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E C O L O G Y

Deviation from neutral species abundance distributions 
unveils geographical differences in the structure of 
diatom communities
Emanuele Pigani1,2†, Bruno Hay Mele1†, Lucia Campese1, Enrico Ser-Giacomi3, Maurizio Ribera1, 
Daniele Iudicone1*, Samir Suweis2,4*

In recent years, the application of metagenomics techniques has advanced our understanding of plankton com-
munities and their global distribution. Despite this progress, the relationship between the abundance distribu-
tion of diatom species and varying marine environmental conditions remains poorly understood. This study, 
leveraging data from the Tara Oceans expedition, tests the hypothesis that diatoms in sampled stations display a 
consistent species abundance distribution structure, as though they were sampled from a single ocean-wide 
metacommunity. Using a neutral sampling theory, we thus develop a framework to estimate the structure and 
diversity of diatom communities at each sampling station given the shape of the species abundance distribution 
of the metacommunity and the information of a reference station. Our analysis reveals a substantial temperature 
gradient in the discrepancies between predicted and observed biodiversity across the sampled stations. These 
findings challenge the hypothesis of a single neutral metacommunity, indicating that environmental differences 
substantially influence both the composition and structure of diatom communities.

INTRODUCTION
Recent advances in high-throughput molecular techniques have 
greatly advanced our understanding of microbial communities (1), 
revealing them to be highly rich and harboring a considerable popu-
lation of rare, low-abundance species, known as the “rare biosphere” 
(2, 3). Furthermore, these technological improvements have also 
enabled the examination of large-scale biogeographical patterns of 
microscopic organisms, a topic of long-standing debate (4, 5).

As a relevant example, these advancements have substantially in-
fluenced the study of pelagic marine environments, where ecosys-
tems are dominated—in terms of biomass and abundance—by 
plankton, an ensemble of microscopic drifting organisms with no-
table phylogenetic (6) and trophic (7) diversity. In these ecosystems, 
ocean transport processes such as advection and mixing play crucial 
roles in determining the spatial distribution of these organisms (8). 
Although advancements have been made, there remains a lack of 
comprehensive understanding of the dispersion and geographic 
structure of planktonic microbial communities. This underscores 
the need for a conceptual framework elucidating the “seascape”—a 
term used to denote the interplay of biological, chemical, and physi-
cal elements in the ocean, and its influence on plankton ecology (8). 
In particular, a noteworthy challenge lies in determining whether 
plankton samples represent a mixture of species from the same 
community (9, 10)—a concept known as metacommunity in ter-
restrial ecology (11)—or distinct communities shaped by specific 
environments (8, 12, 13). Equally relevant is the question of whether 
plankton samples represent a mixture of species that display the 

same community structure everywhere, or if the structure presents 
distinct patterns in time and space, beyond just composition.

In community ecology, species abundance distribution (SAD)—
the distribution of individuals within a species in a given community—
has been a cornerstone of research (11, 14), which can potentially 
shed light on the study of plankton microbial communities and their 
structure. Studying SADs not only allows for a characterization of 
ecological communities but also provides critical insights that en-
able species number estimations at larger scales beyond direct mea-
surement, accomplished by inferring SAD distribution forms (15–19). 
Notably, the functional form of SADs has shown consistency across 
diverse ecosystems. This suggests that fundamental ecological mech-
anisms, such as birth/death processes and migration/speciation events, 
might underpin such ubiquitous patterns (20–23). Yet, the interpre-
tation of SADs in ecological terms and the determination of their 
specific drivers prove challenging, as multiple mechanisms could 
potentially lead to the same SAD (14, 24, 25).

In the specific context of pelagic communities, the extent to 
which the structure of SADs is connected with oceanic environmen-
tal conditions and water mixing remains uncertain. Ser-Giacomi et al. 
(26) proposed and tested a density and dispersal-dependent neutral 
demographic model for plankton communities using the extensive 
Tara Oceans dataset (27). Their study focused on “Operational Tax-
onomic Units” (OTUs) from 152 sampling stations, representing 
four different organism size classes, at two depths. Their findings 
revealed that plankton SADs follow a power-law distribution with 
exponents exhibiting minimal variation across locations (26), sug-
gesting an absence of a geographical signature when excluding the 
most abundant species in the analysis. Later studies found smaller 
power-law exponents in lacustrine compared to marine environ-
ments, attributing this to differences in dispersion physics, specifi-
cally chaotic advection (28). These mechanisms, while difficult to 
characterize, could explain also the lack of immediate geography in 
the marine environment.
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While the aforementioned studies have focused on protist com-
munities as a whole, encompassing various trophic levels and life 
strategies, Busseni et al. (29) took a different approach. They concen-
trated on diatoms in their examination of the Tara Oceans dataset, 
investigating the relationship between global diatom richness—which 
displays different latitudinal variation when compared to the one of 
the whole plankton (30)—and seascape properties. Their particular 
emphasis on diatoms was due to their primary role in plankton 
communities regarding diversity and biomass (31), important contri-
butions to carbon and silica biogeochemical cycles (32), and homoge-
neous ecological position within the community despite varied life 
strategies (33), which is suggested by the lack of observed phagotro-
phic capability (34). They identified nutrient availability, chlorophyll 
a, temperature, and lateral mixing as nonlinear modulators of rich-
ness. However, their study did not analyze SADs.

In the present work, we fill this gap by analyzing the properties of 
diatom SADs and exploring their relationship with marine environ-
mental conditions. In particular, we test the hypothesis of the existence 
of an ocean-wide neutral diatom metacommunity, from which we can 
determine the structural properties of the local diatom communities 
and their diversity. Given that oceanic plankton communities are per-
sistently influenced by currents and display a biogeographical equilib-
rium with these currents (8), it is crucial to investigate whether the 
SADs of different plankton groups share a common structure despite 
community and environmental variations.

For this purpose, we leverage an OTU-based community table (see 
Materials and Methods) from 181 Tara Oceans sampling stations as 
proxies for different diatom species, with 123 sampled at the subsur-
face (SRF) and 58 at the deep chlorophyll maximum (DCM) depth. 
Then, following a tradition in theoretical ecology and statistical phys-
ics (22), we propose a theoretical framework that serves as a null 
model to test our hypothesis. Under the assumption that density-
dependent birth and death events (23) occur for each species at each 
location and independently of species identity, we examine whether 
variations in observed local SADs structural properties can be exclu-
sively attributed to differences in sample size or if there are unac-
counted variations, potentially indicating the influence of external 
drivers or distinct biological traits.

RESULTS
A thorough examination of diatom community structures, spanning 
181 Tara Oceans sampling stations, consistently reveals a similar 

pattern in diatom SADs, even amidst regional variations and differ-
ences in total read counts. This observation is vividly displayed in 
Fig. 1A, where each line, color-coded by the station’s average tempera-
ture, represents a distinct station’s empirical SAD. In particular, sta-
tions with lower temperatures exhibit higher abundances, consistent 
with the more favorable conditions for diatoms in those regions at the 
time of sampling (35). At the same time, stations characterized by dif-
ferent temperatures align closely with power-law distributions with 
nearly equivalent slopes. A maximum likelihood fit applied to these 
distributions confirms this behavior: The distribution exponents, al-
though capable of variation, tend to cluster in a narrow range between 
−1.5 and −2 and do not display a clear geographical pattern (see 
fig. S1). This is visually consistent with a reference power-law distribu-
tion with exponent −1.5 denoted by a dashed line in Fig.  1A and 
supports similar findings from studies of whole plankton commu-
nities (26).

The stability in the slopes among different stations may suggest 
that they all share the same structure, and it is the sampling process 
itself that considerably influences the observed variability in the total 
abundance among SADs. To further explore this relationship, a syn-
thetic undersampling experiment is performed.

Station #173—(79.0°N, 79.4°E)—at 5-m depth (SRF), distin-
guished by its rich biodiversity, is chosen (arbitrarily) as a reference 
station. The experiment involves a multinomial sampling of OTU 
reads from this station, where the number of sampled OTUs is aligned 
with the total counts of other stations. This process results in synthet-
ic samples, with total OTU abundances corresponding to the empiri-
cal measurements but with a different composition.

As demonstrated in Fig. 1B, the SADs of these synthetic samples 
closely mirror the observed patterns, apparently affirming the effi-
cacy of this undersampling experiment. We also find a strong cor-
relation r2 = 0.7 (P < 0.01) between the richness of empirical and 
synthetic communities, as shown in Fig.  1B. Additional results 
showing similar trends are detailed in fig. S2.

Neutral sampling theory
The similarity observed in SADs seems consistent with the scenario 
where each local diatom community represents a sample from an un-
derlying species reservoir or, in other words, a metacommunity (36, 
37). To systematically and analytically investigate this hypothesis, we 
exploit a scaling methodology (17). This allows us to predict the com-
position of diatom communities at targeted sampling stations using 
the attributes of a reference station.

Fig. 1. Comparison of empirical and synthetic SADs. (A) OTU-based diatom SADs for 181 Tara Oceans stations. Each line is color-coded on the basis of the average temperature 
of its respective station. Despite higher abundances observed in lower temperature stations, the SADs maintain a consistent shape, closely approximating a power-law distribution 
(λ ∼ 1.5, represented by the dashed line). (B) Synthetic SADs, generated from multinomial sampling based on the observed SAD of station #173 SRF. These synthetic SADs closely 
mimic the empirical ones, as evidenced by the correlation (r2 = 0.7) between the synthetic and empirical richness (inset, each point is colored according to its station’s temperature).
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To begin with, we consider a stochastic neutral model for the 
dynamics of the species abundances within the hypothesized ocean 
metacommunity. We assume that each species undergoes birth and 
death events at species-independent rates given by bn = bn + χ and dn = 
dn + μ, where n is the species population, b and d represent the linear 
per-capita birth and death rates, while χ and μ are their nonlinear cor-
rections, thus allowing for density-dependent rates. The parameter 
χ represents a migration/speciation term that is different from zero 
even when n = 0, while μ accounts for a lower death probability of 
species with very high abundance (e.g., blooms) than individuals be-
longing to rare species (26).

Such ecological stochastic dynamics can be described in terms of 
a master equation (38), whose steady state provides the expected 
SAD P(n) ≡ P(n∣α, β, r), which reads

where we have introduced the parameters α = χ/b, β = μ/d, and r = 
logb/d, while Γ(·) is the Gamma function and θ(α, β, r) is a normaliza-
tion factor that ensures ∑n≥1 P(n) = 1. Asymptotically, P(n) is a 
power-law distribution with an exponent −λ = −1 + α − β and an 

exponential cutoff that depends on r, which vanishes in the limit 
b = d (26).

To investigate the existence of an ocean-wide neutral metacom-
munity, we thus suppose that P(n) describes the SAD of the entire 
diatom metacommunity and that by sampling it, we can deduce the 
SADs and richness of local communities, as outlined in Fig. 2. Con-
sider a metacommunity inhabiting an ocean volume V, comprising S 
species with abundances distributed according to Eq. 1. In a homoge-
neously mixed system, a local community can be seen as a sample of 
volume Vp < V from the metacommunity, thus yielding a local SAD 
ϕ(n∣p) ≡ ϕ(n∣α, β, r, p) given by

as derived in Material and Methods. Here, p = Vp/V represents the 
sampling ratio (22), and 2 F̃1(⋅) is the regularized hypergeometric 
function. If species are uniformly distributed with population density 

P(n) = θ(α, β, r)
Γ(β + 1)Γ(n + α)

Γ(α)Γ(n + β + 1)
e−rn (1)

(2)

Fig. 2. Illustration and results of the neutral sampling approach. (A) Geographic distribution of the SRF Tara Oceans stations considered. Station #173 SRF (79.0°N, 
79.4°E) is one of the most diverse stations, while tropical stations such as station 43 SRF (4.7°N, 73.5°E) typically have lower abundance and sampling effectiveness. 
(B) Inset: The empirical SAD for reference station #173 (blue histogram) is fitted with Eq. 1 (green curve). The fitted parameters are α = −0.2, β = 0.28, and r = 0.0, indicating 
that the curve asymptotically approaches a power law with exponent λ = −1.48. (B) The power-law approximation of SAD allows us to downscale the richness of station 
#173 (blue diamond) to predict the richness of the other stations as a function of their abundances through Eq. 5 (blue line). This prediction is compared with the empiri-
cal data (red square for station 43, gray dots for all the other SRF stations). (C) The neutral sampling framework is validated by comparing the predicted and the observed 
richness. The Pearson’s correlation is r = 0.78 with P < 0.01. Each point is colored on the basis of the relative error of the prediction ΔS, which is generally positive for the 
most biodiverse communities. (D) Geographic distribution of ΔS. In polar regions, ΔS > 0 indicates an overestimation of richness, while underestimation occurs in tropical 
regions. In all panels, only SRF stations are considered.
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ρ, then the total population in the sampled station is Np = ρVp, while 
the total abundance in the metacommunity is N = ρV, leading to p = 
Np/N. This is typically valid when the use of ecosystem resources is 
saturated (11).

We note that ϕ(0∣p) estimates the likelihood of the absence of a 
species in the local sample. Therefore, the probability of observing Sp 
species in Vp when the metacommunity richness is S follows a bino-
mial distribution with an average given by

and variance S[1 − ϕ(0∣p)]ϕ(0∣p) (see Materials and Methods), align-
ing with several theoretical models in ecology [see, e.g., (39, 40)].

The challenge of applying Eq. 3 to estimate sample diversity lies in 
the inability to infer p from the available data. For instance, consider-
ing the union of all 181 samples as a single meta-community is im-
practical due to the compositional nature of the data (41): Each 
metabarcoding sample possesses a unique library size—the total 
number of sequencing reads—which precludes direct comparison or 
amalgamation of different samples.

Nevertheless, we have devised a strategy to evaluate the single neu-
tral metacommunity hypothesis without direct access to its parame-
ters. This approach requires two assumptions. First, we assume the 
power-law asymptotic approximation of Eq. 1 as the distribution of 
the metacommunity SAD. If this holds, then also the local SADs 
should display power-law tails. We find that the majority of the sta-
tions are best fitted with Eq. 1 for r = 0 (see table S1) and with expo-
nent 1 ≤ λ < 2. Second, we presume that the population sizes of local 
communities are notably smaller than the one of the metacommunity, 
implying p ≪ 1. This assumption is well-founded given the nature of 
the data (27). Under these conditions, Eq. 3 simplifies to

where ζ(·) is the Riemann ζ-function and we introduce the metacom-
munity biodiversity index K, which depends solely on metacommu-
nity properties (see Materials and Methods). Equation 4 shows the 
existence of a simple scaling law between the richness and the total 
abundance of the samples which is regulated by λ.

Moreover, by comparing Eq. 4 across two local stations and using 
one as a reference, we can infer the richness of the other station as

Notably, this sampling relation does not involve the metacommu-
nity index K but does depend on λ, which is nevertheless unknown 
beforehand. However, due to the scale invariance property of power-
law distributions, a subsample from a power law also follows a power 
law with the same exponent. Therefore, we can estimate λ by analyz-
ing the SAD fits of the diatom local communities, and then exploit 
Eq. 5 to infer the biodiversity of each local station, given the reference 
one. In our analysis, we use the exponent fitted in the reference 

community. Nevertheless, using either the average (λ = 1.44) or the 
mode (λ = 1.51) of the fitted λ exponents from all the local stations 
yields similar outcomes, as shown in fig. S3.

This neutral sampling procedure is sketched in Fig. 2 (A and B). 
Consistently with the synthetic sampling experiments, we chose a 
posteriori station #173—(79.0°N, 79.4°E)—at 5-m depth (SRF) as the 
reference station (Fig. 2B). Not only its community is one of the most 
diverse and abundant but also it is the best one in predicting the prop-
erties of the other local stations. Yet, similar results can be obtained 
for other choices of reference stations (see Supplementary Materials 
and figs. S4 and S5). Notably, the fitted parameters for the reference 
station are α = −0.2, β = 0.28 (implying λ = 1.48), and r = 0 (Fig. 2B, 
inset), thus supporting the hypothesis of a power-law SAD with expo-
nent λ ∼ 1.5 [cf. (26)]. Consequently, Eq. 5 can be used to downscale 
or upscale the richness as a function of the total abundance based on 
the properties of the reference station (indicated by the blue diamond 
in Fig. 2B). This procedure yields a twofold result. On one hand, the 
scaling of richness with the total population of the samples qualita-
tively aligns with our prediction, showing a correlation coefficient r = 
0.78. On the other hand, we observe consistent discrepancies between 
the data and the model. Specifically, the richness for less abundant 
stations is underestimated, while for the most abundant stations, it is 
overestimated. In the Supplementary Materials (fig. S3), we also infer 
the richness of the DCM stations from reference station #173 SRF, 
although with less accuracy.

Deviations from neutral SADs and diatom biogeography
The above results are even more evident from Fig. 2C. It shows how, 
from the fitted parameter λ and the properties of the reference station, 
we can estimate the richness of the other stations through Eq. 5. The 
predicted values for the richness of the SRF stations are in good agree-
ment with the empirical ones (r = 0.78 with P < 0.01). At the same 
time, we find systematic deviations between the diversity estimates 
obtained through the neutral SAD sampling framework and the em-
pirical ones. In particular, we analyze the distribution of relative dif-
ferences between the predicted biodiversity (Sp) and the observed one 
(Sloc) in each SRF station, namely

As shown in Fig. 2D, it is clear that the estimator’s error is not ran-
domly distributed, i.e., ΔS depends on the station latitude. In other 
words, the discrepancies between the theory and the data, as mea-
sured by ΔS, reveal a biogeographical pattern. The Arctic stations, 
known for hosting a very rich and abundant diatom population (29), 
display the highest positive deviations, meaning that the estimator is 
overestimating richness in this region. The opposite occurs for the 
mid-latitudinal Atlantic stations, sampled in late winter, where the 
measured richness is larger than the one produced by the estimator. 
Last, deviations in both signs are observed in the highly oligotrophic 
waters of the South Pacific, while the entire tropical Pacific and Indian 
oceans have slightly negative anomalies.

The systematic and geographically related discrepancies of ΔS in-
dicate that the null hypothesis of a single neutral metacommunity for 
oceanic diatoms is not supported by the data. This is also confirmed 
by the analysis of the inferred metacommunity biodiversity indexes 
K. The existence of a single ocean-wide metacommunity would imply 
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the same K for all stations. However, as shown in fig. S7, we find dif-
ferent values of K, for both SRF and DCM stations.

To gain a deeper understanding of the anomalies in richness pre-
diction, we examined the correlation of ΔS with other macroecologi-
cal and environmental descriptors. The most substantial correlations 
are illustrated in Fig. 3A, while a more detailed analysis can be found 
in figs. S8 and S9. Notably, ΔS exhibits a stronger negative correlation 
with temperature compared to richness, aligning with the observed 
geographical pattern for the deviation of predicted richness. More-
over, ΔS has a robust positive correlation with latitude (r = 0.48) and 
solar light (r = 0.35), and a negative correlation with salinity (r = 
−0.43). In all these instances, these correlations are stronger than 
those observed with richness. Conversely, when considering the cor-
relation with nutrients, richness shows a moderate association with 
levels of NO3 (r = 0.34), PO4 (r = 0.39), and Si(OH)4 (r = 0.36), while 
ΔS display a significant correlation only with PO4 (r = 0.3).

We also investigate the relationship between ΔS and community 
structure properties. We find that the strongest correlation (r = −0.68) 
is with evenness, a measure that quantifies community heterogeneity. 
Evenness is defined as

where xi is the relative abundance of species i within the community, 
i.e., xi = ni/N and N =

∑S

j=1
nj is the total abundance of the commu-

nity. Therefore, as reported in Fig. 3B, an increase in evenness is as-
sociated with a decrease in ΔS, suggesting that ΔS captures relevant 
traits of the community structure with negative or positive deviations 
associated, among others, with lower or higher presence of dominant 
species characterizing the assemblage.

One might expect that the geographical distribution of evenness 
(reflecting its correlation with ΔS) would result in a spatial pattern for 
the exponents (λ) governing the SAD’s power-law behavior. However, 
this is not the case (see fig. S11), and we can understand why. Follow-
ing our previous assumptions, we derive an analytical prediction of 
evenness for a pure power-law SAD defined within a finite concentra-
tion range [xm; xM] (see Eq. 25). By considering the empirical mini-
mum (xm) and maximum (xM) of each station and the exponent λ 

obtained from the fits, we can predict the evenness of each sample, as 
shown in Fig. 4A. As also evident from Fig. 4B, the dependence of 
evenness on λ is highly non-monotonic, with maximum values for 
either small (λ ≲ 1) or large (λ ≳ 2) and minimum for intermediate 
exponents (λ ∼ 1.5). The reason behind this non-monotonic behavior 
is that for large exponents, the power-law distribution is very concen-
trated at xm, i.e., the distribution is homogeneous and thus the even-
ness is close to 1.

Last, in the Supplementary Materials, we compare the fits for dia-
tom (see fig. S10) and for protists (20- to 180-μm size class) commu-
nities, finding a low correlation (r = 0.25 with P < 0.01; see fig. S9). 
This result indicates that dispersal, which a priori would affect the 
diatoms as all other protists, is not the sole mechanism shaping the 
differences in the SAD exponents among stations. We should have 
found similar λ for protists and diatoms communities in this case. 
Moreover, a Mantel test (42) reveals a statistically significant relation-
ship between ΔS and temperature T (P < 10−3). This relationship 
suggests that the observed variations in SAD structure—specifically 
the differences between high and low evenness—may be influenced 
by environmental factors. In other words, these correlations demon-
strate biogeographical patterns in the distribution of marine commu-
nities across the ocean, which may be shaped by a range of abiotic 
and biotic factors, which will require further studies.

DISCUSSION
Scaling laws are ubiquitous in nature, even though the underlying 
mechanisms behind them are not unique (43, 44). SADs of organisms 
in different ecosystems fall within this category, even though their for-
mulation may differ between ecosystems or groups. Ser-Giacomi et al. 
(26) showed that the SADs of eukaryotic plankton in the ocean follow 
a power law, provided that few, very abundant species are removed 
from the assemblage. They attributed such power-law behavior to a 
neutral model with density-dependent rates governing the exponents 
of the asymptotic power law. Although such exponents were fairly con-
stant in space, the values of the composing parameters were not, pos-
sibly reflecting dispersal effects, as also proposed by Villa et al. (28).

To investigate the factors ruling the assemblage of diatoms, we 
have thus proposed a null neutral model, able to quantify the effects 
of demographic stochasticity and sampling effort in shaping diatom 
SAD. By establishing a theoretical framework that accounts for 

E = −

S∑

i=1

xilog(xi)

log(S)

(7)

Fig. 3. Correlation analysis. (A) Spearman’s correlation matrix for temperature (T), total abundance (N), richness (S), evenness (E), and the relative deviation between the 
predicted and observed richness (ΔS) for the SRF stations. All correlations are statistically significant (P ≤ 0.01), with the exception of the correlation between S and ΔS 
(P = 0.04). The largest correlation observed between ΔS and evenness. (B) Scatter plot representing each SRF station, with evenness on the y axis and ΔS on the x axis. The 
slope of the fitted linear relation is m = −0.21, indicating a negative correlation between them.
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undersampling from a neutral metacommunity, we can qualitatively 
predict the SRF average diversity of diatom communities at various 
sampling stations using the characteristics of a reference station.

The less accurate prediction of the richness of DCM stations 
from #173 SRF suggests that their distribution is substantially dif-
ferent from the SRF ones. This inaccuracy does reflect the different 
environmental contexts of DCMs, where diatoms are not abun-
dant. DCMs display a wide range of environmental conditions 
and, in the case of seasonal DCMs, histories [see, e.g., (45)]. In 
addition, if we attempt to use a DCM reference station to predict 
the richness of the other DCM stations, then the correlation is still 
significant, but there is a systematic underestimation of the rich-
ness (see figs. S5 and S6).

We have also provided quantitative evidence with the hypothesis 
that a single ocean-wide neutral metacommunity, where the differ-
ences among local sampled stations are attributed solely to different 
sampling efforts, does not hold, at least for this specific plankton 
group. In particular, the analysis of the deviations between the pre-
dicted and the observed richness reveals the signature of biogeo-
graphical patterns, with ΔS being substantially correlated with 
temperature (46), as shown in fig. S8. This suggests that the environ-
ment plays a key role in shaping community structures and cannot be 
neglected when modeling diatom communities. It is worth stressing 
that temperature, along with nutrients and light—the environmental 
parameters we previously explored—should not be considered as di-
rect drivers of the observed difference, but rather as proxies of differ-
ent dynamics of the seascape.

Bio-oceanographic processes thus underlie the observed differ-
ences in diatom community structures among regions highlighted by 
ΔS and the negative monotonic trend between ΔS and the evenness E 
(see Fig. 3 and fig. S9). During the time of sampling, the subarctic re-
gion experienced a phytoplankton seasonal bloom (35), in which dia-
toms played a key role. This was due to high nutrient concentrations 
and moderate stratification, even at the low in situ temperatures (12). 
In contrast, the permanently stratified and low-silicon, nutrient-
depleted tropical region hampers the accumulation of phytoplankton 
biomass. This particularly affects many medium-sized eukaryotic 
fractions, favoring the bacterial component and, more broadly, the 

picoplanktonic fraction, with diatoms playing a lesser role in these 
regions.

In addition, we have found a negative correlation between local 
diversity and evenness. This result, in stark contrast to what is typi-
cally observed in terrestrial ecosystems, can be attributed to the fact 
that uneven distributions are characterized by a few dominant species 
with very high abundance, such as blooming species (47).

We have also analyzed which parameters in the neutral, dispersal-
modulated (through the constant term in the birth rate, representing 
immigration) model could affect the deviation between the predicted 
and the observed richness. Since, in most of the stations, we underes-
timate the observed diversity, it would be possible to reduce such de-
viations by assuming a higher α and/or a lower β in the reference 
station (see fig.  S12). This, in turn, would imply a smaller density-
dependent b or a larger density-independent χ for the birth rate and/
or vice versa (larger d, smaller μ) for the terms related to death. In 
other words, the neutral model fails to properly describe the presence 
of boom-and-bust species (48). Such species can accumulate for a 
limited amount of time at a much higher speed than the other species, 
thus reducing the evenness. Moreover, when ΔS < 0, the stations are 
even more dominated by a few diatom species. Not all diatoms display 
the boom-and-bust strategy, especially in environmental contexts, 
e.g., subtropical gyres, where the system’s carrying capacity for diatom 
is quite small due to low silicon (Si) and iron (Fe) concentrations. 
However, the observed structural differences exist among whole dia-
tom assemblages without filtering rare or abundant species, and they 
are also present among low abundance stations, where the very abun-
dant species are absent.

In summary, we suggest that the community assembly differences, 
indicated by our estimators ΔS and K, are not only the result of differ-
ent sampling efforts but also the stem from the complex interplay of 
life strategies [see, e.g., (49)], abiotic processes [see, e.g., (50)], and 
biotic interactions [see, e.g., (51)] that operate differently in space, 
time, and across species and also have varying impacts at the intra-
group level. Therefore, a key area for future research will be integrating 
these factors with the impact of the seascape in ecological modeling. 
The link between ΔS, derived within our proposed framework, and 
the above processes deserves further investigation and may reveal 

Fig. 4. Evenness relationship with power-law distribution. (A) Comparative analysis of predicted and empirical evenness. The empirical evenness is calculated from the 
data of SRF stations using Eq. 7, while the predicted evenness is derived from Eq. 25, assuming that each SAD follows a power-law distribution with exponent λ within the 
range of empirical minimum (xm) and maximum (xM) frequencies. The correlation between predicted and observed evenness is strong (r2 ≃ 0.9), particularly for E ≥ 0.4. 
However, the expected values generally overestimate the evenness. The gray dashed line represents the bisector, and each point is color-coded according to the value of 
the fitted λ. Notably, the stations with the highest evenness typically exhibit the largest (red circles) or the smallest (blue circles) λ. This relationship is further illustrated in 
(B), where the predicted (solid lines) and empirical (color-coded circles) evenness as a function of λ display a non-monotonic dependence. Solid lines represent Eq. 25 for 
xm = 10−6 and progressively larger values of xM (from top to bottom: 0.001, 0.01, 0.1, 0.5, and 0.99).
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overlooked interplays between the seascape and plankton dynamics 
to embed in ecological modeling.

MATERIALS AND METHODS
Data
The dataset used for the analysis is the OTU-based community table 
presented in (29). Specifically, we analyzed metabarcoding data col-
lected at 123 Tara Oceans epipelagic stations for the size fraction of 
20 to 180 μm. This comprised a total number of 181 samples, with 
123 stations sampled at the subsurface at a depth of 5 m (SRF) and 58 
of them at DCM depth. Total nucleic acids (DNA + RNA) were ex-
tracted from all samples, and the hypervariable V9 region of the nu-
clear 18S ribosomal DNA was amplified through polymerase chain 
reaction (PCR) to obtain a metabarcoding survey of plankton (7). 
Quality filtering based on read quality checks and a minimum num-
ber of occurrences of three copies in at least two different samples 
was implemented to reduce PCR and sequencing errors. OTUs were 
subsequently formed by applying the Swarm approach (52) and re-
sulted in a final number of 5308 validated surface diatom OTUs, with 
the information of the total number of reads in each station. Addi-
tional information about the OTU-based community table can be 
found in (29).

Ecological framework
We use a community assembly model to describe the empirical abun-
dance distributions of the OTUs, which serve as proxies for species, in 
the different samples. Let us consider an ecosystem composed of N 
individuals belonging to S different species. Following (38), we as-
sume that each species undergoes birth and death at rates that depend 
only on the species abundance. In particular, if n is the population of 
a species, then the birth and death master equation governing the dy-
namics of the species abundance is

where the (species-independent) rates are

Here, b and d represent the linear per-capita birth and death rates, 
while χ and μ are their nonlinear corrections, whose effect is espe-
cially important for species of low abundance. The steady-state solu-
tion of the master equation describing the ecological stochastic 
dynamics of such a modeled community provides the expected SAD 
P(n), which reads (26, 38)

where the parameters α, β, and r are functions of the birth and death 
rates, namely

whereas the normalization factor θ(α, β, r) takes into account the fact 
that each species at the global scale consists of at least one individual

where 2F1(·) indicates the hypergeometric function. Similarly to (53), 
we would like to determine the local expected SAD when we look at 
local subsample p = Vp/V, i.e., considering a subvolume Vp of the 
whole volume V, under the hypothesis of random sampling. As al-
ready mentioned in the main text, if species are uniformly distributed 
with density ρ, then the sampling effectiveness corresponds to the 
sampled fraction of individuals p = Np/N. Let us consider a species of 
n individuals among the whole population. Under the random sam-
pling hypothesis, the conditional probability for the species to have k 
individuals at the subsample p is given by a binomial distribu-
tion, that is

Hence, the probability ϕ(k∣p) that a species has an abundance k ≥ 
1 at a subscale p is the marginalization of the binomial over all the 
possible total abundances n of the species at the global scale, i.e., 
ϕ(k∣p) =

∑
n≥k �binom(k∣n, p)P(n) . This leads to

where 2 F̃1(⋅) is the regularized hypergeometric function. Analogously, 
we can calculate the probability ϕ(k = 0∣p) that the species is not pres-
ent at the local scale, with the only difference that now n should be 
strictly larger than 0. The explicit calculation leads to

Consequently, 1 − ϕ(0∣p) represents the probability for a species to 
be found in the local sample, and thus the probability of sample Sp 
species in the subvolume p with total richness S is given by the bino-
mial distribution

which has average S[1 − ϕ(0∣p)] and variance S[1 − ϕ(0∣p)]ϕ(0∣p). 
Therefore, the expected number of species 〈Sp〉 present with sam-
pling effectiveness p is

Ṗn(t) = bn−1Pn−1(t) + dn+1Pn+1(t) − (bn + dn)Pn(t) (8)

{
bn=bn+χ,

dn=dn+μ
(9)

P(n) = θ(α, β, r)
Γ(β + 1)Γ(n + α)

Γ(α)Γ(n + β + 1)
e−rn when n ≥ 1 (10)

⎧
⎪
⎨
⎪
⎩

α=χ∕b,

β=μ∕d,

r= − logb∕d

(11)

(12)

�binom(k∣n, p) =

(
n

k

)

pk(1−p)n−k (13)

ϕ(k∣p)=
pker−krΓ(k+α)2 F̃1

[
k+1, k+α; k+β+1; e−r(1−p)

]

Γ(α+1)2 F̃1(1, α+1; β+2; e−r)

(14)

ϕ(0∣p)= (1−p)
2F1

[
1, α+1; β+2; e−r(1−p)

]

2F1(1, α+1; β+2; e−r)
(15)

p(Sp∣S, p))=

(
S

Sp

)

[1−ϕ(0∣p)]Spϕ(0∣p)
S−Sp (16)

⟨Sp⟩ = S

�

1 − (1 − p) 2F1[1, α + 1; β + 2; e−r(1 − p)]

2F1(1, α + 1; β + 2; e−r)

�

(17)
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Neutral sampling theory from a power-law SAD
Equation  1 can be asymptotically approximated by P(n) ∝ n−λe−rn 
(26) with λ = 1 − α + β. When r = 0, this distribution is therefore well 
approximated by a power-law SAD

where ζ(·) is the Riemann ζ-function. In this approximation, the 
probability is not present at the local scale given by Eq. 15 becomes

where Li is the polylogarithm function Lin(z) =
∑∞

k=1
zk

kn
 . If we as-

sume p ≪ 1, then we can expand this relation and get the scaling rela-
tion for the richness

The richness scaling depends on λ when 1 < λ ≤ 2 and is linear 
otherwise. Here, we are interested in the first regime, as λ is typi-
cally close to 1.5. In this case, we can explicitly write the scaling rela-
tion from the metacommunity properties as

where K is the metacommunity biodiversity index, which is a func-
tion of the metacommunity properties. We can infer K from the 
sampling data, provided that we know λ, as

where Sloc and Nloc are the observed local richness and total abun-
dance, respectively.

Model fitting
We fit Eq. 1 to all samples. We optimize the parameters of Eq. 1 for 
each sample using the generalized simulated annealing algorithm 
implemented in the GenSA R library (54). Generalized simulated an-
nealing is a robust and efficient method that avoids resting on local 
minima thanks to a Metropolis-based acceptance model. We manu-
ally tuned the lower and upper bounds for parameters.

The resulting parameters and P values are reported in table S1, and 
α and β are also displayed in the inset of fig. S7. A total of 143 out of 181 
stations displayed r = 0, while the remaining 40 stations have a mean 
of the order of 10−3, which is two orders of magnitudes higher than 
those reported by Ser-Giacomi et al. (26). Thus, the fits do not display 
exponential decay for large abundances. A Kolmogorov-Smirnov test 

was conducted on the fits, resulting in ∼20% acceptance rate (see 
table S1).

We choose the most abundant stations as good candidates for be-
ing the reference station. The relative deviations ΔS between the pre-
dicted and the observed richness for the reference station candidates 
are reported in fig. S2. Being the one that minimizes the overall ΔS, 
we choose station #173 (79.0°N, 79.4°E) at 5-m depth (SRF) as the 
reference one.

Expected value of the evenness for a power-law SAD
Motivated by the empirical fits, which show that the parameter r is 
close to 0 in the majority of the stations, we derive an analytical for-
mula for the expected evenness for a SAD that follows a power law 
with exponent −λ, with domain between two relative frequencies xm 
and xM, namely

By definition (see Eq. 7), the Evenness is the Shannon diversity 
index normalized by its maximum possible value, i.e., when every 
species is equally likely (and thus equal to the average). Since for the 
power-law distribution, the average is

we can calculate the expected evenness Epl by first averaging the 
evenness over P(x) and then replacing S with 1∕x . This leads to

Supplementary Materials
This PDF file includes:
Figs. S1 to S12
Table S1 
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