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1. Introduction 

Wireless Power Transfer Systems (WPTSs) operations rely on the inductive coupling between a 

transmitting and a receiving coil (H. Feng et al., 2018; R. K. Jha et al., 2018; S. Y. Choi et al., 2015). 

Suitable Compensation Networks (CNs) are connected to the coils in order to increase the power 

transferred to the load and the efficiency of the device (Bertoluzzo et al., 2018; H. Feng et al., 2018). 

In (Bertoluzzo et al., 2020; Bertoluzzo and Sieni, 2019) authors presented automatic methods to 

design the reactances of generic CNs for automotive applications. In general, a bi-objectives, 

efficiency and power-to-load, problem is solved. Usually the CNs are designed considering only the 

nominal supply angular frequency ω0, however their impedance at higher and lower ω must be much 

higher in order to filter out the high frequency current harmonics and to prevent the circulation of 

continuous currents components. The first of these occurrences arises because usually the WPTSs are 

supplied by a square wave modulated voltage that encompasses all the odd harmonics of the supply 

frequency; the second derives from the not ideal matching between the amplitude and the duty cycles 

of the positive and the negative semi periods of the supply voltage. From this background, a many-

objective problem arises i.e. maximize the efficiency and the transferred power and maximize the 

impedance at ω100=100∙ω0 and ω0.001= ω0/100, where ω100 and ω0.01 are chosen as representative of 

the lower and higher frequency bands, respectively. In this paper, in order to solve a many-objective 



problem with four objective functions (OFs), an algorithm presented by two of the authors in (Di 

Barba et al., 2020) is applied. Results were compared with the ones found using a constrained-version 

of NSGA-II algorithm or the recent many-objective version, NSGA-III (Deb et al., 2002; Deb, 2001; 

Lahanas et al., 2003; Srinivas and Deb, 1994; K. Deb and H. Jain, 2014).  

2. The Many-Objective Problem 

Fig. 1 shows the device CNs that connect the coupling inductances Lt and Lpu, the WPTS system, to 

the power supply (left) and to the load (right). The power circuit works at 85 kHz, ω0, as prescribed 

by the SAE regulation (“SAE J 2954 Wireless Power Transfer for Light-Duty Plug-in/Electric 

Vehicles and Alignment Methodology”, n.d.). The considered CNs have a T topology at both the 

sides of the WPTS. In this problem, the CNs are characterized by six degrees of freedom, design 

variables (X1s, X1p, X1t, X2r, X2p, X2L), i.e the reactances of the network components (Fig. 1).  

They can vary in the range [-500; 500] Ω: if the optimal value is positive, an inductance is identified, 

otherwise it is a capacitance. Four OFs, have been considered: function f1 is the efficiency of the 

WPTS, function f2 is the power transferred to the load [1]. In computing f1and f2 the inductive 

reactances are modelled considering their inductance and an equivalent series-connected parasitic 

resistance (ESR). During the optimization process, the ESRs are adjusted to the inductance values by 

fixing the quality factor Q at the supply angular frequency ω0 to the same value that characterizes the 

coupling inductances. 

The objective functions f3 and f4 are expressed as: 

 

  𝑓3 = 𝑍𝜔0 𝑍𝜔100⁄    (1) 

 

  𝑓4 = 𝑍𝜔0 𝑍𝜔0.01⁄    (2) 

 

where Zω0 is the impedance seen at the supply inverter output at the nominal supply angular frequency 

ω0, and Z ω100 and Zω0.01 are the impedances seen at the angular frequencies ω100 and ω0.001. 

 

The function f3 and f4 could also be combined in a f34 function in order to reduce the number of the 

objective functions: 

 

  𝑓34 = 𝑓3 + 𝑓4 = 𝑍𝜔0 𝑍𝜔100⁄ + 𝑍𝜔0 𝑍𝜔0.01⁄    (3) 

 

3. The optimization methods 

 

Fig. 1 Scheme of the WPTS with CNs. 



3.1. The Many-Objective Method  

The idea behind this paper is to exploit a single-objective optimization algorithm for minimising a 

suitable preference function, which takes into account all the objective functions of the optimization 

problem. The chosen method is EStra, a lowest-order evolutionary algorithm, which has proven to be 

effective and reliable (Carcangiu et al., 2007; Deb, 2001; Di Barba et al., 2009, 2011; Di Barba and 

Mognaschi, 2005, 2009; Lahanas et al., 2003; Zitzler and Thiele, 1999).  

Traditionally, preference functions are defined as weighted sums of individual objectives and the 

choice of individual weights is the bias. In contrast, in the proposed method, the aim is to define a 

weight-free preference function: in view of this, the key idea is the degree of conflict among solutions, 

because in Pareto-like optimality the non-dominated solutions exhibit the lowest degree of conflict in 

the set of solutions.  

Hence, the road map turns out to be: 

• define a preference function, modelling the degree of conflict among objectives, whatever the 

number of objectives; 

• minimise the preference function by means of an evolution strategy algorithm, i.e. a 

derivative-free and global-optimum oriented algorithm; 

• identify a set of least-conflict solutions, approximating a Pareto-optimal set. 

 

The core operation is to compute the degree of conflict between m≥2 objective functions (f1, f2,…,fm) 

that are assumed to be simultaneously minimized. After sorting in the ascending order, the rank of a 

solution is defined as the sorting index of the relevant objective function values. 

The computation of the degree of conflict of a solution, called score, is based on the sorting indices 

of the objective functions; its computing procedure is shown in Fig. 2. 

Eventually, the goal is to minimize s with respect to any x in the design space . In view of this, 

suppose that the preference function s has been linked with a zero-order optimization algorithm: 

whenever a new candidate solution is created by the algorithm, the set S is expanded by incorporating 

the (n+1)-th solution (growing set scheme). The whole procedure is repeated up to convergence. For 

the algorithm to work, an initial set S0 has to be supplied. 

It has to be noted that the ranking value assigned to each solution is relevant to the current set S of 

solutions: whenever a new solution is added to or removed from the set S, the solution score of 

individual solution has to be recomputed. Hence, the sorting (or ranking) operation of Fig. 2 must be 

done at each iteration of the optimization, considering the current set of solutions S. 

 
 

Fig. 2 Block diagram of the many-objective method: the sorting strategy. 

 



Specifically, the EStra method, a zero-order optimization algorithm, is chosen. If the method 

converged, it identifies a single Pareto-optimal solution. 

 

4. Constrained classical bi-objective method 

In order to compare the results obtained by the EStra method with a well-known and assessed 

method, the NSGA-II is applied too. NSGA-II, the classical Non dominated Sorting Genetic 

Algorithm, developed by Deb (Deb et al., 2002; K. Deb and H. Jain, 2014; Srinivas and Deb, 1994) II 

can solve bi-objective prob. In this paper NSGA-II was used to optimize the efficiency of the WPTS 

and the power transferred to the load, f1 and f2 respectively, while f3 and f4 are considered as constraints 

as in  (Campana et al., 2013). In practice, a threshold level for f3 and f4 was set and for all the solutions 

with f3 or f4 larger than the prescribed threshold value, an out-of-range value for f1 and f2 is assigned 

to. In general, f3 and f4 is requested to be lower than 1. In the paper the constraint level was fixed 

between 1.5 10-4 and 1. 

 

5. Optimization Results 

The optimization algorithm has been run for 700 iterations. Because EStra is a 1+1 algorithm, one 

individual is processed at each run. The starting point and the improved solution are shown in Table 

I.  

NSGA-II method was run many times. In particular, the thresholds f3 and f4 are subject to, were 

different for each run: because, in general, the evolutionary algorithms have a poor behavior when 

constraints are handled, the threshold values have been tightened more and more at each run, in order 

to make the constraints progressively more severe. In each run, 50 individuals and 250 generations 

are considered. The results are shown in Fig. 3.  

Looking at the results in Fig. 3, it can be noted that the fronts found by NSGA-II are wider when the 

threshold of the constraints are higher: the lower the constraint values, the narrower the Pareto fronts. 

When the values are comparable with those obtained by means of the EStra method (let's say the 

threshold equal to 1.8 10-4), the Pareto front is no longer a front, but all the solutions are grouped 

closed to a single point in the f1-f2 space (pink triangle in Fig. 4). 

TABLE I STARTING AND FINAL POINTS OF THE OPTIMIZATION: DESIGN VARIABLES AND OBJECTIVE FUNCTION VALUES 

 x1 [Ω] 

X1s 

x2 [Ω] 

X1p 

x3 [Ω] 

X1t 

x4 [Ω] 

X2r 

x5 [Ω] 

X2p 

x6 [Ω] 

X2L 

Starting point -69.7 223 -457 247 427 179 

Final point 188 -380 -451 -57.2 -295 -22.4 

 f1 f2 [W] f3 f4 

Starting point 6.32 10-4 1.61 10-8 9.05 10-2 6.42 10-2 

Final point 4.48 10-1 7.11 10-2 1.68 10-4 1.53 10-4 

 



 
Fig. 3 f1-f2 objective function space with results of EStra and NSGA-II methods. 

 

All these solutions are characterized by function f3 equal to or higher than 1.68 10-4 and f4 higher than 

1.5 10-4. All in one, it can be noted that when the threshold values of f3 and f4 are comparable to the 

relevant values independently found by EStra, then the front recovered by NSGA-II degenerates to a 

single solution point. The design variables and the values of the objective function f1 and f2 reached 

at the end of the optimization with constraints set to 1.5·10-4 and 1.8·10-4 are listed in Tab. II. 

 
TABLE II FINAL POINTS OF THE NSGA-II OPTIMIZATIONS: DESIGN VARIABLES AND OBJECTIVE FUNCTION 

VALUES 

 x1 [Ω] x2 [Ω] x3 [Ω] x4 [Ω] x5 [Ω] x6 [Ω] 

NSGA-II 1.5·10-4 122.18 -375.32 -248.76 112.08 -82.62 125.35 

NSGA-II 1.8·10-4 119.96 -369.60 -246.21 108.72 -79.30 123.41 

 f1 f2 [W] 

NSGA-II 1.5 10-4 0.286 7.81 10-2 

NSGA-II 1.8 10-4 0.369 8.55 10-2 

 

It can be noted that these solutions are Pareto-indifferent with respect to the EStra solution (black 

diamond in Fig. 3) because they worsen function f1 while they are better for function f2. This is also 

true if all the four objective functions are considered at a time: for the sake of an example, let's 

consider solution 1 and solution 2 characterized by k>2 objective functions. It is enough that just one 

objective function of solution 1 is better than the corresponding objective function of solution 2 and 

another objective function of solution 1 is worse than the corresponding of solution 2 that the two 

solutions are Pareto-indifferent. No matter the behavior of the remaining objective functions. 



Fig. 3b show the Pareto fronts in Fig. 3 for which the points represented are colored with different 

colors. Each color represents the value of the function f3 and f4 assumed by the represented solution. 

For instance, if the point in Fig. 3b (a) is green f3 value is between 1·10-2<f3<1·10-1, whereas if it is 

black 10-4<f3<1·10-3. The same colors are used to represent f4 values in the panel (b).  

Table 3 and 4 report the solutions related to constrained NSGA-II optimization considering different 

constraint levels for f3 and f4. The considered levels are 1.5·10-4, 1.8·10-4, 1·10-3,  1·10-2,  1·10-1, 1.  

In particular, it appears that even if the f3 and f4 are constrained to be lower than a given level (e.g. 

1), in the improved solutions f3 and f4 assume a lower level (e.g. close to 10-4). Then also constraining 

f3 and f4 at different level the improved solutions tend to assume lower values. In Table 3 and 4 are 

reported a selection of improved solutions obtained running NSGA-II with different constraint levels 

and forcing on the best solution for which f3 and f4 are lower than 5·10-4, respectively.  

Table 3 Improved solutions for which f3<5·10-4 

 

Constraint 

level x1 x2 x3 x4 x5 x6 f1 f2 f3 f4 

1·100 40 -56 -182 1 -471 -67 0.73 0.19 4.8·10-4 4.5·10-4 

1·10-1 NA          

1·10-2 NA          

1·10-3 NA          

1.8·10-4 120 -370 -246 109 -79 123 0.37 0.09 1.8·10-4 1.5·10-4 

1.5·10-4 122 -375 -249 112 -83 125 0.29 0.08 1.5·10-4 1.2·10-4 

 

Table 4 Improved solutions for which f4<5·10-4 

Constraint 

level x1 x2 x3 x4 x5 x6 f1 f2 f3 f4 

1·100 40 -57 -179 0 -470 -66 0.75 0.17 5.3·10-2 5.0·10-4 

1·10-1 2 -376 -62 -8 15 -11 0.77 0.15 1.4·10-2 4.7·10-4 

1·10-2 23 -226 -100 -86 -349 1 0.75 0.12 1.4·10-3 4.7·10-4 

1·10-3 124 -298 -282 -98 -49 18 0.76 0.06 4.8·10-4 4.1·10-4 

1.8·10-4 120 -370 -246 109 -79 123 0.37 0.09 1.8·10-4 1.5·10-4 

1.5·10-4 122 -375 -249 112 -83 125 0.29 0.08 1.5·10-4 1.2·10-4 

 

 

Fig. 3b f1-f2 objective function space with results of EStra and NSGA-II methods. Different colors identify the interval 

value at which belong the value of the f3 and f4. Magenta, 1·10-1<f3, f4<1·100, green 1·10-2<f3, f4<1·10-1, blue1·10-3<f3, 

f4<1·10-2, black 5·10-4<f3, f4<1·10-3and red f3, f4<5·10-3 f3 



Table 5 reports a set of improved solutions for which the focus is based on the trad-off of f1 and f2 

objective. The proposed solutions were evaluated using NSGA-II algorithm with different constraint 

levels. It appears, that the chosen solutions show higher value for f1 and f2 maintaining a lower value 

for f3 and f4. 

 

Table 3 Improved solutions for which f4<5·10-4 

 

 

 

 

 

 

 

6. Performance of the Optimized CNs 

The magnitude Bode diagram of the frequency response of the impedance 𝑍𝑠 seen by the supply 

generator (see Fig. 1) is shown in Fig. 4. 

The red plot refers to the optimized solution obtained by EStra and characterized by the reactances 

listed in Tab. I. The dashed blue and green plots are relevant to the optimized solutions reported in 

Tab. II and computed by NSGA-II. The parameters of the inductances and the equivalent load RL 

used in computing the objective functions are reported in Tab. 6. They are taken from a prototypal 

low-power WPTS (G. Buja et al., 2015). 

 

Fig. Obtained CNs with ESTRA-MANY algorithm 

Analysis of the plots shows that both the optimization methods successfully prevent the flowing of 

unwanted current components in the supply inverter and in the transmitting CN. Indeed, for EStra the 

ratios 𝑍𝜔0 𝑍𝜔100⁄  and 𝑍𝜔0 𝑍𝜔0.01⁄  are 75.5 dB and 72.9 dB, respectively while for both the Bode 

diagrams relevant to NSGA-II the ratios are 76.5 dB and 74.8 dB.  

Constraint 

level x1 x2 x3 x4 x5 x6 f1 f2 f3 f4 

1·100 40 -69 -141 -5 -470 -66 0.86 0.04 2.6E-03 2.2E-03 

1·10-1 1 -373 -62 -14 27 -18 0.88 0.08 5.5E-02 1.1E-03 

1·10-2 23 -314 -106 -81 -349 5 0.85 0.05 3.7E-03 1.1E-03 

1·10-3 122 -287 -282 -78 -49 10 0.83 0.04 7.9E-04 6.8E-04 

1.8·10-4 120 -370 -246 109 -79 123 0.37 0.09 1.8E-04 1.5E-04 

1.5·10-4 122 -375 -249 112 -83 125 0.29 0.08 1.5E-04 1.2E-04 

 

 
Fig. 4 Magnitude Bode diagram of Zs vs  relevant to the optimized solutions. 

 



The Bode diagrams have a pair of marked resonant and anti-resonant peaks at frequencies between 

three and four times the supply one. From this point of view, EStra provides better results than NSGA-

II because the spurious resonance peaks have lower amplitude and are located at frequencies further 

away from the third harmonic of ω0. Therefore, it is less likely that the resonance peaks affect the 

current of the supply inverter even if it generates a square wave voltage with frequency a little higher 

than the nominal one. More precisely, the peak of minimum impedance coming from EStra is set at 

a normalized frequency of 3.85 and has a magnitude of 37.19 dB while both the peaks coming from 

NSGA-II are set at a normalized frequency of 3.47 and their magnitude is 16.45 dB, so that 

corresponding impedance is about 10 times lower than that obtained with EStra.  

At frequencies a little higher than the supply one the Bode diagrams of the impedance exhibit a small 

distortion, as shown in the magnification reported in Fig. 5. Also in this case, the solution coming 

from EStra performs better than the other two because the distortion is smaller and happens at an 

angular frequency further away from the supply one. 

A second verification of the optimization performance of EStra has been carried out by simulating 

the circuit of Fig. 1 in the Simulink environment. The ability of the optimized CNs to reject both high 

and low frequency components has been checked by supplying the circuit with a square-wave voltage 

with an offset equal to the voltage amplitude. The plot of the supply voltage is shown in the upper 

half of Fig. 6. The waveform of the corresponding supply current is reported in the lower half of the 

same figure. 

TABLE 6 PARAMETERS OF THE COUPLING INDUCTANCES 

Lt 120 H 

Lpu 120 H 

M 30 H 

Q 130 

RL 5.6  

 

 
Fig. 5 Magnification of the magnitude Bode diagram of Zs vs  relevant to the optimized solutions. 

 



It clearly appears that the current does not exhibit any continuous component and that it is slightly 

distorted only in the very first supply periods while any harmonics disappear after a very short time 

interval. Figure 7 demonstrates that despite the sudden application of the supply voltage, the current 

reaches smoothly its steady state condition, without discontinuities or undue oscillations of its 

amplitude.  

7. Conclusions 

The comparison of the values taken by the OFs before and after the optimization shows that the 

EStra algorithm effectively enhanced the performance of the CNs and their impedance to the 

unwanted current harmonics, as confirmed by the magnitude Bode diagram of Fig. 4 and by the results 

coming from the simulations reported in Fig. 6 and 7.  
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