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Abstract We consider a Neumann problem for the Laplace equation in a periodic
domain. We prove that the solution depends real analytically on the shape of the
domain, on the periodicity parameters, on the Neumann datum, and on its boundary
integral.

1 Introduction

The aim of this paper is to prove the analytic dependence of the solution of a periodic
Neumann problem for the Laplace equation, upon joint perturbation of the domain,
the periodicity parameters, the Neumann datum, and its integral on the boundary.
The domain is obtained as the union of congruent copies of a periodicity cell of
edges of length @11, . . . , @== with a hole whose shape is the image of a reference
domain through a diffeomorphism q. As Neumann datum we take the projection of
a function 6, defined on the boundary of the reference domain and suitably rescaled,
on the space of functions with zero integral on the boundary. As it happens for
non-periodic Neumann problems, in order to identify one solution, we impose that
the integral of the solution on the boundary is equal to a given real constant : .
By means of a periodic version of potential theory, we prove that the solution of
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the problem depends real analytically on the ‘periodicity-domain-Neuman datum-
integral’ quadruple ((@11, . . . , @==), q, 6, :).

Many authors have investigated the behavior of the solutions to boundary value
problems upon domain perturbations. We mention, e.g., Henry [7] and Sokolowski
and Zolésio [18] for elliptic domain perturbation problems. Lanza de Cristoforis
[10, 11] has exploited potential theory in order to prove that the solutions of boundary
value problems for the Laplace and Poisson equations depend real analytically upon
domain perturbation.Moreover, analyticity results for domain perturbation problems
for eigenvalues have been obtained for example for the Laplace equation by Lanza de
Cristoforis and Lamberti [8], for the biharmonic operator by Buoso and Provenzano
[2], and for the Maxwell’s equations by Lamberti and Zaccaron [9].

In order to introduce our problem, we fix once for all a natural number

= ∈ N \ {0, 1}

that represents the dimension of the space. If (@11, . . . , @==) ∈ ]0, +∞[= we define a
periodicity cell & and a matrix @ ∈ D+= (R) as

& ≡
=∏
9=1
]0, @ 9 9 [, @ ≡

©«
@11 0 · · · 0
0 @22 · · · 0
...

...
. . .

...

0 0 · · · @==

ª®®®®¬
,

where D= (R) is the space of = × = diagonal matrices with real entries and D+= (R)
is the set of elements of D= (R) with diagonal entries in ]0, +∞[. Here we note that
we can identifyD+= (R) and ]0, +∞[=. We denote by |& |= the =-dimensional measure
of the cell &, by a& the outward unit normal to m&, where it exists, and by @−1 the
inverse matrix of @. We find convenient to set

&̃ ≡ ]0, 1[= , @̃ ≡ �= ,

where �= denotes the identity =× =matrix. Then we introduce the reference domain:
we take

U ∈ ]0, 1[ and a bounded open connected subset Ω of R=

of class �1,U such that R= \Ω is connected ,
(1)

where the symbol ‘·’ denotes the closure of a set. For the definition of sets and
functions of the Schauder class �1,U we refer, e.g., to Gilbarg and Trudinger [6].
In order to model our variable domain we consider a class of diffeomorphisms
A&̃

mΩ
from mΩ into their images contained in &̃ (see (3) below). By the Jordan-

Leray separation theorem, if q ∈ A&̃

mΩ
, the set R= \ q(mΩ) has exactly two open

connected components (see, e.g., Deimling [5, Thm. 5.2, p. 26]). We denote by
I[q] the bounded open connected component of R= \ q(mΩ). Since q(mΩ) ⊆ &̃, a
topological argument shows that &̃ \ I[q] is also connected (cf., e.g., [3, Theorem
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A.10]). We are now in the position to introduce the following two periodic domains
(see Figure 1):

S@ [@I[q]] ≡
⋃
I∈Z=
(@I + @I[q]) , S@ [@I[q]]− ≡ R= \ S@ [@I[q]] .

The setS@ [@I[q]]−will be the onewherewe shall set ourNeumann problem. Clearly,
a perturbation of @ produces a modification of the whole periodicity structure of
S@ [@I[q]]−, while a perturbation of q induces a change in the shape of the holes
S@ [@I[q]].

Fig. 1 The sets S@ [@I[q] ]−
(in gray), S@ [@I[q] ] (in
white), and @q (mΩ) (in
black) in case = = 2.

<latexit sha1_base64="PxE8LkgxccPkLaHEVdpvCYLYn+8="></latexit>

q22

q11

QSq[qI[�]]�

Sq[qI[�]]

q�(@⌦)

If @ ∈ D+= (R), q ∈ �1,U (mΩ,R=) ∩ A
&̃

mΩ
, 6 ∈ �0,U (mΩ) and : ∈ R, we consider

the following periodic Neumann problem for the Laplace equation:

ΔD = 0 in S@ [@I[q]]− ,
D(G + @I) = D(G) ∀G ∈ S@ [@I[q]]− ,∀I ∈ Z= ,

m
ma@I[q]

D(G) = 6
(
q (−1) (@−1G)

)
− 1∫

m@I[q] 3f

∫
m@I[q] 6

(
q (−1) (@−1H)

)
3fH ∀G ∈ m@I[q] ,∫

m@I[q] D 3f = : .

(2)
We note that the function

6
(
q (−1) (@−1·)

)
− 1∫

m@I[q] 3f

∫
m@I[q]

6
(
q (−1) (@−1H)

)
3fH

clearly belongs to the space

�0,U (m@I[q])0 ≡
{
` ∈ �0,U (m@I[q]) :

∫
m@I[q]

` 3f = 0
}
.
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As a consequence, the solution of problem (2) in the space �1,U@ (S@ [@I[q]]−) of @-
periodic functions in S@ [@I[q]]− of class �1,U exists and is unique and we denote it
by D[@, q, 6, :] (see [3, Thm. 12.23]). Our aim is to prove that D[@, q, 6, :] depends,
in a sense that we will clarify, analytically on (@, q, 6, :) (see Theorem 1). Our work
originates from Lanza de Cristoforis [10, 11] on the real analytic dependence of
the solution of the Dirichlet problem for the Laplace and Poisson equations upon
domain perturbations. Moreover, this paper can be seen as the Neumann counterpart
of [15], where the authors have proved analyticity properties for the solution of a
periodic Dirichlet problem. An analysis similar to the one of the present paper was
also carried out for periodic problems related to physical quantities arising in fluid
mechanics and in material science (see [4, 14, 16]).

2 Preliminary results

In order to consider shape perturbations, we introduce a class of diffeomorphisms.
Let Ω be as in (1). Let AmΩ be the set of functions of class �1 (mΩ,R=) which
are injective and whose differential is injective at all points of mΩ. The set AmΩ is
well-known to be open in �1 (mΩ,R=) (see, e.g., Lanza de Cristoforis and Rossi [13,
Lem. 2.5, p. 143]). Then we set

A&̃

mΩ
≡

{
q ∈ AmΩ : q(mΩ) ⊆ &̃

}
. (3)

In order to analyze our boundary value problem, we are going to exploit periodic
layer potentials. To define these operators, it is enough to replace the fundamental
solution of the Laplace operator by a @-periodic tempered distribution (@,= such that
Δ(@,= =

∑
I∈Z= X@I − 1

|& |= , where X@I is the Dirac measure with mass in @I (see e.g.,
[3, Chapter 12]). We can take

(@,= (G) = −
∑

I∈Z=\{0}

1
|& |=4c2 |@−1I |2

42c8 (@
−1I) ·G

in the sense of distributions in R= (see e.g., Ammari and Kang [1, p. 53], [3, §12.1]).
Moreover, (@,= is even, real analytic in R= \ @Z=, and locally integrable in R= (see
e.g., [3, Thm. 12.4]). We now introduce the periodic single layer potential. Let Ω&

be a bounded open subset of R= of class�1,U for some U ∈ ]0, 1[ such thatΩ& ⊆ &.
We define the following two periodic domains:

S@ [Ω&] ≡
⋃
I∈Z=

(
@I +Ω&

)
, S@ [Ω&]− ≡ R= \ S@ [Ω&]

and we set

{@ [mΩ&, `] (G) ≡
∫
mΩ&

(@,= (G − H)`(H) 3fH ∀G ∈ R=
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and

,∗@ [mΩ&, `] (G) ≡
∫
mΩ&

aΩ&
(G) · �(@,= (G − H)`(H) 3fH ∀G ∈ mΩ&

for all ` ∈ !2 (mΩ&). The symbol aΩ&
denotes the outward unit normal field to

mΩ&, 3f denotes the area element on mΩ& and �(@,= denotes the gradient of (@,=.
The function {@ [mΩ&, `] is called the @-periodic single layer potential. Now let
` ∈ �0,U (mΩ&). As is well known, {+@ [mΩ&, `] ≡ {@ [mΩ&, `] |S@ [Ω& ] belongs to

�
1,U
@ (S@ [Ω&]) and {−@ [mΩ&, `] ≡ {@ [mΩ&, `] |S@ [Ω& ]− belongs to �

1,U
@ (S@ [Ω&]−)

(see [3, Thm. 12.8]). Moreover, the following jump formula for the normal derivative
of the @-periodic single layer potential {@ [mΩ&, `] holds:

m

maΩ&

{±@ [mΩ&, `] = ∓
1
2
` +,∗@ [mΩ&, `] on mΩ& .

For a proof of the above formula we refer to [3, Thm. 12.11].
Since our approach will be based on integral operators, we need to understand

how integrals behave when we perturb the domain of integration. Moreover, we need
also to understand the regularity of the normal vector upon domain perturbations.
For such reasons, we collect those results in the lemma below (for a proof, see Lanza
de Cristoforis and Rossi [13, p. 166]).

Lemma 1 Let U, Ω be as in (1). Then the following statements hold.

(i) For each k ∈ �1,U (mΩ,R=) ∩AmΩ, there exists a unique f̃[k] ∈ �0,U (mΩ) such
that f̃[k] > 0 and∫

k (mΩ)
l(B) 3fB =

∫
mΩ

l ◦ k(H)f̃[k] (H) 3fH , ∀l ∈ !1 (k(mΩ)).

Moreover, the map f̃[·] from �1,U (mΩ,R=) ∩AmΩ to �0,U (mΩ) is real analytic.
(ii)The map from �1,U (mΩ,R=) ∩ AmΩ to �0,U (mΩ,R=) which takes k to aI[k] ◦ k

is real analytic.

3 Analyticity of the solution

Our first goal is to transform problem (2) into an integral equation. In order to analyze
the solvability of the obtained integral equation, we need the following lemma.

Lemma 2 Let U, Ω be as in (1). Let @ ∈ D+= (R). Let q ∈ �1,U (mΩ,R=) ∩ A
&̃

mΩ
. Let

# be the map from �0,U (m@I[q]) to itself, defined by

# [`] ≡ 1
2
` +,∗@ [m@I[q], `] ∀` ∈ �0,U (m@I[q]).
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Then # is a linear homeomorphism from �0,U (m@I[q]) to itself. Moreover, # re-
stricts to a linear homeomorphism from �0,U (m@I[q])0 to itself.

Proof By [3, Thm. 12.20], we deduce that # is a linear homeomorphism from
�0,U (m@I[q]) to itself. By [3, Prop. 12.15], we have that 12 `+,

∗
@ [m@I[q], `] belongs

to �0,U (m@I[q])0 if and only if ` belongs to �0,U (m@I[q])0. As a consequence, we
also have that # restricts to a linear homeomorphism from�0,U (m@I[q])0 to itself.�

Then, in the following proposition, we show how to convert the Neumann problem
into an equivalent integral equation.

Proposition 1 Let U, Ω be as in (1). Let @ ∈ D+= (R). Let q ∈ �1,U (mΩ,R=) ∩ A
&̃

mΩ
.

Let 6 ∈ �0,U (mΩ). Let : ∈ R. Then the boundary value problem

ΔD = 0 in S@ [@I[q]]− ,
D(G + @I) = D(G) ∀G ∈ S@ [@I[q]]− ,∀I ∈ Z= ,

m
ma@I[q]

D(G) = 6
(
q (−1) (@−1G)

)
− 1∫

m@I[q] 3f

∫
m@I[q] 6

(
q (−1) (@−1H)

)
3fH ∀G ∈ m@I[q] ,∫

m@I[q] D 3f = :

(4)
has a unique solution D[@, q, 6, :] in �1,U@ (S@ [@I[q]]−). Moreover,

D[@, q,6, :] (G) = {−@ [m@I[q], `] (G)

+ 1∫
m@I[q] 3f

(
: −

∫
m@I[q]

{−@ [m@I[q], `] 3f
)

∀G ∈ S@ [@I[q]]−,
(5)

where ` is the unique solution in �0,U (m@I[q])0 of the integral equation

1
2
`(G) +,∗@ [m@I[q], `] (G) = 6

(
q (−1) (@−1G)

)
− 1∫

m@I[q] 3f

∫
m@I[q]

6
(
q (−1) (@−1H)

)
3fH ∀G ∈ m@I[q] .

(6)

Proof By [3, Thm. 12.23]we know that problem (4) has a unique solution.Moreover,
by Lemma 2, equation (6) has a unique solution ` which belongs to �0,U (m@I[q])0.
Then by the properties of the periodic single layer potential (see, e.g., [3, Thm. 12.8]),
we deduce that the right hand side of (5) solves problem (4). �

In Proposition 1, we have seen an integral equation on m@I[q], namely equation
(6), equivalent to problem (2). However, if we want to study the dependence of the
solution of the integral equation on the parameters (@, q, 6, :), it may be convenient
to transform the equation on the (@, q)-dependent set m@I[q] into an equation on a
fixed domain. We do so in the lemma below.
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Lemma 3 Let U, Ω be as in (1). Let @ ∈ D+= (R). Let q ∈ �1,U (mΩ,R=) ∩ A
&̃

mΩ
. Let

6 ∈ �0,U (mΩ). Then the function \ ∈ �0,U (mΩ) solves the equation

1
2
\ (C) +

∫
@q (mΩ)

a@I[q] (@q(C)) · �(@,= (@q(C) − H)\
(
q (−1) (@−1H)

)
3fH

= 6(C) − 1∫
mΩ
f̃[@q] 3f

∫
mΩ

6f̃[@q] 3f ∀C ∈ mΩ ,
(7)

if and only if the function ` ∈ �0,U (m@I[q]), with ` delivered by

`(G) = \
(
q (−1) (@−1G)

)
∀G ∈ m@I[q], (8)

solves the equation

1
2
`(G) +,∗@ [m@I[q], `] (G)

= 6
(
q (−1) (@−1G)

)
− 1∫

m@I[q] 3f

∫
m@I[q]

6
(
q (−1) (@−1H)

)
3fH ∀G ∈ m@I[q] .

Moreover, equation (7) has a unique solution \ in �0,U (mΩ) and the function `
delivered by (8) belongs to �0,U (m@I[q])0.

Proof It is a direct consequence of the theorem of change of variable in integrals,
of Lemma 2, and of the obvious equality∫

m@I[q]

(
6
(
q (−1) (@−1G)

)
− 1∫

m@I[q] 3f

∫
m@I[q]

6
(
q (−1) (@−1H)

)
3fH

)
3fG = 0 ,

which implies that

6
(
q (−1) (@−1·)

)
− 1∫

m@I[q] 3f

∫
m@I[q]

6
(
q (−1) (@−1H)

)
3fH

is in �0,U (m@I[q])0. �

Our next goal is to study the dependence of the solution of the integral equation (7)
upon (@, q, 6). We wish to apply the implicit function theorem in Banach spaces.
Therefore, having in mind equation (7), we introduce the map Λ from D+= (R) ×(
�1,U (mΩ,R=) ∩ A&̃

mΩ

)
×

(
�0,U (mΩ)

)2 to �0,U (mΩ) by setting
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Λ[@, q, 6, \] (C) ≡ 1
2
\ (C)

+
∫
@q (mΩ)

a@I[q] (@q(C)) · �(@,= (@q(C) − H)\
(
q (−1) (@−1H)

)
3fH

− 6(C) + 1∫
mΩ
f̃[@q] 3f

∫
mΩ

6f̃[@q] 3f ∀C ∈ mΩ,

for all (@, q, 6, \) ∈ D+= (R) ×
(
�1,U (mΩ,R=) ∩ A&̃

mΩ

)
×

(
�0,U (mΩ)

)2.
We are now ready to apply the implicit function theorem for real analytic maps

in Banach spaces to equation Λ[@, q, 6, \] = 0 and prove that the solution \ depends
analytically on (@, q, 6).

Proposition 2 Let U, Ω be as in (1). Then the following statements hold.

(i) Λ is real analytic.
(ii)For each (@, q, 6) ∈ D+= (R) ×

(
�1,U (mΩ,R=) ∩ A&̃

mΩ

)
× �0,U (mΩ), there exists

a unique \ in �0,U (mΩ) such that

Λ[@, q, 6, \] = 0 on mΩ,

and we denote such a function by \ [@, q, 6].
(iii)The map \ [·, ·, ·] fromD+= (R) ×

(
�1,U (mΩ,R=) ∩ A&̃

mΩ

)
×�0,U (mΩ) to�0,U (mΩ)

that takes (@, q, 6) to \ [@, q, 6] is real analytic.

Proof By [17, Thm. 3.2 (ii)], Lemma 1, and standard calculus in Banach spaces,
we deduce the validity of statement (i). Statement (ii) follows by Lemmas 2 and
3. In order to prove (iii), since the analyticity is a local property, it suffices to
fix (@0, q0, 60) in D+= (R) ×

(
�1,U (mΩ,R=) ∩ A&̃

mΩ

)
× �0,U (mΩ) and to show that

\ [·, ·, ·] is real analytic in a neighborhood of (@0, q0, 60) in the product spaceD+= (R)×(
�1,U (mΩ,R=) ∩ A&̃

mΩ

)
× �0,U (mΩ). By standard calculus in normed spaces, the

partial differential m\Λ[@0, q0, 60, \ [@0, q0, 60]] of Λ at (@0, q0, 60, \ [@0, q0, 60])
with respect to the variable \ is delivered by

m\Λ[@0, q0, 60, \ [@0, q0, 60]] (k) (C)

=
1
2
k(C) +

∫
@0q0 (mΩ)

a@0I[q0 ] (@0q0 (C)) · �(@0 ,= (@0q0 (C) − H)k
(
q
(−1)
0 (@−10 H)

)
3fH

∀C ∈ mΩ,

for all k ∈ �0,U (mΩ). Lemma 2 together with a change of variable implies that
m\Λ[@0, q0, 60, \ [@0, q0, 60]] is a linear homeomorphism from �0,U (mΩ) onto
�0,U (mΩ). Finally, by the implicit function theorem for real analytic maps in Banach
spaces (see, e.g., Deimling [5, Thm. 15.3]) we deduce that \ [·, ·, ·] is real analytic in
a neighborhood of (@0, q0, 60) in D+= (R) ×

(
�1,U (mΩ,R=) ∩ A&̃

mΩ

)
× �0,U (mΩ). �
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Remark 1 By Lemma 1, Propositions 1 and 2, we have the following representation
formula for the solution D[@, q, 6, :] of problem (2):

D[@, q, 6, :] (G) =
∫
mΩ

(@,= (G − @q(B))\ [@, q, 6] (B)f̃[@q] (B) 3fB

+

(
: −

∫
mΩ

∫
mΩ
(@,= (@(q(C) − q(B)))\ [@, q, 6] (B)f̃[@q] (B)3fBf̃[@q] (C)3fC

)
∫
mΩ
f̃[@q]3f

∀G ∈ S@ [@I[q]]−,

for all (@, q, 6, :) ∈ D+= (R) ×
(
�1,U (mΩ,R=) ∩ A&̃

mΩ

)
× �0,U (mΩ) × R.

By exploiting the representation formula of Remark 1 and the analyticity result
for (@, q, 6) ↦→ \ [@, q, 6] of Proposition 2, we are ready to prove our main result on
the analyticity of D[@, q, 6, :] as a map of the variable (@, q, 6, :).

Theorem 1 Let U, Ω be as in (1). Let

(@0, q0, 60, :0) ∈ D+= (R) ×
(
�1,U (mΩ,R=) ∩ A&̃

mΩ

)
× �0,U (mΩ) × R.

Let * be a bounded open subset of R= such that * ⊆ S@0 [@0I[q0]]−. Then there
exists an open neighborhoodU of (@0, q0, 60, :0) in

D+= (R) ×
(
�1,U (mΩ,R=) ∩ A&̃

mΩ

)
× �0,U (mΩ) × R

such that the following statements hold.

(i) * ⊆ S@ [@I[q]]− for all (@, q, 6, :) ∈ U.
(ii)Let < ∈ N. Then the map from U to �< (*) which takes (@, q, 6, :) to the

restriction D[@, q, 6, :] |* of D[@, q, 6, :] to* is real analytic.

Proof We first note that, by taking U small enough, we can deduce the validity of
(i). The validity of (ii) follows by the representation formula of Remark 1, by Lemma
1, by Proposition 2, by the regularity results of [12] on the analyticity of integral
operators with real analytic kernels, and by standard calculus in Banach spaces. �
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