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1. Introduction

The Muon g-2 (E989) experiment at Fermilab has recently 
presented its first measurement of the muon magnetic moment 
anomaly, aμ = (gμ − 2)/2 [1–4], confirming the earlier results of 
the E821 experiment at Brookhaven [5]. The E989 experiment is 
expected to reach a sensitivity four-times better than the E821 
one. In addition, a new low-energy approach to measuring the 
muon g-2 is being developed by the E34 collaboration at J-
PARC [6].

The present muon g-2 experimental average shows an intrigu-
ing 4.2σ discrepancy with the value of the Standard Model (SM) 
aμ prediction quoted by the Muon g-2 Theory Initiative [7]. If con-
firmed with high significance, this discrepancy would be indirect 
evidence for new physics beyond the SM.

The main uncertainty of the muon g-2 SM prediction origi-
nates from its hadronic vacuum polarization (HVP) contribution, 
aHVP
μ , which cannot be reliably calculated perturbatively in QCD 

and relies on experimental data as input to dispersion relations. 
Indeed, this contribution has been traditionally computed via a 
dispersive, or time-like, integral using hadronic production cross 
sections in low-energy electron-positron annihilation. The present 
time-like calculation of aHVP

μ includes the leading-order (LO), next-
to-leading-order (NLO) and next-to-next-to-leading-order (NNLO) 
terms [8–16]. The NNLO term is comparable to the final uncer-
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tainty of the aμ measurement expected from the Muon g-2 exper-
iment at Fermilab.

An alternative determination of aHVP
μ can be provided by lat-

tice QCD [17–26]. Significant progress has been made in the last 
few years in first-principles lattice QCD calculations of its LO part, 
aHVP
μ (LO), although the precision of these results is, in general, not 

yet competitive with that of the time-like determinations based 
on experimental data. Recently, the BMW collaboration presented 
the first lattice QCD calculation of aHVP

μ (LO) with an impressive 
sub-percent (0.8%) relative accuracy [27]. This remarkable result 
weakens the long-standing discrepancy between the muon g-2 SM 
prediction and the experimentally measured value. However, this 
result shows a tension with the time-like data-driven determina-
tions of aHVP

μ (LO), being 2.2σ higher than the Muon g-2 Theory 
Initiative data-driven value. Moreover, shifts up of the e+e− →
hadrons cross section, due to unforeseen missing contributions, 
to increase aHVP

μ (LO) and solve the present muon g-2 discrep-
ancy, lead to conflicts with the global electroweak fit if they oc-
cur at energies higher than ∼1 GeV (and below that energy they 
are deemed improbable given the large required increases in the 
hadronic cross section) [28–32]. A new and competitive determi-
nation of aHVP

μ , possibly at NNLO accuracy, based on a method 
alternative to the time-like and lattice QCD ones, is therefore de-
sirable.

A novel approach to determine the leading hadronic contri-
bution to the muon g-2, measuring the effective electromagnetic 
coupling in the space-like region via scattering data, was proposed 
a few years ago [33]. The elastic scattering of high-energy muons 
on atomic electrons has been identified as an ideal process for this 
measurement, and a new experiment, MUonE, has been proposed 
at CERN to measure the shape of the differential cross section 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. The leading, O(α2), hadronic contribution to the muon g-2. The red blob 
indicates the HVP insertion.

of muon-electron elastic scattering as a function of the space-like 
squared momentum transfer [34–36].

In this paper we investigate the HVP contributions to the muon 
g-2 in the space-like region. At LO, simple results are long known 
and form the basis for present lattice QCD and future MUonE de-
terminations of aHVP

μ (LO). Our goal is to provide simple analytic 
expressions to extend the space-like calculation of the aHVP

μ contri-
bution to NNLO.

2. The HVP contribution at leading order

2.1. Time-like method

Consider the hadronic component of the vacuum polarization 
(VP) tensor with four-momentum q,

i�μν
h (q) = i�h(q2)

(
gμνq2 − qμqν

)
=

∫
d4x eiqx〈0|T {

jμem(x) jνem(0)
} |0〉, (1)

where jμem(x) is the electromagnetic hadronic current and �h(q2)

is the renormalized HVP function satisfying the condition �h(0) =
0. The function �h(q2) cannot be calculated in perturbation theory 
because of the non-perturbative nature of the strong interactions 
at low energy. Yet, the optical theorem

Im�h(s) = (α/3)R(s), (2)

where α is the fine-structure constant and the R-ratio is

R(s) = σ(e+e− → hadrons)

4πα2/(3s)
, (3)

allows to express the imaginary part of the hadronic vacuum 
polarization in terms of the measured cross section of the pro-
cess e+e− → hadrons as a function of the positive squared four-
momentum transfer s. This result forms the basis for the time-like 
method.

The LO hadronic contribution to the muon g-2, due to the 
O(α2) diagram shown in Fig. 1, can be calculated integrating ex-
perimental time-like (i.e. q2 > 0) data using the well-known for-
mula [37–39]

aHVP
μ (LO) = α

π2

∞∫
s0

ds

s
K (2)(s/m2) Im�h(s), (4)

where m is the muon mass and s0 = m2
π0 is the squared neutral 

pion mass. Defining

z = q2

m2
(5)

and the rationalizing variable

y(z) = z − √
z(z − 4)√ , (6)
z + z(z − 4)

2

the second-order function K (2)(z) is

K (2)(z) = 1

2
− z +

(
z2

2
− z

)
ln z

+ ln y(z)√
z(z − 4)

(
z − 2z2 + z3

2

)
. (7)

For z ≥ 0, K (2)(z) is real, positive and monotonic (it has no cut for 
0 ≤ z ≤ 4). At z = 0, K (2)(0) = 1/2, while for z → +∞ the asymp-
totic behavior of this kernel function is K (2)(z) → 1/(3z), therefore 
vanishing at infinity.

2.2. Space-like method

The time-like expression for aHVP
μ (LO) provided by Eq. (4) can 

be rewritten using the dispersion relation satisfied by K (2)(z) [40],

K (2)(z) = 1

π

0∫
−∞

dz′ ImK (2)(z′)
z′ − z

, z > 0. (8)

Indeed, replacing K (2)(s/m2) in Eq. (4) with Eq. (8) and integrating 
over s via the subtracted dispersion relation satisfied by �h(q2),

�h(q2)

q2
= 1

π

∞∫
s0

ds

s

Im�h(s)

s − q2
, q2 < 0, (9)

we obtain the space-like expression

aHVP
μ (LO) = − α

π2

0∫
−∞

dt

t
�h(t) ImK (2)(t/m2). (10)

The function K (2)(z), real for any z ≥ 0, has a cut along the 
negative real axis z < 0 with the imaginary part

ImK (2)(z + iε) = π θ(−z)

[
z2

2
− z + z − 2z2 + z3/2√

z(z − 4)

]
= π θ(−z) F (2)(1/y(z)), (11)

where

F (2)(u) = u + 1

u − 1
u2. (12)

The iε prescription, with ε > 0, indicates that, in correspondence 
of the cut, the function ImK (2)(z) is evaluated approaching the real 
axis from above.

If in Eq. (10) one uses the explicit expression for ImK (2)(t/m2)

of Eq. (11) and changes the integration variable from t to x = 1 +
1/y via the substitution

t(x) = m2x2

x − 1
, (13)

obtained from Eq. (6), one finds [41]

aHVP
μ (LO) = α

π

1∫
0

dxκ(2)(x)
αh(t(x)), (14)

where the space-like kernel is remarkably simple,

κ(2)(x) = 1 − x (15)

and 
αh(t) = −�h(t) is the (five-flavor) hadronic contribution to 
the running of the electromagnetic coupling in the space-like re-
gion, α(t) = α/(1 − 
α(t)).
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Fig. 2. Sample O(α3) diagrams contributing to the HVP corrections to the muon 
g-2.

Equation (14) (or forms equivalent to it) is used in lattice QCD 
calculations of aHVP

μ (LO) (see e.g. [42] and a discussion in [7]) and 
forms the basis for the MUonE proposal to determine aHVP

μ (LO) via 
muon-electron scattering data [33–36].

We close this Section noting that, in Fig. 1, a virtual photon can 
be emitted and reabsorbed by the HVP insertion of the LO diagram. 
These irreducible hadronic contributions, although of higher order 
in α, are normally incorporated into the time-like determination of 
aHVP
μ (LO) via the inclusion of final-state radiation corrections in the 

R-ratio (see e.g. [7,8]).1 For a comparison, also space-like evalua-
tions of aHVP

μ (LO) should therefore incorporate these higher-order 
corrections, including them in 
αh(t) in Eq. (14). In this respect, 
the fully inclusive measurement of 
αh(t) expected from MUonE 
is ideal [43].

3. The HVP contribution at NLO

The hadronic vacuum polarization contribution to the muon g-
2 at NLO, aHVP

μ (NLO) has been studied as early as in Ref. [44]. It is 
due to O(α3) diagrams that can be classified as follows (see Fig. 2). 
Class (4a) comprises diagrams with one single HVP insertion in 
one of the photon lines of the two-loop QED diagrams contribut-
ing to the muon g-2, without any VP insertion due to electron or 
tau loops. Class (4b) contains diagrams with one HVP and one ad-
ditional VP due to an electron or tau loop. Class (4c) consists of the 
single diagram with two HVPs. Class (4d) diagrams contain inter-
nal radiative corrections to the HVP. As discussed in the previous 
Section, this contribution is not considered as part of aHVP

μ (NLO), 
although of the same order in α, because it is already incorpo-
rated into aHVP

μ (LO). Analogously, the O(α4) contributions obtained 
by adding to the diagrams of classes (4a), (4b) and (4c) a virtual 
photon emitted and reabsorbed by an HVP insertion, although of 
higher order in α, should be incorporated into aHVP

μ (NLO), either 
via the R-ratio (in the time-like approach) or via 
αh(t) (in the 
space-like one). If a second virtual photon is attached to the HVP 
insertion of class (4d), the resulting contribution should be incor-
porated into aHVP

μ (LO) (see also Section 4).
Numerically, class (4a) yields the largest (negative) contribu-

tion, class (4b) partially cancels it, and class (4c) is small, as ex-
pected. Their sum

aHVP
μ (NLO) = a(4a)

μ + a(4b)
μ + a(4c)

μ (16)

is negative and of O(10−9).

1 Note that, consistently, the lower limit of integration in Eq. (4) has been chosen 
to be s0 = m2

0 , the threshold of the π0γ cross section.

π

3

3.1. Class (4a)

The NLO HVP contribution of class (4a) to the muon g-2 can 
be written in the time-like form [40]

a(4a)
μ = α2

π3

∞∫
s0

ds

s
2K (4)(s/m2) Im�h(s). (17)

The fourth-order function K (4)(z) was first computed by Barbieri 
and Remiddi in [40].2 Its lengthy expression is reported in their 
Eq. (3.21) for z > 0, where it is real and negative. An approximate 
series expansion for K (4)(s/m2) in the parameter m2/s, with terms 
up to fourth order, can be found in [45].

Like K (2)(z), the function K (4)(z) is real for any z ≥ 0, has a cut 
for z < 0, and satisfies the dispersion relation

K (4)(z) = 1

π

0∫
−∞

dz′ ImK (4)(z′)
z′ − z

, z > 0. (18)

Just as we did for aHVP
μ (LO), using the dispersion relations (9) and 

(18) the NLO hadronic contribution of class (4a) can be cast in the 
space-like form

a(4a)
μ = − α2

π3

0∫
−∞

dt

t
�h(t)2ImK (4)(t/m2). (19)

The function ImK (4)(t/m2) can be calculated from the K (4)(z)
expression of Ref. [40]. Taking the imaginary parts of the polylog-
arithms of order 1, 2, and 3, we obtain3

ImK (4)(z + iε) = π θ(−z) F (4)(1/y(z)), (20)

where

F (4)(u) = R1(u) + R2(u) ln(−u)

+ R3(u) ln(1 + u) + R4(u) ln(1 − u)

+ R5(u)
[
4Li2(u) + 2Li2(−u)

+ ln(−u) ln
(
(1 − u)2(1 + u)

)]
, (21)

and the rational functions Ri(u) (i = 1, . . . , 5) are

R1=23u6−37u5+124u4−86u3−57u2+99u+78

72(u − 1)2u(u + 1)
,

R2=12u8−11u7−78u6+21u5+4u4−15u3+13u+6

12(u − 1)3u(u + 1)2
,

R3= (u + 1)
(−u3 + 7u2 + 8u + 6

)
12u2

,

R4=−7u4 − 8u3 + 8u + 7

12u2 ,

R5= − 3u4 + 5u3 + 7u2 + 5u + 3

6u2
. (22)

The dilogarithm is Li2(u) = − 
∫ u

0 (dv/v) ln(1 − v).

2 Note the coefficient 2 in front of the function K (4)(z) due to the original nor-
malization chosen in Ref. [40].

3 After presenting our ImK (4)(z) result, Eqs. (20)–(22), in [46] (see also [47]), 
we were informed by Alexander Nesterenko that he has independently derived it 
in [48].
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Fig. 3. The space-like functions κ(2)(x) (blue), κ(4)(x) (orange) and κ̃ (4)(x) (green).

Fig. 4. The integrands (α/π)κ(2)(x)
αh(t(x)) (blue) and (α/π)2κ(4)(x)
αh(t(x))
(orange) of Eqs. (14) and (23), multiplied by 107 and −108, respectively.

Using the explicit expression for ImK (4)(t/m2) of Eq. (20), 
Eq. (19) can be conveniently expressed in terms of the variable 
x = 1 + 1/y. We obtain

a(4a)
μ =

( α

π

)2
1∫

0

dxκ(4)(x)
αh(t(x)), (23)

where

κ(4)(x) = 2 − x

x (x − 1)
2F (4)(x − 1). (24)

For 0 ≤ x < 1, z ≤ 0. Equation (23) is the analogue of Eq. (14) for 
the NLO contribution of class (4a).

Fig. 3 shows the space-like functions κ(2)(x) and κ(4)(x) en-
tering the aHVP

μ (LO) and a(4a)
μ expressions, respectively. We note 

that the function κ(4)(x) provides a stronger weight to 
αh(q2)

at large negative values of q2 than κ(2)(x). In particular, for q2 →
−∞, κ(2)(1) = 0, whereas κ(4)(1) = −23/18. Fig. 4 shows the LO 
integrand (α/π)κ(2)(x)
αh(t(x)) of Eq. (14) and the NLO inte-
grand (α/π)2κ(4)(x)
αh(t(x)) of Eq. (23), multiplied by 107 and 
−108, respectively. The Fortran libraries KNT18VP [10,49–53] were 
used for the numerical implementation of 
αh(t(x)) in the space-
like region. The LO integrand has a peak at x ∼ 0.914, where 
t ∼ −(0.33 GeV)2. On the other hand, the NLO integrand of class 
(4a) increases monotonically with x → 1 (i.e. with t → −∞) like 
∼ ln(1 − x).

An approximate expression for the space-like formula in Eq. (23)
was provided in Ref. [26]. To obtain it, the authors started consid-
ering the approximate fourth-order series expansion of Ref. [45]
4

for the time-like function K (4)(s/m2) in the small parameter 
r = m2/s. This series expansion contains only powers rn of degree 
n = 1, 2, 3, 4, multiplied by constants, ln r, and (ln r)2 terms. Then, 
as suggested in [54], they exploited generating integral representa-
tions to fit the rn and rnln r terms of the approximate fourth-order 
series expansion for K (4)(1/r), but not the rn(ln r)2 ones, and used 
the usual dispersion relation satisfied by �h(q2) to perform the 
integral over s. After simple changes of variables, their approxima-
tion can be compared with our exact function κ(4)(x). We repeated 
the analysis of Ref. [26] confirming their approximate result (in 
particular, their Eqs. (A1,A2)) which, translated in our notation, is 
called here κ̃ (4)(x).

The approximate function κ̃ (4)(x) is plotted in Fig. 3 (indicated 
by the green line). While the exact function κ(4)(x) varies smoothly 
over the entire region 0 ≤ x ≤ 1, κ̃ (4)(x) strongly oscillates, lead-
ing to large numerical cancellations when employed in the in-
tegral of Eq. (23) instead of κ(4)(x). Using the Fortran libraries 
KNT18VP [10,49–53] for 
αh(t(x)), we computed two numerical 
values for a(4a)

μ in Eq. (23): one obtained using the exact function 
κ(4)(x) and a second one obtained replacing κ(4)(x) with the ap-
proximate κ̃ (4)(x). The two values differ by about 3%. Adding to 
a(4a)
μ the contributions a(4b)

μ and a(4c)
μ (discussed later), the total 

aHVP
μ (NLO) contribution computed using the κ̃ (4)(x) approximation 

differs from the one computed via our exact function κ(4)(x) by 
about 6%.

It is interesting to investigate the source of the above ∼ 6% dis-
crepancy. To improve the κ̃ (4)(x) approximation, we proceeded in 
two directions. The first one consisted in repeating the analysis 
of Ref. [26], starting however from higher-order series expansions 
for the exact K (4)(s/m2) function of Barbieri and Remiddi [40]
(we considered n up to nmax = 24), rather than from the fourth-
order (i.e. nmax = 4) series expansion for K (4)(s/m2) of Ref. [45]. 
Our second improvement consisted in exploiting generating inte-
gral representations to fit the rn , rnln r, as well as the rn(ln r)2

terms which were omitted in the analysis of Ref. [26]. Our stud-
ies show that the inclusion of the rn(ln r)2 terms greatly im-
proves the κ(4)(x) approximations, even if the order nmax of the 
series expansion for K (4)(s/m2) is not increased above four. Call-
ing κ̄ (4)(x, nmax) our improved approximations to κ(4)(x), obtained 
including rn(ln r)2 terms and starting from series expansions for 
K (4)(s/m2) up to order nmax, we verified that the total aHVP

μ (NLO)

contribution computed using our κ̄ (4)(x, 4) differs by less than one 
per mille from the one computed via our exact function κ(4)(x). 
Even better agreements were reached increasing the order nmax.

The authors of Ref. [26] added an O (10%) uncertainty to their 
final result to take into account the error induced by the omission 
of the rn(ln r)2 terms. This uncertainty, which dominates the error 
of their final result, can be eliminated using the exact formula for 
κ(4)(x) provided in this paper.

3.2. Classes (4b) and (4c)

The space-like expressions for the contributions of classes (4b)

and (4c) to the muon g-2 are [8,26]

a(4b)
μ = α

π

1∫
0

dxκ(2)(x)
αh(t(x))

× 2
[

α

(2)
e (t(x)) + 
α

(2)
τ (t(x))

]
, (25)

a(4c)
μ = α

π

1∫
0

dxκ(2)(x) [
αh(t(x))]2 , (26)
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Fig. 5. The NLO integrands of Eqs. (23) (blue), (25) (orange), and (26) (green), mul-
tiplied by −108, 108, and 108, respectively.

where �(2)
 (t) = −
α

(2)
 (t) is the renormalized one-loop QED VP 

function in the space-like region, with a lepton  = e, τ of mass 
m in the loop,

�
(2)
 (t) = α

π

[
8

9
− β2



3
+ β

(
1

2
− β2



6

)
ln

β − 1

β + 1

]
(27)

and β =
√

1 − 4m2
/t . Equations (25), (26) can be immediately ob-

tained from the time-like formulae of Ref. [45] using the usual 
dispersion relation satisfied by �h(t) and �(2)

 (t) to perform the 
integrals over s [26,41].

Fig. 5 shows the NLO integrands of Eqs. (23), (25), and (26), 
multiplied by −108, 108, and 108, respectively. Once again, the 
Fortran libraries KNT18VP [10,49–53] were used for 
αh(t(x)).

4. The HVP contribution at NNLO

The hadronic vacuum polarization contribution to the muon g-
2 at NNLO, aHVP

μ (NNLO), is due to several diagrams of O(α4). We 
divide them into the following classes (see Fig. 6).4 Class (6a) con-
tains diagrams with one HVP insertion and up to two photons 
added to the LO QED Feynman graph; it also includes diagrams 
with one or two muon VP loops and the light-by-light graph with 
a muon loop. Class (6b) comprises diagrams with one HVP inser-
tion and one or two electron VP loops and additional photonic 
or muon VP corrections; it also includes diagrams with one elec-
tron VP loop with an HVP insertion inside it. Class (6bll) diagrams 
have one HVP insertion and light-by-light graphs with an electron 
loop; in these diagrams, the external photon couples to the elec-
tron. Class (6c) contains diagrams with two HVP insertions and 
additional photonic corrections and/or electron or muon VP loops. 
Class (6d) consists of the diagram with three HVP insertions. All of 
these classes were studied in Ref. [16] in the time-like approach.

Class (6e) diagrams are obtained by adding to those of classes 
(4a), (4b) and (4c) a virtual photon emitted and reabsorbed by 
an HVP insertion. As discussed in the previous Section, their con-
tribution should not be considered as part of aHVP

μ (NNLO), al-
though of the same order in α, because it is already incorporated 
into aHVP

μ (NLO) via the R-ratio (in the time-like approach) or via 

αh(t) (in the space-like one). The impact of class (6e) can be 
roughly estimated considering the corresponding class of diagrams 
where the HVP insertion is replaced by a muon VP; that four-
loop QED contribution to the muon g-2 is −1.63 × 10−12 [55]. 

4 At NNLO we neglect the contribution of tau loops as it is estimated to be 
smaller than O (10−12) [16].
5

The effect of class (6e) can thus be estimated to be of O(10−12). 
Similarly, the corrections of class (6 f ), where two photons are 
emitted and reabsorbed by the HVP insertion of the LO diagram, 
should be already included in aHVP

μ (LO). Once again, this contri-
bution can be estimated replacing the HVP insertion by a muon 
VP: 1.44 × 10−12 [55]. Also the effect of class (6 f ) can thus 
be estimated to be of O(10−12). The contribution of class (6g1)

was recently studied in Ref. [56], where it was estimated to be 
� 1 × 10−11. The impact of classes (6g2) and (6h) can be es-
timated, once more, via the four-loop QED contribution obtained 
replacing the HVPs by muon VPs: 3.24 × 10−13 [55]. We therefore 
estimate the effect of classes (6g2) and (6h) to be of O(10−13). 
Classes (6 f ), (6g1), (6g2) and (6h) should be incorporated into 
aHVP
μ (LO).

The sum of the NNLO contributions is, therefore,

aHVP
μ (NNLO) = a(6a)

μ + a(6b)
μ + a(6bll)

μ + a(6c)
μ + a(6d)

μ . (28)

It is positive and of O(10−10) [16].

4.1. Class (6a)

The contribution of class (6a) can be written in the time-like 
form [16]

a(6a)
μ = α3

π4

∞∫
s0

ds

s
K (6a)(s/m2) Im�h(s). (29)

The sixth-order function K (6a)(z) is not known in exact form, but 
an approximate series expansion in the parameter r = m2/s, with 
terms up to fourth order, was computed in [16]. This expansion 
contains powers rn of degree n = 1, 2, 3, 4, multiplied by con-
stants, ln r, (ln r)2 and (ln r)3 terms. Following a procedure similar 
to that described at NLO, we exploited generating integral repre-
sentations to fit all the rn , rnln r, rn(ln r)2, and rn(ln r)3 terms of 
the K (6a)(s/m2) expansion,

K (6a)(s/m2) = r

1∫
0

dξ

[
L(6a)(ξ)

ξ + r
+ P (6a)(ξ)

1 + rξ

]
(30)

where

L(6a)(ξ) = G(6a)(ξ) + H (6a)(ξ) ln ξ + J (6a)(ξ) ln2ξ (31)

and

G(6a)(ξ) = g(6a)
0 + g(6a)

1 ξ + g(6a)
2 ξ2+ g(6a)

3 ξ3,

H (6a)(ξ) = h(6a)
0 + h(6a)

1 ξ + h(6a)
2 ξ2+ h(6a)

3 ξ3,

J (6a)(ξ) = j(6a)
0 + j(6a)

1 ξ + j(6a)
2 ξ2+ j(6a)

3 ξ3,

P (6a)(ξ) = p(6a)
0 + p(6a)

1 ξ + p(6a)
2 ξ2+ p(6a)

3 ξ3, (32)

obtaining the coefficients g(6a)
i , h(6a)

i , j(6a)
i and p(6a)

i (i = 0, 1, 2, 3) 
reported in Table 1.

Inserting the integral representation of Eq. (30) in Eq. (29), the 
integral over s can be performed using the dispersion relation sat-
isfied by �h(q2). With simple changes of variables we obtain

a(6a)
μ =

( α

π

)3
1∫

0

dx κ̄ (6a)(x)
αh(t(x)), (33)

where, for 0 < x < xμ = (
√

5 − 1)/2 = 0.618 . . .,
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Fig. 6. Sample O(α4) diagrams contributing to the HVP corrections to the muon g-2.

Table 1
The coefficients g(6a)

i , h(6a)
i , j(6a)

i , p(6a)
i (i = 0, 1, 2, 3). The superscript (6a) has been dropped 

for simplicity. In the above coefficients, the Riemann zeta function ζ(k) = ∑∞
n=1 1/nk and a4 =∑∞

n=1 1/(2nn4) = Li4(1/2).

(6a)

j0 = 0;

j1 = − 3793
864 ;

j2 = 35087
21600 ;

j3 = 1592093
43200 ;

h0 = − 359
36 ;

h1 = 122293
5184 ;

h2 = − 43879427
648000 ;

h3 = 14388407
48000 ;

g0 = 1301
144 − 19π2

9 ;

g1 = 441277
10368 + π2

(
− 355

648 + ln 4
)

+ 25 ζ(3)
2 ;

g2 = − 5051645167
38880000 + π2

(
221411
32400 − 18 ln 2

)
− 3919 ζ(3)

60 ;

g3 = 14588342017
38880000 + π2

(
− 2479681

64800 + 112 ln 2
)

+ 3113 ζ(3)
10 ;

p0 = − 1808080780513
14580000 + 41851π4

15 + 8432 ln4 2
3 + 67456 a4 + 2085448 ζ(3)

15 +
+ π2

(
− 11944163099

194400 + 272
3 (180 − 31 ln 2) ln 2 + 115072 ζ(3)

3

)
− 575360 ζ(5)

3 ;

p1 = 134017456919
96000 − 4481182π4

135 − 98420 ln4 2
3 − 787360 a4 + 2255200 ζ(5)+

+ π2
(

23549054249
32400 − 201122 ln 2 + 98420 ln2 2

3 − 451040 ζ(3)
)

− 57189259 ζ(3)
36 ;

p2 = − 13069081405453
3888000 + 330073π4

4 + 80790 ln4 2 + 1938960 a4 + 77371609 ζ(3)
20 +

+ π2
(
− 729995599

405 + 6 (85313 − 13465 ln 2) ln 2 + 1114360 ζ(3)
)

− 5571800 ζ(5);

p3 = 1274611832039
583200 − 986377π4

18 − 53340 ln4 2 − 1280160 a4 + 11057200 ζ(5)
3 +

+ π2
(

5809659289
4860 + 420 ln 2 (−823 + 127 ln 2) − 2211440 ζ(3)

3

)
− 22833188 ζ(3)

9 ;
κ̄ (6a)(x) = 2 − x

x (1 − x)
P (6a)

(
x2

1 − x

)
, (34)

whereas, for xμ < x < 1,

κ̄ (6a)(x) = 2 − x

x3
L(6a)

(
1 − x

x2

)
. (35)

We note that for x = xμ , t = −m2. The uncertainty of Eq. (33) due 
to the series approximation of K (6a) is estimated to be less than 
O (10−12).
6

4.2. Classes (6b) and (6bll)

The contributions of classes (6b) and (6bll) can be calculated 
similarly to class (6a). Indeed, in the time-like region, a(6b)

μ and 
a(6bll)
μ can be computed via Eq. (29) replacing K (6a) with K (6b) and 

K (6bll) , respectively. For these sixth-order kernel functions, approx-
imate series expansions in the parameters r = m2/s and ρ = me/m
were computed in [16]. The highest order expansion terms pro-
vided are of O (ρ2r4). Following the same procedure described in 
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Table 2
The coefficients g(6b)

i , h(6b)
i , j(6b)

i , p(6b)
i (i = 0, 1, 2, 3). The superscript (6b) has been dropped for simplicity. In the above 

coefficients, ρ = me/m, the Riemann zeta function ζ(k) = ∑∞
n=1 1/nk , and a4 = ∑∞

n=1 1/(2nn4) = Li4(1/2).

(6b)

j0 = 0;

j1 = 11
27 ;

j2 = 41
120 ;

j3 = − 507
40 ;

h0 = 65
54 ;

h1 = − 3559
1296 + ρ2 + 5

18 lnρ;

h2 = 3917
432 − 82ρ2

3 + 61
10 lnρ;

h3 = − 4109
80 + 2211ρ2

10 − 1763
30 lnρ;

g0 = 1
108

(
259 − 72ρ2 + 276 lnρ

)
;

g1 = − 9215
1296 + 65π2

162 − 3π2ρ
4 + 49ρ2

36 +
(
− 301

54 + 8ρ2
)

lnρ + 4
3 ln2 ρ + 2 ζ(3);

g2 = 501971
40500 − 113π2

36 + 270π2ρ
36 − 8417ρ2

180 +
(

3479
900 − 44ρ2

)
lnρ − 8 ln2 ρ − 12 ζ(3);

g3 = − 2523823
324000 + 625π2

36 − 49π2ρ + 84946ρ2

225 +
(

987
50 + 200ρ2

)
lnρ + 112

3 ln2 ρ + 56 ζ(3);

p0 = − 95519053063
486000 − 7275π2ρ +

(
− 587150693

5400 + 75272ρ2

3 + 120800π2

9

)
lnρ +

(
1135508

9 + 96ρ2
)

ζ(3)+
+ 4720 ln2 ρ + 1067115409ρ2

5400 + π2( 24382331
810 − 285184

9 ln 2) − 32π2ρ2 (687 + ln 4);

p1 = 279489728279
121500 + 179283π2ρ

2 +
(

2280933773
1800 − 309540ρ2 − 1419328π2

9

)
lnρ − 10

3

(
446023 + 216ρ2

)
ζ(3)+

− 174712
3 ln2 ρ − 174350167ρ2

75 + π2
(
− 143574463

405 + 3352256 ln 2
9

)
+ 16

3 π2ρ2 (48481 + 90 ln 2);

p2 = − 229560199193
40500 − 912495π2ρ

4 +
(
− 1867939691

600 + 788488ρ2 + 1168336π2

3

)
lnρ +

(
11034553

3 + 1440ρ2
)

ζ(3)+
+ 148348 ln2 ρ + 258653648ρ2

45 + 4
135 π2(29597029 − 31048560 ln 2) − 320

3 π2ρ2 (5989 + ln 512);

p3 = 72762177677
19440 + 154035π2ρ − 7

108

(−31650719 + 3973440π2 + 8220240ρ2
)

lnρ − 280
9

(
78283 + 27ρ2

)
ζ(3)+

− 100240 ln2 ρ − 513692207ρ2

135 + 35
162 π2 (−2687659 + 2816064 ln 2) + 140

3 π2ρ2 (9055 + ln 4096);
Subsection 4.1, we fit these expansions obtaining integral repre-
sentations analogous to that of Eq. (30) with the coefficients g(6b)

i , 
h(6b)

i , j(6b)
i , p(6b)

i and g(6bll)
i , h(6bll)

i , j(6bll)
i , p(6bll)

i reported in Table 2

and 3, respectively. The contributions a(6b)
μ and a(6bll)

μ can then be 
calculated in the space-like region using Eqs. (33)–(35), mutatis 
mutandis. Their estimated uncertainties due to the series approxi-
mations are less than O (10−12).

4.3. Class (6c)

The contribution of class (6c) in the time-like region is given 
by [16]

a(6c)
μ = α2

π4

∞∫
s0

ds

s

ds′

s′ K (6c)(s/m2, s′/m2)×

× Im�h(s) Im�h(s′). (36)

As class (6c) diagrams contain two HVP insertions, the time-
like formula (36) for a(6c)

μ requires two dispersive integrations of 
Im�h(s). Asymptotic expansions were provided in Ref. [16] for the 
function K (6c)(s/m2, s′/m2) in the limits s′ ≈ s  m2 and s′  s 
m2, from which an approximation of K (6c)(s/m2, s′/m2) valid for 
all values of s′ and s much larger than m2 can be constructed.

In the time-like approach, the number of dispersive integrations 
of Im�h(s) required to calculate the contribution of a diagram to 
the muon g-2 is given by the number of HVP insertions. On the 
other hand, the required dimension of the space-like integral of 

αh(t) (or powers of it) equals the number of photon lines with 
different momenta containing HVP insertions. To obtain a space-
like formula for a(6c)

μ , it is therefore convenient to separate the 
diagrams of class (6c) into the following four subclasses (6c1), 
(6c2), (6c3), and (6c4) (see Fig. 6).

The diagrams of subclass (6c1) contain two HVP insertions in 
the same photon line and no other electron or muon loop. The 
exact space-like expression for their contribution to the muon g-2 
is therefore given by the one-dimensional integral
7

a(6c1)
μ =

( α

π

)2
1∫

0

dxλ(4)(x) [
αh(t(x))]2 , (37)

where the kernel function is

λ(4)(x) = κ(4)(x) − 2π

α
κ(2)(x)
α

(2)
μ (t(x)), (38)

κ(4)(x) is the exact fourth-order space-like kernel of Eq. (24) and 
κ(2)(x) is the lowest-order one of Eq. (15). In Eq. (37), the use of 
the subtracted kernel λ(4)(x) instead of κ(4)(x) guarantees the sub-
traction of the contribution, induced by κ(4)(x), of two diagrams 
containing two HVP and one muon VP in the same photon line.

The contribution of the three diagrams of subclass (6c3), con-
taining two HVP and one electron VP insertion in the same photon 
line, can be cast in the exact space-like one-dimensional integral 
form

a(6c3)
μ = 3α

π

1∫
0

dxκ(2)(x) [
αh(t(x))]2
α
(2)
e (t(x)). (39)

Analogously, the exact contribution of subclass (6c4), comprising 
three diagrams with two HVP and one muon VP insertion in the 
same photon line, can be simply obtained replacing 
α

(2)
e (t) with 


α
(2)
μ (t) in Eq. (39).
Subclass (6c2) consists of diagrams with two HVP insertions in 

two different photon lines. Contrary to the simple one-dimensional 
integral form of all the space-like expressions for the contribu-
tions to the muon g-2 discussed so far, the presence in (6c2) of 
two different photon lines with HVP insertions requires a double 
space-like integration. We therefore proceeded in two steps. First, 
we computed the approximate time-like kernel K (6c2)(s/m2, s′/m2)

for the subclass (6c2). This was obtained by calculating the 
exact time-like kernels K (6c1)(s/m2, s′/m2), K (6c3)(s/m2, s′/m2)

and K (6c4)(s/m2, s′/m2) from the exact space-like expressions 
of Eqs. (37), (39), computing the series expansion of these kernels 
in the limits s′ ≈ s  m2 and s′  s  m2, and finally subtracting 
the obtained results from the K (6c)(s/m2, s′/m2) approximation of 
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Table 3
The coefficients g(6bll)

i , h(6bll)
i , j(6bll)

i , p(6bll)
i (i = 0, 1, 2, 3). The superscript (6bll) has been dropped for simplicity. In the 

above coefficients, ρ = me/m, the Riemann zeta function ζ(k) = ∑∞
n=1 1/nk , and a4 = ∑∞

n=1 1/(2nn4) = Li4(1/2).

(6bll)

j0 = 0;

j1 = 4
27 − 9ρ2

2 ;

j2 = − 41
48 + 2201ρ2

216 ;

j3 = 3037
900 − 5909ρ2

216 ;

h0 = − 9
2 ;

h1 = 59
9 − 275ρ2

36 − 18ρ2 lnρ;

h2 = − 485
32 + 1351ρ2

48 + 659ρ2

18 lnρ;

h3 = 282617
6750 − 10481ρ2

108 − 851ρ2

9 lnρ;

g0 = 43
8 − 4π2ρ + 15ρ2 + π2ρ2 − 18ρ2 lnρ + 6ρ2 ln2 ρ;

g1 = − 73
81 + 8π2

81 + 40π2ρ
9 + 2437ρ2

108 + 17π2ρ2

9 + 607ρ2

18 lnρ − 20ρ2

3 ln2 ρ + 2
3 ζ(3) + 2ρ2ζ(3);

g2 = − 385
162 − 41π2

72 − 28π2ρ
3 − 89873ρ2

5184 − 997π2ρ2

324 − 1961ρ2

72 lnρ + 14ρ2 ln2 ρ − 5
2 ζ(3) − 16ρ2

3 ζ(3);

g3 = 2691761
202500 + 3037π2

1350 + 24π2ρ + 655429ρ2

97200 + 2359π2ρ2

324 + 6943ρ2

360 lnρ − 36ρ2 ln2 ρ + 42
5 ζ(3) + 15ρ2ζ(3);

p0 = − 343277101
45000 − 33156604927ρ2

583200 + π2
(
− 615427

4050 + 6776ρ
3 + 763121ρ2

972

)
− 4π4

135

(
7817 + 3212ρ2

)+
+

(
− 7290521

3240 + 49622π2

27 − 128π4

9

)
ρ2 lnρ +

(
−3388 − 80π2

3

)
ρ2 ln2 ρ+

+
(

25642 + 1515724ρ2

27 − 128π2ρ2 − 160ρ2 lnρ
)

ζ(3) − 1280
3 ρ2ζ(5);

p1 = 89280434843
972000 + 248834878697ρ2

388800 − 1
324 π2

(−533001 + 9110736ρ + 3110417ρ2
) + 2

135 π4
(
180247 + 73530ρ2

)+
+

(
11101973

1080 − 193400π2

9 + 320π4

3

)
ρ2 lnρ + 2

3

(
63269 + 300π2

)
ρ2 ln2 ρ+

+ 1
45

(−13410977 + 100
(−292301 + 432π2

)
ρ2 + 54000ρ2 lnρ

)
ζ(3) + 3200ρ2ζ(5);

p2 = − 6209532853
27000 − 29997466847ρ2

19440 + π2
(
− 114521

30 + 71840ρ + 1970140ρ2

81

)
− 4

9 π4
(
14685 + 6032ρ2

)+
− 1

54

(
190613 − 2847360π2 + 11520π4

)
ρ2 lnρ − 80

(
1347 + 5π2

)
ρ2 ln2 ρ+

− 10
9

(−658509 + (−1431463 + 1728π2
)
ρ2 + 2160ρ2 lnρ

)
ζ(3) − 6400ρ2ζ(5);

p3 = 49726331179
324000 + 7324831423ρ2

7290 + π2
(

3897971
1620 − 145880ρ

3 − 3977785ρ2

243

)
+ 14

27 π4
(
8269 + 3419ρ2

)+
+ 7

81

(−81551 − 401520π2 + 1440π4
)
ρ2 lnρ + 140

3

(
1563 + 5π2

)
ρ2 ln2 ρ+

+ 35
27

(−371889 + 16
(−50437 + 54π2

)
ρ2 + 1080ρ2 lnρ

)
ζ(3) + 11200

3 ρ2ζ(5);
Ref. [16]. As a second step, we matched the LO terms of the ap-
proximate time-like kernel K (6c2)(s/m2, s′/m2) with those of the 
series expansion of a two-dimensional generating integral repre-
sentation, generalizing to two-dimensions the method used earlier 
to fit the K (6a)(s/m2) expansion. Our result for the space-like ex-
pression of the contribution of subclass (6c2) to the muon g-2 
is

a(6c2)
μ =

( α

π

)2
1∫

xμ

dx

1∫
xμ

dx′ κ̄ (6c2)(x, x′)×

× 
αh(t(x))
αh(t(x′)), (40)

where, for xμ < {x, x′} < 1,

κ̄ (6c2)(x, x′) = 2 − x

x3

2 − x′

x′3
G(6c2)

(
1 − x

x2
,

1 − x′

x′2

)
(41)

and

G(6c2)(ξ, ξ ′) = 1

4
(
32π2 − 315

) ×

×
[(

1855 − 188π2
) min(ξ, ξ ′)

max(ξ, ξ ′)2
+

+
(

988π2 − 9765
) min(ξ, ξ ′)2

max(ξ, ξ ′)3
+

+24
(

435 − 44π2
) min(ξ, ξ ′)3

max(ξ, ξ ′)4

]
. (42)

This contribution is of O (10−12). We note that the limits of in-
tegration in Eq. (40) are xμ and 1, corresponding to values of t
between −m2 and −∞, respectively.
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Equation (40) completes the list of space-like expressions for 
the contributions of class (6c),

a(6c)
μ = a(6c1)

μ + a(6c2)
μ + a(6c3)

μ + a(6c4)
μ . (43)

The uncertainty of Eq. (43) due to the approximations of subclass 
(6c2) is less than O (10−12).

4.4. Class (6d)

The correction due to the single diagram of class (6d) can be 
written in the time-like form [16]

a(6d)
μ = α

π4

∞∫
s0

ds

s

ds′

s′
ds′′

s′′ K (6d)(s, s′, s′′)×

× Im�h(s) Im�h(s′) Im�h(s′′). (44)

The kernel K (6d)(s, s′, s′′) for the triple hadronic insertion is pro-
vided in [16] in integral form. On the other hand, the space-like 
expression for a(6d)

μ can be cast in the simple exact form [8]

a(6d)
μ = α

π

1∫
0

dxκ(2)(x) [
αh(t(x))]3 . (45)

We note that three dispersive integrations of Im�h(s) are required 
to compute a(6d)

μ in the time-like approach, whereas the space-
like Eq. (45) involves only a one-dimensional integral. Numerically, 
a(6d)
μ is very small, of O (10−13).
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5. Conclusions

This paper provides simple analytic expressions to calculate the 
HVP contributions to the muon g-2 in the space-like region up to 
NNLO. These results can be employed in lattice QCD computations 
of aHVP

μ as well as in determinations based on scattering data, like 
those expected from the proposed MUonE experiment at CERN.

After a derivation of the space-like formula for the HVP contri-
bution at LO, obtained using the dispersion relation satisfied by the 
LO time-like kernel K (2)(z), we presented simple exact analytic ex-
pressions to extend the space-like calculation of aHVP

μ to NLO. The 
shapes of the space-like integrands of the aHVP

μ (NLO) contributions 
were found to differ significantly from the LO one. In particular, the 
exact NLO space-like kernel κ(4)(x) provides a stronger weight to 

αh(q2) at large negative values of q2 than the LO kernel κ(2)(x). 
These different weights may help to shed light on the present ten-
sion between the lattice QCD determination of aHVP

μ (LO) by the 
BMW collaboration and the time-like data-driven ones.

The approximation to the NLO space-like kernel κ(4)(x) ob-
tained by the authors of Ref. [26] induced the largest source of 
uncertainty of their NLO lattice QCD calculation of aHVP

μ (NLO). This 
uncertainty, of O (10%), can be eliminated using the exact expres-
sion for κ(4)(x) provided in this paper.

The NNLO HVP contribution to the muon g-2 is comparable 
to the final uncertainty expected from the Muon g-2 experiment 
at Fermilab. We presented simple analytic space-like expressions 
for all the classes of diagrams representing these corrections. For 
the diagrams composed of one- or two-loop QED vertices and two 
or more HVP insertions in the same photon line, we obtained 
exact space-like integral formulas. For the diagrams containing 
actual three-loop QED vertices, like e.g. electron or muon light-
by-light graphs, exploiting generating integral representations to 
fit the large-s approximate series expansions of the time-like ker-
nels provided by Ref. [16], we found very good approximations to 
the space-like kernels. The uncertainty of aHVP

μ (NNLO) due to these 
kernel approximations is estimated to be less than O (10−12).

In the space-like approach, the minimum dimension of the 
space-like integral of 
αh(t) (or powers of it) required to cal-
culate the contribution of a diagram to the muon g-2 is given 
by the number of photon lines with different momenta contain-
ing HVP insertions. The space-like kernels to compute aHVP

μ at LO 
and NLO are therefore one-dimensional. The same is true at NNLO, 
with the notable exception of the class of diagrams with two HVP 
insertions in two different photon lines. For this class, a two-
dimensional kernel is required. Generalizing to two dimensions the 
one-dimensional method used earlier, we derived a good approxi-
mate two-dimensional space-like kernel matching the approximate 
time-like kernel with the series expansion of a two-dimensional 
generating integral representation. Once again, the uncertainty due 
to the kernel approximation is less than O (10−12).

The calculation of higher-order HVP corrections to the muon g-
2 requires a precise treatment of the QED radiative corrections to 
the HVP function. Their leading effect, induced by the emission and 
reabsorption of a photon by the HVP insertion, is normally incor-
porated into the time-like approach via the inclusion of final-state 
radiation corrections in the R-ratio. This is a notoriously delicate 
issue, because of the experimental cuts imposed by the analy-
ses. On the other hand, the fully inclusive measurement of 
αh(t)
expected from MUonE will naturally include these leading correc-
tions in the space-like approach.

In conclusion, the results presented in this paper allow to com-
pare, for the first time, time-like and space-like calculations of 
aHVP
μ at NNLO accuracy. These eagerly anticipated comparisons will 

strengthen the SM prediction of the muon g-2 enhancing its po-
tential to unveil new physics.
9
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