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Abstract—Learning the inverse dynamics of robots directly from
data, adopting a black-box approach, is interesting for several
real-world scenarios where limited knowledge about the system
is available. In this article, we propose a black-box model based
on Gaussian process (GP) regression for the identification of the
inverse dynamics of robotic manipulators. The proposed model
relies on a novel multidimensional kernel, called Lagrangian In-
spired Polynomial (LIP) kernel. The LIP kernel is based on two
main ideas. First, instead of directly modeling the inverse dynamics
components, we model as GPs the kinetic and potential energy of
the system. The GP prior on the inverse dynamics components is
derived from those on the energies by applying the properties of
GPs under linear operators. Second, as regards the energy prior
definition, we prove a polynomial structure of the kinetic and
potential energy, and we derive a polynomial kernel that encodes
this property. As a consequence, the proposed model allows also
to estimate the kinetic and potential energy without requiring any
label on these quantities. Results on simulation and on two real
robotic manipulators, namely a 7 DOF Franka Emika Panda, and
a 6 DOF MELFA RV4FL, show that the proposed model outper-
forms state-of-the-art black-box estimators based both on Gaussian
processes and neural networks in terms of accuracy, generality,
and data efficiency. The experiments on the MELFA robot also
demonstrate that our approach achieves performance comparable
to fine-tuned model-based estimators, despite requiring less prior
information. The code of the proposed model is publicly available.

Index Terms—Gaussian processes, manipulator dynamics, robot
learning.
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I. INTRODUCTION

ROBOT manipulators are one of the most widespread plat-
forms both in industrial and service robotics. In many ap-

plications involving such systems, control performance strongly
benefits from the presence of accurate dynamics models. Inverse
dynamics models, which express joint torques as a function of
joint positions, velocities, and accelerations, are fundamental
in different control problems, ranging from high-precision tra-
jectory tracking [1], [2] to detection and estimation of contact
forces [3], [4], [5].

Despite their importance, the derivation of accurate inverse
dynamics models is still a challenging task and several tech-
niques have been proposed in the literature. Traditional model-
based approaches derive parametric models directly from first
principles of physics, see, for instance, [6], [7], [8], [9]. Their
performance, however, is often limited by both the presence
of parameter uncertainty and the inability to describe certain
complex dynamics typical of real systems, such as motor friction
or joint elasticity.

For this reason, in recent years there has been an increased in-
terest in deriving inverse dynamics models by means of machine
learning. Several data-driven techniques have been proposed,
mainly based on deep neural networks (NN) [10] and Gaussian
process regression (GPR) [11]. In this context, both gray-box
and black-box approaches have been explored. Within gray-box
techniques, a model-based component encoding the known dy-
namics is combined with a data-driven one, which compensates
for modeling errors and unknown dynamical effects [12], [13],
[14], [15]. However, advantages of these methods strongly de-
pend on the effectiveness of the model-based component, so they
still require accurate physical models, whose derivation might
be particularly time-consuming and complex.

In contrast, pure black-box methods learn inverse dynamics
models directly from experimental data, without requiring deep
knowledge of the underlying physical system. Despite their
ability to approximate even complex nonlinear dynamics, pure
black-box methods typically suffer from low data efficiency and
poor generalization properties: learned models require a large
amount of samples to be trained and extrapolate only within a
neighborhood of the training trajectories.

Several solutions were proposed to overcome the aforemen-
tioned limitations, see, for instance, [16], [17] in the context
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of NN, and [18], [19], [20], [21] for the GPR framework. A
promising class of them is represented by Physics Informed
Learning (PIL) [22], which proposes to embed insights from
physics as a prior in black-box models [23], [24], [25], [26], [27],
[28]. Instead of learning the inverse dynamics in an unstructured
manner, which makes the problem unnecessarily hard, physical
properties are embedded in the model to improve generalization
and data efficiency.

In this article, we propose a PIL model for inverse dynamics
identification of mechanical systems based on GPR. When ap-
plying GPR to the inverse dynamics identification, the standard
approach consists of modeling directly each joint torque with a
distinct Gaussian Process (GP), assuming the GPs independent
of one another given the current joint position, velocity, and ac-
celeration. This strategy, hereafter denoted as the single-output
approach, simplifies the regression problem but ignores the
correlations between the different joint torques imposed by the
Lagrangian equations, which in turn could limit generalization
and data efficiency.

In contrast, we propose a multioutput GPR estimator based on
a novel kernel function, named Lagrangian Inspired Polynomial
kernel (LIP), which exploits Lagrangian mechanics to model
also the correlations between the different joint torques. Our
method is based on two main ideas: first, instead of modeling
directly joint torques, we model as GPs the kinetic and potential
energy of the system. Driven by the fact that the dynamics
equations are linear w.r.t. the Lagrangian, we obtain the torques
GPs by applying a set of linear operators to the GPs of the poten-
tial and kinetic energy. Second, as regards the prior definition,
we show that the kinetic and potential energy are polynomial
functions in a suitable input space, and we derive a polynomial
kernel that encodes this property.

The collected results show that the LIP estimator outperforms
state-of-the-art black-box GP estimators as well as NN-based
solutions, obtaining better data efficiency and generalization
performance. This fact confirms that encoding physical prop-
erties in the models is a promising strategy to improve data
efficiency. Interestingly, experiments carried out on the MELFA
robot demonstrate that our approach achieves out-of-sample
estimation performance more than comparable to fine-tuned
model-based estimators, despite requiring less prior informa-
tion. Finally, we validated the effectiveness of the energy esti-
mation both in simulation and on the Franka Emika Panda.

Related work: The idea of encoding Lagrangian equations in
black-box models has already been explored in the literature.
For instance, recently a NN model has been introduced in [24],
named deep Lagrangian networks (DeLan). The DeLan model
adopts two distinct feedforward NN: one for modeling the
inertia matrix elements and another for the potential energy.
Based on these estimates, the torques are subsequently computed
by implementing Lagrangian equations. Among kernel-based
methods, Cheng and Huang [25] formulated inverse dynamics
identification as an optimization problem in a reproducing kernel
Hilbert Space (RKHS). They derived a multioutput kernel by
modeling the entire Lagrangian with a standard square expo-
nential (SE) kernel. Consequently, this formulation lacks the

capability to estimate kinetic and potential energies. Further-
more, both the experiments in [25] and our own work carried
out using the model in [25] demonstrate out-of-sample per-
formance comparable to that of single-output models. In the
GPR domain, Evangelisti and Hirche [26] defined a GP prior
both on the potential energy and on the elements of the inertia
matrix using the standard SE kernel, leading to a high number of
hyperparameters to be optimized. Moreover, the efficacy of the
approach in [26] has only been validated on a simulated 2-DOF
example.

The approaches in [24], [25], and [26] try to improve data
efficiency by imposing the structure of the Lagrangian equa-
tions, without considering specific basis functions tailored to the
inverse dynamics, such as polynomial functions. The fact that
the inverse dynamics spans a polynomial space has already been
observed in [29] and further explored in [23] and [30]. In [29],
the authors proposed a NN to model the elements of the inertia
matrix and the gravity term as polynomials. The approach has
been validated on a simulated 2 DOF example and generalization
to more complex systems has not been investigated. At the
increase of the DOF, the number of NN parameters necessary to
model the inertia matrix increases exponentially, which could
make the training of the network particularly difficult. The
kernel-based formulation provides a straightforward solution to
encode polynomials structure. Both in [23] and [30], the authors
adopt estimators based on polynomial kernels to model each
joint torque, without considering output correlations. Results
confirm that performance improves with respect to standard
black-box solutions. To the best of our knowledge, none of the
approaches presented in the literature proposes a multioutput
inverse dynamics estimator that models the kinetic and potential
energies using tailored polynomial kernels.

Our contribution is twofold. First, we prove the polynomial
structure of the kinetic and potential energy and we derive the
LIP estimator, a black-box multioutput GPR model that encodes
the symmetries typical of Lagrangian systems. Second, we show
that, differently from single-output GP models, the LIP model
we propose can estimate the kinetic and potential energy in
a principled way, allowing its integration with energy-based
control strategies [31]. We compare the LIP model performance
against baselines and state-of-the-art algorithms through exten-
sive tests on simulated setups of increasing complexity and also
two real manipulators, a Franka Emika Panda and a Mitsubishi
MELFA robot. Furthermore, we carried out a trajectory tracking
experiment on the Franka Emika Panda robot to test the effec-
tiveness of our estimation for control.

The article is organized as follows. Section II reviews the
theory of GPR for inverse dynamics identification. In Section III,
we present the proposed approach. First, we show how to derive
the GP prior on the torques from the one on the energies, ex-
ploiting the laws of Lagrangian mechanics; then we describe the
polynomial kernel we use to model the system energies; finally,
we present the energy estimation algorithm. In Section IV, we
provide an overview of the main related works presented in the
literature. Section V reports the performed experiments, while
Section VI concludes the article.
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II. BACKGROUND

In this section, we describe the inverse dynamics identification
problem, and we concisely review the GPR framework for
multioutput models. In addition, we introduce some notions and
properties (polynomial kernels; application of linear operators
to GPs) that will play a fundamental role in the derivation of the
novel estimation scheme we propose.

A. Inverse Dynamics

Consider an n-degrees of freedom (DOF) serial manipulator
composed ofn+ 1 links connected byn joints, labeled 1 through
n. Let qt = [q1t , . . . , q

n
t ]

T ∈ R
n and τ t = [τ1t , . . . , τ

n
t ]

T ∈ R
n

be the vectors collecting, respectively, the joint coordinates and
generalized torques at time t, where qit and τ it denote, respec-
tively, the joint coordinate and the generalized torque of joint
i. Moreover, q̇t and q̈t denote, respectively, the joint velocity
and acceleration vectors. For ease of notation, in the following
we will denote explicitly the dependence on t only when strictly
necessary.

The inverse dynamics identification problem consists of iden-
tifying the map that relates qt, q̇t, q̈t, with τ t, given a dataset
of input–output measures 𝒟. Under rigid body assumptions, the
dynamics equations derived from first principle of physics, for
instance by applying Lagrangian or Hamiltonian mechanics, are
described by the following matrix equation:

B(q)q̈ + c(q, q̇) + g(q) + ε = τ (1)

where B(q) is the inertia matrix, c(q, q̇) and g(q) account for
the contributions of fictitious forces and gravity, respectively,
and ε is the torque due to friction and unknown dynamical
effects. We refer the interested reader to [2] for a complete and
detailed description and derivation of (1). In general, the terms
in (1) are nonlinear w.r.t. qt and q̇t, and depend on two im-
portant sets of parameters, that is, the kinematics and dynamics
parameters, hereafter denoted by wk and wd, respectively. It is
worth stressing that the vector wk depends on the convention
adopted to derive the kinematic relations. For instance, a possible
choice is given by the Denavit–Hartenberg convention, see [32].
Instead, wd is a vector including the mass, the position of the
center of mass, the elements of the inertia tensor, and the friction
coefficients of each link. Typically, the vector wk is known with
high accuracy, while tolerances onwd are much more consistent.
Discrepancies between the nominal and actual values of wd can
be so considerable that (1) with nominal parameters is highly
inaccurate and unusable for advanced control applications.

B. GPR for Multioutput Models

A relevant class of solutions proposed for inverse dynamics
identification relies on GPR. GPR is a principled probabilis-
tic framework for regression problems that allows estimating
an unknown function given a dataset of input–output obser-
vations. Let f : Rm → R

d be the unknown function and let
𝒟= {X,Y } be the input–output dataset, composed of the input
set X = {x1 . . .xN} and the output set Y = {y1, . . . ,yN},
where xi ∈ R

m and yi ∈ R
d, i = 1, . . . , N . We assume the

following measurement model

yi = f(xi) + ei, i = 1, . . . , N (2)

where ei is a zero-mean Gaussian noise with variance Σei ∈
R

d × R
d, i.e., ei ∼ 𝒩(0,Σei), independent from the unknown

function. We assume that Σei is a diagonal matrix, that is,

Σei = diag(σ2
e1
, . . . , σ2

ed
)

where σ2
ej

denotes the variance of the noise affecting the
jth component of f . By letting y = [yT

1 , . . . ,y
T
N ]T and e =

[eT1 , . . . , e
T
N ]T , we can write

y =

⎡
⎢⎢⎣
y1

...

yN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
f(x1)

...

f(xN )

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
e1
...

eN

⎤
⎥⎥⎦ = f(X) + e (3)

where the noises e1, . . . , eN are assumed independent and iden-
tically distributed. It turns out that the variance of e is a block
diagonal matrix with equal diagonal blocks, namely

Σe = diag(Σe1 , . . . ,ΣeN )

with Σe1 = Σe2 = . . . = ΣeN .
The unknown function f is defined a priori as a GP, that is,

f ∼ GP (m(x), k(x,x′)), where m(·) : Rm → R
d is the prior

mean and k(·, ·) : Rm × R
m → R

d×d is the prior covariance,
also termed kernel. The function k(·, ·), which typically depends
on a set of hyperparametersθ, represents the covariance between
the values of the unknown function in different input locations,
that is, Cov[f(xp), f(xq)] = k(xp,xq). As an example, in the
scalar case (d = 1), a common choice for k(·, ·) is the square
exponential (SE) kernel, which defines the covariance between
samples based on the distance between their input locations.
More formally

kSE(x,x
′) = λe−‖x−x′‖2

Σ−1 (4)

where λ and Σ are the kernel hyperparameters.
Under the Gaussian assumption, the posterior distribution of

f given 𝒟 in a general input location x is still a Gaussian
distribution, with mean and variance given by the following
expressions:

E[f(x)|𝒟] = m(x) +KxX(KXX +Σe)
−1(y −mX)

(5a)

Cov[f(x)|𝒟] = k(x,x)−KxX(KXX +Σe)
−1KXx (5b)

where KxX ∈ R
d×dN is given by

KxX = KT
Xx =

[
k(x,x1), . . . , k(x,xN )

]
(6)

and KXX ∈ R
dN×dN is the block matrix

KXX =

⎡
⎢⎢⎣
k(x1,x1) . . . k(x1,xN )

...
. . .

...

k(xN ,x1) . . . k(xN ,xN )

⎤
⎥⎥⎦ . (7)

See [11], for a detailed derivation of formulas in (5). The poste-
rior mean (5a) is used as an estimate of f , that is, f̂ = E[f(x)|𝒟],
while (5b) is useful to derive confidence intervals of f̂ .
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In the remainder of this section we review additional notions
and properties of GPR, that will be fundamental in deriving the
estimator proposed in this article.

1) Polynomial Kernel: The LIP model relies on the use
of standard polynomial kernels (see (8) below). As discussed
in [11] and [33], by exploiting the RKHS interpretation of GPR,
a polynomial kernel constrains f(x) to belong to the space of
polynomial functions in the components of x. Specifically, the
standard polynomial kernel of degree p, expressed as

k
(p)
pk (x,x′) =

(
xTΣpkx

′ + σpk

)p
(8)

defines the space of inhomogeneous polynomials of degree p
in the elements of x, that is, the space generated by all the
monomials in the elements of x with degree r, 0 ≤ r ≤ p.
The matrix Σpk and the scalar value σpk are hyperparameters
that determine the weights assigned to the different monomials.
Typically,Σpk is assumed to be diagonal. By settingσpk = 0, we
obtain the so-called homogeneous polynomial kernel of degree
p, hereafter denoted by k

(p)
hpk(x,x

′), which identifies the space
generated by all the monomials in the elements of x with degree
p.

For future convenience, we introduce a notation to point
out polynomial functions in a compact way. We denote by
P(p)(x(p1)) the set of polynomial functions of degree not greater
than p defined over the elements of x, such that each element
of x appears with degree not greater than p1. For instance,
the polynomial kernel in (8) identifies P(p)(x(p)). The notation
naturally extends to the multi-input case: P(p)(x(px), z(pz))
denotes the set of polynomial functions of degree not greater
than p defined over the elements of x and z, where the elements
of x (resp. z) appears with degree not greater than px (resp. pz).

2) Combination of Kernels: Kernels can be combined
through sum or multiplication [11], [33]. Let f1(x) and
f2(x) be two Gaussian processes and let k1(x,x

′) and
k2(x,x

′) be the kernels associated with f1 and f2, re-
spectively. Then both fs(x) = f1(x) + f2(x) and fp(x) =
f1(x)f2(x) are Gaussian processes; if ks(x,x′) and kp(x,x

′)
are the kernels associated with fs(x) and fp(x), respec-
tively, then ks(x,x

′) = k1(x,x
′) + k2(x,x

′) and kp(x,x
′) =

k1(x,x
′) k2(x,x′). Now, assume that both k1 and k2 are poly-

nomial kernels and let ℳ1 and ℳ2 be the sets of monomials
generating the polynomial spaces spanned by k1 and k2, respec-
tively. Then, both ks and kp are polynomial and

1) ks spans the polynomial space generated by the set ℳs =
ℳ1 ∪ℳ2;

2) kp spans the polynomial space generated by the set ℳp

composed by all the monomials obtained as the product
of one monomial of ℳ1 with one monomial of ℳ2.

3) Linear Operators and GPs: Assume now that f ∼
GP (mf (x), kf (x,x

′)) is a scalar Gaussian process, that is,
f : Rm → R. Let 𝒢 be a linear operator on the realizations of
f . We assume that the operator produces functions with range
in R

r, defined on the same domain of the argument, namely
g = 𝒢f : Rm → R

r. In this setup, the operator 𝒢has r compo-
nents, 𝒢1, . . . ,𝒢r, where 𝒢i maps f into the ith component of

g, that is

g = 𝒢f = [𝒢1f . . . 𝒢rf ]
T .

As GPs are closed under linear operators (see [34]), g is still a GP,
i.e., g ∼ GP (mg(x), kg(x,x

′)). Its mean and covariance are
given by applying 𝒢 to the mean and covariance of the argument
f , resulting in

mg(x) = E [𝒢f(x)] = 𝒢mf (x) : R
m → R

r (9)

and

kg(x,x
′) = Cov [𝒢f(x),𝒢f(x′)] : Rm × R

m → R
r×r (10)

kg(x,x
′) =

⎡
⎢⎢⎣
𝒢1𝒢

′
1kf (x,x

′) . . . 𝒢1𝒢
′
rkf (x,x

′)
...

. . .
...

𝒢r𝒢
′
1kf (x,x

′) . . . 𝒢r𝒢
′
rkf (x,x

′)

⎤
⎥⎥⎦ (11)

where 𝒢′
j is the same operator as 𝒢j but applied to kf (x,x

′)
as function of x′. In details, the notation 𝒢i𝒢

′
jkf (x,x

′) means
that𝒢′

j is first applied to kf (x,x′) assumingx constant and then
𝒢i is applied to the obtained result assuming x′ constant. For
convenience of notation, we denote kg(x,x′) by 𝒢𝒢′kf (x,x′).
Finally, the cross-covariance between f and 𝒢f at input loca-
tions x and x′ is given as

Cov[𝒢f(x), f(x′)] = 𝒢kf (x,x′) (12a)

Cov[f(x),𝒢f(x′)] =
[
𝒢′kf (x,x′)

]T
(12b)

with

Cov[𝒢f(x), f(x′)] = [𝒢1kf (x,x
′) . . .𝒢rkf (x,x

′)]T (13a)

Cov[f(x),𝒢f(x′)] =
[
𝒢′
1kf (x,x

′) . . .𝒢′
rkf (x,x

′)
]

(13b)

where again the notation 𝒢kf and 𝒢′kf is used to indicate when
the operator acts on kf as function of x and x′, respectively. We
refer the interested reader to [34] for a detailed discussion on
GPs and linear operators.

C. GPR for Inverse Dynamics Identification

When GPR is applied to inverse dynamics identification, the
inverse dynamics map is treated as an unknown function and
modeled a priori as a GP. The GP-input at time t is xt =
(qt, q̇t, q̈t), while outputs are torques. The standard approach
consists in defining the GP prior directly on the inverse dynamics
function, by assuming its n components to be conditionally
independent given the GP inputxt. As a consequence, the overall
inverse dynamics identification problem is split into a set of n
scalar and independent GPR problems

yit = f i(xt) + eit

where the ith torque component f i : R3n → R is estimated
independently of the others as in (5) with d = 1 and y = yi =
[yi1 . . . y

i
N ]T , being yit a measure of the ith torque at time t.

Observe that the conditionally independence assumption is
an approximation of the actual model, and it might limit gener-
alization and data efficiency. As described in the next section,
we propose a multioutput GP model that naturally correlates
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the different torque dimensions, thus obtaining the following
generative model:

yt = f(xt) + et

with f : R3n → R
n, where n is the number of DOF of the

considered mechanical system, yt ∈ R
n is the vector of torque

measurements at time t and et ∈ R
n is the noise at time t

modeled as in Section II-B. The estimate of f can now be
computed as described in Section II-B, with d = n.

III. LAGRANGIAN INSPIRED POLYNOMIAL MODEL

In this section, we derive the proposed multioutput GP model
for inverse dynamics learning, named Lagrangian Inspired Poly-
nomial (LIP) model. In traditional GP-based approaches, a GP
prior is directly defined on the joint torques. In the LIP frame-
work, instead, we model the kinetic and potential energies as two
different GPs and derive the GP prior of the torques exploiting
the laws of Lagrangian mechanics and the properties reviewed
in Section II-B3. The section is organized as follows. First, in
Section III-A, the inverse dynamics GP-models are derived from
the GPs of the kinetic and potential energies, without specifying
the structure of the involved kernels. The novel polynomial
priors assigned to the energies are introduced and discussed
in Section III-B. Finally, an algorithm to estimate the system
energies is proposed in Section III-C.

A. From Energies to Torques GP Models

Let 𝒯(q, q̇) and 𝒱(q) be, respectively, the kinetic and po-
tential energy of a n-DOF system of the form (1). The LIP
model assumes that𝒯(q, q̇) and𝒱(q) are two independent zero-
mean GPs with covariances determined by the kernel functions
k𝒯(x,x′) and k𝒱(x,x′), that is

𝒯∼ GP (0, k𝒯(x,x′)) (14a)

𝒱∼ GP (0, k𝒱(x,x′)) (14b)

where x = (q, q̇, q̈) as defined in Section II-C. The GP prior
on 𝒯 and 𝒱 cannot be used directly in GPR to compute pos-
terior distributions since kinetic and potential energies are not
measured. However, starting from the prior on the two ener-
gies, we can derive a GP prior for the torques by relying on
Lagrangian mechanics. Lagrangian mechanics states that the
inverse dynamics equations in (1) (with ε = 0), also named
Lagrange’s equations, are the solution of a set of differential
equations of the Lagrangian function ℒ= 𝒯(q, q̇)−𝒱(q) [2].
The ith differential equation of (1) is

dℒ
dt

(
∂ℒ
∂q̇i

)
− ∂ℒ

∂qi
= τ i (15)

where qi, q̇i, and τ i are, respectively, the ith component of q,
q̇, and τ . Equation (15) involves an explicit differentiation w.r.t.
time that can be avoided using the chain rule, leading to the
following linear partial differential equation of ℒ:

n∑
j=1

(
∂2ℒ
∂q̇i∂q̇j

q̈j +
∂2ℒ
∂q̇i∂qj

q̇j
)
− ∂ℒ

∂qi
= τ i. (16)

Now it is convenient to introduce the linear operator 𝒢i that
maps ℒ in the left-hand side of

𝒢iℒ=

n∑
j=1

(
∂2ℒ
∂q̇i∂q̇j

q̈j +
∂2ℒ
∂q̇i∂qj

q̇j
)
− ∂ℒ

∂qi
= τ i.

In compact form, we can write

τ = 𝒢ℒ= [𝒢1ℒ . . . 𝒢nℒ]T (17)

where the above equality defines the linear operator 𝒢mapping
ℒ into τ .

Notice that, in the LIP model, ℒ is a GP since 𝒯and 𝒱are
two independent GPs. Indeed, as pointed out in Section II-B2,
the sum of two independent GPs is a GP, and its kernel is the
sum of the kernels, namely,

ℒ∼ GP (0, kℒ(x,x′)) (18a)

kℒ(x,x′) = k𝒯(x,x′) + k𝒱(x,x′). (18b)

Equation (17) shows that, in our setup, the inverse dynamics
map is the result of the application of the linear operator 𝒢 to
the GP defined in (18a) and (18b) modeling ℒ. Based on the
properties discussed in Section II-B3, we can conclude that the
inverse dynamics is modeled as a zero mean GP with covariance
function obtained by applying (10). Specifically, we have that
τ ∼ GP (0, kτ (x,x′)) where

kτ (x,x′) =

⎡
⎢⎢⎣
𝒢1𝒢

′
1k

ℒ(x,x′) . . . 𝒢1𝒢
′
nk

ℒ(x,x′)
...

. . .
...

𝒢n𝒢
′
1k

ℒ(x,x′) . . . 𝒢n𝒢
′
nk

ℒ(x,x′)

⎤
⎥⎥⎦ .

(19)

It is worth stressing that the proposed approach models the
inverse dynamics function as an unknown multioutput function
f(x) : R3n → R

n. The training of the LIP model consists of
computing the posterior distribution of f given𝒟at a general in-
put location x as expressed by (5) and described in Section II-C;
the inputs are position, velocities, and accelerations of the joints,
while outputs are torques.

B. Kinetic and Potential Energy Polynomial Priors

In this section, we derive the kernel functions k𝒱 and k𝒯

adopted in the LIP model to define the priors on the potential
and kinetic energies.

The definition of k𝒱 and k𝒯 rely on the existence of two
suitable transformations mapping positions and velocities of the
generalized coordinates into two sets of variables with respect
to which the kinetic energy and potential energy are polynomial
functions.

We start our analysis by introducing the main elements of the
aforementioned transformations. Let qi and q̇i be the vectors
containing the positions and velocities of the joints up to index
i, respectively, i.e.,

qi =
[
q1 , . . . , qi

]T ∈ R
i

q̇i =
[
q̇1 , . . . , q̇i

]T ∈ R
i.
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Now, assume the manipulator to be composed by Nr revolute
joints and Np prismatic joints, with Nr and Np such that
Nr +Np = n. Then, let Ir = {r1, . . . , rNr

}, r1 < r2 < . . . <
rNr

, and Ip = {p1, . . . , pNp
}, p1 < p2 < . . . < pNp

, be the sets
containing the revolute and prismatic joints indexes, respec-
tively. Accordingly, let us introduce the vectors

qc = [cos (qr1) , . . . , cos (qrNr )]T ∈ R
Nr

qs = [sin (qr1) , . . . , sin (qrNr )]T ∈ R
Nr

qp = [qp1 , . . . , qpNp ]T ∈ R
Np .

By qbc , qbs, and qbp, we denote the bth element of qc, qs, and qp,
respectively.

Next, let Iir (resp. Iip) be the subset of Ir (resp. Ip) composed
by the indexes lower or equal to i, and let us define the vectors
qi
c, qi

s, (resp. qi
p) as the restriction of qc, qs (resp. qp) to Iir (resp.

Iip). For the sake of clarity, consider the following example. Let
index i be such that rj ≤ i < rj+1 for some 1 ≤ j < rNr

. Then
Iir = {r1 , . . . , rj} ∈ R

j , qi
c = [cos(qr1) , . . . , cos(qrj )]T ∈

R
j and qi

s = [sin(qr1) , . . . , sin(qrj )]T ∈ R
j .

To conclude, let qcsb be the vector concatenating the bth
elements of qc and qs, that is, qcsb = [qbc , q

b
s]

T .
Next, we continue our analysis by considering first the design

of k𝒱 and then the design of k𝒯.
1) Potential Energy: The following proposition establishes

that the potential energy is polynomial w.r.t. the set of variables
(qc, qs, qp) that, as previously highlighted, are functions of the
joint positions vector q.

Proposition 1: Consider a manipulator with n+ 1 links and
n joints. The total potential energy 𝒱(q) belongs to the space
P(n)(qc(1)

, qs(1)
, qp(1)

), namely it is a polynomial function in
(qc, qs, qp) of degree not greater than n, such that each element
of qc, qs, and qp appears with degree not greater than 1.
Moreover, for any monomial of the aforementioned polynomial,
the sum of the degrees of qbc and qbs is equal or lower than 1,
namely, it holds

deg
(
qbc
)
+ deg

(
qbs
) ≤ 1. (20)

The proof follows from similar concepts exploited in [23] and
is reported in the Appendix.

To comply with the constraints on the maximum degree of
each term, we adopt a kernel function given by the product
of Nr +Np inhomogeneous kernels of the type defined in (8),
where

1) Nr kernels have p = 1 and each of them is defined on the
2-D input space given by qcsb , b ∈ Ir;

2) Np kernels have p = 1 and each of them is defined on the
1-D input qbp, b ∈ Ip.

The resulting kernel is then given by

k𝒱(x,x′) =
∏
b∈Ir

k
(1)
pk

(
qcsb , q

′
csb

) ∏
b∈Ip

k
(1)
pk

(
qbp, q

′b
p

)
. (21)

Few observations are now needed. First notice that each of the n
kernels accounts for the contribution of a distinct joint. Second,
exploiting properties reviewed in Section II-B2, one can easily
see that kernel in (21) spans P(n)(qc(1)

, qs(1)
, qp(1)

). Finally,

since all the Nr kernels defined on qcsb , b ∈ Ir, have p = 1,
also the constraint in (20) is satisfied.

2) Kinetic Energy: We start by observing that the total kinetic
energy is the sum of the kinetic energies relative to each link,
that is,

𝒯(q, q̇) =
n∑

i=1

𝒯i(q, q̇) (22)

where 𝒯i(q, q̇) is the kinetic energy of Link i. The following
proposition establishes that𝒯i is polynomial w.r.t. the set of vari-
ables (qi

c, q
i
s, q

i
p, q̇

i), which are functions of the joints positions
and velocities vectors qi and q̇i.

Proposition 2: Consider a manipulator with n+ 1 links and
n joints. The kinetic energy 𝒯i(q, q̇) of link i belongs to
P(2i+2)(q

i
c(2)

, qi
s(2)

, qi
p(2)

q̇i
(2)), namely it is a polynomial func-

tion in (qi
c, q

i
s, q

i
p, q̇

i) of degree not greater than 2i+ 2, such
that:

i) each element of qi
c, qi

s, qi
p, and q̇i appears with degree

not greater than 2;
ii) each monomial has inside a term of the type q̇iq̇j for

1 ≤ i ≤ n and i ≤ j ≤ n; and
iii) in any monomial the sum of the degrees of qbc and qbs is

equal or lower than 2, namely

deg
(
qbc
)
+ deg

(
qbs
) ≤ 2. (23)

The proof follows from similar concepts exploited in [23] and
is reported in the Appendix.

To comply with the constraints and properties stated in the
above Proposition, we adopt a kernel function given by the
product of i inhomogeneous kernels of the type defined in (8),
and 1 homogeneous kernel, where

1) |Iir| inhomogeneous kernels have p = 2 and each of them
is defined on the 2-D input space given by qcsb , b ∈ Ir;

2) |Iip| inhomogeneous kernels have p = 2 and each of them
is defined on the 1-D input qbp, b ∈ Ip;

3) 1 homogeneous kernel has p = 2 and is defined on the
i-dimensional input q̇i.

The resulting kernel is then given by

k𝒯i (x,x
′) = k

(2)
hpk(q̇

i, q̇′i) ·
∏
b∈Ii

r

k
(2)
pk

(
qcsb , q

′
csb

) ·
∏
b∈Ii

p

k
(2)
pk

(
qbp, q

′b
p

)
. (24)

Also in this case some observations are needed. First notice that
|Iir|+ |Iip| = i. Second, the fact that all the kernels have p = 2
ensures that properties in (i) and (iii) of the above Proposition
are satisfied. Third, using an homogeneous kernel defined on q̇i

with p = 2 guarantees the validity of property (ii).
Based on (22) and on the properties reviewed in Section II-B2,

we finally define k𝒯 as

k𝒯(x,x′) =
n∑

i=1

k𝒯i (x,x
′). (25)

To conclude, in this article we introduce the multioutput torque
prior kτ expressed as in (19), where kℒ is defined in (18b)
adopting for k𝒱 and k𝒯 the polynomial structures in (21) and
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(25), respectively. The kernel kτ built in this way is termed the
LIP kernel.

Remark 1: Notice that Proposition 1 characterizes the poten-
tial energy 𝒱 of the whole system, while Proposition 2 focuses
on the kinetic energy of each link. In general, characterizing
the energies for each link and designing a tailored kernel to
be combined as done for k𝒯 should allow for higher flexibility
in terms of regularization and for more accurate predictions.
We have experimentally verified this fact for the kinetic energy,
while no significant advantages have been obtained for the
potential energy. This is the reason why for the latter we have
decided to adopt a more compact description involving the whole
system.

C. Energy Estimation

The proposed LIP model provides a principled way to estimate
the kinetic and potential energy from the torque measurements
y1 Indeed, in our model, 𝒯, 𝒱, and τ are jointly Gaussian
distributed, since the prior of τ is derived by applying the
linear operator 𝒢 to the kinetic and potential GPs 𝒯and 𝒱. The
covariances between 𝒯and τ and between 𝒱and τ at general
input locations x and x′ are

Cov[𝒯(x), τ (x′)] = Cov[𝒯(x),𝒢ℒ(x′)] = k𝒯τ (x,x′)
(26a)

Cov[𝒱(x), τ (x′)] = Cov[𝒱(x),𝒢ℒ(x′)] = k𝒱τ (x,x′).
(26b)

In view of (12) and recalling that we model 𝒯and 𝒱as inde-
pendent GPs, we obtain

k𝒯τ (x,x′) = Cov[𝒯(x),𝒢𝒯(x′)−𝒢𝒱(x′)]

= Cov[𝒯(x),𝒢𝒯(x′)]

=
[
𝒢′k𝒯(x′)

]T
= [𝒢′

1k
𝒯(x,x′), . . . ,𝒢′

nk
𝒯(x,x′)] (27a)

and

k𝒱τ (x,x′) = Cov[𝒱(x),𝒢𝒯(x′)−𝒢𝒱(x′)]

= Cov[𝒱(x),−𝒢𝒱(x′)]

= − [
𝒢′k𝒱(x,x′)

]T
= −[𝒢′

1k
𝒱(x,x′), . . . ,𝒢′

nk
𝒱(x,x′)]. (27b)

The Gaussian property makes the posterior distributions of 𝒯
and 𝒱given 𝒟known and analytically tractable. At any general
input location x, these posteriors are Gaussians with means

E[𝒯(x)|𝒟] = K𝒯τ
xX(KXX +Σe)

−1y (28a)

E[𝒱(x)|𝒟] = K𝒱τ
xX(KXX +Σe)

−1y (28b)

1We note that the Lagrangian satisfying (15) is not unique. For example, the
potential energy could be arbitrarily shifted by a constant. As the energies are
estimated from the torque measures, the information on such a shift is lost and
the estimation could be affected by a constant offset, which needs to be taken
into account in applications such as energy tracking.

and variances

V[𝒯(x)] = k𝒯(x,x)−K𝒯τ
xX(KXX +Σe)

−1
(
K𝒯τ

xX

)T
(29a)

V[𝒱(x)] = k𝒱(x,x)−K𝒱τ
xX(KXX +Σe)

−1
(
K𝒱τ

xX

)T
(29b)

where the covariance matrices K𝒯τ
xX ∈ R

1×nN and K𝒱τ
xX ∈

R
1×nN are obtained as

K𝒯τ
xX =

[
k𝒯τ (x,x1), . . . , k

𝒯τ (x,xN )
]

(30a)

K𝒱τ
xX =

[
k𝒱τ (x,x1), . . . , k

𝒱τ (x,xN )
]

(30b)

while KXX is computed using (7) as described in Section II-C.

IV. DISCUSSION ON RELATED WORKS

Several algorithms have been developed in the literature to
identify the inverse dynamics. The different solutions can be
grouped according to if and how they exploit prior information
on the model and, more specifically, on the nominal kinematic
and dynamic parameters, i.e., wk and wd, respectively.

An important class of solutions assumes to have an accurate
a-priori knowledge of wk and reformulate the inverse dynamics
identification problem in terms of estimation of wd, see, for
instance, [6], [7], [8]. These approaches are based on the fact
that (1) is linear w.r.t. wd, namely,

τ = Φ(q, q̇, q̈)wd (31)

where Φ(q, q̇, q̈) ∈ R
n×nd is a matrix of nonlinear functions

derived from (18) assumingwk known, see [2]; nd is the dimen-
sion of wd. Then, the dynamics parameters wd are identified by
solving the least squares problem associated with the set of noisy
measurements y = Φ(X)wd + e, where Φ(X) ∈ R

(n·N)×nd is
the matrix obtained stacking the Φ matrices evaluated in the
training inputs. The accuracy of these approaches is closely
related to the accuracy of Φ(q, q̇, q̈) and, in turn, of wk. To
compensate for uncertainties on the knowledge of wk, the
authors in [9] proposed a kinodynamic identification algorithm
that identifies simultaneously wk and wd. Though being an
interesting and promising approach, this algorithm requires ad-
ditional sensors to acquire the link poses, which are not always
available.

It is worth stressing that, in several cases, deriving accurate
models ofΦ(q, q̇, q̈) is a quite difficult and time-consuming task,
see [2]. This fact has motivated the recent increasing interest in
gray-box and black-box solutions. In gray-box approaches, the
model is typically given by the sum of two components. The
first component is based on a first principles model of (1), for
instance, τ = Φ(x)ŵd, where ŵd is an estimate of wd. The
second one is a black-box model that compensates for model
inaccuracies by exploiting experimental data. Several GP-based
solutions have been proposed in this setup [12], [13], [14], [15].
Generally, GPR algorithms model the torque components as n
independent GPs and include the model-based component either
in the mean or in the covariance functions. In the first case, the
prior mean of the ith GP is φi(x)ŵd, where φi(x) is the ith
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row of Φ(x), and the covariance is modeled by a SE kernel of
the form in (4), see, for instance, [14]. Instead, when the prior
model is included in the covariance function, the prior mean
is assumed null in all the configurations and the covariance is
given by the so-called semiparametric kernels, see [12], [13],
[14], [15], expressed as

KSP (x,x
′) = φi(x)Γφi(x′)T +KSE(x,x

′). (32)

Observe that the first term in the right-hand-side of (32) is
a linear kernel in the features φi(x), where the elements of
the matrix Γ ∈ R

nd×nd are the hyperparameters. We refer the
interested reader to [14] for an exhaustive discussion on the two
aforementioned strategies. The advantages of gray-box solutions
w.r.t. black-box models depend on the accuracy of the model-
based prior and the generalization properties of the black-box
model. If the black-box correction generalizes also to unseen
input locations, such models can provide an accurate estimate
of the inverse dynamics.

To avoid the presence of model bias or other model inac-
curacies or to deal with the unavailability of first principle
models, several works proposed in the literature have adopted
pure black-box solutions; this is the case of also the approach
developed in this work. The main criticality of these solutions is
related to generalization properties: when the number of DOF
increases, the straightforward application of a black-box model
to learn the inverse dynamics provides accurate estimates only
in a neighborhood of the training input locations. In the context
of NN, the authors in [17] have tried to improve generalization
by resorting to a recurrent NN architecture, while in [16] an
LSTM network has been adopted.

As regards GP-based solutions, several algorithms have in-
troduced GP approximations to derive models trainable with
sufficiently rich datasets. Just to mention some of the proposed
solutions, Schreiter et al. [18] adopted the use of sparse GPs, Gi-
jsberts and Metta [19] approximated the kernel with random
features, Nguyen-Tuong et al. [20] relied on the use of local GPs
rather than of a single GP model, Rezaei-Shoshtari et al. [21]
proposed an approach inspired by the Newton–Euler algorithm
to reduce dimensionality and improve data efficiency. Interest-
ingly, to improve generalization, the works in [30] and [23]
have introduced novel kernels specifically tailored to inverse
dynamics identification rather than adopting standard SE ker-
nels of the form in (4); it is known that the latter kernels
define a regression problem in an infinite dimensional RKHS
and this could limit generalization properties. For instance,
following ideas introduced in [29], the authors in [23] pro-
posed a polynomial kernel named geometrically inspired poly-
nomial kernel (GIP) associated with a finite-dimensional RKHS
that contains the rigid body dynamics equations. Experiments
carried out in [23] and [30] showed that limiting the RKHS
dimensions can significantly improve generalization and data
efficiency.

It is worth remarking that most of the works proposed in the
context of GPR model the joint torques as a set of independent
single-output GPs. To overcome the limitations raising from
neglecting the existing correlations, the authors in [35] have
applied a general multitask GP model for learning the robot

inverse dynamics. The resulting model outperforms the standard
single-output model equipped with SE kernel, in particular when
samples of each joint torque are collected in different portions
of the input space, which, however, is a rather rare case in
practice. A recent research line aims at deriving multioutput
models in a black-box fashion by incorporating in the priors
the correlations inherently forced by (15), as proposed in this
work. To the best of our knowledge, within the framework of
kernel-based estimators, the first example has been presented
in [25]. Differently from our approach, in [25] the authors
model the RKHS of the entire Lagrangian function by an SE
kernel, instead of modeling separately the kinetic and potential
energies using specific polynomial kernels. As a consequence,
the algorithm does not allow estimating kinetic and potential
energies, which can be useful for control purposes. Experiments
carried out in [25] showed out-of-sample performance similar
to the one of single-output models. A recent solution within
the GPR framework, developed independently and in parallel to
this work, has been presented in [26]. In this work the authors
have defined GP priors, based on standard SE kernels, on the
potential energy and on the elements of the inertia and stiffness
matrices, thus leading to a high number of hyperparameters to
be optimized. In [26], the feasibility and effectiveness of the
proposed approach has been validated only in a simulated 2-DOF
example.

The Lagrangian (15) have inspired also several NN models,
see, for instance, the model recently introduced in [24], named
Deep Lagrangian Networks (DeLan). In DeLan two distinct
feedforward NN have been adopted to model on one side the
inertia matrix elements and on the other side the potential energy;
then the torques are computed by applying (15). Experiments
carried out in [24] have focused more on tracking control perfor-
mance than on estimation accuracy, showing the effectiveness of
Delan for tracking control applications. Interestingly, the same
authors in [31] have carried out experiments in two physical
platforms, a cart-pole and a Furuta pendulum, showing that
kinetic and potential energies estimated by DeLan can be used
to derive energy-based controllers. As highlighted in [36], the
main criticality of these models is parameters initialization:
indeed, due to the highly nonlinear objective function to be
optimized, starting from random initializations the stochastic
gradient descent (SGD) algorithm quite often gets stuck in local
minima. For this reason, in order to identify a set of parameters
exhibiting satisfactory performance, it is necessary to perform
the network training multiple times starting from different initial
conditions.

V. EXPERIMENTS

In order to evaluate the performance of the LIP model,
we performed extended experiments both on simulated and
on real setups. All the estimators presented in this section
have been implemented in Python and using the functionalities
provided by the library PyTorch [37]. The code is publicly
available.2

2[Online]. Available: https://github.com/merlresearch/LIP4RobotInverse
Dynamics
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TABLE I
LIMITS ON JOINT POSITION, VELOCITY, AND ACCELERATION CONSIDERED

WHEN GENERATING THE TRAJECTORIES OF THE MONTE-CARLO EXPERIMENT

DESCRIBED IN SECTION V-A1

A. Simulation Experiments

The first tests are performed on a simulated Franka Emika
Panda robot, which is a 7 DOF manipulator with only revolute
joints. The joint torques of the robot are computed directly from
desired joint trajectories through the inverse dynamics equations
in (1), with the common assumption ε = 0, i.e., there are no
unknown components in the dynamics. The dynamics equations
have been implemented using the Python package Sympybotics.3

1) Generalization: In the first set of experiments, we tested
the ability of the estimators to extrapolate on unseen input
locations. To obtain statistically relevant results, we designed
a Monte Carlo (MC) analysis composed of 50 experiments.
Each experiment consists in collecting two trajectories, one for
training and one for test. Both the training and test trajectories
are sum of Ns = 50 random sinusoids. For each realization, the
trajectory of the ith joint is

qi(t) =

Ns∑
l=1

a

ωf l
sin(ωf l t)− b

ωf l
cos(ωf l t) (33)

with ωf = 0.02 rad/s, while a and b are sampled from a uniform
distribution ranging in [−c, c], with c chosen in order to respect
the limits on joint position, velocity, and acceleration, which are
reported in Table I. A zero-mean Gaussian noise with standard
deviation 0.01 nm was added to the torques of the training dataset
to simulate measurement noise. All the generated datasets are
composed of 500 samples, collected at a frequency of 10 Hz.

We compared the LIP model with both GP-based estimators
and a NN-based estimator. Three different GP-based baselines
are considered. Two of them are single-output models, one
based on the SE kernel in (4) and the other one based on the
GIP kernel presented in [23]. The third solution, instead, is the
multioutput model presented in [25], hereafter denoted as LSE.
The LSE estimator models directly the Lagrangian function,
instead of modeling the kinetic and potential energy separately.
The Lagrangian is modeled using a SE kernel defined on an
augmented input space obtained by substituting the positions
of the revolute joints with their sine and cosine. The authors
did not release the code to the public and thus we made our
own implementation of the method. The hyperparameters of
all the GP-based estimators have been optimized by marginal
likelihood maximization [11].

The NN baseline is a DeLan network. To select the network
architecture, we performed a grid search experiment comparing

3[Online]. Available: https://github.com/cdsousa/SymPyBotics

TABLE II
DELAN NETWORK ARCHITECTURE AND OPTIMIZATION PARAMETERS

different configurations, and we chose the one providing the
best performance on the test trajectories. The network has been
trained with standard SGD optimization techniques. Regarding
the loss function, we considered the same proposed in [31],
namely

� = �id + �pc

where �id penalized the inverse dynamics error while �pc im-
poses power conservation. The set of network hyperparameters
considered as well as the optimization parameters are reported
in Table II. To obtain more accurate results we trained DeLaN
models using a larger number of data, obtained sampling the
trajectories in (33) at a frequency of 100 Hz, which resulted in
datasets composed by 5000 samples.

The MC tests described above are performed on different
robot configurations, with a number of DOF increasing from
3 to 7, to evaluate the performance degradation at the increase
of the system dimensionality. The accuracy in predicting the
torques is evaluated in terms of normalized mean squared error
(nMSE), which provides a measure of the error as a percentage
of the signal magnitude. The distribution of the nMSE over the
50 test trajectories for the 6 DOF configuration is shown in
Fig. 2(a). Fig. 1, instead, summarizes the results obtained on all
the considered robot configurations, from 3 to 7 DOF. Results
are reported in terms of nMSE percentage averaged over all the
joints.

The proposed LIP model significantly outperforms both the
GP-based estimators and the DeLan network. Fig. 2(a) shows
that the LIP model provides more accurate results than all the
other estimators on all the joints. The improvement is particu-
larly evident on the last two joints which, generally, are more
complex to estimate. The LIP is the only model that maintains a
nMSE under 10%. We attribute this performance improvement
to the multioutput formulation, combined with the definition
of specific basis functions. In this way, the model extrapolates
information on the last joints also from the other torque com-
ponents, thus improving generalization. The performance of the
Delan network decreases faster than the GP-estimators when
the number of considered DOF increases, as shown in Table 1.
Moreover, from Fig. 2(a) we can see that Delan’s accuracy is
comparable to the one of the GIP and LSE models on the first
four joints, with nMSE scores lower than 10%, but it performs
poorly on the last joints where the torque has smaller values.

Then, we tested also the ability of the LIP model to estimate
the kinetic and potential energy. The energies are estimated on
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Fig. 1. Box plots of the average torque nMSE obtained with the simulations described in Section V-A1.

Fig. 2. Box plots of the torque nMSE (a) and energy nMSE (b) obtained with the simulations described in Section V-A1. The tables below the figures report the
numerical values of the median nMSE percentages.

the same trajectories of the previous MC test by applying the
procedure described in Section III-C. The distribution of the
nMSE error is reported in Fig. 2(b) for the 6 DOF configuration.
Note that the SE and GIP estimators do not model the system
energies and thus do not allow to estimate them. Regarding
the LSE estimator, we recall that it models the entire system
Lagrangian. In principle, one could derive an estimate of the
kinetic and potential energy from the estimate Lagrangian.
Let ℒ̂(q, q̇) the posterior estimate of the Lagrangian, derived
following the same procedure described in Section III-C for
the potential and kinetic energies. We can estimate the cor-
respondent potential energy as ℒ̂(q, q̇ = 0), namely, setting
velocities to zero. Instead, the kinetic energy estimate can be
derived as ℒ̂(q, q̇) + ℒ̂(q, q̇ = 0). However, we verified that
this procedure returns inaccurate results. As an example, we
report in Fig. 3 the energies estimated with the LSE model on

one of the trajectories of the MC experiment for the 6DOF
configuration. While the estimation of the overall Lagrangian
is quite accurate, the decomposition in kinetic and potential
energy is very poor. For this reason, in Fig. 2(b) we compared
the performance of the LIP model only with those of the DeLan
network.

Results show that the LIP estimator is able to approxi-
mate the system energy with high precision. In particular, it
reaches a nMSE score close to 1% on the kinetic energy,
while it approximates the potential energy with a nMSE lower
than 0.01%. This further confirm the fact that the potential
energy, being only function of the joint positions q, is eas-
ier to learn, as we observed at the end Section III-B. The
DeLan network provides less accurate performances, which
is in accordance with the results obtained in the previous
experiments.
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Fig. 3. Kinetic energy (T), potential energy (U), and Lagrangian (L) estimated
with the LIP and LSE models on one of the trajectories of the MC experiment
described in Section V-A. While the LSE model correctly reconstructs the
Lagrangian, it fails to estimate the potential and kinetic energy. In contrast,
the LIP model correctly reconstructs all the energy components.

2) Data Efficiency: In the second set of experiments, we
tested the data efficiency of the estimators, that is, the estimation
accuracy as a function of the number of data points available at
training time. We collected two datasets, one for training and
one for test, using the same type of trajectories as in (33). The
models are trained increasing the amount of training data from
50 to 500 samples. Then, their performance are evaluated on
the test dataset. We carried out this experiment on the 7 DOF
configuration of the Panda robot and we compared the LIP
model only with the GP-based estimators. The DeLan network
has not been considered due to its low accuracy on the 7 DOF
configuration.

Fig. 4 reports the evolution of the global mean square error
(Global MSE), namely the sum of the MSE for all the joints, as
a function of the number of training samples. As in the previous
experiment, the LIP model outperforms the other GP-based
estimators, proving the benefits of the proposed solution also
in terms of data efficiency.

B. Real Experiments

The proposed approach is now tested on two real robots: a
Franka Emika Panda robot and an industrial Mitsubishi MELFA
RV-4FL. On these robots, we compared the prediction perfor-
mances of the GP-based estimator considered in Section V-A.
We modified the GIP, the LSE, and the LIP estimators to account
for friction and other unknown effects affecting real systems, i.e.,
ε 	= 0 in (1). We modeled the components of ε as independent
zero-mean GPs with covariance function

kεi(x,x′) = φi(x)Γεiφ
i(x′)T + kiSE(x,x

′) (34)

Fig. 4. Results of the data efficiency test described in Section V-A2. The plot
shows the evolution of the Global MSE on the test set, as a function of the
number of training samples.

where the term φi(x)Γεiφ
i(x′)T is a linear kernel in φi(x) =

[q̇i, sign(q̇i)]T , which are the basic features used to describe
friction, while Γεi is a diagonal matrix collecting the kernel
hyperparameters. The term kiSE(x,x

′), instead, is a SE kernel
as defined in (4) and accounts for the remaining unmodeled
dynamics. For the GIP model, which is based on the single
output approach and models the inverse dynamics components
independently, we modify the model of the ith component by
adding kεi(x,x′) to its kernel. Concerning the LIP model, the
kernel for the inverse dynamics is obtained as

kτ (x,x′) + diag(kε1(x,x′), . . . , kεN (x,x′)) (35)

with kτ (x,x′) being the kernel matrix obtained in (19). Finally,
for the LSE model, we experimentally verified that the addition
of kiSE in (34) leads to less accurate results. For this reason, in
our implementation, we added to the LSE kernel only the kernel
linear in the friction feature, as proposed also in the original
paper [25]. The resulting kernel is obtained as in (35), with kεi

defined as in (34) but without kiSE .
For the experiment performed in this section, we did not con-

sider the DeLan network due to the poor performance reached
in simulation.

1) Franka Emika Panda: On the real Panda robot, we col-
lected joint positions, velocities, and torques through the ROS
interface provided by the robot manufacturer. To mitigate the
effect of measurement noise, we filtered the collected positions,
velocities, and torques with a low-pass filter with a cutoff fre-
quency of 4 Hz. We obtained joint accelerations by applying
acausal differentiation to joint velocities.

We collected ten training and 16 test datasets, following
different sum of sinusoids reference trajectories as in (33). The
test datasets have a wider range of frequencies, Ns = 100, than
the training trajectories, Ns = 50, to analyze the generalization
properties w.r.t. variations of the frequencies used to excite the
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Fig. 5. Box plot of the torque nMSE obtained with the experiment on the
PANDA robot described in Section V-B1. The table below reports the mean
nMSE percentage for each joint and each estimator.

system. The GP-based estimators are learned in each training
trajectory and tested on each and every of the 16 test trajectories.

Fig. 5 plots the nMSEs distributions, for each joint. These
results confirm the behavior observed in simulation: the LIP
model predicts the joint torques better than other GP estimators
on each and every joint, which further proves the advantages of
our approach.

In Fig. 6 we report the estimates of the kinetic energy and
the corresponding absolute error, obtained in one of the test
trajectories. The ground truth has been computed as T (q, q̇) =
q̇TB(q)q̇, with B(q) being the inertia matrix at joint config-
uration q, which is provided by the robot interface. The LIP
model accurately predicts the kinetic energy of the system, with
an nMSE lower than 1%.

2) Mitsubishi MELFA: The MELFA RV-4FL is a 6 DOF
industrial manipulator composed of revolute joints. On this
setup, we compared the prediction performance of the LIP model
with both black-box and model-based estimators. In particular,
we considered the same GP-based estimators as in the previous
sections, namely the SE, GIP, and LSE models. Concerning the
model-based estimators, we implemented two solutions. The
first is an estimator obtained with classic Fisherian identifica-
tion (ID) based on (31) while the second is a semiparametric
kernel-based estimator (SP) with the kernel in (32). For both
the model-based approaches we computed the matrix Φ in

Fig. 6. Kinetic energy (upper) and corresponding absolute error (lower) esti-
mated with the LIP model within the experiment described in Section V-B1 on
the real Panda robot. The corresponding nMSE is 0.40%.

Fig. 7. Distribution of the joint positions for the train and test trajectories of
the experiment involving the MELFA robot, described in Section V-B2.

(31) using the nominal kinematics and we considered friction
contributions.

We performed the same type of experiment carried out with
the Panda robot. In this case, we collected 11 training and 11
test trajectories. Moreover, both the train and test trajectories
are obtained as the sum of Ns = 100 random sinusoids. To
stress generalization, we enlarged the position range of the test
trajectory. Fig. 7 shows the position distribution of the train and
test datasets, from which it can be noticed that the test datasets
explore a wider portion of the robot operative range.

Results in terms of nMSE are reported in Fig. 8. The LIP
model outperforms the other data driven estimators also in this
setup. When compared to model-based approaches, the LIP
model reaches results comparable to both the ID and SP models.
Notice that the LIP estimator do not require physical basis
functions or parameters and the fact that it performs as well as
model-based approaches is a nontrivial achievement. The energy
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Fig. 8. Box plot of the torque nMSE obtained with the experiment on the
MELFA robot described in Section V-B2. The table below reports the mean
nMSE percentage for each joint and each estimator.

estimation cannot be validated in this robot since the ground truth
is not available. However, to allow a qualitative evaluation of the
energy estimates, in the supplementary material we included a
video that shows, simultaneously, the robot following one of the
test trajectories and the evolution of the potential and kinetic
energy estimates.

C. Trajectory Tracking Experiment

In this section, we exploit the LIP model to implement a
computed torque (CT) control strategy on the real Panda robot.
Let qd, q̇d, q̈d be the reference trajectory. The CT control law
is given by

τ ct = τ ff + τ fb (36)

where the feedforward τ ff exploits the inverse dynamics to
predict the joint torques required to follow the reference tra-
jectory (qd, q̇d, q̈d), while the feedback τ fb ensures robust-
ness to modeling error and external disturbances. We consider
a linear feedback control, namely τ fb = Kpe+Kdė, where
e = qd − q denotes the tracking error, while the gains Kp and
Kd are positive definite diagonal matrices. For each joint, the
reference trajectory is a sinusoid with a linear envelop, defined
as

qid(t) =
A

T
t cos(π t) (37)

where A represents the maximum amplitude and T the con-
trol horizon. For all the performed experiments, we considered
T = 10 s. All the controllers have been implemented exploiting

the torque control interface provided by the robot and run at a
frequency of 1 kHz.

The LIP model have been used to compute the feedforward
term, namely τ ff = f̂(qd, q̇d, q̈d), where f̂ is the LIP estima-
tion, obtained through (5). To collect the training dataset, we
run the CT controller with the feedforward computed using
the nominal model provided by the robot manufacturer, on a
reference trajectory with A = 0.5 rad. The collected trajectory
consists of T = 10 s sampled at a frequency of 1 kHz, resulting
in 10 000 samples. In order to reduce the computational burden,
we downsampled the data with a constant rate of 20, to obtain a
dataset of 500 samples.

Results are summarized in Table III and in Fig. 9. First, in
Table III(a) we report the performance on the trajectory (37) with
A = 0.5 rad, in terms of tracking error nMSE and feedback mean
square. On this trajectory, the LIP estimator provides a more
accurate feedforward than the nominal model, which leads to
a sensible reduction of the tracking error. Moreover, the better
feedforward induced by the LIP kernel gives benefits also in
terms of lower effort required to the feedback action.

To stress out-of-sample generalization, we also tested the
tracking accuracy on a trajectory with amplitude A = 0.6 rad,
which explores a broader position range with higher accelera-
tions and velocities. In Table III(b) we summarize the nMSE
of the tracking error and the mean square of the feedback
action, while in Fig. 9 we depict the evolution of the joint
angles, absolute tracking errors, and feedback action obtained
with the LIP and nominal models, respectively. Comparing the
results, we can observe that the LIP model maintains a similar
level of performance, both in terms of tracking accuracy and
effort required to the feedback action. This further confirms the
good generalization properties of the proposed approach already
highlighted in Section V-A1.

D. Discussion

In both simulated and real-world setups, the LIP model consis-
tently outperformed other state-of-the-art black-box estimators.
When contrasted with conventional model-based identification
approaches, as demonstrated in the MELFA robot experiments
detailed in Section V-B2, the LIP model exhibited comparable
performance, without requiring any prior knowledge of the
system. These outcomes further confirm the soundness of the
modeling strategies proposed, that we discuss in the following.

First, encoding the Euler Lagrange equations endows the
model with structural properties that aligns with physical princi-
ples. Consequently, this approach enhances the model’s ability
to interpret the information contained within the data, yielding
benefits in both out-of-sample generalization and data efficiency.

More importantly, a substantial enhancement in performance
is given by the specific choice of energy priors. Indeed, from
a functional analysis perspective, the choice of the kernel is
strictly related to the basis functions of the hypothesis space. The
proposed polynomial kernels induce a finite set of polynomial
basis functions, specifically tailored to the inverse dynamics
problem. In contrast, universal kernels, such as the SE, induce
a broader hypothesis space with an infinite number of basis
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TABLE III
JOINT POSITION NMSE PERCENTAGE AND MEAN SQUARE OF THE FEEDBACK TERM OBTAINED WITH THE EXPERIMENTS DESCRIBED IN SECTION V-C WITH

REFERENCE TRAJECTORIES OF DIFFERENT AMPLITUDES

Fig. 9. Trajectories obtained with the tracking experiment described in Section V-C. The first column reports joint positions, the second column reports the
absolute value of the tracking error, while the third column reports the PD action.

functions, thereby increasing the complexity of the learning
problem. The benefits of the proposed priors become apparent
when comparing the performance of the LIP estimator with that
of the LSE model.

Finally, the DeLaN baseline exhibited lower accuracy com-
pared to all GP counterparts in our examined scenarios. This
outcome is expected, given that NN models, like DeLaN, gener-
ally require more data compared to GPR approaches, and in
our experiments, we considered relatively small datasets. In
addition, the inherent complexity of structured networks such
as DeLaN poses challenges in training, as noted in previous
research [36]. Despite efforts to mitigate this issue by training
DeLaN models with larger datasets, the observed performance
degradation with an increase in system DOF suggests that data
richness remains insufficient. This underscores the advantage of

GPR in application with limited data availability, owing to its
inherent data efficiency.

A potential drawback of GP models is the high computational
burden required for model training. The time required to train
a GP model scales cubically with the number of training sam-
ples. Online evaluation, instead, scales linearly with both the
number of training samples and the number of DOFs. However,
an efficient implementation of the kernel computation plays a
fundamental role when considering time complexity. Conve-
niently, most of the operations can be vectorized and leverage
hardware solutions such as GPUs. This aspect has not been
fully explored in this work and needs to be addressed when
considering time-critical applications, such as online control.
Furthermore, it is worth mentioning that several approxima-
tion strategies have been proposed to reduce both training and
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evaluation time. Among these, variational inference (VI) [39]
has shown interesting results. We leave the investigation of VI
applied to the proposed method as a subject of future work.

Another critical aspect when considering black-box estima-
tors is physical consistency. Physical consistency refers to the
compliance of learned models with known physical principles,
such as symmetries and conservation laws. Since the LIP kernel
is derived by imposing the Euler–Lagrange equations, all the
properties related to the structure of such equations are inherited
by the model. As an example, this means that the symmetry of
the inertia matrix and the skew-symmetry of the Coriolis matrix
are imposed by design. Nonetheless, other relevant properties,
such as the positive definiteness of the inertia matrix, are not
imposed and thus are not guaranteed to be respected. In turn,
nonpositive definite inertial matrices can lead to instability
issues when employed for control purposes. To mitigate this
problem, constrained optimization techniques to learn either the
hyperparameters or the posterior coefficients imposing positivity
constraints represent an appealing solution [40], which we are
considering as an extension of this work.

VI. CONCLUSION

In this work, we presented the LIP model, a GPR estimator
based on a novel multimensional kernel, designed to model
the kinetic and potential energy of the system. The proposed
method has been validated both on simulated and real setups
involving a Franka Emika Panda robot and a Mitsubishi MELFA
RV-4FL. The collected results showed that it outperforms state-
of-the-art black box estimators based on Gaussian processes and
neural networks in terms of data efficiency and generalization.
Moreover, results on the MELFA robot demonstrated that our
method achieves a prediction accuracy comparable to the one of
fine-tuned model-based estimators, despite requiring less prior
information. Finally, the experiments in simulation and on the
real Panda robot proved the effectiveness of the LIP model also
in terms of energy estimation.

APPENDIX

In this appendix, we provide the proofs of Propositions 1 and
2. The proofs follow from similar concepts exploited in [23].
For convenience, we consider first Proposition 2, since most of
the elements we introduce in the corresponding proof are useful
also to prove Proposition 1.

A. Proof of Proposition 2

We start by recalling that the kinetic energy of the ith link can
be written as

𝒯i = q̇iTBi(q
i)q̇i (38)

with Bi(q
i) ∈ R

i×i. Then, we characterize the elements of
Bi(q

i) as polynomial functions in qi
c, qi

s, and qi
p. The matrix

Bi(q
i) is defined as

Bi(q
i) = miJ

T
Pi
JPi

+ JT
Oi
R0

i I
i
iR

i
0JOi

(39)

where mi is the mass of the ith link, while Iii is its inertia
matrix expressed w.r.t. a reference frame (RF) integral with
the ith link itself, denominated hereafter the ith RF, see [2,
Ch. 7]. We assume that the RF have been assigned based on
Denavit–Hartenberg (DH) convention.JPi

andJOi
are the linear

and angular Jacobians of the ith RF, for which it holds that
ċi = JPi

q̇i and ωi = JOi
q̇i, where ci is the position of the

center of mass of the ith link, while ωi is the angular velocity
of the ith RF w.r.t. the base RF. R0

i denotes the rotation matrix
of the ith RF w.r.t. the base RF.

For later convenience, we recall some notions regarding kine-
matics. Let Ri−1

i and li−1
i denote the orientation and translation

of the ith RF w.r.t. the previous one. Based on the Denavit–
Hartenberg (DH) convention, it is known that Ri−1

i and li−1
i

have the following expressions:

Ri−1
i = Rz(θi)Rx(αi)

li−1
i = [0, 0, di]

T +Rz(θi)[ai, 0, 0]
T

where Rx and Rz represent elementary rotations around the
x and z axis, respectively, ai and αi are constant kinematics
parameters depending on the geometry of link i, while the values
of di and θi depends on the type of the ith joint; see [2, Ch.
2] for a detailed discussion. If the ith joint is revolute, then
di is constant and θi = θ0i + qi, where qi is the ith generalize
coordinate, that is, the ith component of the vector q. In this
case, the only quantity depending on q is the rotation matrix
Ri−1

i , whose elements contain the terms cos(qi) and sin(qi).
Therefore, using the notation introduced in Section III-B, the
elements of Ri−1

i can be written as functions in the space
P(1)(cos(qi)(1), sin(qi)(1)). Instead, if the ith joint is prismatic,
θi is constant and di = d0i + qi. The only terms depending on q
are the elements of li−1

i , which belong to the space P(1)(qi(1)).
Concerning the angular Jacobian JOi

, we have that ωi =∑i
j=1 R

0
j−1ω

j−1
j , with R0

j =
∏j

b=1 R
b−1
b . Adopting the DH

convention, ωi−1
i = λi[0, 0, q̇i]

T , with λi = 1 if joint i is rev-
olute and λi = 0 if it is prismatic. The expression of ωi can be
rewritten as

ωi =

⎡
⎢⎣R0

0

⎡
⎢⎣
0

0

λ1

⎤
⎥⎦ , . . . , R0

i−1

⎡
⎢⎣
0

0

λi

⎤
⎥⎦
⎤
⎥⎦ q̇i. (40)

From (40), we deduce that

JOi
=

⎡
⎢⎣R0

0

⎡
⎢⎣
0

0

λ1

⎤
⎥⎦ , . . . , R0

i−1

⎡
⎢⎣
0

0

λi

⎤
⎥⎦
⎤
⎥⎦ (41)

from which we obtain that the term Ri
0JOi

has expression

Ri
0JOi

=

⎡
⎢⎣Ri

0

⎡
⎢⎣
0

0

λ1

⎤
⎥⎦ , . . . , Ri

i−1

⎡
⎢⎣
0

0

λi

⎤
⎥⎦
⎤
⎥⎦ . (42)

Recalling that Rk
j =

∏j
b=k R

b−1
b , with j > k, we have that the

elements of JT
Oi
R0

i I
i
iR

i
0JOi

belong to P(2|Ii
r |)

(
qi
c(2)

, qi
s(2)

)
,
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where |Iir| is the cardinality of Iir, and they are composed of
monomials with

deg
(
qbc
)
+ deg

(
qbs
) ≤ 2. (43)

Similarly, the elements of JPi
are characterized by analyzing

the expression ci =
∑j=i−1

j=1 R0
j−1l

j−1
j +R0

i c
i
i. Then, the ele-

ments of ci are functions in P(i)(q
i
c(1)

, qi
s(1)

, qi
p(1)

) and for each
monomial it holds that

deg
(
qbc
)
+ deg

(
qbs
) ≤ 1. (44)

Recalling that ċi = JPi
q̇ and since the derivative does not

increase the degree, we can conclude that the elements of JPi

belong to the same polynomial space of ci. As a consequence,
the elements of JT

Pi
JPi

belong to P(2i)(q
i
c(2)

, qi
s(2)

, qi
p(2)

) with

deg
(
qbc
)
+ deg

(
qbs
) ≤ 2. (45)

From the above characterizations of JT
Pi
JPi

and
JT
Oi
R0

i I
i
iR

i
0JOi

, we obtain that the elements of Bi(q
i)

belong to P(2i)(q
i
c(2)

, qi
s(2)

, qi
p(2)

). Therefore, it is

trivial to see that Ti(q, q̇) = q̇iTBi(q
i)q̇i belongs to

P(2i+2)(q
i
c(2)

, qi
s(2)

, qi
p(2)

, q̇i
(2)) with the constraint expressed

in (45), which concludes the proof.

B. Proof of Proposition 1

The potential energy V (q) is defined as

𝒱(q) =
n∑

i=1

mig
T
0 ci (46)

where g0 is the vector of the gravitational acceleration. From
the expression above it follows that 𝒱 belongs to the same
space of the elements of cn, namely it is a function in
P(n)(qc(1)

, qs(1)
, qp(1)

), with

deg
(
qbc
)
+ deg

(
qbs
) ≤ 1 (47)

for each monomial of the aforementioned polynomial, which
concludes the proof.
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