency a →, we obtain wab = 1, thus causing a and b
to belong to different clusters.

Ultimately, this means that activity a is a cluster with only itself. However, Fig. 3(b)
shows that activities a and d should belong to the same cluster, so as to add the per-
forming resources to the same role. However, this cannot happen if we only look at the
dependencies because there is no dependency a → d, or vice versa. Therefore, after
partitioning the activities, some clusters can be merged. This occurs if the so-called
merging degree is larger than a given threshold τρ:

Definition 3 (Merging Degree). Let A1 = {a1,1, . . . , a1,n} and A2 =
{a2,1, . . . , a2,n} be two activity clusters. Let L be an event log. For any set A of
activities, let us denote the multiset of resource executing activities in A with RA =
σ∈L e∈σ:#act (e)∈A #res(ei). The merging degree of A1 and A2 is defined as:

ρA1,A2(L) = 2
|RA1 ∩ RA2 |

|RA1 | + |RA2 |
Similarly to Definition 2, this measures the amount of shared resources between those
that execute two setsA1 andA2 of activities. If ρA1,A2(L) > τρ,A1 andA2 are merged.

In conclusion, the algorithm to discover roles where resources belong to multiple is
as follows:

1. Select the resource-handover threshold τw and the merging threshold τρ.
2. For each model dependency x → y, compute the handover wxy .
3. Remove every dependency x → y, such as wxy < τw.
4. Cluster the activities according to the retained dependencies.
5. Merge two activity clusters A1 and A2, if the merging degree ρA1,A2 > τρ. Note

this step can be applied recursively to merged clusters until no further merging.
6. For each final cluster A, a role is created that contains every resource that has per-

formed an instance of any activity in A. A further threshold can be defined to discard
resources that seldom perform activities in A.

260 M. de Leoni

It is worthwhile reflecting that the actual relevant values for the resource-handover
threshold τw are limited to the set of handover values wxy computed for each depen-
dency x → y. Given that the number of dependencies is finite and usually small, it
is possible to extensively apply the role discovery setting τw iteratively to every value
wxy where x → y. This enables process analysts to evaluate the different configuration
and determine the most realistic role set, using business knowledge. Also, once a value
is set for τw and the clusters are created, one can similarly reason for τρ: the number
of values to test is finite, i.e. the values ρA′,A′′(L) for each pairs (A′, A′′) of clusters at
step 4.

3 Process Improvement

Process analysts and certain stakeholders (e.g., CEOs) may oftentimes have partial or
helicopter-like view on the organizations in which such process are executed. As a con-
sequence, the process models that they have in mind (also known as “to-be” models)
may not summarize how processes are really executed by resources. In these cases, such
“to-be” models are of limited use. Improvement can be regarded as altering the model
so that it reflects reality (i.e., improvement on fitness) while ensuring the other qual-
ity criteria remain within a certain reasonable range (i.e., precision, generalization and
simplicity). The result is an “as-is” model that show how the process is really executed.
Section 3.1 details how models can be improved on fitness.

However, if models are used to prescribe how processes ought to be executed, they
should only represent the behavior with which the organization is satisfied. If the model
contains portions of behavior that lead to unsatisfactory outcomes (high costs, low cus-
tomer satisfactions, etc.) or that violate norms and regulations, one would like those
portions to be disallowed by the model. Section 3.2 details how models can be improved
to ensure no regulation violations and to incorporate behavior that has proven to yield
good performance levels.

The classical problem of process discovery discussed in [2,3] and that of process
improvement share some commonalities in that they both aim to come up with “as-
is” models. The difference lays on the fact that the problem of process discovery is
largely unsupervised (little or no knowledge is fed in), while process improvement is
supervised: an original model is provided, which constitutes the initial “backbone” that
is later altered to obtain a “as-is” model. It follows naturally that process improvement
is generally able to produce better models because the original model encodes behavior
that is deemed appropriate from a business viewpoint. This reasoning is especially valid
when the original model is hand-designed by or in concert with process owners.

The remainder of this section will use the same working example that was used
in Sects. 1 and 2, namely the process modelled in Fig. 1. However, hereafter we will
differently assume that the activity names in the real event log coincides with the tran-
sition names a, . . . , f , to keep the discussion simple. Also, since we discuss techniques
for process improvement that only consider the control flow, traces will be considered
as sequences of activities, which coincide with transition names for the considerations
above (i.e., a simple formulation)

Foundations of Process Enhancement 261

3.1 Model Repair to Reflect Reality

The problem of repairing a process model M to reflect the reality recorded in a log L
can be formulated as finding a process model M ′ that is able to replay each trace in L
and is the closest possible to M (i.e. with the minimum number of changes). Note that,
if M can replay L, M ′ = M . This section focuses on the case in which M and M ′ are
accepting Petri nets, and the goal is to repair models wrt. the control-flow perspective,
thereby ignoring the other perspectives. This formulation suggests that model repair
primarily aims at perfect fitness, generating a set of models with optimal fitness. Within
this set, the final choice refers to any model that best balances simplicity, precision and
generalization (cf. the conformance-checking problem discussed in [5]).

The assumption here is that the repaired model must be able to replay every trace
in event log L. However, event logs may record executions that are outliers or refer to
process instances that were still running at the moment of the extraction of the event log.
Those traces should not be allowed by the repaired model M ′. Hereafter, we however
assume that every trace that should not be replayed by M ′ is already filtered out from
L before applying the model-repair algorithm on L.

This section reports on the repair technique discussed in [13], whose basic intuition
can be given via the following example. Let us consider again the model in Fig. 1 and
the following event log L = [〈a, g, w, b, c, d〉, 〈a,w, g, b, c, e〉] where g and w are the
shortcut names of two new activities: e.g. fix application and add witnesses respectively.
These two activities are not part of the model, and thus cannot be replayed on the model.
It follows that the model needs to be executed to add some transitions labelled g and w
to make the model compliant with L. The model-repair algorithm needs to determine
the point in which the two transitions should be included, namely which places are in
the presets and postsets of these transitions. The technique discussed in [13] aims to
address this question by aligning the original model M and each of the traces in L.
Optimal alignments for the traces in L wrt. the model in Fig. 1 are:

γ1 =
a g w b c
 d
a

 b c τ1 d

[c1, c2] [c3, c2] [c3, c4] [c5] [end]

γ2 =
a w g b c

 e
a

 b c τ1 τ2 e

[c1, c2] [c3, c2] [c3, c4] [c5] [c6] [end]

Here, the third alignment rows indicate the marking of the Petri net after each syn-
chronous or model move. As usual, the model moves for τ1 and τ2 are not considered
deviations, and hence do not need to be taken into account when repairing the model.
In both of alignments, the actual deviations consist in a sequence of two log moves for
activities g and w, namely related to log sub-traces 〈g, w〉 and 〈w, g〉. These sequences
of two log moves (and the corresponding sub-traces) both occurred when the Petri-net
model was at marking [c1, c2]. The model needs to be repaired so that the log-move
sequences would be replaced in the respective alignments by sequences of synchronous
moves.

262 M. de Leoni

Fig. 7. The model in Fig. 1 repaired by adding the parts in red and green to allow for executions
〈a, g, w, b, c, d〉 and 〈a, w, g, b, c, e〉.

The two sub-traces 〈g, w〉 and 〈w, g〉 can in fact be regarded as an event log, which
can be given as input to some process-discovery techniques to mine a model. If we
employed the Inductive Miner, the model would be similar to the Petri net marked
through a red border in Fig. 7: transitions w and g are modelled in a parallelism. Mark-
ings [p0] and [p6] are respectively the initial and final marking. Since 〈g, w〉 and 〈w, g〉
were observed at marking [c1, c2], marking [p0] needs to be reachable from [c1, c2]
without firing any transition: this is modelled via the invisible transition τ5. Further-
more, when reaching marking p6, the execution should be able to reach back marking
[c1, c2], motivating the introduction of invisible transition τ6.

The example above helps introduce the algorithm to repair an accepting Petri net
AN with respect to a log L:

1. The traces in L are aligned, thus discovering sequences of log moves.
2. For each maximal sequence γ of log moves (e.g., the sequence of log moves for g

and w in the above example), we determine the marking mγ of AN when γ was
observed (e.g., [c1, c2] in the above example), and we synthesize the sequence σγ of
activities involved in γ (e.g., 〈g, w, 〉). The pair (mγ , σγ) is added to a multiset P of
pairs that consist of markings, and sequences of events observed in the log but not
allowed by AN at those markings.

3. The pairs P discovered at previous point are grouped by marking so as to obtain
a set PL of pairs where each pair consists of (i) a markings m and a log L =
((m′,σ)∈P : m′=m) σ that contains the sequences of events observed at m.

4. For each (m,Lm) ∈ PL, an accepting Petri net AN is discovered using Lm as
input event log. Petri net AN is merged with AN at marking m as discussed in the
example above (cf. the green part in Fig. 7).

Foundations of Process Enhancement 263

The algorithm above only considers the log moves, which are linked to sequences of
activities that need to be allowed by the repaired model. Of course, the alignment may
also point out sequences of model moves, namely sequences of activities that were
expected in an observed process instance but not observed. The repaired model should
make these expected, but unobserved sequences as optional. As an example, let us con-
sider the model in Fig. 7, which has already been repaired wrt. the sequences of log
moves in the alignments. Let us suppose the event log to contain traces related to appli-
cations that are desk-rejected because of their clear incorrectness: these correspond to
traces consisting of two events 〈a, d〉. The corresponding alignment would then be as
follows:

γ1 =
a

 d
a b c τ1 d

[c1, c2] [c3, c2] [c3, c4] [c5] [end]

It contains a sequence of three model moves. The repaired model should be such that
those three model moves are no more necessary. This can be easily tackled, and one can
insert an invisible transition that consumes one token in c1 and one in c2, i.e. the places
containing tokens before the first model move (i.e., before b), and produces a token in
c5, the place containing one token after the last model move (i.e. after τ1).

Advanced Repair for Higher Precision and Simplicity
The repairing algorithm discussed above is largely focusing on fitness, thereby over-
looking the other dimensions. In fact, the procedure above can have a negative influence
on precision and simplicity, because it may allow additional behavior, and increase the
size of the model.

Higher model precision can be obtained by removing transitions that seldom
appear. In a nutshell, the event-log traces are aligned with the model. For each transition
t in the model, we count the number of occurrence of synchronous or model move for t
in all the alignments. If this is smaller than a user-defined threshold, t is removed, along
with every arc that goes in or comes out from t. The procedure can cause some places
to have no more incoming or outgoing arcs: these places are removed, as well.

Model simplification can be achieved as an a-posteriori step, e.g., using the tech-
nique proposed by Fahland et al. [12], which aims to simply the model, while pre-
serving the same behavior and well balancing generalization and precision [12]. How-
ever, simplification can partly be achieved during the repair, e.g. in case of structured
loops [13]. Let us consider the model in Fig. 1 and an event log consisting of two traces
σ1 = 〈a, b, c, r, b, c, d〉 and σ2 = 〈a, b, c, r, c, b, e〉 where r is the shortcut for a new
activity Ask for Additional Documents to, e.g., enable a more thorough assessment. The
alignments of the two traces are as follows:

264 M. de Leoni

Fig. 8. Repair of the model in Fig. 1 to allow for 〈a, b, c, r, b, c, d〉 and 〈a, b, c, r, c, b, e〉, using
the basic model-repair technique.

γ1 =
a b c r c b
 d
a b c

 τ1 d

[c1, c2] [c3, c2] [c3, c4] [c5] [end]

γ2 =
a b c r c b

 e
a b c

 τ1 τ2 e

[c1, c2] [c3, c2] [c3, c4] [c5] [c6] [end]

Using the repair technique discussed so far, we would obtain the model in Fig. 8, where
the newly included part is shown in green. The model has multiple transitions of the
same label (see b and c), which would be actually unnecessary if the technique could
discover that the green part aims to model a structured loops of repeating b and c.

The basic repair algorithm can be extended to implement such structured loops as in
the example above. We give an intuition on how the algorithm is extended via the above
example: let us take σ1 = 〈a, b, c, r, b, c, d〉), with the alignment γ1 shown at page 22.
The marking before the first log move is [c3, c4], and the sequence of events that are
associated with the maximal sequence of log moves is σγ1 = 〈r, c, b〉.

We search in the model to be repaired, namely the model in Fig. 1, for the smallest
connected subnet that (i) ends with places c3 and c4, namely the places with a token
at the marking before the first log move, and (ii) contains each transition t in σγ1 =
〈r, c, b〉, excluding r, which is not in the model to be repaired. This subnet corresponds
to the gray area in Fig. 9.The trace fragment σγ1 is then projected on this subnet: the
events related to transition of the fragment are the only retained, yielding a subtrace
σ1 = 〈c, b〉. We create an accepting Petri net AN from the fragment, using the marking

Foundations of Process Enhancement 265

Fig. 9. Repair of the model in Fig. 1 to allow for 〈a, b, c, r, b, c, d〉 and 〈a, b, c, r, c, b, e〉, using
the advanced model-repair algorithm that increases simplicity (cf. result of the basic algorithm in
Fig. 8).

[c3, c4] before the first log move as final marking, and the marking with one token in
each place with no incoming arcs as initial marking. Since σ1 is replayable on AN , the
transition τ3 can be introduced, which constructs a structured loop where transitions b
and c can be repeated. Note that the algorithm above is applied on single log sequences
of individual traces, and transition r in Fig. 9 has not been introduced yet. The algorithm
needs to be iteratively applied to each sequence of events that come from the projection
of the log component of each alignment.

In our example, after repairing the model by adding transition τ3, the algorithm is
applied on σ2 = 〈a, b, c, r, c, b, e〉, but yields no changes. Indeed, after the first repair,
the alignment of the model in Fig. 9 with σ2 is now as follows:

γ2 =
a b c r
 c b

 e
a b c
 τ3 c b τ1 τ2 e

[c1, c2] [c3, c2] [c3, c4] [c1, c2] [c3, c2] [c3, c4] [c5] [c6] [end]

Recall that transition r is not yet part of the model. This will be added as final
step, which consists in reapplying the basic repair algorithm on the same traces
σ1 = 〈a, b, c, r, b, c, d〉 and σ2 = 〈a, b, c, r, c, b, e〉 and on the model in which invis-
ible transition τ3 is included.

This section has focused on repairing the model to reflect the reality observed in
the event log. However, repairing the model can also be regarded as to ensure that
the model is sound. In the domain of process model, model soundness implies several
properties of which the most important is the absence of deadlocks or livelocks that
prevent executions from being completed. Interesting approaches that focus on model
repair for soundness are provided by Gambini et al. [15] and by Lohmann et al. [16,17],
which are not discussed here due to space limitations.

266 M. de Leoni

Fig. 10. The basic idea of KPI-driven Model Improvement: the observed behavior (i.e., in the
event log) that is satisfactory and compliant with rules should be incorporated in the model,
while the observed behavior that is not satisfactory or not compliant, should be not incorporated
or disallowed in the model.

3.2 KPI-Driven Model Improvement

If the model is used to prescribe how the corresponding process should be carried on,
one does not want to incorporate the whole behavior observed in the event log, but only
that portion that has shown to usually lead to satisfactory values of a certain Key Per-
formance Indicator (KPI) of interest. Furthermore, behavior can only be incorporated
if it does not violate the protocols, regulations, and norms. The definition KPI of inter-
est varies depending on the domain, needs to be customized, and may be numerical
or defined over an enumeration of values, including boolean. Examples are execution
costs, customer satisfaction, execution time, or whether or not the corresponding loan
was eventually approved. Similarly, one wants to disallow the behavior allowed by the
model that, unfortunately, typically yield unsatisfactory KPI values. Figure 10 graphi-
cally illustrates the idea. The rectangle shows the amount of behavior allowed by the
model, while the pie shows the amount observed in the event log. The green pie slide
is the portion of observed behavior that is associated with unsatisfactory KPI values or
with violations of norms or protocols: the part in light green that intersects the mod-
elled behavior should be disallowed from the model after repair. The red and the orange
pie portions show the portion with satisfactory KPI values: the part in dark red is not
allowed by the model but that should be incorporated because of being associated with
executions characterized by satisfactory KPI values.

The remainder of this section focuses on a methodology to extend the model to
allow the portion in dark red, which has been introduced by Dees et al. [9]. The starting
point is an existing process model, here represented as an accepting Petri net, an event
log, and the definition of a Key Performance Indicator (KPI). A KPI is a pair consisting
of (i) a function that, given a trace, returns the KPI value, and (ii) the set of satisfactory
KPI values:

Foundations of Process Enhancement 267

Fig. 11. The main steps of the methodology for KPI-driven Model Improvement (adapter
from [9])

Definition 4 (Key Performance Indicator). Let L be a simplified multi-perspective
event log. Let V be the set of possible values for a key performance indicator. A key
performance indicator is a pair (κ,K) consisting of a function κ : L → V that assigns
a KPI value κ(σ) to each trace σ and of a set K ⊂ V that contains the KPI values that
are satisfactory from a business viewpoint.

Typically, the function κ in a KPI definition depends on the attributes present in the
event log. However, this section remains general on how the KPI values of process
executions (i.e., traces) are computed.

Partially Model-Aligned Traces
The technique described hereafter also relies on the concept of model-aligned event
logs that has been introduced in Sect. 1.1. However, we extend the concept to allow for
traces that are partially model-aligned. It is indeed possible to ignore individual moves:
ignoring a model move means that the corresponding event is not added to the trace,
and ignoring a log move means that the corresponding event is not removed. To clarify,
let us consider a trace 〈a, b, b, d〉 and the model in Fig. 1. The alignment is as follows:

γ =
a b b

 d
a b
 c τ1 d

A full model-alignment trace is 〈a, b, c, τ1, d〉. Ignoring log moves for b would gener-
ate 〈a, b, b, c, τ1, d〉, namely the new alignment would still generate the log move for b;
ignoring model moves for c would generate 〈a, b, τ1, d〉, i.e. the model move for c is still
present. It is possible to ignore multiple moves at the same time: in our example, repair-
ing neither the model move for c nor the log move for b would produce 〈a, b, b, τ1, d〉.
Note that, hereafter, we always to ignore all model moves for invisible transitions when
model-aligning a trace, and we consider to fully model-align a trace even when we
ignore model moves for invisible transitions.

The Methodology in a Nutshell
The methodology takes an event log and the original process model as input and returns
an improved process model. It is composed by three main steps (cf. Fig. 11):

268 M. de Leoni

Step 1. Deviation Analysis. Deviations are detected and a set of rules is discovered that
correlate deviations to a selected KPI. Rules are mutually exclusive, which enables to
split the event-log traces into groups of traces, such that a trace belongs to at most one
cluster (in fact, outlier traces are filtered out).

Step 2. Align and Merge Log Clusters. Traces in the different sublogs are partially
model-aligned to only keep the deviations in the original trace that have a positive
impact on the value of the KPI. All sublogs are then merged to obtain a single par-
tially aligned-model event log.

Step 3. Repair Model. Finally the partially aligned-model event log is used as input
to repair the model: the process model is modified in such a way that it can replay all
the behavior of the partially aligned-model event log. In the partially aligned-model
event log we have repaired all deviations corresponding to behavior that should not be
incorporated in the model. In this way the repair-model technique will only modify the
model to make the desired deviating behavior possible.

The remainder will elaborate on the sub-sets within steps 1 and 2, using the same
case study as in Fig. 1. Step 3 does not require further details since it consists in applying
any technique for model repair to reflect reality, such as the technique by Fahland et
al. [13] discussed in Sect. 3.1.

Step 1. Deviation Analysis
The deviation-analysis step takes an event log L, an accepting Petri net AN , and a KPI
definition (κ,K). The result is a decision tree that allows splitting L in so many sub-
logs as the tree leaves. Each sub-log is associated with a different KPI value. Note that
certain traces are considered outliers and filtered out, namely the union of the sub-logs
does not necessarily coincide with L. To achieve this, the following sub-steps can be
identified:

Step 1.1: Conformance Checking. The first step is checking conformance of the event
log and the process model. This is done to determine all deviations that are observed
between the log and the model. The result of conformance checking is an alignment for
each log trace.

Example: let us consider the model in Fig. 1 and three non-compliant traces: σ1 =
〈a, b, c, w1, f〉, σ2 = 〈a, b, c, w2, f〉 and σ3 = 〈a, b, c, w3, f〉 where w1, w2 and w3
is a shortcut for the activities to ask for one, two or three witnesses, respectively. The
alignments are of the following form where wX respectively stands for w1, w2 and w3:

γ2 =
a b c wX � � f

a b c � τ1 τ2 f

The KPI is here boolean: true and false respectively indicate whether the approval
process has finally led to a loan that is eventually repaid in full or only in part. The latter
case is undesired because it requires the involvement of a credit-collection agency. For
the three executions in the example, σ1 refers to a loan paid back in full whereas σ2 and
σ3 to loans paid back in part.

Foundations of Process Enhancement 269

Step 1.2: Moves’ Correlation to KPI Values. The number of model moves and log
moves of activities is correlated with the chosen KPI. To model that the improved model
should comply rules and regulations, the concepts of disallowed activities and manda-
tory activities has been introduced. The set GD of disallowed activities include those
that should never become part of the process model, whereas the set GM of mandatory
activities are those that cannot become optional or be removed from the model. In this
step, we build a set of so-called observation instances, which are used to train a classifi-
cation tree. Let T and l be the set of transitions and the labelling function of the labelled
Petri net of AN . Let A be the activities of N , i.e. the Petri-net labels: A = ∪t∈T l(t) .
To keep it simple, we assume without losing generality that the log activities coincide
with A, too. We build one observation instance for each trace σ ∈ L with the following
features:

– The number of model moves in the optimal alignment of σ for each allowed activity
a ∈ A \ GD.

– The number of log moves in the optimal alignment of σ for each non-mandatory
activity a ∈ A \ GM .

– The KPI value for σ, namely κ(σ).

From the set of observation instance, we learn a decision tree, using the KPI value as
target feature, and the number of log and model moves as independent features. If the
domain of the KPI values is finite (e.g., satisfactory vs unsatisfactory), a classification
tree is used; otherwise, we employ a regression tree.

Example (cont.): log moves for w2 and w3 are correlated with full repay, where log
moves for w1 are correlated with part repay. However, let us assume w3 be within the
set of disallowed activities (e.g., three witnesses require too much additional work).
Thus, log moves for w3 are not allowed as independent feature. The result could be
such a decision tree as in Fig. 12: when there are log moves for w2, the KPI is fulfilled:
the loan is eventually repaid in full.

Step 1.3: Splitting of the Event Log into Groups and Outlier Filtering. The classification
tree can be seen as a clustering of the traces of an event log. Each leaf is a different
cluster and the path from the root to the leaf provides a rule that characterizes the traces
that belong to a certain group. For reliability, the wrongly-classified traces are removed
from the groups, namely the traces classified to have KPI values that differ from the
actual values. The wrongly-classified traces might potentially affect the repair-model
phase, and allow behavior in the model that would not be linked to actual, satisfactory
KPI values.

Example (cont.): The trace cluster associated with leaf Part Repay (left leaf) is L1 =
[〈a, b, c, w1, f〉], whereas the cluster for leaf Full Repay isL2 = [〈a, b, c, w2, f〉]. Note
that trace σ3 = 〈a, b, c, w1, f〉 would also be in L2, but would be wrongly classified
and consequently filtered out. In fact, σ3 is associated with a loan that is repaid in full
but the decision tree in Fig. 12 would classify it as partly repaid: it does not indeed
contain log moves for w2.

270 M. de Leoni

Step 2. Model-Align and Merge Log Clusters
Step 1 concluded with splitting L in n sublogs and filtering out those traces that are
wrongly classified. Let {L1, . . . , Ln} be the sublogs obtained via splitting. Each Li

refers to a different decision-tree leaf vi, associated with a KPI value C(vi).

Step 2.1: Conformance Checking of the Sublogs. Conformance Checking is done with
the original process model and each log cluster. Note that Step 2.1 is a conceptual step:
in practice, one does not need to recompute the alignments for the cluster logs as one
can simply reuse the alignments obtained as result of Step 1.1.

Step 2.2: Model-Align of the Sublogs. This step is repeated for each cluster Li, associ-
ated with a leaf vi. If Li is associated with an unsatisfactory KPI value (i.e. C(vi) �∈ K),
every deviation is repaired. Note that, even if the traces are fully model-aligned, they
are kept in the log that is used for repairing the model at step 3. Those traces provide
support to not remove behavior that is not observed: see discussion on achieving higher
model precision in subsection Advanced Repair for Higher Precision and Simplicity
within Sect. 3.1.

If Li is associated with a satisfactory KPI value, every deviation is repaired, except
those in the conditions in the path from the decision-tree root to the leaf vi.

Example (cont.): Trace σ1 is model-aligned in full because related to an unsatisfactory
KPI value, yielding a partial model-aligned trace σr

1 = 〈a, b, c, f〉. Trace σ2 is related
to satisfactory KPI values (see leaf Full Repay in the decision tree in Fig. 12), and
associated to a tree path that indicates that the number of log moves for w2 is larger

Log move for w2

Full RepayPart Repay

= 0 > 0

Fig. 12. A decision tree that correlates alignment moves to KPI values.

Fig. 13. The model repaired to increase the changes for loan to be repaid in full (the KPI). The
change consists in introducing the activity Ask for two witnesses, which are shown to be beneficial
for a better risk assessment.

Foundations of Process Enhancement 271

than zero. This means that the log move for w2 is ignored when model-aligning σ2:
thus, the partial model-aligned trace σr

2 coincides with the original trace σ2.

Step 2.3: Merge the Sublogs. We merge all model-aligned sublogs into a single event
log. This is a requirement to apply the next step, namely repairing the process model.

Example (cont.): This step generates the event log L = [〈a, b, c, f〉, 〈a, b, c, w2, f〉],
which is used for model repair.

When the log is used with a model-repair technique (e.g., that in Sect. 3.1), the model
in Fig. 2 is repaired as shown in Fig. 13: the transition w2 is introduced.

Acknowledgement. Some of the ideas and techniques reported in this chapter is the result of
author’s collaborations with various researchers. While it is not possible to name them all, the
author would like to give a special mention to Wil van der Aalst, Marcus Dees, Marlon Dumas,
Felix Mannhardt, and Hajo Reijers (in strict alphabetical order).

References

1. van der Aalst, W.M.P.: Process mining: a 360 degrees overview. In: van der Aalst, W.M.P.,
Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham
(2022)

2. van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst, W.M.P., Car-
mona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy. Springer, Cham
(2022)

3. Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques. In: van der
Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx–yy.
Springer, Cham (2022)

4. Burattin, A., Sperduti, A., Veluscek, M.: Business models enhancement through discovery of
roles. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM),
pp. 103–110 (2013)

5. Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations, milestones
and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook.
LNBIP, vol. 448, pp. xx–yy. Springer, Cham (2022)

6. Ernst, M.D., et al.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1), 35–45 (2007). Special issue on Experimental Software and Toolkits

7. de Leoni, M., Dumas, M., Garcı́a-Bañuelos, L.: Discovering branching conditions from busi-
ness process execution logs. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol.
7793, pp. 114–129. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-
1 9

8. de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining: discovering decisions in
processes using alignments. In: SAC 2013, pp. 1454–1461. ACM (2013)

9. Dees, M., de Leoni, M., Mannhardt, F.: Enhancing process models to improve business per-
formance: a methodology and case studies. In: Panetto, H., et al. (eds.) OTM 2017. LNCS,
vol. 10573, pp. 232–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-
7 15

10. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer (2018). https://doi.org/10.1007/978-3-662-56509-4

https://doi.org/10.1007/978-3-642-37057-1_9
https://doi.org/10.1007/978-3-642-37057-1_9
https://doi.org/10.1007/978-3-319-69462-7_15
https://doi.org/10.1007/978-3-319-69462-7_15
https://doi.org/10.1007/978-3-662-56509-4

272 M. de Leoni

11. Estrada-Torres, B., Camargo, M., Dumas, M., Garcı́a-Bañuelos, L., Mahdy, I., Yerokhin,
M.: Discovering business process simulation models in the presence of multitasking and
availability constraints. Data Knowl. Eng. 134, 101897 (2021)

12. Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled
manner. Inf. Syst. 38(4), 585–605 (2013)

13. Fahland, D., van der Aalst, W.M.P.: Model repair—aligning process models to reality. Inf.
Syst. 47, 220–243 (2015)

14. Fracca, C., de Leoni, M., Asnicar, F., Turco, A.: Estimating activity start timestamps in the
presence of waiting times via process simulation. In: Proceedings of the 34th International
Conference on Advanced Information Systems Engineering (CAiSE 2022), LNCS. Springer
(2022)

15. Gambini, M., La Rosa, M., Migliorini, S., Ter Hofstede, A.H.M.: Automated error correction
of business process models. In: Proceedings of the 9th International Conference on Business
Process Management, BPM 2011, pp. 148–165, Springer, Heidelberg (2011)

16. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-based
graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol.
5240, pp. 132–147. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-
7 12

17. Lohmann, N., Fahland, D.: Where did i go wrong? In: Sadiq, S., Soffer, P., Völzer, H. (eds.)
BPM 2014. LNCS, vol. 8659, pp. 283–300. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10172-9 18

18. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process
mining. In: RADAR+EMISA 2017, volume 1859 of CEUR Workshop Proceedings, pp. 72–
80. CEUR-WS.org (2017)

19. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
20. Nakatumba, J.: Resource-aware business process management: Analysis and Support. PhD

thesis, Technische Universiteit Eindhoven (2013)
21. Object Management Group (OMG): Decision model and notation (DMN) v1.1 (2016)
22. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
23. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fiadeiro, J.L.,

Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006).
https://doi.org/10.1007/11841760 33

24. Senderovich, A.: Queue mining. In: Sakr, S., Zomaya, A.Y. (eds.) Encyclopedia of Big Data
Technologies. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77525-8

25. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd Ed. Springer (2016).
https://doi.org/10.1007/978-3-662-49851-4

26. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs.
Comput. Supp. Coop. Wor. 14(6), 549–593 (2005)

https://doi.org/10.1007/978-3-540-85758-7_12
https://doi.org/10.1007/978-3-540-85758-7_12
https://doi.org/10.1007/978-3-319-10172-9_18
https://doi.org/10.1007/978-3-319-10172-9_18
https://doi.org/10.1007/11841760_33
https://doi.org/10.1007/978-3-319-77525-8
https://doi.org/10.1007/978-3-662-49851-4

Foundations of Process Enhancement 273

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Foundations of Process Enhancement
	1 Process Extension: Basic Techniques
	1.1 Model-Aligned Event Logs
	1.2 Data-Perspective Discovery
	1.3 Organizational Mining
	1.4 Time Perspective

	2 Process Extension: Advanced Techniques
	2.1 Data-Perspective Discovery of Guards with Variable Comparison
	2.2 Discovery Roles with Overlapping Resources

	3 Process Improvement
	3.1 Model Repair to Reflect Reality
	3.2 KPI-Driven Model Improvement

	References

