
15018 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 16, 15 AUGUST 2022

Automatic Distributed Deep Learning Using
Resource-Constrained Edge Devices

Alberto Gutierrez-Torre , Kiyana Bahadori, Shuja-ur-Rehman Baig , Waheed Iqbal ,
Tullio Vardanega , Member, IEEE, Josep Lluís Berral , Member, IEEE, and David Carrera , Member, IEEE

Abstract—Processing data generated at high volume and
speed from the Internet of Things, smart cities, domotic, intel-
ligent surveillance, and e-healthcare systems require efficient
data processing and analytics services at the Edge to reduce
the latency and response time of the applications. The fog
computing edge infrastructure consists of devices with limited
computing, memory, and bandwidth resources, which challenge
the construction of predictive analytics solutions that require
resource-intensive tasks for training machine learning models.
In this work, we focus on the development of predictive ana-
lytics for urban traffic. Our solution is based on deep learning
techniques localized in the Edge, where computing devices have
very limited computational resources. We present an innova-
tive method for efficiently training the gated recurrent-units
(GRUs) across available resource-constrained CPU and GPU
Edge devices. Our solution employs distributed GRU model
learning and dynamically stops the training process to utilize the
low-power and resource-constrained Edge devices while ensur-
ing good estimation accuracy effectively. The proposed solution
was extensively evaluated using low-powered ARM-based devices,
including Raspberry Pi v3 and the low-powered GPU-enabled
device NVIDIA Jetson Nano, and also compared them with
Single-CPU Intel Xeon machines. For the evaluation experiments,
we used real-world Floating Car Data. The experiments show that
the proposed solution delivers excellent prediction accuracy and
computational performance on the Edge when compared to the
baseline methods.

Index Terms—Analytics, big data, cloud computing, edge
computing, fog computing, Internet of Things (IoT), resource
management.

I. INTRODUCTION

THE Internet of Things (IoT) is attracting significant
interest from both academia and industry. The potential

Manuscript received 12 May 2021; revised 25 June 2021; accepted
14 July 2021. Date of publication 21 July 2021; date of current version
8 August 2022. This work was supported in part by the Spanish Government
under Contract PID2019-107255GB; in part by the Generalitat de Catalunya
under Contract 2014-SGR-1051; in part by the University of Padua; and in part
by the Severo Ochoa CoE under Grant SEV-2015-0493-16-5. (Corresponding
author: Alberto Gutierrez-Torre.)

Alberto Gutierrez-Torre, Josep Lluís Berral, and David Carrera are
with the Department of Computer Sciences, Barcelona Supercomputing
Center, 08034 Barcelona, Spain, and also with the Computer Architecture
Department, BarcelonaTech-Technical University of Catalonia, 08034
Barcelona, Spain (e-mail: alberto.gutierrez@bsc.es; josep.berral@bsc.es;
david.carrera@bsc.es).

Kiyana Bahadori and Tullio Vardanega are with the Department
of Mathematics, University of Padua, 35122 Padua, Italy (e-mail:
bahadorikiana@gmail.com; tullio.vardanega@unipd.it).

Shuja-ur-Rehman Baig and Waheed Iqbal are with the College of
Information Technology, University of the Punjab, Lahore 54590, Pakistan
(e-mail: shuja@pucit.edu.pk; waheed.iqbal@pucit.edu.pk).

Digital Object Identifier 10.1109/JIOT.2021.3098973

benefit of applying IoT paradigms to smart cities and health-
care service scenarios suggests to design new architectures
for infrastructure, platforms, and services. The issue with
more traditional approaches rises from the inherent limita-
tions in connectivity and computing power of Edge devices
and dynamic networks. Those IoT architectures are usually
composed of real-time sensor-based monitoring systems and
actuators running in different locations, connected to data
aggregation applications or data-warehouses through dynamic
networks (such as 5G, Wi-Fi, or wired Internet).

The main feature of the Cloud is to provide extremely scal-
able resources to service applications from a remote datacenter.
In contrast, emerging scenarios, such as the IoT, smart cities,
domotic, intelligent surveillance, and e-healthcare usually
require proximity and quick reaction time while generating
massive amounts of data transmitted to the analytics applica-
tions. Fog computing is more attractive for such demand [1].
Fog computing takes the computation to the Edge, moving data
processing close to the sources, and reducing data to synthe-
sized volumes to be transmitted north-bound to the Cloud,
as shown in Fig. 1. Additionally, when the Edge services
depend only on local data, the service can be provided with-
out using Cloud services. Several fields can benefit from this
kind of architecture, specifically Oil & Gas [2], power grid
systems [3], smart cities, smart industries, and IoT applica-
tions [4]. In these environments, local analytics are required
as they need a low-latency QoS [5]. Moreover, backhaul con-
nectivity might fail [6] as the network might not be as reliable
as wanted due to extreme conditions. Given the importance
of exploiting the data at the Edge level, considerable research
effort was devoted to establish a common framework to cope
systematically and effectively with the restrictions proposed
by this kind of environment [7].

The compute-intensive nature of the training of machine
learning (ML) models has so far caused that all the process-
ing is done in Cloud data centers. This typical strategy, to push
the data to the cloud and then training the ML models, has the
advantage of using powerful computing machines. However,
this strategy has several drawbacks: it adds a cost of addi-
tional network dependency, increases latency, and moves the
processing away from the data producers. In contrast, using
limited computing power available at Fog nodes is interesting
for training ML models efficiently. Recent work shows the
importance of training an ML model on the Edge infrastruc-
ture. For example, Plastiras et al. [5] showed the importance
of doing the computation for training deep learning models
on Fog nodes for computer vision tasks like object detection.

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5548-3359
https://orcid.org/0000-0001-8961-5631
https://orcid.org/0000-0002-1612-8549
https://orcid.org/0000-0002-0089-0889
https://orcid.org/0000-0003-3037-3580
https://orcid.org/0000-0003-4898-3424

GUTIERREZ-TORRE et al.: AUTOMATIC DISTRIBUTED DEEP LEARNING USING RESOURCE-CONSTRAINED EDGE DEVICES 15019

Fig. 1. Edge-cloud aggregation schema, with environment actors (sensors,
actuators, and users).

The authors remark the importance of privacy, performance,
latency, and power efficiency on this kind of application, which
can be a perfect fit for Edge and Fog Computing.

In this work, we investigate the use of Fog devices to
train deep learning models by distributing the training on
the available devices at the Fog environment intelligently.
Our proposed solution takes benefit of already active devices
aggregating or collecting data instead of employing additional
Cloud resources. This also reduces network communication
and protects services from network disruptions by keeping
them autonomous on the edge. This concept extends the work
by Pérez et al. [6], where local models in the Edge level can
be independent of global ones. This way, the architecture is
resilient against backhaul network interruptions. The model
synchronization can be delayed to the moment when network
is available.

We present a system to automatically distribute the time-
consuming task of training deep learning models on a Fog
computing network consisting of low-powered and resource-
constrained computing devices. The proposed approach is
based on federated learning (FL), which leverages the work
of McMahan et al. [8] and Bonawitz et al. [9]. The proposed
solution automates part of the deep learning process for select-
ing appropriate parameters for the model to reduce the training
time while maintaining the model accuracy for the valida-
tion data set. We extensively evaluate the proposed system
using a road traffic analytics scenario designed for city-wide
traffic modeling and prediction running on the Fog comput-
ing paradigm. The proposed methodology can make use of
any kind of neural network (NN) by distributing the train-
ing on Fog devices. In particular, we use gated recurrent
unit (GRU) NNs to model the traffic behavior to produce
short-term/medium-term traffic predictions following the FL
principles. Our evaluation investigates different data aggre-
gation levels, different levels of data processing parallelism,
time requirements for achieving suitable accuracy levels for
models, and suitability for real-time applications in the Edge.
Our evaluation is based on real traffic logs from one week of
floating car data (FCD) in Barcelona. The data were provided
by one of the largest road-assistance companies in Spain and
comprises thousands of vehicles. This approach is tested in a

Smart City setting; however, the same approach can be used
for other fields such as Oil & Gas, where distributed learning
is required or desirable. Moreover, one appealing domain to
apply our proposed solution is the healthcare industry, where
patient data are collected through IoT devices and required to
process locally without sending remote locations for privacy
and security concerns.

The experimental results show that predictive analytics
requiring complex ML mechanisms like GRUs can be per-
formed cost effectively on the Fog nodes without using expen-
sive Cloud resources. Additionally, compared to prediction
methods previously used in other studies, we show that
GRUs achieves good accuracy results with constrained train-
ing time in comparison using state-of-the-art methods [i.e.,
conditional restricted Boltzmann machines (CRBMs)]. Even
though the modeling process is split to reduce training time,
the distributed model shows a stable behavior when modify-
ing training hyperparameters. The research contributions of
this article are as follows.

1) A system for distributed modeling for city-wide applica-
tions using the Fog computing paradigm for predictive
analytics using low-powered and resource-constrained
devices.

2) A mechanism to automate run-time decisions for stop-
ping training processes when accuracy levels are reliable
for DNNs.

3) Evaluation and comparison of time required to model
the DNN using the proposed solution on Fog (low-
power and resource-constrained) versus Cloud (high-
performance) environments.

4) A comparative analysis of resource usage versus accu-
racy on training models for real FCD compared with the
existing baseline methods.

This article is organized as follows: Section II reviews the
background and motivation. Section III illustrates the proposed
architecture. Section IV describes our approach methodol-
ogy. Section V shows the evaluation, and Section VI provides
concluding remarks and future challenges.

II. STATE OF THE ART

A. Background and Motivation

The Cloud has been widely used to address the emerging
challenges of big data analysis in many smart city ecosystems,
such as smart houses, smart lighting, and video surveil-
lance [10]–[12]. However, IoT scenarios usually require low
latency between sensors/actuators and usually there are scarce
computing resources. These restrictions avoiding unneces-
sary north–south bound communication of data that can be
processed on the Edge or intermediate nodes [6]. Location
awareness is also a must in several Smart Cities’ IoT architec-
tures providing immediate in-place services. As IoT services
in Smart Cities are being increasingly used, Cloud services
alone can hardly satisfy the mentioned requirements of this
ecosystem.

Fog computing, the paradigm combining the Edge and
Cloud capabilities, can handle the significant data treatment,

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

15020 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 16, 15 AUGUST 2022

including acquisition, aggregation, analytics, and preprocess-
ing while reducing transportation and storage, even balancing
computation power among intermediate nodes [13].

In addition, transforming these data into actionable knowl-
edge and adapting to changing dynamics of modern cities
require intelligent modeling techniques not only accurate but
adaptive. ML techniques enable smartness in Smart Cities
by modeling, predicting, and extracting useful information
from collected data, through advanced statistics and artifi-
cial intelligence algorithms. Deep Learning, a ML subfield
based on multilayer neuronal networks, is becoming an impor-
tant tool to city-modeling challenges across many areas,
such as forecasting [14], self-driving research [15], image
processing [16], [17], or object recognition [18], useful to
manage public services, detect hazardous scenarios, or to guide
emergency services among others.

However, the increasing amount of data to be processed,
along with the computational demands of sufficiently accu-
rate NN algorithms, have led to bigger computational and
memory resource requirements. Accelerating NNs training to
competitive accuracy within a sufficiently short time is a major
challenge that may lead to increase computational demands.
Seeking solutions that assure scalable and efficient learning
has given rise to the notion of “distributed ML.” FL [8] is a
promising solution when both data and resources are scattered
along in the architecture, with the added challenge of the near
impossibility of having all data in the same place, and the cost
of constantly offloading computation to the Cloud.

FL aims at distributing the data or, as in the case of
Edge computing, keeping the data near where they are pro-
duced [8], [9]. This solution can be understood as allowing the
Edge devices, the clients, to produce a predictive model with
their own local data, and then coordinate with a central node,
the server, for model merging. In particular, this is interesting
in the contexts where data privacy is an issue as in the work
of McMahan et al. [8], as the only data exchanged between
the data producers and the central server are the weights, i.e.,
the configuration, of the NN. On the other hand, there have
been efforts like in the work of Hu et al. [19] that focus
on having a model that works properly on both sides, client,
and server. Moreover, it has been proved stochastic gradient
descent (SGD) converges in this scenario [20], proving the
suitability of NNs for this particular task. This approach brings
about properties that are desirable for Edge Computing archi-
tectures, like the ability to keep on working without network
connectivity when the system fails [6].

Even though the methodology per se is already available,
there still is a knowledge gap regarding the actual applicabil-
ity of FL on a Fog architecture using low-powered devices.
This work aims to fill this gap, applying the methodologies
described in the following sections.

B. Related Work

The exponential growth of the IoT, caused by the oppor-
tunity of leveraging smart devices in generalized enterprise
settings, motivates the quest for novel approaches to develop
a deep learning system that can scale to very large models
and large data sets. However, training to competitive accuracy

within a sufficiently short time span, for large and complex
networks together with huge data sets is especially challenging
in Edge/Fog nodes at the present state of the art.

A significant amount of effort and research has been devoted
to tackling the challenge of training huge data sets through
building large models with more parameters and paralleliza-
tion or distribution methods based on the Cloud computing
infrastructure. For example, Google implemented a distributed
framework for training NNs over central processing unit
(CPU) based on the DistBelief framework [21], [22], which
makes use of both model parallelism and data parallelism. This
model has also proved useful for computer vision problems,
achieving state-of-the-art performance on a computer vision
benchmark with 14 millions of images.

To scale up the training phase of learning, researchers utilize
accelerators such as a single or cluster of graphics processing
units (GPUs) [23], [24]. Recently, Facebook [25] announced
achieving 90% scaling efficiency in training visual recognition
model, using data parallelism combined with the use of GPUs.

Hong et al. [26] proposed a fog-based opportunistic spa-
tiotemporal event processing system to meet the latency
requirement. Their system predicts future query regions for
moving consumers, and starts the event processing early to
make timely information available when consumers reach the
future locations. Yu et al. [27] proposed a deep reinforcement
learning-based system that is able to share execution of tasks in
Edge nodes taking into account the battery, quality of service,
and other details.

Works such as Marchisio et al. [28] study how to
perform ML inference in ultralow-powered devices, and
reviewed the usage of NNs with this kind of device. This
approach minimizes both power usage and hardware costs.
Sudharsan et al. [29] proposed a methodology to train a kind
of Convolutional neural network (CNN) and then adapt it to
run in different microcontroller units (MCUs) to do prediction.
Their approach reduces the size of the trained network to
the 10% of the original. In the same direction, TinyML [30]
enables training an NN with TensorFlow and then converts
it to which can be run using TensorFlow Lite on ultralow
power MCUs. Neither of these approaches handle training on
the device, but other approaches, such as Neuro.ZERO [31],
enable training on the device by means of hardware accelera-
tion. However, FL has yet to be covered on this kind of setup
with MCUs, so that it enables to train different models and
average the model configuration among nodes.

To the best of our knowledge, there currently is no evalu-
ation of this kind of problem with FL using recurrent neural
networks (RNNs) with server-class hardware and low-powered
devices. Moreover, mechanisms are needed to stop training
as soon as a reliable-enough model is obtained. We believe
that FL distributed learning can be highly beneficial for data
analytics over scenarios such as smart cities.

III. ARCHITECTURE: FLOATING CAR DATA

PROCESSING OVER EDGE

This section presents our proposed architecture for process-
ing FCD using the Edge computing infrastructure. We explain

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

GUTIERREZ-TORRE et al.: AUTOMATIC DISTRIBUTED DEEP LEARNING USING RESOURCE-CONSTRAINED EDGE DEVICES 15021

Fig. 2. Schema of the fog infrastructure, from edge to cloud.

the Edge computing network, FCD, and data processing
pipeline in the following sections.

A. Edge Computing Networks

Edge computing networks are based on architectures where
sensors collect data from nearby cars, users, and equipment
and send them to the computing nodes within proximity. Such
nodes are low powered with limited resources to perform com-
plex analytics; therefore, the data are pushed to the remote
Cloud for processing using sophisticated and powerful hard-
ware. The “Fog” is that part of the architecture embracing
Edge nodes receiving data from sensors, Intermediate nodes
performing intermediate data aggregation, and Cloud APIs
receiving data to be processed and stored, extending the Cloud
paradigm [32]. Fig. 2 shows a Fog infrastructure, with near-
data nodes on the Edge, intermediate nodes with medium
power to preprocess aggregate or localized data, and the
Cloud.

Current devices on the Edge are specially designed to con-
sume low power, produce low throughput, and offer low
capabilities, such as Raspberry Pi and NVIDIA Jetson. These
devices with Edge computing have been recently considered a
good solution for smart city image processing challenges [33],
showing that industry and public administration are interested
in adopting the approach of using low-powered and resource-
constrained devices for real scenarios. NVIDIA Jetson [34]
is a low-power and small-form factor computer similar to
Raspberry Pi (ARM processor). It is a Linux-enabled machine
that is equipped with an embedded NVIDIA low-power GPU
and the CUDA framework, which can be used to train deep
learning calculations. However, a single Jetson device is not
sufficient to perform the deep learning training independently
for a large data set.

In this article, we propose using the low-power and
resource-constrained devices to train the deep learning model
at the Edge, close to the users and data, by distributing the
training on multiple devices and enabling the Edge efficient
analytics. In our system, sensors collect data and transmit to
the Edge nodes, and analytics are performed on the Edge nodes
instead of offloading the complex analytics tasks to the Cloud.

Fig. 3. Pipeline of time-window aggregation, learning, and prediction.

B. Floating Car Data

FCD represents geolocalized timestamped data of moving
vehicles, collected and analyzed for various applications,
including smart cities, traffic engineering, and traffic manage-
ment. Typically, FCD is received through antennas deployed in
the town representing a large urban zone, a localized neigh-
borhood, a street, or a street segment, depending on which
granularity is required for the specific application. These data
are provided to the Edge analytics indicating the received
timestamp for each vehicle transmission and its speed. Data
like vehicle positions, e.g., global positioning system (GPS),
are not provided for privacy and security reasons; only the
Edge node position is provided.

The FCD arrives asynchronously to our Edge nodes and is
aggregated periodically into summaries of traffic information,
i.e., the average speed of vehicles surrounding the node
(in Km/hour) and vehicles’ count, considering that vehicles
will be reported once for each aggregation window time.
Considering the aggregation of a 1-min interval as lower
bound, we aggregate the incoming data into data entries con-
taining latitude, longitude, number of cars, speed average and
timestamp. Before performing the analytics, the Edge nodes
independently collect and aggregate the FCD into a specific
time interval.

The 1-min aggregation data are only the base for larger
aggregations, as traffic time series can be aggregated from
minutes to hours to days because of its periodic pattern in
time. While large aggregations can be easily predicted due to
this periodicity, smaller aggregations can be more challenging.
For the validation experiments, in Section V, we test different
levels of time aggregation varying from 5-min to 1-h intervals
for training analytic models.

In this work, we used a week-worth of real FCD from the
city of Barcelona, Spain, provided by one of the largest road-
assistance companies in the country.

C. Data Analytics Pipelines

Whenever FCD is detected through antenna sensors, it is
transmitted to the nearest Edge node. The data aggregation
using a specific time interval is performed at the Edge node.
For each aggregation, the timestamp is added to the FCD
record for building a time-series data set. The FCD time-series
data set is used to model the traffic behavior for forecast-
ing and analytics purposes. Fig. 3 shows the FCD collection,
modeling, and forecasting pipeline. In our system, we per-
formed distributed model training, explained in Section IV-C,
using low-powered Edge nodes.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

15022 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 16, 15 AUGUST 2022

For a global-scale prediction, the aggregated data and cre-
ated models on the Edge can be pushed to the Cloud for
storage and further analysis. Moreover, the aggregated data
from individual Edge nodes can be passed to intermediate
nodes for training a generalized model, as depicted in Fig. 2.
However, in previous works [6], we observed that local mod-
els fit local scenarios better than general models in the Cloud,
avoiding intense communication interruption problems.

IV. METHODOLOGY

This section presents our proposed methodology for FCD
time-series forecasting, automation for the training process,
and distributed model learning on the Edge.

A. Traffic Forecasting

We can see the FCD time-series data set as a matrix of size
number of time window elements times input features. The
forecasting problem targets the prediction of two variables:
1) the number of cars and 2) the average speed of the fol-
lowing time step (t + 1) using the previous d elements from
the time window, where d is our delay or memory window.
As the time window is a whole aggregation period, the goal
is to predict the next period of traffic information. We used
GRU networks [35] to train the forecasting model. Given the
capabilities of the GRUs, it is possible to forecast far from
t + 1, as GRUs are shown to be capable of medium-term
forecasting in many scenarios. GRUs are generative, and can
generate predictions by using their last prediction and status
as input/memory for the next prediction. In our problem, we
are predicting from t + 1 up to t + N, where N is the size of
testing data set in the experiments (approximately 1 day in the
following experiments).

B. Training Process Automation

ML model training with good accuracy is controlled by a
“Training versus Validation” process. In NNs, this process is
used to decide when to stop the iterative process. Training data
are divided into two batches: 1) “training” and 2) “validation”
data sets. The longer NNs trains with the whole training data
set (each period is called an epoch), the more fitted the model
is expected to be, but only to the training data, which can
lead to overfit. To mitigate this risk, the validation data set
is predicted at each epoch, allowing to check how the model
behaves with “nontraining” data. While the error in training
data decreases at each epoch, error in validation data decreases
until the point of overfitting and increases from there, as Fig. 5
illustrates. That point is considered the “bouncing point,” and
data-scientists would manually stop iterating at that point. But
for nonstable data, as we face with FCD, validation can dif-
fer enough from training data on certain occasions, and those
expected behaviors may not be encountered in during training.
Hence, the time at which the process should stop iterating must
be decided automatically.

To detect the bouncing point to stop the deep networks’
training process for minimizing the training time while achiev-
ing good accuracy, we propose Algorithm 1. The algo-
rithm shows the technique for fixing p (point of bounce)

Algorithm 1 Detecting GRU Training Cutting-Point (Epoch)
p From Training and Validation Error
Result: p point of bounce/intersect/convergence/minimum,

prioritizing error on validation over error on training
smooth_tr, smooth_val ← loess_smooth(error_tr, error_val)
if exists_bounce(smooth_val) then

return bounce_p(smooth_val)
else

if exists_intersect(smooth_tr, smooth_val) then
return intersect_p(smooth_tr, smooth_val)

else
if exists_bounce(smooth_tr) then

return bounce_p(smooth_tr)
else

if converges(smooth_tr, min_threshold) then
p ← converging_p(smooth_tr, min_threshold)
return min(p, minimum_p)

else
return minimum_p

end
end

end
end

dynamically, using the error on training and validation,
previously smoothing both sequences to facilitate treating
wavy sequences, using an locally estimated scatterplot smooth-
ing (LOESS) curve fitting method [36]. Among other algo-
rithms with the same objective, LOESS was selected for
its simplicity and speed. It is well fitted for low-powered
devices and, for our use case, it achieved good results for
low computational cost.

The process of finding p implies running for a given
amount of epochs, to find the trend and detect the bounc-
ing, intersection, or convergence points. This process can be
substituted by more sophisticated methods that can be applied
online, although the set of rules we have devised can be used
to determine p once for a given amount of data, while retaining
p for future models.

C. Distributed Model Training

Computing devices at the Edge are low-powered and very
limited in terms of the number of cores and storage. The
available processing power is mostly used to receive and
transmit data from sensors to Cloud; remaining computational
resources can perform aggregation and modeling processes.

In our proposed distributed model training solution, we
assume the availability of single CPU/GPU processors on each
available Edge device. To distribute training across workers
(available Edge devices), we partition the training–validation
data set and send it over to the available workers. Each worker
creates a model from its subset and validates it. At that
point, all submodels are joined in the initiator Edge node and
merged following the FL principles [8]. The resulting aggre-
gated model can either work better for the dilution of noise
among submodels or do worse due to overfitting each sub-
model to its subset. For this reason and good practice, the

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

GUTIERREZ-TORRE et al.: AUTOMATIC DISTRIBUTED DEEP LEARNING USING RESOURCE-CONSTRAINED EDGE DEVICES 15023

Fig. 4. Distributed modeling technique for training and testing phases. Data
split among N workers, creating N models to be merged, creating the final
model to be evaluated.

aggregation model is evaluated on the test data set in the initia-
tor Edge node. Fig. 4 shows the process of distributed training,
merging, and evaluation. This process is done in a off-line
fashion using the whole data set but it also could be done
receiving a stream of continuous data, retraining the networks
for new batches, and synchronizing after each epoch.

In our test case, we have split the data evenly between nodes
using the data coordinates to split regions. Then inside each
node, the split of training versus validation is done following a
80%–20% ratio between training versus validation, for every
subset. Each worker splits its data to train and validate its
model. The test set (a 20% of the total data) is kept for the
aggregated model for evaluating the final model.

V. EXPERIMENTAL EVALUATION

The proposed approach was evaluated with several experi-
ments designed to test the model learning and accuracy on the
previously mentioned real FCD set with one week worth of
data. We compare two approaches: a single learning model
that learns from all the data versus multiple local models
that are synchronized in a FL framework. We compare the
effectiveness of the different learning model configurations
in low-powered and resource-constrained Edge devices. The
implementation and evaluation of the proposed solution were
performed using TensorFlow and Keras frameworks over R.
Note that R can run on any Linux-enabled device and that the
core of the code is built on top of TensorFlow, which is effi-
ciently implemented in C++. The infrastructure to run and
measure training times corresponded to a server-class single
thread Xeon processor for comparison experiments among dif-
ferent training configurations and two low-powered devices:
a Raspberry Pi 3 (ARM processor), and an NVIDIA Jetson
Nano (ARM processor + NVIDIA GPU) to cover both CPU
and GPU settings.

Our experiments addressed the following evaluation aspects.
1) The effects of training the GRU with a different num-

ber of hidden units and a different number of epochs,
and check the usefulness of determining a stop-point
p dynamically using the presented set of rules versus
fixing a large enough p a-priori.

2) The comparison and tradeoff between training epochs
versus hidden units versus resulting error versus level
of time aggregation.

3) The effects of distributing the training process among
N different processors, considering a low range for N
matching the dimensions of common low-power devices.

Fig. 5. Zoomed representation of the smoothed MAE as used in Algorithm 1.
Observe that at 94 epochs the validation data bounced back, selecting it as a
training stop-point.

4) The capability of running the presented methods on low-
powered devices, i.e., Raspberry Pi v3 and NVIDIA
Jetson Nano.

A. Hyperparameter Identification

We evaluated the capability of deep neural network (DNN)
to learn the target time series of Volume (Cars) and Average
Speed (Speed) of traffic data using the proposed algorithm
(Algorithm 1) for identifying appropriate epochs. We also ran a
grid search-like strategy for determining the number of hidden
units and time aggregation levels, i.e., periods in which data
are aggregated into a single value for the proposed solution.

In this experiment, we trained a single model using the
entire training data set and our proposed Algorithm 1 to auto-
matically identify the number of epochs with higher accuracy.
We evaluated various settings for hidden units and aggregation
levels. In the case of two hidden units and 20-min aggrega-
tion, our algorithm identified 94 epochs as a bouncing point,
as shown in Fig. 5. To compare the proposed solution for iden-
tifying epochs, we have performed additional experiments and
manually tuned the epochs from 10 to 200. Note that the stop
decision is made with the validation data, as doing so with
training data could lead to overfitted models.

Fig. 6 shows the error distribution for different training
epochs over the Test data set and the dynamic stop-training
point using Algorithm 1. For the volume of cars, learn-
ing seems easy as we observed mean absolute error (MAE)
between 1–1.3. Predicting the speed of cars becomes more
complex as we yield volatile error between 3–5.5 in km/h
(the variability of the traffic speed on those data sets is already
known from previous works [6]). While most of the training is
done on the first few epochs of the different tested NN configu-
rations, identifying the automatic stop-training point becomes
conservative with respect to the best option, but performing
almost as good as the optimal.

The experimental results reported in Fig. 6 show the diffi-
culty of establishing a set of rules that match every single
training-validation scenario. Selecting the best number of
epochs is still an open problem whose solution can be auto-
mated with more complex mechanisms. However, for the

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

15024 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 16, 15 AUGUST 2022

Fig. 6. Comparison of MAE for various static number of epochs with a
dynamic number of epochs for estimating the number of cars and average
speed. Here, d represents a dynamic number of epochs.

current scenario, where quick decisions must be made, the
presented algorithm becomes an adequate solution. Therefore,
from now on, the results shown are the ones using the d value
for epochs.

Fig. 7 shows the root mean square error (RMSE) for esti-
mating the number of cars on test data for 2, 4, 8, 16, and 32
hidden units with 5, 10, 15, 20, 30, and 60 min aggregation lev-
els. We observed the aggregation yields stable behavior until
30-min aggregations as the RMSE remains under 2. However,
at the 60-min aggregation level, we observed a significant
increase in the estimation error. This is because, with a higher
level of data aggregation, the underlying fine-grained details
are hidden, and the model cannot learn from data accurately.
We observed the effect of changing the number of hidden units
does not have any significant effect on accuracy. The average
RMSE of estimating the number of cars remains between 1
and 2 except at the aggregation level of 60 min.

Fig. 7 shows the RMSE for estimating the speed of cars on
test data for 2, 4, 8, 16, and 32 hidden units with 5, 10, 15, 20,
30, and 60 min aggregation levels. We observed the high error
for aggregation levels 5 and 60; however, it remains similar
for other aggregation levels. We do not observe any noticeable
accuracy gain for using a different number of hidden units. The
average RMSE of estimating cars’ speed remains between 4.5
and 5.5 except aggregation levels of 5 and 60 min.

This set of experiments allowed us to determine the appro-
priate level of aggregation and the hidden units to determine to
be used in the final model. We computed the average RMSE

Fig. 7. Error versus hidden units versus time aggregation for number of cars
and speed estimation with dynamic epoch value d.

Fig. 8. Comparison of Average RMSE using different number of hidden
units with various aggregation levels (d epochs).

of speed and number of cars on test data for (2, 4, 8, 16, 32)

hidden units with (5, 10, 15, 20, 30, 60) minutes aggregation
levels. Fig. 8 shows the average RMSE for estimating the
speed and number of cars. Each aggregation level has its
optimal number of hidden units, meaning that there is no
optimal configuration able to deal with all levels of aggre-
gation, a desirable state allowing us to decide the precision
of the time interval. Determining a time interval where we
can trust predictions the most, we observed that the two hid-
den units with a 20-min aggregation level yield the minimum
error compared to the other configurations. Therefore, in the
rest of the experiments, we used two hidden units and 20 min
of aggregation level.

B. Comparison of Single and Distributed Models

This experiment evaluated the proposed distributed model
learning effectiveness and compared it with a single standalone

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

GUTIERREZ-TORRE et al.: AUTOMATIC DISTRIBUTED DEEP LEARNING USING RESOURCE-CONSTRAINED EDGE DEVICES 15025

TABLE I
COMPARISON OF ERROR AND TRAINING TIME WITH FIXED NUMBER OF

EPOCHS (FIXED EP) AND PROPOSED NUMBER OF EPOCHS (PROP EP)

(a) (b)

Fig. 9. Comparison of RMSE versus training time for different parallel
models (Nx) with number of epochs divide by x, where x = 1, 2, 3. (a) RMSE
comparison. (b) Time comparison.

learning model (N1). We focused on two different scenarios,
where the processes can work in multiple CPUs in the same
place (e.g., Tensorflow working with multiple CPUs in the
same machine), or a scenario where CPUs are disaggregated
and become independent of each other (e.g., different Edge
nodes cooperating). The best hyperparameter configurations
from the previous experiment were used in this experiment,
with the addition that when distributing the data to be mod-
eled, we are applying the 1/N factor to the number of training
epochs as the “proposed epochs.”

Table I shows the comparison of RMSE for the number of
cars and speed with the fixed and proposed number of epochs
for a single model (N1) and distributed models N2 and N3.
For training distributed models N2 and N3, we used two and
three Edge nodes, respectively. Whereas for N1, we used only
one Edge node. We observed that for N2 and N3, using a
fixed number of epochs increases RMSE due to overfitting
the model. We also observed that training time did not change
even when we distribute the input data to be processed by more
than one model. This occurred because the number of epochs
stays the same for each configuration. However, we observed
a significant decrease in training time when the number of
epochs is obtained by dividing the optimal number of epochs
for N1, by the number of parallel models. We observed that
RMSE is slightly increased in estimating the number of cars,
while it remains almost stable for estimating cars’ speed.

Fig. 9 shows the accuracy for estimating the number of
cars and speed for using N1, N2, and N3. Fig. 9(a) shows that
the accuracy in the estimate of the number of cars slightly
decreases with the increase in the number of distributed mod-
els used to train the input data. This occurs because models
are trained on fewer data and are more specific to a particular

TABLE II
COMPARISON OF CHANGE FACTOR IN ERROR AND TRAINING TIME FOR

N2 AND N3 WITH N1

input set. This was why we observed this behavior when we
combined them in the final prediction model. However, this
does not affect the accuracy of predicting the speed of cars,
and it somehow remains stable regardless of the number of
models used to train the input data set. We also observed los-
ing some accuracy on average, but we are saving more than
50% of training time when we used parallel models, as shown
in Fig. 9(b).

With respect to the speed-up comparison for parallel models
(N2, N3) with N1, Table II shows the improvement factor for
error and time. We observed that when we distribute the input
data set to be processed by two models. There is a decrease
of 115.39 s in training time with an increase of 0.65 and 0.83
of RMSE for the number of cars and speed. Similarly, we
observed a reduction of training time when using three parallel
models and an increase of 1.89 and 0.02 of RMSE for the
number of cars and speed estimations.

C. Evaluation on Low-Power Architectures

In this experiment, we compared the proposed solution’s
effectiveness on low-power and resource-constrained devices
designed for the Edge, like the Raspberry Pi model 3B and
the NVIDIA Jetson model Nano. Such devices are built for
consuming less than 12 W and embed low CPU and GPU
computing resources. Raspberry Pi is used for general pur-
poses while the Jetson integrates a GPU toward AI and NN
computing on the Edge and smart devices.

Testing the grid configurations for Time Aggregation versus
Hidden Units on the Raspberry Pi and the Jetson Nano, we
observed a noticeable increase in execution time in comparison
with the single-CPU Xeon. Still, the training plus validation
time is below 30 min for nearly a week worth of data. We
tested 4, 32, as 512 batch sizes (BS), i.e., the number of sam-
ples used for each training step in the NN to check the Jetson
GPU’s possible advantages due to data bandwidth. The big-
ger the BS, the more we profit from the GPU’s parallelism
up to a certain point. The number of epochs is fixed at 94,
to compare the performance of identical training processes,
and the steps (iterations) per epoch are proportional to the BS
(200 steps/epoch for BS = 4, 25 steps/epoch for BS = 32,
1 step/epoch for BS = 512). The objective was to test the
method’s performance on low-powered devices with different
properties while maintaining the error (that may vary when
modifying the batch-size). As a comparison metric, we show
the milliseconds per step and the seconds per epoch. When
computing the average milliseconds/step, the first epoch was
excluded as it carries the overhead on warm-up around ×4
the average epoch. Fig. 10 shows the performance in times
per step for the different configurations of the GRU in the dif-
ferent used technologies, for the training time with a common

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

15026 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 16, 15 AUGUST 2022

Fig. 10. Time comparison for configurations in low-power devices versus single CPU Xeon ref., for each amount of hidden units.

Fig. 11. Average modeling time on different edge devices.

and proper configuration found for the GRU on the single-CPU
Xeon, the Raspberry Pi ARM-based CPU, and the ARM-based
and GPU enhanced Jetson.

From this experiment, we concluded that our method is fully
fit for use on low-power or resource-constrained devices, as
training times take at maximum half an hour for a model rep-
resenting around six days. Moreover, we noted that the GPU
at the Jetson Nano does not provide improvement for the kind
of data until the BS reaches larger sizes.

Fig. 11 shows the absolute training time for the three
devices, where the single Xeon outperforms the low-powered
ones but for no more than a factor of 4, and how in scenarios
requiring large memory bandwidth (low data aggregation and
large BSs), the GPU starts chasing CPU execution times.

TABLE III
COMPARISON WITH BASELINE MODELS VAR AND CRBMS AS N = 1

(5 MIN AGGREGATION). NOTE THAT THE RESULTS ARE FOR THE

OVERALL BEST CONFIGURATIONS FOUND

D. Comparison With Baseline Methods

To conclude the evaluations, we provide a comparison of the
proposed method with previous and other simplistic models
used for estimating the traffic data. We compared our solu-
tion with vector auto-regression (VAR), a classic time-series
analysis method, and CRBMs as used in previous works [6].

As we can see in Table III, the proposed solution based on
GRU outperforms VAR and provided comparable performance
with CRBM when the granularity is set to 5 min. In Fig. 12,
we can observe that GRU is slightly better than CRBM when
granularity is finer, as seen in Fig. 7. Both kind of NN perform
well in our framework. However, due to our particular interest
in finer granularity, GRU is the chosen method for this work.
For other experiments with different data sets, both methods
should be compared in order to select the final model.

E. Discussion

Computing devices over the Edge are power and resource
constrained as compared to the resource available in data cen-
ters. Building intelligent solutions requiring training compute-
intensive DNN models introduced the challenge of efficiently
utilizing the available Edge devices. In this work, we have
addressed this challenge and proposed a system that distributes
the compute-intensive ML tasks to the available Edge device
while obtaining an accuracy comparable to models trained on

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

GUTIERREZ-TORRE et al.: AUTOMATIC DISTRIBUTED DEEP LEARNING USING RESOURCE-CONSTRAINED EDGE DEVICES 15027

Fig. 12. Error versus hidden units versus Time aggregation for number of
cars and speed estimation on CRBMs.

the single machine. Our solution is capable of stopping the
model training to achieve acceptable performance dynamically.
Our experimental evaluations compared a distributed learning
model with a single-model approach and other baseline solu-
tions for traffic forecasting. The results show the potential of
the proposed solution for Edge and Fog platforms.

We consider splitting the ML modeling process attractive
in scenarios, where we must reduce the training time without
losing accuracy and constraint to avoid the task offloading
to the cloud data centers. In such a situation, each device
can take care of their local data and send only the trained
model configuration to coordinate with other devices for build-
ing the model for generalizing the estimations. This solution
is very useful in Edge computing environments in which we
have low-power devices scattered. Our proposed solution will
help many scenarios, including smart cities, traffic manage-
ment and planning, the Internet of Things, and intelligent
surveillance.

VI. CONCLUSION AND FUTURE WORK

The presented work focused on performing predictive ana-
lytics on the Edge, using urban traffic prediction as an essential
use case scenario relevant to smart cities applications. Given
the amount of data generated on the Edge, not only in vol-
ume but also in time, moving modeling and analytics near
the data may be a good compromise in front of Cloud mod-
els, where data must be massively pushed north bound. Of
course, it must be understood that deep learning and other
analytic processes are usually designed for high-performance
computing environments. In contrast, the Edge front is com-
monly composed of low-power devices with scarce computing
resources.

In this article, we proposed an experimentally evaluated
method based on FL to move data analytics processing to
Edge. The learning tasks are distributed to multiple Edge

nodes, with limited computing resources, in a manner that each
node processes its own local data. In doing so, we attempted
to balance training time and model accuracy as a function
of data distribution. Experiments showed that the tested data
sets, provided by a road-service car fleet from Barcelona, can
be learned with acceptable accuracy although being unstable
on different previous tested techniques. Also, for each con-
figuration of NNs, there exists a multidimensional tradeoff
between the time spent on training, the distribution of data
and parallelization of the model training process, and the
previous aggregation of collected data to be trained, creat-
ing an interesting problem on how good we can model traffic
against how much available time/resources are on given Edge
scenarios.

The presented solution highlights future research and inno-
vation opportunities on smart city applications, capable of
providing services near-data and near-users without abusing
network hierarchies and Cloud resources. While this work
focused on a specific type of NNs, other statistical and
ML can be applied, more suitable for particular scenarios
far from urban traffic. Also, more complex architectures for
distributing ML processes and automation of autonomous
learning can be applied, focusing on better decisions when
having time/resources for smart management of the device and
the data pipeline. Another interesting aspect to cover is the
use of MCUs with FL. With this, ultralow-powered devices
would be able to collaborate in training and provide mod-
els with a wider knowledge on data from their neighboring
MCUs.

REFERENCES

[1] M. Abdullah, W. Iqbal, A. Mahmood, F. Bukhari, and A. Erradi,
“Predictive autoscaling of microservices hosted in fog microdata center,”
IEEE Syst. J., vol. 15, no. 1, pp. 1275–1286, Mar. 2021.

[2] S. Ali et al., “SimpliMote: A wireless sensor network monitoring
platform for oil and gas pipelines,” IEEE Syst. J., vol. 12, no. 1,
pp. 778–789, Mar. 2018.

[3] M. Ghorbanian, S. H. Dolatabadi, and P. Siano, “Big data issues in
smart grids: A survey,” IEEE Syst. J., vol. 13, no. 4, pp. 4158–4168,
Dec. 2019.

[4] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for
the Internet of Things: A case study,” IEEE Internet Things J., vol. 5,
no. 2, pp. 1275–1284, Apr. 2018.

[5] G. Plastiras, M. Terzi, C. Kyrkou, and T. Theocharidcs, “Edge intel-
ligence: Challenges and opportunities of near-sensor machine learning
applications,” in Proc. IEEE 29th Int. Conf. Appl. Specific Syst. Archit.
Processors (ASAP), 2018, pp. 1–7.

[6] J. L. Pérez, A. Gutierrez-Torre, J. L. Berral, and D. Carrera, “A
resilient and distributed near real-time traffic forecasting application for
fog computing environments,” Future Gener. Comput. Syst., vol. 87,
pp. 198–212, Oct. 2018.

[7] C. Savaglio and G. Fortino, “A simulation-driven methodology for IoT
data mining based on edge computing,” ACM Trans. Internet Technol.,
vol. 21, no. 2, pp. 1–22, 2021.

[8] H. B. McMahan, E. Moore, D. Ramage, and B. A. Y. Arcas, “Federated
learning of deep networks using model averaging,” 2016. [Online].
Available: arXiv:1602.05629.

[9] K. Bonawitz et al., “Towards federated learning at scale: System design,”
2019. [Online]. Available: arXiv:1902.01046.

[10] S. Dey, A. Chakraborty, S. Naskar, and P. Misra, “Smart city surveil-
lance: Leveraging benefits of cloud data stores,” in Proc. 37th Annu.
IEEE Conf. Local Comput. Netw. Workshops, 2012, pp. 868–876.

[11] K. Su, J. Li, and H. Fu, “Smart city and the applications,” in Proc. Int.
Conf. Electron. Commun. Control (ICECC), 2011, pp. 1028–1031.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

15028 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 16, 15 AUGUST 2022

[12] M. Castro, A. J. Jara, and A. F. Skarmeta, “Smart lighting solutions for
smart cities,” in Proc. 27th Int. Conf. Adv. Inf. Netw. Appl. Workshops,
2013, pp. 1374–1379.

[13] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “LAVEA:
Latency-aware video analytics on edge computing platform,” in Proc.
2nd ACM/IEEE Symp. Edge Comput., 2017, pp. 1–13.

[14] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-
C. Woo, “Convolutional LSTM network: A machine learning approach
for precipitation nowcasting,” in Proc. Adv. Neural Inf. Process. Syst.,
2015, pp. 802–810.

[15] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep
learning in TensorFlow,” 2018. [Online]. Available: arXiv:1802.05799.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[17] D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column deep neu-
ral networks for image classification,” 2012. [Online]. Available:
arXiv:1202.2745.

[18] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proc. 14th Int. Conf. Artif. Intell.
Stat., 2011, pp. 215–223.

[19] B. Hu, Y. Gao, L. Liu, and H. Ma, “Federated region-learning: An edge
computing based framework for urban environment sensing,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–7.

[20] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019. 2018.

[21] J. Dean et al., “Large scale distributed deep networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1223–1231.

[22] Q. V. Le et al., “Building high-level features using large scale unsuper-
vised learning,” 2011. [Online]. Available: arXiv:1112.6209.

[23] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Proc. 16th Annu. Conf. Int. Speech Commun.
Assoc., 2015, pp. 1488–1492.

[24] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with COTS HPC systems,” in Proc. Int. Conf. Mach.
Learn., 2013, pp. 1337–1345.

[25] P. Goyal et al., “Accurate, large minibatch SGD: Training ImageNet in
1 hour,” 2017. [Online]. Available: arXiv:1706.02677.

[26] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and
B. Koldehofe, “Opportunistic spatio-temporal event processing for
mobile situation awareness,” in Proc. 7th ACM Int. Conf. Distrib.
Event-Based Syst., 2013, pp. 195–206.

[27] L. Yu, Z. Li, J. Liu, and R. Zhou, “Resources sharing in 5G networks:
Learning-enabled incentives and coalitional games,” IEEE Syst. J.,
vol. 15, no. 1, pp. 226–237, Mar. 2021.

[28] A. Marchisio et al., “Deep learning for edge computing: Current trends,
cross-layer optimizations, and open research challenges,” in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), 2019, pp. 553–559.

[29] B. Sudharsan, J. G. Breslin, and M. I. Ali, “RCE-NN: A five-stage
pipeline to execute neural networks (CNNs) on resource-constrained IoT
edge devices,” in Proc. 10th Int. Conf. Internet Things, 2020, pp. 1–8.

[30] R. Sanchez-Iborra and A. F. Skarmeta, “TinyML-enabled frugal smart
objects: Challenges and opportunities,” IEEE Circuits Syst. Mag.,
vol. 20, no. 3, pp. 4–18, 3rd Quart., 2020.

[31] S. Lee and S. Nirjon, “Neuro.ZERO: A zero-energy neu-
ral network accelerator for embedded sensing and inference
systems,” in Proc. 17th Conf. Embedded Netw. Sens.
Syst., 2019, pp. 138–152. [Online]. Available: https://doi-
org.recursos.biblioteca.upc.edu/10.1145/3356250.3360030

[32] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the Internet of Things,” in Proc. 1st Edition MCC Workshop
Mobile Cloud Comput., 2012, pp. 13–16.

[33] M. Naphade et al., “The NVIDIA AI city challenge,” in Proc. IEEE
SmartWorld, Ubiquitous Intell. Comput. Adv. Trusted Comput. Scalable
Comput. Commun. Cloud Big Data Comput. Internet People Smart City
Innov. (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017,
pp. 1–6.

[34] (Jul. 2019). Nvidia Autonomous Machines: Jetson Nano. [Online].
Available: https://www.nvidia.com/en-us/autonomous-machines

[35] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” 2014. [Online].
Available: arXiv:1412.3555.

[36] F. E. Harrell, Jr., Regression Modeling Strategies: With Applications to
Linear Models, Logistic and Ordinal Regression, and Survival Analysis.
Cham, Switzerland: Springer, 2015, doi: 10.1007/978-3-319-19425-7.

Alberto Gutierrez-Torre received the M.Sc. degree
in data science from the Technical University of
Catalonia-BarcelonaTech, Barcelona, Spain, in 2017.
He is currently pursuing the Ph.D. degree with the
Data-Centric Computing Research Group, Barcelona
Supercomputing Center, Barcelona.

His research interests are focused on data analy-
sis, statistics, and machine learning with a specific
interest on data streams.

Kiyana Bahadori received the M.Sc. degree in
computer science from the University of Bangalore,
Bengaluru, India, in 2013, and the Ph.D. degree
in computer science from the Brain, Mind, and
Computer Science Program, University of Padua,
Padua, Italy, in 2019.

Her research interests focus on improving
performance and resource utilization of services in
the cloud.

Shuja-ur-Rehman Baig received the B.Sc. and
M.Sc. degrees in computer science from Lahore
University of Management Sciences, Lahore,
Pakistan, in 2006 and 2009, respectively, and the
Ph.D. degree from the Computer Architecture
Department, Technical University of Catalonia-
BarcelonaTech (UPC), Barcelona, Spain, in 2019.

He holds a Lecturer position with Punjab
University College of Information Technology,
University of the Punjab, Lahore. His research
interests are cloud computing, big data, and
machine learning.

Waheed Iqbal received the Ph.D. degree from
the Asian Institute of Technology, Khlong Nueng,
Thailand, in 2012.

He is an Assistant Professor with Punjab
University College of Information Technology,
University of the Punjab, Lahore, Pakistan. He
worked as a Postdoctoral Researcher with the
Department of Computer Science and Engineering,
Qatar University, Doha, Qatar, from 2017 to 2018.
His research interests lie in cloud computing, dis-
tributed systems, machine learning, and large-scale
system performance evaluation.

Tullio Vardanega (Member, IEEE) received the
M.Sc. degree from the University of Pisa, Pisa, Italy,
in 1986, and the Ph.D. degree in computer science
from the Technical University of Delft, Delft, The
Netherlands, in 1998.

He is an Associate Professor with the Department
of Mathematics, University of Padua, Padua, Italy.
He first was a Principal Investigator in a consultancy
firm in Pisa, Italy, from 1986 to 1991, and then a
member of Technical Staff with the European Space
Research and Technology Center, Noordwijk, The

Netherlands, from 1991 to 2001. His teaching and research interests are in
the areas of high-integrity real-time systems, cloud, fog, and edge computing,
and software engineering methods and processes.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/978-3-319-19425-7

GUTIERREZ-TORRE et al.: AUTOMATIC DISTRIBUTED DEEP LEARNING USING RESOURCE-CONSTRAINED EDGE DEVICES 15029

Josep Lluís Berral (Member, IEEE) received the
B.Sc. degree in computer science, the M.Sc. degree
in computer architecture, and the Ph.D. degree from
BarcelonaTech-UPC, Barcelona, Spain, in 2007,
2008, and 2013, respectively.

He is a Data Scientist, working in applications
of data mining and machine learning on data-
center and cloud environments at the Barcelona
Supercomputing Center, Barcelona, within the
“Data-Centric Computing” research line. He has
worked with the High Performance Computing

Group, Computer Architecture Department, UPC, and also with the Relational
Algorithms, Complexity and Learning Group, Computer Science Department,
UPC.

Dr. Berral received in 2017 a Juan de la Cierva Research Fellowship by
the Spanish Ministry of Economy.

David Carrera (Member, IEEE) received the
M.S. and Ph.D. degrees from BarcelonaTech-UPC,
Barcelona, Spain, in 2002 and 2008, respectively.

He is an Associate Professor with the Computer
Architecture Department, UPC. He is also
an Associate Researcher at the Barcelona
Supercomputing Center, Barcelona, within the
“Data-Centric Computing” research line. He has
been involved in several EU and industrial research
projects. His research interests are focused on the
performance management of data center workloads.

Dr. Carrera received an IBM Faculty Award in 2010. He was awarded an
ERC Starting Grant for the Project HiEST, in 2015.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on April 12,2023 at 07:26:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

