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Heat and entropy flows in Carnot groups

Luigi Ambrosio and Giorgio Stefani

Abstract. We prove the correspondence between the solutions of the
sub-elliptic heat equation in a Carnot group G and the gradient flows
of the relative entropy functional in the Wasserstein space of probability
measures on G. Our result completely answers a question left open in a
previous paper by N. Juillet, where the same correspondence was proved
for G = H

n, the n-dimensional Heisenberg group.

1. Introduction

Since the pioneering works [23], [35] and the monograph [4], in the last twenty
years there has been an increasing interest in the study of the relation between
evolution equations and gradient flows of energy functionals in a large variety of
different frameworks, see [5], [7], [13], [14], [15], [16], [19], [21], [22], [26], [30], [33],
[34], [38], [40].

The prominent case in the literature is represented by the connection between
the heat equation and the relative entropy functional. It is well known that the
heat equation

(HE)

{
∂tut = Δut in (0,+∞)× Rn,

u0 = ū ∈ L2(Rn) on {0} × Rn,

can be seen as the gradient flow in L2(Rn) of the Dirichlet energy

D(u) =

∫
Rn

|∇u|2 dx

accordingly to the general approach introduced in [11]. If the initial datum ū ∈
L2(Rn) is such that μ0 = ūLn ∈ P2(R

n), where

P2(R
n) =

{
μ ∈ P(Rn) :

∫
Rn

|x|2 dμ(x) < +∞
}
,
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then the solution (ut)t≥0 of (HE) induces a curve (μt)t≥0 ⊂ P2(R
n), μt = utLn.

If we endow the set P2(R
n) with its usual Wasserstein distance W, then the

curve (μt)t≥0 is locally absolutely continuous with locally integrable squared W-
derivative in [0,+∞). On the one hand, since (ut)t≥0 satisfies (HE), the curve
(μt)t≥0 naturally solves in the weak sense the continuity equation

(CE)

{
∂tμt + div(vtμt) = 0 in (0,+∞)× Rn,

μ0 = ūLn on {0} × Rn,

where the velocity vector field (vt)t≥0 is given by vt = −∇ut/ut. On the other
hand, the relative entropy

Ent(μ) =

∫
Rn

u logu dx, for μ = uLn ∈ P2(R
n),

computed along a curve (μt)t≥0 ⊂ P2(R
n) satisfying (CE) for a given velocity field

(vt)t≥0 is such that

d

dt
Ent(μt) = −

∫
Rn

(log ut + 1) div(vtut) dx =

∫
Rn

〈
vt,

∇ut
ut

〉
dμt.

In analogy with the Hilbertian case, but using Otto’s calculus [35] in the interpre-
tation of the right-hand side, one says that (μt)t≥0 is a gradient flow of the entropy
in (P2(R

n),W) if and only if the curve t �→ Ent(μt) has maximal dissipation rate.
This happens if and only if vt = −∇ut/ut, i.e., when (ut)t≥0 satisfies (HE).

Although not fully rigorous, the argument presented above contains all the key
tools needed to establish the correspondence between the heat flow and the entropy
flow in a general metric measure space (X, d,m). Both the heat equation (HE)
and the continuity equation (CE) have been adequately understood in this general
context. For (HE), one relaxes the Dirichlet energy to the so-called Cheeger energy

Ch(u) = inf

{
lim inf

n

∫
X

|Dun|2 dm : un → u in L2(X, d,m), un ∈ Lip(X)

}
,

where the local Lipschitz constant of u ∈ Lip(X),

|Du|(x) = lim sup
y→x

|u(y)− u(x)|
d(x, y)

, for x ∈ X,

plays the same role of the absolute value of the gradient in R
n. It can be shown

that the naturally associated Sobolev space W 1,2(X, d,m) is a Banach space (not
Hilbertian in general) and that the functional Ch is convex, so that (HE) can still be
interpreted as its gradient flow in the Hilbert space L2(X, d,m), see [5]. For (CE),
one introduces an appropriate space S2(X) of test functions in W 1,2(X, d,m) and
says that (μt)t≥0 satisfies the continuity equation with respect to a family of maps
(Lt)t>0 : S

2(X) → R if t �→ ∫
X
f dμt is absolutely continuous for every f ∈ S2(X)

with d
dt

∫
X
f dμt = Lt(f) for a.e. t > 0, see [20].

The notion of gradient flow of the entropy functional

Entm(μ) =

∫
X

� log � dm, for μ = �m ∈ P2(X),
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in the Wasserstein space (P2(X),W) can be rigorously defined by requiring the
validity of the following sharp energy dissipation inequality:

Entm(μt) +
1

2

∫ t

s

|μ̇r|2 dr + 1

2

∫ t

s

|D−Entm|2(μr) dr ≤ Entm(μs)

for all 0 ≤ s ≤ t, where t �→ |μ̇t| is the W-derivative of the curve (μt)t>0 ⊂ P2(X)
and

|D−Entm|(μ) = lim sup
ν→μ

max
{Entm(μ)− Entm(ν)

W(μ, ν)
, 0
}

is the so-called descending slope of the entropy. Note that this definition is consis-
tent with the standard one in Hilbert spaces, since u′(t) = −∇E(u(t)) is equiva-
lent to

1

2
|u′|2(t) + 1

2
|∇E(u(t))|2 ≤ − d

dt
E(u(t))

by combining the chain rule with Cauchy–Schwarz and Young’s inequalities.
As pointed out in [5], [19], this abstract approach provides a complete equiva-

lence between the two gradient flows if the entropy is K-convex along geodesics in
(P2(X),W) for some K ∈ R, that is, if

(K) Entm(μt) ≤ (1− t)Entm(μ0)+ tEntm(μ1)−K

2
t(1− t)W(μ0, μ1)

2, t ∈ [0, 1],

holds for a class of constant speed geodesics (μt)t∈[0,1] ⊂ P2(X) sufficiently large
to join any pair of points in P2(X). The K-convexity (also known as displacement
convexity) of the entropy heavily depends on the structure of (X, d,m) and encodes
a precise information about the ambient space: if X is a Riemannian manifold,
then (K) is valid if and only if the Ricci curvature satisfies Ric ≥ K, see [37]. For
this reason, if property (K) holds, then (X, d,m) is called a space with generalized
Ricci curvature bounded from below, or simply a CD(K,∞) space.

According to this general framework, the correspondence between heat flow
and entropy flow has been proved on Riemannian manifolds with Ricci curvature
bounded from below, see [14], and on compact Alexandrov spaces, see [21], [22],
and [33]. Alexandrov spaces are considered as metric measure spaces with gen-
eralized sectional curvature bounded from below (a condition stronger than (K),
see [36]).

If (X, d,m) is not a CD(K,∞) space, then the picture is less clear. As stated
in Theorem 8.5 in [5], the correspondence between heat flow and entropy flow
still holds if the descending slope |D−Entm| of the entropy is an upper gradient
of Entm and satisfies a precise lower semicontinuity property, basically equivalent
to the equality between |D−Entm| and the so-called Fisher information. These
assumptions are weaker than (K) but not easy to check for a given non-CD(K,∞)
space.

In [24], [25], it was proved that the Heisenberg group Hn is a non-CD(K,∞)
space in which nevertheless the correspondence between heat flow and gradient
flow holds. The Heisenberg group is the simplest non-commutative Carnot group.
Carnot groups are one of the most studied examples of Carnot–Carathéodory
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spaces, see [10], [27], [32] and the references therein for an account on this subject.
The proof of the correspondence of the two flows in H

n presented in [25] essen-
tially splits into two parts. The first part shows that a solution of the sub-elliptic
heat equation ∂tut +ΔHnut = 0 corresponds to a gradient flow of the entropy in
the Wasserstein space (P2(H

n),WHn) induced by the Carnot–Carathéodory dis-
tance dcc. The direct computations needed are justified by some precise estimates
on the sub-elliptic heat kernel in Hn given in [28], [29]. The second part proves
that a gradient flow of the entropy in (P2(H

n),WHn) induces a sub-elliptic heat
diffusion in Hn. The argument is based on a clever regularization of the gradient
flow (μt)t≥0 based on the particular structure of the Lie algebra of Hn.

An open question arisen in Remark 5.3 in [25] was to extend the correspondence
of the two flows to any Carnot group. The aim of the present work is to give a
positive answer to this problem. To prove that a solution of the sub-elliptic heat
equation corresponds to a gradient flow of the entropy, we essentially follow the
same strategy of [25]. Since the results of [28], [29] are not known for a general
Carnot group, we instead rely on the weaker estimates given in [39] valid in any
nilpotent Lie group. To show that a gradient flow of the entropy induces a sub-
elliptic heat diffusion, we regularize the gradient flow (μt)t≥0 both in time and
space via convolution with smooth kernels. This regularization does not depend
on the structure of the Lie algebra of the group, but nevertheless allows us to
preserve the key quantities involved, such as the continuity equation and the Fisher
information. In the presentation of the proofs, we also take advantage of a few
results taken from the general setting of metric measures spaces developed in [5]
and in the references therein.

The paper is organized as follows. In Section 2 we collect the standard def-
initions and well-known facts that are used throughout the work. The precise
statement of our main result is given in Theorem 2.4 at the end of this part. In
Section 3 we extend the technical results presented in Sections 3 and 4 of [25] to any
Carnot group with minor modifications, and we prove that Carnot groups are non-
CD(K,∞) spaces (see Proposition 3.6), generalizing the analogous result obtained
in [24]. Finally, in Section 4, we prove the correspondence of the two flows.

2. Preliminaries

2.1. AC curves, entropy and gradient flows

Let (X, d) be a metric space, let I ⊂ R be a closed interval and let p ∈ [1,+∞].
We say that a curve γ : I → X belongs to ACp(I; (X, d)) if

(2.1) d(γs, γt) ≤
∫ t

s

g(r) dr s, t ∈ I, s < t,

for some g ∈ Lp(I). The space ACp
loc(I; (X, d)) is defined analogously. The

case p = 1 corresponds to absolutely continuous curves and is simply denoted
by AC(I; (X, d)). It turns out that, if γ ∈ ACp(I; (X, d)), there is a minimal func-
tion g ∈ Lp(I) satisfying (2.1), called the metric derivative of the curve γ, which
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is given by

|γ̇t| := lim
s→t

d(γs, γt)

|s− t| for a.e. t ∈ I.

See Theorem 1.1.2 in [4] for the simple proof. We call (X, d) a geodesic metric
space if for every x, y ∈ X there exists a curve γ : [0, 1] → X such that γ(0) = x,
γ(1) = y, and

d(γs, γt) = |s− t| d(γ0, γ1) ∀s, t ∈ [0, 1].

Let R∗ = R ∪ {−∞,+∞} and let f : X → R∗ be a function. We define the
effective domain of f as

Dom(f) := {x ∈ X : f(x) ∈ R}.

Given x ∈ Dom(f), we define the local Lipschitz constant of f at x by

|Df |(x) := lim sup
y→x

|f(y)− f(x)|
d(x, y)

.

The descending slope and the ascending slope of f at x are respectively given by

|D−f |(x) := lim sup
y→x

[f(y)− f(x)]−

d(x, y)
, |D+f |(x) := lim sup

y→x

[f(y)− f(x)]+

d(x, y)
.

Here a+ and a− denote the positive and negative part of a ∈ R respectively. When
x ∈ Dom(f) is an isolated point of X , we set |Df |(x) = |D−f |(x) = |D+f |(x) = 0.
By convention, we set |Df |(x) = |D−f |(x) = |D+f |(x) = +∞ for all x ∈ X \
Dom(f).

Definition 2.1 (Gradient flow). Let E : X → R ∪ {+∞} be a function. We say
that a curve γ ∈ ACloc([0,+∞); (X, d)) is a (metric) gradient flow of E starting
from γ0 ∈ Dom(E) if the energy dissipation inequality (EDI )

(2.2) E(γt) +
1

2

∫ t

s

|γ̇r|2 dr + 1

2

∫ t

s

|D−E|2(γr) dr ≤ E(γs)

holds for all s, t ≥ 0 with s ≤ t.

Note that, if (γt)t≥0 is a gradient flow of E, then γt ∈ Dom(E) for all t ≥ 0
and γ ∈ AC2

loc([0,+∞); (X, d)) with t �→ |D−E|(γt) ∈ L2
loc([0,+∞)). Moreover,

the function t �→ E(γt) is non-increasing on [0,+∞) and thus a.e. differentiable
and locally integrable.

Remark 2.2. As observed in Section 2.5 of [5], if the function t �→ E(γt) is locally
absolutely continuous on (0,+∞), then (2.2) holds as an equality by the chain rule
and Young’s inequality. In this case, (2.2) is also equivalent to

d

dt
E(γt) = −|γ̇t|2 = −|D−E|2(γt) for a.e. t > 0.
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2.2. Wasserstein space

We now briefly recall some properties of the Wasserstein space needed for our
purposes. For a more detailed introduction to this topic, we refer the interested
reader to Section 3 in [2].

Let (X, d) be a Polish space, i.e., a complete and separable metric space. We
denote by P(X) the set of probability Borel measures on X . The Wasserstein
distance W between μ, ν ∈ P(X) is given by

(2.3) W(μ, ν)2 = inf
{∫

X×X

d(x, y)2 dπ : π ∈ Γ(μ, ν)
}
,

where

(2.4) Γ(μ, ν) := {π ∈ P(X ×X) : (p1)#π = μ, (p2)#π = ν}.
Here pi : X ×X → X , i = 1, 2, are the canonical projections on the components.
As usual, if μ ∈ P(X) and T : X → Y is a μ-measurable map with values in
the topological space Y , the push-forward measure T#(μ) ∈ P(Y ) is defined by
T#(μ)(B) := μ(T−1(B)) for every Borel set B ⊂ Y . The set Γ(μ, ν) introduced
in (2.4) is call the set of admissible plans or couplings for the pair (μ, ν). For any
Polish space (X, d), there exist optimal couplings where the infimum in (2.3) is
achieved.

The function W is a distance on the so-called Wasserstein space (P2(X),W),
where

P2(X) :=
{
μ∈P(X) :

∫
X

d(x, x0)
2 dμ(x)< +∞ for some, and thus any, x0∈X

}
.

The space (P2(X),W) is Polish. If (X, d) is geodesic, then (P2(X),W) is geodesic

as well. Moreover, μn
W−→ μ if and only if μn ⇀ μ and∫

X

d(x, x0)
2 dμn(x) →

∫
X

d(x, x0)
2 dμ(x) for some x0 ∈ X.

As usual, we write μn ⇀ μ if
∫
X ϕdμn → ∫

X ϕdμ for all ϕ ∈ Cb(X).

2.3. Relative entropy

Let (X, d,m) be a metric measure space, where (X, d) is a Polish metric space
and m is a non-negative, Borel and σ-finite measure. We assume that the space
(X, d,m) satisfies the following structural assumption: there exist a point x0 ∈ X
and two constants c1, c2 > 0 such that

(2.5) m ({x ∈ X : d(x, x0) < r}) ≤ c1 e
c2r

2

.

The relative entropy Entm : P2(X) → (−∞,+∞] is defined as

(2.6) Entm(μ) :=

⎧⎪⎨
⎪⎩
∫
X

� log � dm if μ = �m ∈ P2(X),

+∞ otherwise.
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According to our definition, μ ∈ Dom(Entm) implies that μ ∈ P2(X) and that the
effective domain Dom(Entm) is convex. As pointed out in Section 7.1 in [5], the
structural assumption (2.5) guarantees that in fact Ent(μ) > −∞ for all μ ∈ P2(X).

When m ∈ P(X), the entropy functional Entm naturally extends to P(X), is
lower semicontinuous with respect to the weak convergence in P(X) and positive
by Jensen’s inequality. In addition, if F : X → Y is a Borel map, then

(2.7) EntF#m(F#μ) ≤ Entm(μ) for all μ ∈ P(X),

with equality if F is injective, see Lemma 9.4.5 in [4].

When m(X) = +∞, if we set n := e−c d(·,x0)
2

m for some x0 ∈ X , where c > 0
is chosen so that n(X) < +∞ (note that the existence of such c > 0 is guaranteed
by (2.5)), then we obtain the useful formula

(2.8) Entm(μ) = Entn(μ)− c

∫
X

d(x, x0)
2 dμ for all μ ∈ P2(X).

This shows that Entm is lower semicontinuous in (P2(X),W).

2.4. Carnot groups

Let G be a Carnot group, i.e., a connected, simply connected and nilpotent Lie
group whose Lie algebra g of left-invariant vector fields has dimension n and admits
a stratification of step κ,

g = V1 ⊕ V2 ⊕ · · · ⊕ Vκ

with
Vi = [V1, Vi−1] for i = 1, . . . , κ, [V1, Vκ] = {0}.

We set mi = dim(Vi) and hi = m1 + · · · +mi for i = 1, . . . , κ, with h0 = 0 and
hκ = n. We fix an adapted basis of g, i.e., a basis X1, . . . , Xn such that

Xhi−1+1, . . . , Xhi is a basis of Vi, i = 1, . . . , κ.

Using exponential coordinates, we can identify G with R
n endowed with the group

law determined by the Campbell–Hausdorff formula (in particular, the identity
e ∈ G corresponds to 0 ∈ Rn and x−1 = −x for x ∈ G). It is not restrictive to
assume that Xi(0) = ei for any i = 1, . . . , n; therefore, by left-invariance, for any
x ∈ G we get

(2.9) Xi(x) = d lx ei, i = 1, . . . , n,

where lx : G → G is the left-translation by x ∈ G, i.e., lx(y) = xy for any y ∈ G.
We endow g with the left-invariant Riemannian metric 〈·, ·〉

G
that makes the basis

X1, . . . , Xn orthonormal. For any i = 1, . . . , n, we define the gradient with respect
to the layer Vi as

∇Vif :=

hi∑
j=hi−1+1

(Xjf)Xj ∈ Vi.

We let HG ⊂ TG be the horizontal tangent bundle of the group G, i.e., the left-
invariant sub-bundle of the tangent bundle TG such that HeG = {X(0) : X ∈ V1}.
We use the distinguished notation ∇G := ∇V1 for the horizontal gradient.
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For any i = 1, . . . , n, we define the degree d(i) ∈ {1, . . . , κ} of the basis vector
field Xi as d(i) = j if and only if Xi ∈ Vj . With this notion, the one-parameter
family of group dilations (δλ)λ≥0 : G → G is given by

(2.10) δλ(x) = δλ(x1, . . . , xn) := (λx1, . . . , λ
d(i)xi, . . . , λ

κxn) for all x ∈ G.

The Haar measure of the group G coincides with the n-dimensional Lebesgue
measure Ln and has the homogeneity property Ln(δλ(E)) = λQLn(E), where the
integer Q =

∑κ
i=1 i dim(Vi) is the homogeneous dimension of the group.

We endow the group G with the canonical Carnot–Carathéodory structure
induced by HG. We say that a Lipschitz curve γ : [0, 1] → G is a horizontal curve
if γ̇(t) ∈ Hγ(t)G for a.e. t ∈ [0, 1]. The Carnot–Carathéodory distance between
x, y ∈ G is then defined as

dcc(x, y) = inf
{∫ 1

0

‖γ̇(t)‖G dt : γ is horizontal, γ(0) = x, γ(1) = y
}
.

By the Chow–Rashevskii theorem, the function dcc is in fact a distance, which is
also left-invariant and homogeneous with respect to the dilations defined in (2.10),
precisely dcc(zx, zy) = dcc(x, y) and dcc(δλ(x), δλ(y)) = λdcc(x, y) for all x, y, z ∈ G

and λ ≥ 0. The resulting metric space (G, dcc) is a Polish geodesic space. We let
BG(x, r) be the dcc-ball centred at x ∈ G of radius r > 0. Note that Ln(BG(x, r)) =
cn r

Q, where cn = Ln(BG(0, 1)). In particular, the metric measure space (G, dcc,Ln)
satisfies the structural assumption (2.5).

Let us write x = (x̃1, . . . , x̃κ), where x̃i := (xhi−1+1, . . . , xhi) for i = 1, . . . , κ.
As proved in Theorem 5.1 in [18], there exist suitable constants c1 = 1, c2, . . . , ck ∈
(0, 1) depending only on the group structure of G such that

(2.11) d∞(x, 0) := max
{
ci |x̃i|1/iRmi

: i = 1, . . . , κ
}
, x ∈ G,

induces a left-invariant and homogeneous distance d∞(x, y) := d∞(y−1x, 0), for
x, y ∈ G, which is equivalent to dcc.

Let 1 ≤ p < +∞ and let Ω ⊂ Rn be an open set. The horizontal Sobolev space

(2.12) W 1,p
G

(Ω) := {u ∈ Lp(Ω) : Xiu ∈ Lp(Ω), i = 1, . . . ,m1}
endowed with the norm

‖u‖W 1,p
G

(Ω) := ‖u‖Lp(Ω) +

m1∑
i=1

‖Xiu‖Lp(Ω)

is a reflexive Banach space, see Proposition 1.1.2 in [17]. By Theorem 1.2.3 in [17],
the set C∞(Ω) ∩W 1,p

G
(Ω) is dense in W 1,p

G
(Ω). By a standard cut-off argument,

we get that C∞
c (Rn) is dense in W 1,p

G
(Rn).

2.5. Riemannian approximation

The metric space (G, dcc) can be seen as the limit in the pointed Gromov–Hausdorff
sense as ε → 0 of a family of Riemannian manifolds {(Gε, dε)}ε>0 defined as
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follows, see Theorem 2.12 in [12]. For any ε > 0, we define the Riemannian
approximation (Gε, dε) of the Carnot group (G, dcc) as the manifold R

n endowed
with the Riemannian metric gε(·, ·) ≡ 〈·, ·〉ε that makes orthonormal the vector
fields εd(i)−1Xi, i = 1, . . . , n, i.e., such that

〈Xi, Xj〉ε = ε2−d(i)−d(j)δij , i, j = 1, . . . , n.

We let dε be the Riemannian distance induced by the metric gε. Note that dε is
left-invariant and satisfies dε ≤ dcc for all ε > 0. For any ε > 0, the ε-Riemannian
gradient is defined as

∇εf =

n∑
i=1

ε2(d(i)−1)(Xif)Xi =

κ∑
i=1

ε2(i−1)∇Vif.

By (2.9), we get that

gε(x) = (dlx)
TDε (dlx), x ∈ G,

where Dε is the diagonal block matrix given by

Dε = diag(1m1 , ε
−21m2 , . . . , ε

−2(i−1)1mi , . . . , ε
−2(κ−1)1mκ).

As a consequence, the Riemannian volume element is given by

volε =
√
det gε dx1 ∧ · · · ∧ dxn = εn−QLn.

We remark that, for each ε > 0, the n-dimensional Riemannian manifold (Gε, dε)
has Ricci curvature bounded from below. More precisely, there exists a constant
K > 0, depending only on the Carnot group G, such that

(2.13) Ricε ≥ −Kε−2 for all ε > 0.

By scaling invariance, the proof of inequality (2.13) can be reduced to the case
ε = 1, which in turn is a direct consequence of Lemma 1.1 in [31].

In the sequel, we will consider the metric measure space (Gε, dε,Ln), i.e., the
Riemannian manifold (Gε, dε, volε) with a rescaled volume measure. Both these
two spaces satisfy the structural assumption (2.5). Moreover, we have

(2.14) Entvolε(μ) = Ent(μ) + log(εQ−n) for all ε > 0.

Here and in the following, Ent denotes the entropy with respect to the reference
measure Ln.

2.6. Sub-elliptic heat equation

We let ΔG =
∑m1

i=1X
2
i be the so-called sub-Laplacian operator. Since the horizontal

vector fields X1, . . . , Xh1 satisfy Hörmander’s condition, by Hörmander’s theorem
the sub-elliptic heat operator ∂t−ΔG is hypoelliptic, meaning that its fundamental
solution h : (0,+∞) × G → (0,+∞), ht(x) = h(t, x), the so-called heat kernel, is
smooth. In the following result, we collect some properties of the heat kernel that
will be used in the sequel. We refer the reader to Chapter IV in [39] and to the
references therein for the proof.
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Theorem 2.3 (Properties of the heat kernel). The heat kernel h : (0,+∞)×G →
(0,+∞) satisfies the following properties :

(i) ht(x
−1) = ht(x) for any (t, x) ∈ (0,+∞)×G;

(ii) hλ2t(δλ(x)) = λ−Q ht(x) for any λ > 0 and (t, x) ∈ (0,+∞)×G;

(iii)
∫
G
ht dx = 1 for any t > 0;

(iv) there exists C > 0, depending only on G, such that

(2.15) ht(x) ≤ C t−Q/2 exp
(
− dcc(x, 0)

2

4t

)
∀(t, x) ∈ (0,+∞)×G ;

(v) for any ε > 0, there exists Cε > 0 such that

(2.16) ht(x) ≥ Cε t
−Q/2 exp

(
− dcc(x, 0)

2

4(1− ε)t

)
∀(t, x) ∈ (0,+∞)×G ;

(vi) for every j, l ∈ N and ε > 0, there exists Cε(j, l) > 0 such that

|(∂t)lXi1 · · ·Xijht(x)| ≤ Cε(j, l) t
−(Q+j+2l)/2 exp

(
− dcc(x, 0)

2

4(1 + ε)t

)
∀(t, x) ∈ (0,+∞)×G,

(2.17)

where Xi1 · · ·Xij ∈ V1.

Given � ∈ L1(G), the function

(2.18) �t(x) = (� � ht)(x) =

∫
G

ht(y
−1x) �(y) dy, (t, x) ∈ (0,+∞)×G,

is smooth and is a solution of the heat diffusion problem

(2.19)

{
∂t�t = ΔG�t in (0,+∞)×G,

�0 = �, on {0} ×G.

The initial datum is assumed in the L1-sense, i.e., limt→0 �t = � in L1(G). As a
consequence of the properties of the heat kernel, if � ≥ 0 then the solution (�t)t≥0

in (2.18) is everywhere positive and satisfies∫
G

�t(x) dx = ‖�‖L1(G) ∀t > 0.

In addition, if �Ln ∈ P2(G) then (�tLn)t≥0 ⊂ P2(X). Indeed, by (2.15), we have

Ct :=

∫
G

dcc(x, 0)
2 ht(x) dx < +∞ ∀t > 0.

Thus, by triangular inequality, we have

(dcc(·, 0)2 � ht)(x) =
∫
G

dcc(xy
−1, 0)2 ht(y) dy ≤ 2 dcc(x, 0)

2 + 2Ct,
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so that, for all t > 0, we get∫
G

dcc(x, 0)
2 �t(x) dx =

∫
G

(dcc(·, 0)2 � ht)(x) �(x) dx

≤ 2

∫
G

dcc(x, 0)
2 �(x) dx + 2Ct.

(2.20)

2.7. Main result

We are now ready to state the main result of the paper. The proof is given in
Section 4, and deals with the two parts of the statement separately.

Theorem 2.4. Let (G, dcc,Ln) be a Carnot group and let �0 ∈ L1(G) be such that
μ0 = �0Ln ∈ Dom(Ent). If (�t)t≥0 solves the sub-elliptic heat equation ∂t�t = ΔG�t
with initial datum �0, then μt = �tLn is a gradient flow of Ent in (P2(G),WG)
starting from μ0.

Conversely, if (μt)t≥0 is a gradient flow of Ent in (P2(G),WG) starting from μ0,
then μt = �tLn for all t ≥ 0 and (�t)t≥0 solves the sub-elliptic heat equation
∂t�t = ΔG�t with initial datum �0.

3. Continuity equation and slope of the entropy

3.1. The Wasserstein space on the approximating Riemannian manifold

Let (P2(Gε),Wε) be the Wasserstein space introduced in Section 2.2 relative to
the metric measure space (Gε, dε,Ln). As observed in Section 2.5, (Gε, dε,Ln)
is an n-dimensional Riemannian manifold (with rescaled volume measure) whose
Ricci curvature is bounded from below. Here we collect some known results taken
from [14], [40] concerning the space (P2(Gε),Wε). In the original statements, the
canonical reference measure is the Riemannian volume. Keeping in mind that
volε = εn−QLn and the relation (2.14), in our statements each quantity is rescaled
accordingly. All time-dependent vector fields appearing in the sequel are tacitly
understood to be Borel measurable.

Let μ ∈ P2(Gε) be given. We define the space

L2
ε(μ) =

{
ξ ∈ S(TGε) :

∫
Gε

‖ξ‖2ε dμ < +∞
}
.

Here S(TGε) denotes the set of sections of the tangent bundle TGε. Moreover, we
define the ‘tangent space’ of (P2(Gε),Wε) at μ as

Tanε(μ) = {∇εϕ : ϕ ∈ C∞
c (Rn)}L2

ε(μ).

The ‘tangent space’ Tanε(μ) was first introduced in [35]. We refer the reader to
Chapter 12 in [4] and to Chapters 13 and 15 in [40] for a detailed discussion on
this space.
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Let ε > 0 be fixed. Given I ⊂ R an open interval and a time-dependent
vector field vε : I × Gε → TGε, (t, x) �→ vεt (x) ∈ TxGε, we say that a curve
(μt)t∈I ⊂ P2(Gε) satisfies the continuity equation

(3.1) ∂tμt + div(vεtμt) = 0 in I ×Gε

in the sense of distributions if∫
I

∫
Gε

‖vεt (x)‖ε dμt(x) dt < +∞

and ∫
I

∫
Gε

∂tϕ(t, x) + 〈vεt (x),∇εϕ(t, x)〉ε dμt(x) dt = 0 ∀ϕ ∈ C∞
c (I × R

n).

We can thus state the following result, see Proposition 2.5 in [14] for the proof.
Here and in the sequel, the metric derivative in the Wasserstein space (P2(Gε),Wε)
of a curve (μt)t∈I ⊂ P2(Gε) is denoted by |μ̇t|ε.
Proposition 3.1 (Continuity equation in (P2(Gε),Wε)). Let ε > 0 be fixed and
let I ⊂ R be an open interval. If μt ∈ AC2

loc(I;P2(Gε)), then there exists a time-
dependent vector field vε : I ×Gε → TGε with t �→ ‖vεt ‖L2

ε(μt) ∈ L2
loc(I) such that

(3.2) vεt ∈ Tanε(μt) for a.e. t ∈ I

and the continuity equation (3.1) holds in the sense of distributions. The vector
field vεt is uniquely determined in L2

ε(μt) by (3.1) and (3.2) for a.e. t ∈ I, and we
have

‖vεt ‖L2
ε(μt) = |μ̇t|ε for a.e. t ∈ I.

Conversely, if (μt)t∈I ⊂ P2(Gε) is a curve satisfying (3.1) for some (vεt )t∈I

such that t �→ ‖vεt ‖L2
ε(μt) ∈ L2

loc(I), then μt ∈ AC2
loc(I; (P2(Gε),Wε)), with

|μ̇t|ε ≤ ‖vεt ‖L2
ε(μt) for a.e. t ∈ I.

We can interpret the time-dependent vector field (vεt )t∈I given by Proposi-
tion 3.1 as the ‘tangent vector’ of the curve (μt)t∈I in (P2(Gε),Wε). As remarked
in Section 2 in [14], for a.e. t ∈ I the vector field vεt has minimal L2

ε(μt)-norm
among all time-dependent vector fields satisfying (3.1). Moreover, this minimality
is equivalent to (3.2).

In the following result and in the sequel, |D−
ε Ent|(μ) denotes the descend-

ing slope of the entropy Ent at the point μ ∈ P2(Gε) in the Wasserstein space
(P2(Gε),Wε).

Proposition 3.2. Let ε > 0 be fixed and let μ = �Ln ∈ P2(Gε). The following
statements are equivalent :

(i) |D−
ε Ent|(μ) < +∞ ;

(ii) � ∈ W 1,1
loc (Gε) and ∇ε� = wε� for some wε ∈ L2

ε(μ).
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In this case, wε ∈ Tanε(μ) and |D−
ε Ent|(μ) = ‖wε‖L2

ε(μ)
. Moreover, for any ν ∈

P2(Gε), we have

(3.3) Ent(ν) ≥ Ent(μ)− ‖wε‖L2
ε(μ)

Wε(ν, μ)− K

2ε2
Wε(ν, μ)

2,

where K > 0 is the constant appearing in (2.13).

The equivalence part in Proposition 3.2 is proved in Proposition 4.3 in [14].
Inequality (3.3) is the so-called HWI inequality, and follows from Theorem 23.14
in [40], see Remark 23.16 in [40].

The quantity

Fε(�) = ‖wε‖2L2
ε(μ)

=

∫
Gε∩{�>0}

‖∇ε�‖2ε
�

dLn

appearing in Proposition 3.2 is the so-called Fisher information of μ = �Ln ∈
P2(Gε). The inequality Fε(�) ≤ |D−

ε Ent|(μ) holds in the context of metric measure
spaces, see Theorem 7.4 in [5]. The converse inequality does not hold in such a
generality and heavily depends on the lower semicontinuity of the descending slope
|D−

ε Ent|, see Theorem 7.6 in [5].

3.2. The Wasserstein space on the Carnot group

Let (P2(G),WG) be the Wasserstein space introduced in Section 2.2 relative to
the metric measure space (G, dcc,Ln). In this section, we discuss the counterparts
of Propositions 3.1 and 3.2 in the space (P2(G),WG). All time-dependent vector
fields appearing in the sequel are tacitly understood to be Borel measurable.

Let μ ∈ P2(G) be given. We define the space

L2
G(μ) =

{
ξ ∈ S(HG) :

∫
G

‖ξ‖2G dμ < +∞
}
.

Here S(HG) denotes the set of sections of the horizontal tangent bundle HG.
Moreover, we define the ‘tangent space’ of (P2(G),WG) at μ as

TanG(μ) = {∇Gϕ : ϕ ∈ C∞
c (Rn)}L2

G
(μ)
.

Given I ⊂ R an open interval and a horizontal time-dependent vector field
vG : I × G → HG, (t, x) �→ vGt (x) ∈ HxG, we say that a curve (μt)t∈I ⊂ P2(G)
satisfies the continuity equation

(3.4) ∂tμt + div(vGt μt) = 0 in I ×Gε

in the sense of distributions if∫
I

∫
G

‖vGt (x)‖G dμt(x) dt < +∞

and ∫
I

∫
G

∂tϕ(t, x) +
〈
vGt (x),∇Gϕ(t, x)

〉
G
dμt(x) dt = 0 ∀ϕ ∈ C∞

c (I × R
n).
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The following result is the exact analogue of Proposition 3.1. Here and in
the sequel, the metric derivative in the Wasserstein space (P2(G),WG) of a curve
(μt)t∈I ⊂ P2(G) is denoted by |μ̇t|G.
Proposition 3.3 (Continuity equation in (P2(G),WG)). Let I ⊂ R be an open
interval. If (μt)t ∈ AC2

loc(I; (P2(G),WG)), then there exists a horizontal time-
dependent vector field vG : I ×G → HG with t �→ ‖vGt ‖L2

G
(μt) ∈ L2

loc(I) such that

(3.5) vGt ∈ TanG(μt) for a.e. t ∈ I

and the continuity equation (3.4) holds in the sense of distributions. The vector
field vGt is uniquely determined in L2

G
(μt) by (3.4) and (3.5) for a.e. t ∈ I and we

have
‖vGt ‖L2

G
(μt) = |μ̇t|G for a.e. t ∈ I.

Conversely, if (μt)t∈I ⊂ P2(G) is a curve satisfying (3.4) for some (vGt )t∈I

such that t �→ ‖vGt ‖L2
G
(μt) ∈ L2

loc(I), then (μt)t ∈ AC2
loc(I; (P2(G),WG)) with

|μ̇t|G ≤ ‖vGt ‖L2
G
(μt) for a.e. t ∈ I.

As for Proposition 3.1, we can interpret the horizontal time-dependent vector
field (vGt )t∈I given by Proposition 3.3 as the ‘tangent vector’ of the curve (μt)t∈I

in (P2(G),WG). An easy adaptation of Lemma 2.4 in [14] to the sub-Riemannian
manifold (G, dcc,Ln) again shows that for a.e. t ∈ I the vector field vGt has minimal
L2
G
(μt)-norm among all time-dependent vector fields satisfying (3.4) and, moreover,

that this minimality is equivalent to (3.5).
Proposition 3.3 can be obtained applying the general results obtained in [20]

to the metric measure space (G, dcc,Ln). Below we give a direct proof exploiting
Proposition 3.1. The argument is very similar to the one of Proposition 3.1 in [25]
and we only sketch it.

Proof. If (μt)t ∈ AC2
loc(I; (P2(G),WG)), then also (μt)t ∈ AC2

loc(I; (P2(Gε),Wε))
for every ε > 0, since dε ≤ dcc. Let vε : I × Gε → TGε be the time-dependent
vector field given by Proposition 3.1. Note that

(3.6)

∫
G

‖vεt ‖2ε dμt = |μ̇t|2ε ≤ |μ̇t|2G for a.e. t ∈ I.

Moreover,

(3.7) ‖vεt ‖2ε = ‖vε,V1

t ‖21 +
κ∑

i=2

ε2(1−i)‖vε,Vi

t ‖21 for all ε > 0,

where vε,Vi

t denotes the projection of vεt on Vi. Combining (3.6) and (3.7), we
find a sequence (εk)k∈N, with εk → 0, and a horizontal time-dependent vector
field vG : I × G → HG such that vεk,V1 ⇀ vG and vεk,Vi → 0 for all i = 2, . . . , κ
as k → +∞ locally in time in the L2-norm on I × G naturally induced by the
norm ‖ · ‖1 and the measure dμt dt. In particular, t �→ ‖vGt ‖L2

G
(μt) ∈ L2

loc(I) and

‖vGt ‖L2
G
(μt) ≤ |μ̇t|G for a.e. t ∈ I. To prove (3.4), fix a test function ϕ ∈ C∞

c (I×Rn)

and pass to the limit as ε→ 0+ in (3.1).
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Conversely, if (μt)t∈I ⊂ P2(G) satisfies (3.4) for some horizontal time-depen-
dent vector field (vGt )t∈I such that t �→ ‖vGt ‖L2

ε(μt) ∈ L2
loc(I), then we can ap-

ply Proposition 3.1 for ε = 1. By the superposition principle stated in Theo-
rem 5.8 in [9] applied to the Riemannian manifold (G1, d1,Ln), we find a prob-
ability measure ν ∈ P(C(I; (G1, d1))), concentrated on AC2

loc(I; (G1, d1)), such
that μt = (et)#ν for all t ∈ I and with the property that ν-a.e. curve γ ∈
C(I; (G1, d1)) is an absolutely continuous integral curve of the vector field vG.
Here et : C(I; (G1, d1)) → G denotes the evaluation map at time t ∈ I. Since vG is
horizontal, ν-a.e. curve γ ∈ C(I; (G1, d1)) is horizontal. Therefore, for all s, t ∈ I,
s < t, we have

dcc(γ(t), γ(s)) ≤
∫ t

s

‖γ̇(r)‖G dr =

∫ t

s

‖vGr (γ(r))‖G dr

and we can thus estimate

W2
G(μt, μs) ≤

∫
G×G

d2cc(x, y) d(et, es)# ν(x, y) =

∫
AC2

loc

d2cc(γ(t), γ(s)) dν(γ)

≤ (t−s)
∫
AC2

loc

∫ t

s

‖vGr (γ(r))‖2G drdν(γ) = (t−s)
∫ t

s

∫
G

‖vGr ‖2G dμr dr.

This immediately gives |μ̇t|G ≤ ‖vGt ‖L2
G
(μt) for a.e. t ∈ I, which in turn proves (3.5).

�

To establish an analogue of Proposition 3.2, we need to prove the two inequal-
ities separately. For μ = �Ln ∈ P2(G), the inequality FG(�) ≤ |D−

G
Ent|(μ) is

stated in Proposition 3.4 below. Here and in the sequel, |D−
G
Ent|(μ) denotes the

descending slope of the entropy Ent at the point μ ∈ P2(G) in the Wasserstein
space (P2(G),WG).

Proposition 3.4. Let μ=�Ln∈P2(G). If |D−
G
Ent|(μ)<+∞, then � ∈ W 1,1

G, loc(G)

and ∇G� = wG� for some horizontal vector field wG ∈ L2(μ) with ‖wG‖L2
G
(μ) ≤

|D−
G
Ent|(μ).
Proposition 3.4 can be obtained by applying Theorem 7.4 in [5] to the metric

measure space (G, dcc,Ln). Below we give a direct proof of this result which is
closer in the spirit to the one in the Riemannian setting, see Lemma 4.2 in [14].
See also Proposition 3.1 in [25].

Proof. Let V ∈ C∞
c (G;HG) be a smooth horizontal vector field with compact

support. Then there exists δ > 0 such that, for any t ∈ (−δ, δ), the flow map of
the vector field V at time t, namely

Ft(x) := expx(tV ), x ∈ G,

is a diffeomorphism and Jt = det(DFt) is such that c−1 ≤ Jt ≤ c for some c ≥ 1.
By the change of variable formula, the measure μt := (Ft)#μ is such that μt = �tLn

with Jt�t = � ◦ F−1
t for t ∈ (−δ, δ).
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Let us set H(r) = r log r for r ≥ 0. Then, for t ∈ (−δ, δ),

Ent(μt) =

∫
G

H(�t) dx =

∫
G

H
( �
Jt

)
Jt dx = Ent(μ)−

∫
G

� log(Jt) dx < +∞.

Note that J0 = 1, J̇0 = div V and that t �→ J̇tJ
−1
t is uniformly bounded for

t ∈ (−δ, δ). Thus we have

d

dt
Ent(μt)

∣∣∣
t=0

= − d

dt

∫
G

� log(Jt) dx
∣∣∣
t=0

dx = −
∫
G

�
J̇t
Jt

∣∣∣
t=0

dx = −
∫
G

� div V dx.

On the other hand, we have

W2
G(μt, μ) = W2

G((Ft)#μ, μ) ≤
∫
G

d2cc(Ft(x), x) dμ(x)

and so

lim sup
t→0

W2
G
(μt, μ)

|t|2 ≤
∫
G

lim sup
t→0

d2cc(Ft(x), x)

|t|2 dμ(x) =

∫
G

‖V ‖2G dμ.

Hence

− d

dt
Ent(μt)

∣∣∣
t=0

≤ lim sup
t→0

[Ent(μt)− Ent(μ)]−

WG(μt, μ)
· WG(μt, μ)

|t|
≤ |D−

G
Ent|(μ)

( ∫
G

‖V ‖2G dμ
)1/2

,

and thus ∣∣∣ ∫
G

� div V dx
∣∣∣ ≤ |D−

G
Ent|(μ)

( ∫
G

‖V ‖2G dμ
)1/2

.

By the Riesz representation theorem, we conclude that there exists a horizontal
vector field wG ∈ L2

G
(μ) such that ‖wG‖L2

G
(μ) ≤ |D−

G
Ent|(μ) and

−
∫
G

� divV dx =

∫
G

〈
wG, V

〉
G
dμ for all V ∈ C∞

c (G;HG).

This implies that ∇G� = wG� and the proof is complete. �

We call the quantity

FG(�) = ‖wG‖2L2
G
(μ) =

∫
G∩{�>0}

‖∇G�‖2G
�

dLn

appearing in Proposition 3.4 the horizontal Fisher information of μ = �Ln ∈
P2(G). On its effective domain, FG is convex and sequentially lower semicontinuous
with respect to the weak topology of L1(G), see Lemma 4.10 in [5].

Given μ = �Ln ∈ P2(G), it is not clear how to prove the inequality

|D−
G
Ent|2(μ) ≤ FG(�)

under the mere condition |D−
G
Ent|(μ) < +∞. Following Proposition 3.4 in [25],

in Proposition 3.5 below we show that the condition |D−
ε Ent|(μ) < +∞ for some

ε > 0 (and thus any) implies that |D−
G
Ent|2(μ) ≤ FG(�).
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Proposition 3.5. Let μ = �Ln ∈ P2(G). If |D−
ε Ent|(μ) < +∞ for some ε > 0,

then also |D−
G
Ent|(μ) < +∞ and moreover FG(�) = |D−

G
Ent|2(μ).

Proof. Since |D−
ε Ent|(μ) < +∞, we have Ent(μ) < +∞. Since dε ≤ dcc and

so Wε ≤ WG, we also have |D−
G
Ent|(μ) ≤ |D−

ε Ent|(μ). By Proposition 3.4, we

conclude that � ∈ W 1,1
G, loc(G) and ∇G� = wG� for some horizontal vector field

wG ∈ L2
G
(μ) with ‖wG‖L2

G
(μ) ≤ |D−

G
Ent|(μ). We now prove the converse inequality.

Since |D−
ε Ent|(μ) < +∞, by Proposition 3.2 we have Fε(�) = |D−

ε Ent|2(μ) and

(3.8) Ent(ν) ≥ Ent(μ)− F1/2
ε (�)Wε(ν, μ)− K

2ε2 W
2
ε(ν, μ)

for any ν ∈ P2(G). Take ε = WG(ν, μ)
1/4 and assume ε < 1. Since Wε ≤ WG,

from (3.8) we get

Ent(ν) ≥ Ent(μ)− F1/2
ε (�)WG(ν, μ)− K

2ε2 W
2
G(ν, μ)

= Ent(μ)− F1/2
ε (�)WG(ν, μ)− K

2 W
3/2
G

(ν, μ).(3.9)

We need to bound Fε(�) from above in terms of FG(�). To do so, observe that

∇ε� = ∇G�+
k∑

i=2

ε2(i−1)∇Vi�, ‖∇ε�‖2ε = ‖∇G�‖2G +
k∑

i=2

ε2(i−1)‖∇Vi�‖2G.

In particular,∇Vi�/� ∈ L2
G
(μ) for all i = 2, . . . , k. Recalling the inequality (1+r) ≤

(1 + r/2)
2
for r ≥ 0, we can estimate

Fε(�) = FG(�) +
k∑

i=2

ε2(i−1)
∥∥∥∇Vi�

�

∥∥∥2
L2

G
(μ)

= FG(�)
(
1 +

1

FG(�)

k∑
i=2

ε2(i−1)
∥∥∥∇Vi�

�

∥∥∥2
L2

G
(μ)

)

≤ FG(�)
(
1 +

1

2FG(�)

k∑
i=2

ε2(i−1)
∥∥∥∇Vi�

�

∥∥∥2
L2

G
(μ)

)2

and thus

(3.10) F1/2
ε (�) ≤ F

1/2
G

(�)
(
1 +

1

2FG(�)

k∑
i=2

ε2(i−1)
∥∥∥∇Vi�

�

∥∥∥2
L2

G
(μ)

)
.

Inserting (3.10) into (3.9), we finally get

Ent(ν) ≥ Ent(μ)− F
1/2
G

(�)WG(ν, μ)− CW
3/2
G

(ν, μ)

for some C > 0 independent of ε. This immediately leads to |D−
G
Ent|(μ) ≤ F

1/2
G

(�).
�
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3.3. Carnot groups are non-CD(K,∞) spaces

As stated in Theorem 7.6 in [5], if the metric measure space (X, d,m) is Polish and
satisfies (2.5), then the properties

(i) |D−Ent|2(μ) = F(�) for all μ = �m ∈ Dom(Ent);

(ii) |D−Ent| is sequentially lower semicontinuous with respect to convergence with
moments in P(X) on sublevels of Ent;

are equivalent. We do not know if property (ii) is true for the space (G, dcc,Ln); this
is why in Proposition 3.5 we needed the additional assumption |D−

ε Ent|(μ) < +∞.

By Theorem 9.3 in [5], property (ii) holds true if (X, d,m) is CD(K,∞) for
some K ∈ R. As the following result shows, (non-commutative) Carnot groups are
not CD(K,∞), so that the validity of property (ii) in these metric measure spaces
is an open problem. Note that Proposition 3.6 below was already known for the
Heisenberg groups, see [24].

Proposition 3.6. If (G, dcc,Ln) is a non-commutative Carnot group, then the
metric measure space (G, dcc,Ln) is not CD(K,∞) for any K ∈ R.

Proof. By contradiction, assume that (G, dcc,Ln) is a CD(K,∞) space for some
K ∈ R. Since the Dirichlet–Cheeger energy associate to the horizontal gradient
is quadratic on L2(G,Ln) (see Section 4.3 in [6] for a definition), by Theorem 6.1
in [3] we deduce that (G, dcc,Ln) is a (σ-finite) RCD(K,∞) space. By Theorem 7.2
in [3], we deduce that (G, dcc,Ln) satisfies the BE(K,∞) property, that is,

(3.11) ‖∇G(Ptf)‖2G ≤ e−2KtPt(‖∇f‖2G), for all t ≥ 0, f ∈ C∞
c (Rn).

Here and in the rest of the proof, we set Ptf := f �ht for short. Arguing similarly as
in the proof of Theorem 1.1 in [41], it is possible to prove that (3.11) is equivalent
to the following reverse Poincaré inequality:

(3.12) Pt(f
2)− (Ptf)

2 ≥ 2 I2K(t) ‖∇(Ptf)‖2G, for all t ≥ 0, f ∈ C∞
c (Rn),

where

IK(t) :=
eKt − 1

K
if K �= 0, and I0(t) := t.

Now, by Propositions 2.5 and 2.6 in [8], there exists a constant Λ ∈ [Q/(2m1), Q/m1]
(where Q and m1 are as in Section 2.4) such that the inequality

(3.13) Pt(f
2)− (Ptf)

2 ≥ t

Λ
‖∇(Ptf)‖2G, for all t ≥ 0, f ∈ C∞

c (Rn),

holds true and, moreover, is sharp. Comparing (3.12) and (3.13), we thus must
have that Λ ≤ t/(2I2K(t)) for all t > 0. Passing to the limit as t → 0+, we get
that Λ ≤ 1/2, so that Q ≤ m1. This immediately implies that G is commutative,
a contradiction. �
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4. Proof of the main result

4.1. Heat diffusions are gradient flows of the entropy

In this section we prove the first part of Theorem 2.4. The argument follows the
strategy outlined in Section 4.1 in [25].

The following technical lemma will be applied to horizontal vector fields in the
proof of Proposition 4.2 below. The proof is exactly the same of Lemma 4.1 in [25]
and we omit it.

Lemma 4.1. Let V : Rn → Rn be a vector field with locally Lipschitz coefficients
such that |V |Rn ∈ L1(Rn) and div V ∈ L1(Rn). Then

∫
Rn div V dx = 0.

Proposition 4.2 below states that the function t �→ Ent(�tLn) is locally abso-
lutely continuous if (�t)t≥0 solves the sub-elliptic heat equation (2.19) with initial
datum �0 ∈ L1(G) such that μ0 = �0Ln ∈ P2(G). By Proposition 4.22 in [5], this
result is true under the stronger assumption that �0 ∈ L1(G) ∩ L2(G). Here the
point is to remove the L2-integrability condition on the initial datum exploiting
the estimates on the heat kernel collected in Theorem 2.3, see also Section 4.1.1
in [25].

Proposition 4.2 (Entropy dissipation). Let �0 ∈ L1(G) be such that μ0 = �0Ln ∈
Dom(Ent). If (�t)t≥0 solves the sub-elliptic heat equation ∂t�t = ΔG�t with initial
datum �0, then the map t �→ Ent(μt), μt = �tLn, is locally absolutely continuous
on (0,+∞) and it holds

(4.1)
d

dt
Ent(μt) = −

∫
G∩{�t>0}

‖∇G�t‖2G
�t

dx for a.e. t > 0.

Proof. Note that μt ∈ P2(G) for all t > 0 by (2.20). Hence Ent(μt) > −∞ for all
t > 0. Since Ct := supx∈G ht(x) < +∞ for each fixed t > 0 by (2.15), we get that
�t ≤ Ct for all t > 0. Thus Ent(μt) < +∞ for all t > 0.

For each m ∈ N, define

(4.2) zm(r) := min{m,max{1 + log r,−m}}, Hm(r) :=

∫ r

0

zm(s) ds, r ≥ 0.

Note that Hm is of class C1 on [0,+∞) with H ′
m is globally Lipschitz and bounded.

We claim that

(4.3)
d

dt

∫
G

Hm(�t) dx =

∫
G

zm(�t)ΔG�t dx ∀t > 0, ∀m ∈ N.

Indeed, we have |Hm(�t)| ≤ m�t ∈ L1(G) and, given [a, b] ⊂ (0,+∞), by (2.17)
the function x �→ supt∈[a,b] |ΔGht(x)| is bounded. Thus

sup
t∈[a,b]

∣∣∣∣ ddtHm(�t)

∣∣∣∣ ≤ m sup
t∈[a,b]

(�0 � |ΔGht|) ≤ m�0 � sup
t∈[a,b]

|ΔGht| ∈ L1(G).
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Therefore (4.3) follows by differentiation under integral sign. We now claim that

(4.4)

∫
G

zm(�t)ΔG�t dx = −
∫
{e−m−1<�t<em−1}

‖∇G�t‖2G
�t

dx ∀t > 0, ∀m ∈ N.

Indeed, by the Cauchy–Schwarz inequality, we have

‖∇G�t(x)‖2G
�t(x)

≤ [(�0 � ‖∇Ght‖G)(x)]2
(�0 � ht)(x)

=
1

(�0 � ht)(x)

[ ∫
G

√
�0(xy−1)

‖∇Ght(y)‖G√
ht(y)

·
√
�0(xy−1)

√
ht(y) dy

]2

≤ 1

(�0 � ht)(x)

( ∫
G

�0(xy
−1)

‖∇Ght(y)‖2G
ht(y)

dy
)( ∫

G

�0(xy
−1) ht(y) dy

)

≤
(
�0 �

‖∇Ght‖2G
ht

)
(x) for all x ∈ G.(4.5)

Thus, by (2.16) and (2.17), we get
(4.6)∫

{e−m−1<�t<em−1}

‖∇G�t‖2G
�t

dx ≤
∫
G

�0 �
‖∇Ght‖2G

ht
dx =

∫
G

‖∇Ght‖2G
ht

dx < +∞.

This, together with (4.3), proves that

div(zm(�t)∇G�t) = z′m(�t) ‖∇G�t‖2G − zm(�t)ΔG�t ∈ L1(G).(4.7)

Thus (4.4) follows by integration by parts provided that

(4.8)

∫
G

div(zm(�t)∇G�t) dx = 0.

To prove (4.8), we apply Lemma 4.1 to the vector field V = zm(�t)∇G�t. By (4.7),
we already know that div V ∈ L1(G), so we just need to prove that |V |Rn ∈ L1(G).
Note that ∫

G

|V |Rn dx ≤ m

∫
G

�0 � |∇Ght|Rn dx = m

∫
G

|∇Ght|Rn dx,

so it is enough to prove that |∇Ght|Rn ∈ L1(G). But we have

|∇Ght(x)|Rn ≤ p(x1, . . . , xn) ‖∇Ght(x)‖G, x ∈ G,

where p : Rn → [0,+∞) is a function with polynomial growth, because the hori-
zontal vector fields X1, . . . , Xh1 have polynomial coefficients. Since dcc is equiv-
alent to d∞, where d∞ was introduced in (2.11), by (2.17) we conclude that
|∇Ght|Rn ∈ L1(G). This completes the proof of (4.8).

Combining (4.3) and (4.4), we thus get

d

dt

∫
G

Hm(�t) dx = −
∫
{e−m−1<�t<em−1}

‖∇G�t‖2G
�t

dx ∀t > 0, ∀m ∈ N.
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Note that

(4.9) t �→
∫
G

‖∇G�t‖2G
�t

dx ∈ L1
loc(0,+∞).

Indeed, from (2.16) and (2.17) we deduce that

t �→
∫
G

‖∇Ght‖2G
ht

dx ∈ L1
loc(0,+∞).

Recalling (4.5) and (4.6), this immediately implies (4.9). Therefore∫
G

Hm(�t1) dx−
∫
G

Hm(�t0) dx = −
∫ t1

t0

∫
{e−m−1<�t<em−1}

‖∇G�t‖2G
�t

dx dt

for any t0, t1 ∈ (0,+∞) with t0 < t1 and m ∈ N. We now pass to the limit as
m→ +∞. Note that Hm(r) → r log r as m→ +∞ and that for all m ∈ N

(4.10) r log r ≤ Hm+1(r) ≤ Hm(r) for r ∈ [0, 1]

and

(4.11) 0 ≤ Hm(r) ≤ 1 + r log r for r ∈ [1,+∞).

Thus

lim
m→+∞

∫
G

Hm(�t) dx =

∫
G

�t log �t dx

by the monotone convergence theorem on {�t ≤ 1} and by the dominated conver-
gence theorem on {�t > 1}. Moreover,

lim
m→+∞

∫ t1

t0

∫
{e−m−1<�t<em−1}

‖∇G�t‖2G
�t

dx dt =

∫ t1

t0

∫
G∩{�t>0}

‖∇G�t‖2G
�t

dx dt

by the monotone convergence theorem. This concludes the proof. �

We are now ready to prove the first part of Theorem 2.4. The argument follows
the strategy outlined in Section 4.1 in [25]. See also the first part of the proof of
Theorem 8.5 in [5].

Theorem 4.3. Let �0 ∈ L1(G) be such that μ0 = �0Ln ∈ Dom(Ent). If (�t)t≥0

solves the sub-elliptic heat equation ∂t�t = ΔG�t with initial datum �0, then μt =
�tLn is a gradient flow of Ent in (P2(G),WG) starting from μ0.

Proof. Note that (μt)t>0 ⊂ P2(G), see the proof of Proposition 4.2. Moreover,
(μt)t>0 satisfies (3.4) with vGt = ∇G�t/�t for t > 0. Note that t �→ ‖vGt ‖L2

G
(μt) ∈

L2
loc(0,+∞) by (2.16), (2.17), (4.5) and (4.6). By Proposition 3.3 we conclude that

(4.12) |μ̇t|2 ≤
∫
G∩{�t>0}

‖∇�t‖2G
�t

dx for a.e. t > 0.
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By Proposition 4.2, the map t �→ Ent(μt) is locally absolutely continuous on
(0,+∞) and so, by the chain rule, we get

(4.13) − d

dt
Ent(μt) ≤ |D−

G
Ent|(μt) · |μ̇t|G for a.e. t > 0.

Thus, if we prove that

(4.14) |D−
G
Ent|2(μt) =

∫
G∩{�t>0}

‖∇G�t‖2G
�t

dx for a.e. t > 0

then, combining this equality with (4.1), (4.12) and (4.13), we find that

|μ̇t|G = |D−
G
Ent|(μt),

d

dt
Ent(μt) = −|D−

G
Ent|(μt) · |μ̇t|G for a.e. t > 0,

so that (μt)t≥0 is a gradient flow of Ent starting from μ0 as observed in Remark 2.2.

We now prove (4.14). To do so, we apply Proposition 3.5. We need to check
that |D−

ε Ent|(μt) < +∞ for some ε > 0. To prove this, we apply Proposition 3.2.
Since dε ≤ dcc, we have μt ∈ P2(Gε) for all ε > 0. Moreover,

Fε(�t) = FG(�t) +

k∑
i=2

ε2(i−1)

∫
G∩{�t>0}

‖∇Vi�t‖2G
�t

dx.

Since FG(�t) < +∞, we just need to prove that∫
G∩{�t>0}

‖∇Vi�t‖2G
�t

dx < +∞

for all i = 2, . . . , κ. Indeed, arguing as in (4.5), by the Cauchy–Schwarz inequality
we have

‖∇Vi�t‖2G
�t

≤ (� � ‖∇Viht‖G)2
� � ht

=
1

� � ht

[
� �

(‖∇Viht‖G√
ht

√
ht
) ]2

≤ � �
‖∇Viht‖2G

ht
.

Therefore, by (2.16) and (2.17), we get∫
G∩{�t>0}

‖∇Vi�t‖2G
�t

dx ≤
∫
G

� �
‖∇Viht‖2G

ht
dx =

∫
G

‖∇Viht‖2G
ht

dx < +∞.

This concludes the proof. �

4.2. Gradient flows of the entropy are heat diffusions

In this section we prove the second part of Theorem 2.4. Our argument is different
from the one presented in Section 4.2 in [25]. However, as observed in Remark 5.3
in [25], the techniques developed in Section 4.2 in [25] can be adapted in order to
obtain a proof of Theorem 4.8 below for any Carnot group G of step 2.
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Let us start with the following remark. If (μt)t≥0 is a gradient flow of Ent
in (P2(G),WG) then, recalling Definition 2.1, we have that μt ∈ Dom(Ent) for
all t ≥ 0. By (2.6), this means that μt = �tLn for some probability density
�t ∈ L1(G) for all t ≥ 0. In addition, t �→ |D−

G
Ent|(μt) ∈ L2

loc([0,+∞)) and
the function t �→ Ent(μt) is non-increasing, therefore a.e. differentiable and locally
integrable on [0,+∞).

Lemma 4.4 below shows that it is enough to establish (4.15) in order to prove
the second part of Theorem 2.4. For the proof, see also the last paragraph of
Section 4.2 in [25].

Lemma 4.4. Let �0 ∈ L1(G) be such that μ0 = �0Ln ∈ Dom(Ent). Assume
(μt)t≥0 is a gradient flow of Ent in (P2(G),WG) starting from μ0, with μt = �tLn

for all t ≥ 0. Let (vGt )t>0 and (wG
t )t>0, w

G
t = ∇G�t/�t, be the horizontal time-

dependent vector fields given by Propositions 3.3 and 3.4, respectively. If it holds

(4.15) − d

dt
Ent(μt) ≤

∫
G

〈−wG

t , v
G

t

〉
G
dμt for a.e. t > 0,

then (�t)t≥0 solves the sub-elliptic heat equation ∂t�t = ΔG�t with initial datum �0.

Proof. From Definition 2.1 we get that

Ent(μt) +
1

2

∫ t

s

|μ̇r|2G dr +
1

2

∫ t

s

|D−Ent|2G(μr) dr ≤ Ent(μs)

for all s, t ≥ 0 with s ≤ t. Therefore,

− d

dt
Ent(μt) ≥ 1

2
|μ̇t|2G +

1

2
|D−Ent|2G(μt) for a.e. t > 0.

By Young’s inequality, and Propositions 3.3 and 3.4, we thus get

(4.16) − d

dt
Ent(μt) ≥ |μ̇t|G ·|D−

G
Ent|(μt) ≥ ‖vGt ‖L2

G
(μt) ·‖wG

t ‖L2
G
(μt) for a.e. t > 0.

Combining (4.15) and (4.16), by the Cauchy–Schwarz inequality we conclude that
vGt = −wG

t = −∇G�t/�t in L2
G
(μt) for a.e. t > 0. This immediately implies that

(�t)t≥0 solves the sub-elliptic heat equation ∂t�t = ΔG�t with initial datum �0 in
the sense of distributions, i.e.,∫ +∞

0

∫
G

∂tϕt(x) + ΔGϕt(x) dμt dt+

∫
G

ϕ0(x) dμ0(x) = 0

∀ϕ ∈ C∞
c ([0,+∞)× R

n).

By well-known results on hypoelliptic operators, this implies that (�t)t≥0 solves
the sub-elliptic heat equation ∂t�t = ΔG�t with initial datum �0. �

To prove Theorem 4.8 below we need some preliminaries. The following two
lemmas are natural adaptations of Lemma 2.14 in [7] to our setting.
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Lemma 4.5. Let μ ∈ P(G) and σ ∈ L1(G) with σ ≥ 0. Let ν ∈ M(G;Rm) be a
R

m-valued Borel measure with finite total variation and such that |ν| � μ. Then

(4.17)

∫
G

∣∣∣σ � ν
σ � μ

∣∣∣2σ � μ dx ≤
∫
G

∣∣∣ ν
μ

∣∣∣2 dμ.
In addition, if (σk)k∈N ⊂ L1(G), σk ≥ 0, weakly converges to the Dirac mass δ0
and ν/μ ∈ L2(G, μ), then

(4.18) lim
k→+∞

∫
G

∣∣∣σk � ν
σk � μ

∣∣∣2σk � μ dx =

∫
G

∣∣∣ ν
μ

∣∣∣2 dμ.
Proof. Inequality (4.17) follows from the Jensen inequality, and it is proved in
Lemma 2.14 of [7]. We briefly recall the argument for the reader’s convenience.
Consider the map Φ: Rm × R → [0,+∞] given by

Φ(z, t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|z|2
t

if t > 0,

0 if (z, t) = (0, 0),

+∞ if either t < 0 or t = 0, z �= 0.

Then Φ is convex, lower semicontinuous and positively 1-homogeneous. Thus, by
Jensen’s inequality, we have

(4.19) Φ
(∫

G

ψ(x) dϑ(x)
)
≤

∫
G

Φ(ψ(x)) dϑ(x)

for any Borel function ψ : G → Rm+1 and any positive and finite measure ϑ on G.
Fix x ∈ G and apply (4.19) with ψ(y) =

(
ν
μ (y), 1

)
and dϑ(y) = σ(xy−1)dμ(y) to

obtain∣∣∣ (σ � ν)(x)
(σ � μ)(x)

∣∣∣2(σ � μ)(x) = Φ
(∫

G

ν

μ
(y)σ(xy−1) dμ(y),

∫
G

σ(xy−1) dμ(y)
)

≤
∫
G

Φ
( ν
μ
(y), 1

)
σ(xy−1) dμ(y) =

∫
G

∣∣∣ν
μ

∣∣∣2(y)σ(xy−1) dμ(y),

which immediately gives (4.17). The limit in (4.18) follows by the joint lower
semicontinuity of the functional (ν, μ) �→ ∫

G
|ν/μ|2 dμ, see Theorem 2.34 and

Example 2.36 in [1]. �

In Lemma 4.6 below, and in the rest of the paper, we let f ∗g be the convolution
of the two functions f and g with respect to the time variable. We keep the notation
f � g for the convolution of f and g with respect to the space variable.

Lemma 4.6. Let μt = �tLn ∈ P(G) for all t ∈ R and let ϑ ∈ L1(R), ϑ ≥ 0. If
the horizontal time-dependent vector field v : R × G → HG satisfies vt ∈ L2

G
(μt)

for a.e. t ∈ R, then

(4.20)

∫
G

∥∥∥ϑ ∗ (�·v·)(t)
ϑ ∗ �·(t)

∥∥∥2
G

ϑ ∗ �·(t) dx ≤ ϑ ∗
( ∫

G

‖v·‖2G dμ·
)
(t) for all t ∈ R.
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In addition, if (ϑj)j∈N ⊂ L1(G), ϑj ≥ 0, weakly converges to the Dirac mass δ0,
then

(4.21) lim
j→+∞

∫
G

∥∥∥ϑj ∗ (�·v·)(t)
ϑj ∗ �·(t)

∥∥∥2

G

ϑj ∗ �·(t) dx =

∫
G

‖vt‖2G dμt for a.e. t ∈ R.

Proof. Inequality (4.20) follows from (4.19) in the same way of (4.17), so we omit
the details. For (4.21), set μj

t = ϑj ∗ μ·(t) and ν
j
t = ϑj ∗ (v·μ·)(t) for all t ∈ R and

j ∈ N. Then ‖νjt ‖G � μj
t and νjt ⇀ νt = vtμt for a.e. t ∈ R, so that

lim inf
j→+∞

∫
G

∥∥∥ϑj ∗ (�·v·)(t)
ϑj ∗ �·(t)

∥∥∥2
G

ϑj ∗ �·(t) dx = lim inf
j→+∞

∫
G

∥∥∥νjt
μj
t

∥∥∥2
G

dμj
t ≥

∫
G

∥∥∥ νt
μt

∥∥∥2
G

dμt

for a.e. t ∈ R by Theorem 2.34 and Example 2.36 in [1]. �

The following lemma is an elementary result relating weak convergence and
convergence of scalar products of vector fields. We prove it here for the reader’s
convenience.

Lemma 4.7. For k ∈ N, let μk, μ ∈ P(G) and let vk, wk, v, w : G → TG be Borel
vector fields. Assume that μk ⇀ μ, vkμk ⇀ vμ and wkμk ⇀ wμ as k → +∞. If

lim sup
k→+∞

∫
G

‖vk‖2G dμk ≤
∫
G

‖v‖2G dμ < +∞ and lim sup
k→+∞

∫
G

‖wk‖2G dμk < +∞,

then

(4.22) lim
k→+∞

∫
G

〈vk, wk〉G dμk =

∫
G

〈v, w〉
G
dμ.

Proof. By lower semicontinuity, we know that

lim
k→+∞

∫
G

‖vk‖2G dμk =

∫
G

‖v‖2G dμ

and

lim inf
k→+∞

∫
G

‖tvk + wk‖2G dμk ≥
∫
G

‖tv + w‖2G dμ for all t ∈ R.

Expanding the squares, we get

lim inf
k→+∞

(
2t

∫
G

〈vk, wk〉G dμk +

∫
G

‖wk‖2G dμk

)
≥ 2t

∫
G

〈v, w〉
G
dμ for all t ∈ R.

Choosing t > 0, dividing both sides by t and letting t → +∞ gives the lim inf
inequality in (4.22). Choosing t < 0, a similar argument gives the lim sup inequality
in (4.22). �

We are now ready to prove the second part of Theorem 2.4.
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Theorem 4.8. Let �0 ∈ L1(G) be such that μ0 = �0Ln ∈ Dom(Ent). If (μt)t≥0

is a gradient flow of Ent in (P2(G),WG) starting from μ0, then μt = �tLn for all
t ≥ 0 and (�t)t≥0 solves the sub-elliptic heat equation ∂t�t = ΔG�t with initial
datum �0. In particular, t �→ Ent(μt) is locally absolutely continuous on (0,+∞).

Proof. By Lemma 4.4, we just need to show that the map t �→ Ent(μt) satis-
fies (4.15). It is not restrictive to extend (μt)t≥0 in time to the whole R by setting
μt = μ0 for all t ≤ 0. So from now on we assume μt ∈ AC2

loc(R; (P2(G),WG)).
The time-dependent vector field (vG)t>0 given by Proposition 3.3 extends to the
whole R accordingly. Note that (μt)t∈R is a gradient flow of Ent in the following
sense: for each h ∈ R, (μt+h)t≥0 is a gradient flow on Ent starting from μh. By
Definition 2.1, we get t �→ |D−

G
Ent|(μt) ∈ L2

loc(R) , so that t �→ FG(�t) ∈ L1
loc(R)

by Proposition 3.4.
We divide the proof in three main steps.

Step 1: smoothing in the time variable. Let ϑ : R → R be a symmetric smooth
mollifier in R, i.e.,

ϑ ∈ C∞
c (R), suppϑ ⊂ [−1, 1], 0 ≤ ϑ ≤ 1,

∫
R

ϑ(t) dt = 1.

We set ϑj(t) := j ϑ(jt) for all t ∈ R and j ∈ N. We define

μj
t := �jtLn, �jt := (ϑj ∗ �·)(t) =

∫
R

ϑj(t− s) �s ds ∀t ∈ R, ∀j ∈ N.

For any s, t ∈ R, let πs,t ∈ Γ0(μs, μt) be an optimal coupling between μs and μt.

An easy computation shows that πj
t ∈ P(G×G) given by∫

G×G

ϕ(x, y) dπj
t (x, y) =

∫
R

ϑj(t− s)

∫
G×G

ϕ(x, y) dπs,t(x, y) ds,

for any ϕ : G×G → [0,+∞) Borel, is a coupling between μj
t and μt. Hence we get

WG(μ
j
t , μt)

2 ≤
∫
R

ϑj(t− s)WG(μs, μt)
2 ds ∀t ∈ R, ∀j ∈ N.

Therefore limj→+∞ WG(μ
j
t , μt) = 0 for all t ∈ R. This implies that μj

t ⇀ μt as
j → +∞ and

(4.23) lim
j→+∞

∫
G

dcc(x, 0)
2 dμj

t (x) =

∫
G

dcc(x, 0)
2 dμt(x) ∀t ∈ R.

In particular, (μj
t )t∈R ⊂ P2(G), Ent(μj

t ) > −∞ for all j ∈ N and

(4.24) lim inf
j→+∞

Ent(μj
t ) ≥ Ent(μt) ∀t ∈ R.

We claim that

(4.25) lim sup
j→+∞

Ent(μj
t ) ≤ Ent(μt) for a.e. t ∈ R.
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Indeed, define the new reference measure ν := e−c d2cc(·,0)Ln, where c > 0 is chosen
so that ν ∈ P(G). Since the function Ĥ(r) := r log r+ (1− r), for r ≥ 0, is convex
and non-negative, by Jensen’s inequality we have

Entν(μ
j
t ) =

∫
G

Ĥ
(
ec d

2
cc(·,0) ϑj ∗ �·(t)

)
dν =

∫
G

Ĥ
(
ϑj ∗

(
ec d

2
cc(·,0)�·

)
(t)

)
dν

≤
∫
G

ϑj ∗ Ĥ
(
ec d

2
cc(·,0)�·

)
(t) dν = ϑj ∗ Entν(μ·)(t) ∀t ∈ R, ∀j ∈ N.

Therefore lim supj→+∞ Entν(μ
j
t ) ≤ Entν(μt) for a.e. t ∈ R. Thus (4.25) follows

by (2.8) and (4.23). Combining (4.24) and (4.25), we get

(4.26) lim
j→+∞

Ent(μj
t ) = Ent(μt) for a.e. t ∈ R.

Let (vGt )t∈R be the horizontal time-dependent vector field relative to (μt)t∈R

given by Proposition 3.3. Let (vjt )t∈R be the horizontal time-dependent vector field
given by

(4.27) vjt =
ϑj ∗ (�·v·)(t)

�jt
∀t ∈ R.

We claim that vjt ∈ L2
G
(μj

t ) for all t ∈ R. Indeed, applying Lemma 4.6, we get∫
G

‖vjt ‖2G dμj
t ≤ ϑj ∗

( ∫
G

‖v·‖2G dμ·
)
(t) = ϑj ∗ |μ̇·|2G(t) ∀t ∈ R.

We also claim that (μj
t )t∈R solves ∂tμ

j
t +div(vjtμ

j
t ) = 0 in the sense of distributions

for all j ∈ N. Indeed, if ϕ ∈ C∞
c (R × Rn), then also ϕj := ϑj ∗ ϕ ∈ C∞

c (R × Rn),
so that∫

R

∫
G

∂tϕ
j(t, x) +

〈∇Gϕ
j(t, x), vjt (x)

〉
G
dμj

t (x) dt

=

∫
R

ϑj ∗
( ∫

G

∂tϕ(·, x) + 〈∇Gϕ(·, x), v·(x)〉G dμ·(x)
)
(t) dt

=

∫
R

∫
G

∂tϕ(t, x) + 〈∇Gϕ(t, x), vt(x)〉G dμt(x) dt = 0 ∀j ∈ N.

By Proposition 3.3, we conclude that (μj
t )t ∈ AC2

loc(R; (P2(G),WG)) with |μ̇j
t |2G ≤

ϑj ∗ |μ̇·|2G(t) for all t ∈ R and j ∈ N.

Finally, we claim that FG(�
j
t ) ≤ ϑj ∗ FG(�·)(t) for all t ∈ R and j ∈ N. Indeed,

arguing as in (4.5), by the Cauchy–Schwarz inequality we have

‖∇G�
j
t‖2G ≤

[
ϑj ∗

(
χ{�.>0}

√
�·

‖∇G�·‖G√
�·

) ]2
(t) ≤ �jt ϑj ∗

(‖∇G�·‖2G
�·

χ{�·>0}
)
(t),

so that

FG(�
j
t ) ≤ ϑj ∗

(∫
{�·>0}

‖∇G�·‖2G
�·

dx
)
(t) = ϑj ∗ FG(�·)(t).
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Step 2: smoothing in the space variable. Let j ∈ N be fixed. Let η : G → R be
a symmetric smooth mollifier in G, i.e., a function η ∈ C∞

c (Rn) such that

supp η ⊂ B1, 0 ≤ η ≤ 1, η(x−1) = η(x) ∀x ∈ G,

∫
G

η(x) dx = 1.

We set ηk(x) := kQ η(δk(x)) for all x ∈ G and k ∈ N. We define

μj,k
t := �j,kt Ln, �j,kt (x) := ηk � �

j
t (x) =

∫
G

ηk(xy
−1)�jt (y) dy, x ∈ G,

for all t ∈ R and k ∈ N. Note that

(4.28) μj,k
t =

∫
G

(ly)#μ
j
t ηk(y) dy ∀t ∈ R, ∀k ∈ N,

where ly(x) = yx, x, y ∈ G, denotes the left-translation.

Note that (μj,k
t )t∈R ⊂ P2(G) for all k ∈ N. Indeed, arguing as in (2.20), we

have ∫
G

dcc(x, 0)
2 dμj,k

t (x) =

∫
G

(
dcc(·, 0)2 � ηk

)
(x) dμj

t (x)

≤ 2

∫
G

dcc(x, 0)
2 dμj

t (x) + 2

∫
G

dcc(x, 0)
2 ηk(x) dx

(4.29)

for all t ∈ R. In particular, Ent(μj,k
t ) > −∞ for all t ∈ R and k ∈ N. Clearly

μj,k
t ⇀ μj

t as k → +∞ for each fixed t ∈ R, so that

(4.30) lim inf
k→+∞

Ent(μj,k
t ) ≥ Ent(μj

t ) ∀t ∈ R.

Moreover, we claim that

(4.31) lim sup
k→+∞

Ent(μj,k
t ) ≤ Ent(μj

t ) ∀t ∈ R.

Indeed, let ν ∈ P(G) and Ĥ as in Step 1. Recalling (4.28), by Jensen’s inequality
we get

(4.32) Entν(μ
j,k
t ) ≤

∫
G

Entν((ly)#μ
j
t ) ηk(y)dy.

Define νy := (ly)#ν and note that νy = e−c dcc(·,y)Ln for all y ∈ G. Thus by (2.7)
we have

Entν((ly)#μ
j
t ) = Entν

y−1
(μj

t ) = Ent(μj
t ) + c

∫
G

dcc(yx, 0)
2 dμj

t (x) ∀y ∈ G.

By the dominated convergence theorem we get that y �→ Entν((ly)#μ
j
t ) is contin-

uous and therefore (4.31) follows by passing to the limit as k → +∞ in (4.32).
Combining (4.30) and (4.31), we get

(4.33) lim
k→+∞

Ent(μj,k
t ) = Ent(μj

t ) ∀t ∈ R.



Heat and entropy flows in Carnot groups 285

Let (vjt )t∈R be as in (4.27) and let (vj,kt )t∈R be the horizontal time-dependent
vector field given by

(4.34) vj,kt =
ηk � (�

j
tv

j
t )

�j,kt

∀t ∈ R, ∀k ∈ N.

We claim that vj,kt ∈ L2
G
(μj,k

t ) for all t ∈ R. Indeed, applying Lemma 4.5, we get

(4.35)

∫
G

‖vj,kt ‖2G dμj,k
t ≤

∫
G

‖vjt ‖2G dμj
t ≤ |μ̇j

t |2G ∀t ∈ R, ∀k ∈ N.

We also claim that (μj,k
t )t∈R solves ∂tμ

j,k
t +div(vj,kt μj,k

t ) = 0 in the sense of distribu-
tions for all k ∈ N. Indeed, if ϕ ∈ C∞

c (R×Rn), then also ϕk := ηk�ϕ ∈ C∞
c (R×Rn),

so that∫
R

∫
G

∂tϕ
k(t, x) +

〈∇Gϕ
k(t, x), vj,kt (x)

〉
G
dμj,k

t (x) dt

=

∫
G

ηk �
(∫

R

∂tϕ(t, ·) +
〈∇Gϕ(t, ·), vjt (·)

〉
G
�jt (·) dt

)
(x) dx

=

∫
R

∫
G

∂tϕ(t, x) +
〈∇Gϕ(t, x), v

j
t (x)

〉
G
dμj

t (x) dt = 0 ∀k ∈ N.

Here we have exploited a key property of the space (G, dcc,Ln) which cannot
be expected in a general metric measure space, that is, the continuity equa-
tion in (3.4) is preserved under regularization in the space variable. By Propo-

sition 3.3 and (4.35), we conclude that (μj,k
t )t ∈ AC2

loc(R; (P2(G),WG)) with

|μ̇j,k
t |G ≤ ‖vj,kt ‖L2

G
(μj,k

t ) ≤ ‖vjt‖L2
G
(μj

t)
≤ |μ̇j

t |G for all t ∈ R and k ∈ N.

Finally, we claim that FG(�
j,k
t ) ≤ FG(�

j
t ) for all t ∈ R and k ∈ N. Indeed,

arguing as in (4.5), by the Cauchy–Schwarz inequality we have

‖∇G�
j,k
t ‖2G ≤

[
ηk �

(
χ{�j

t>0}
√
�jt

‖∇G�
j
t‖G√
�jt

) ]2
≤ �j,kt ηk �

(‖∇G�
j
t‖2G

�jt
χ{�j

t>0}
)
,

so that

FG(�
j,k
t ) ≤

∫
G

ηk �
(‖∇G�

j
t‖2G

�jt
χ{�j

t>0}
)
dx =

∫
{�j

t>0}
‖∇G�

j
t‖2G

�jt
dx = FG(�

j
t ).

Step 3: truncated entropy. Let j, k ∈ N be fixed. For any m ∈ N, consider
the maps zm, Hm : [0,+∞) → R defined in (4.2). We set z̃m(r) = zm(r) +m for

all r ≥ 0 and m ∈ N. Since �j,kt ∈ P(G) for all t ∈ R, differentiating under the
integral sign we get

d

dt

∫
G

Hm(�j,kt ) dx =

∫
G

z̃m(�j,kt ) ∂t�
j,k
t dx
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for all t ∈ R. Fix t0, t1 ∈ R with t0 < t1. Then

(4.36)

∫
G

Hm(�j,kt1 ) dx −
∫
G

Hm(�j,kt0 ) dx =

∫ t1

t0

∫
G

z̃m(�j,kt ) ∂t�
j,k
t dxdt.

Let (αi)i∈N ⊂ C∞
c (t0, t1) such that 0 ≤ αi ≤ 1 and αi → χ(t0,t1) in L1(R) as

i → +∞. Let i ∈ N be fixed and consider the function ut(x) = z̃m(�j,kt (x))αi(t)
for all (t, x) ∈ R×Rn. We claim that there exists (ψh)h∈N ⊂ C∞

c (Rn+1) such that

(4.37) lim
h→+∞

∫
R

∫
G

|ut(x) − ψh
t (x)|2 + ‖∇Gut(x)−∇Gψ

h
t (x)‖2G dxdt = 0.

Indeed, consider the direct product G∗ = R × G and note that G∗ is a Carnot
group. Recalling (2.12), we know that C∞

c (Rn+1) is dense inW 1,2
G∗ (Rn+1). Thus, to

get (4.37) we just need to prove that u ∈ W 1,2
G∗ (Rn+1) (in fact, the L2-integrability

of ∂tu is not strictly necessary in order to achieve (4.37)). We have �j,k, ∂t�
j,k ∈

L∞(Rn+1), because

‖�j,k‖L∞(Rn+1) ≤ ‖ηk‖L∞(Rn), ‖∂t�j,k‖L∞(Rn+1) ≤ ‖ϑ′j‖L1(R)‖ηk‖L∞(Rn)

by Young’s inequality. Moreover, �j,kαi, ∂t�
j,kαi ∈ L1(Rn+1), because

‖�j,kαi‖L1(Rn+1) = ‖αi‖L1(R), ‖∂t�j,kαi‖L1(Rn+1) ≤ ‖ϑ′j‖L1(R)‖αi‖L1(R).

Therefore �j,kαi, ∂t�
j,kαi ∈ L2(Rn+1), which immediately gives u ∈ L2(Rn+1).

Now by Step 2 we have that∫
G

‖∇G�
j,k
t ‖2G dx ≤ ‖�j,kt ‖L∞(Rn)FG(�

j,k
t ) ≤ ‖�j,kt ‖L∞(Rn)FG(�

j
t ) ∀t ∈ R,

so that by Step 1 we get

‖∇G�
j,kαi‖2L2(Rn+1) ≤ ‖ηk‖L∞(Rn)‖α2

i · ϑj ∗ FG(�·)‖L1(R).

This prove that ‖∇Gu‖G ∈ L2(Rn+1). The previous estimates easily imply that
also ∂tu ∈ L2(Rn+1). This concludes the proof of (4.37).

Since �j,k, ∂t�
j,k ∈ L∞(Rn+1), by (4.37) we get that

(4.38) lim
h→+∞

∫
R

∫
G

ψh
t ∂t�

j,k
t dxdt =

∫
R

αi(t)

∫
G

z̃m(�j,kt ) ∂t�
j,k
t dxdt

and
(4.39)

lim
h→+∞

∫
R

∫
G

〈∇Gψ
h
t , v

j,k
t

〉
G
dμj,k

t dt =

∫
R

αi(t)

∫
G

z̃′m(�j,kt )
〈∇G�

j,k
t , vj,kt

〉
G
dμj,k

t dt

for each fixed i ∈ N. Since ∂tμ
j,k
t + div(vj,kt μj,k

t ) = 0 in the sense of distributions
by Step 2, for each h ∈ N we have∫

R

∫
G

ψh
t ∂t�

j,k
t dxdt = −

∫
R

∫
G

∂tψ
h
t dμ

j,k
t dt =

∫
R

∫
G

〈∇Gψ
h
t , v

j,k
t

〉
G
dμj,k

t dt.
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We can thus combine (4.38) and (4.39) to get

(4.40)

∫
R

αi(t)

∫
G

z̃m(�j,kt ) ∂t�
j,k
t dxdt =

∫
R

αi(t)

∫
G

z̃′m(�j,kt )
〈∇G�

j,k
t , vj,kt

〉
G
dμj,k

t dt.

Passing to the limit as i→ +∞ in (4.40), we finally get that

(4.41)

∫ t1

t0

∫
G

z̃m(�j,kt ) ∂t�
j,k
t dxdt =

∫ t1

t0

∫
G

z̃′m(�j,kt )
〈∇G�

j,k
t , vj,kt

〉
G
dμj,k

t dt

by the dominated convergence theorem. Combining (4.36) and (4.41), we get∫
G

Hm(�j,kt1 ) dx−
∫
G

Hm(�j,kt0 ) dx

=

∫ t1

t0

∫
{e−m−1<�j,k

t <em−1}

〈− wj,k
t , vj,kt

〉
G
dμj,k

t dt

(4.42)

for all t0, t1 ∈ R with t0 < t1, where w
j,k
t = ∇G�

j,k
t /�j,kt in L2

G
(μj,k

t ) for all t ∈ R.

We can now conclude the proof. We pass to the limit as m → +∞ in (4.36)
and we get

(4.43) Ent(μj,k
t1 )− Ent(μj,k

t0 ) =

∫ t1

t0

∫
G

〈− wj,k
t , vj,kt

〉
G
dμj,k

t dt

for all t0, t1 ∈ R with t0 < t1. For the left-hand side of (4.36), recall (4.10)

and (4.11) and apply the monotone convergence theorem on {�j,kt ≤ 1} and the

dominated convergence theorem on {�j,kt > 1}. For the right-hand side of (4.36),

recall that t �→ ‖vj,kt ‖L2
G
(μj,k

t ) ∈ L2
loc(R) and that t �→ ‖wj,k

t ‖L2
G
(μj,k

t ) = F
1/2
G

(�j,kt ) ∈
L2
loc(R) by Step 2 and apply the Cauchy–Schwarz inequality and the dominated

convergence theorem.
We pass to the limit as k → +∞ in (4.43) and we get

(4.44) Ent(μj
t1)− Ent(μj

t0) =

∫ t1

t0

∫
G

〈− wj
t , v

j
t

〉
G
dμj

t dt

for all t0, t1 ∈ R with t0 < t1, where w
j
t = ∇G�

j
t/�

j
t in L2

G
(μj

t ) for all t ∈ R. For
the left-hand side of (4.43), recall (4.33). For the right-hand side of (4.43), recall

that t �→ ‖vjt ‖L2
G
(μj

t)
∈ L2

loc(R) and that t �→ ‖wj
t ‖L2

G
(μj,k

t ) = F
1/2
G

(�jt ) ∈ L2
loc(R) by

Step 1, so that the conclusion follows applying Lemmas 4.5 and 4.7, the Cauchy–
Schwarz inequality, and the dominated convergence theorem.

We finally pass to the limit as j → +∞ in (4.44) and we get

(4.45) Ent(μt1)− Ent(μt0) =

∫ t1

t0

∫
G

〈−wG

t , v
G

t

〉
G
dμt dt

for all t0, t1 ∈ R \ N with t0 < t1, where N ⊂ R is the set of discontinuity points
of t �→ Ent(μt) and w

G
t = ∇G�t/�t in L

2
G
(μt) for a.e. t ∈ R by Proposition 3.4. For
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the left-hand side of (4.44), recall (4.26). For the right-hand side of (4.44), recall

that t �→ ‖vGt ‖L2
G
(μt) ∈ L2

loc(R) and that t �→ ‖wG
t ‖L2

G
(μj,k

t ) = F
1/2
G

(�t) ∈ L2
loc(R),

so that the conclusion follows applying Lemmas 4.6 and 4.7, the Cauchy–Schwarz
inequality, and the dominated convergence theorem. From (4.45) we immediately
deduce (4.15) and we can conclude the proof by Lemma 4.4. In particular, by
Proposition 4.2 the map t �→ Ent(μt) is locally absolutely continuous on (0,+∞).

�
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tas de Matemática 50, North-Holland, Amsterdam-London; American Elsevier, New
York, 1973.



Heat and entropy flows in Carnot groups 289

[12] Capogna, L., Danielli, D., Pauls, S.D. and Tyson, J. T.: An introduction to
the Heisenberg group and the sub-Riemannian isoperimetric problem. Progress in
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space. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 1, 1–23.

[15] Erbar, M. and Maas, J.: Gradient flow structures for discrete porous medium
equations. Discrete Contin. Dyn. Syst. 34 (2014), no. 4, 1355–1374.

[16] Fang, S., Shao, J. and Sturm, K.-T.: Wasserstein space over the Wiener space.
Probab. Theory Related Fields 146 (2010), no. 3-4, 535–565.

[17] Franchi, B., Serapioni, R. and Serra Cassano, F.: Meyers–Serrin type theo-
rems and relaxation of variational integrals depending on vector fields. Houston J.
Math. 22 (1996), no. 4, 859–890.

[18] Franchi, B., Serapioni, R. and Serra Cassano, F.: On the structure of finite
perimeter sets in step 2 Carnot groups. J. Geom. Anal. 13 (2003), no. 3, 421–466.

[19] Gigli, N.: On the heat flow on metric measure spaces: existence, uniqueness and
stability. Calc. Var. Partial Differential Equations 39 (2010), no. 1-2, 101–120.

[20] Gigli, N. and Han, B.-X.: The continuity equation on metric measure spaces.
Calc. Var. Partial Differential Equations 53 (2015), no. 1-2, 149–177.

[21] Gigli, N., Kuwada, K. and Ohta, S.-I.: Heat flow on Alexandrov spaces. Comm.
Pure Appl. Math. 66 (2013), no. 3, 307–331.

[22] Gigli, N. and Ohta, S.-I.: First variation formula in Wasserstein spaces over
compact Alexandrov spaces. Canad. Math. Bull. 55 (2012), no. 4, 723–735.

[23] Jordan, R., Kinderlehrer, D. and Otto, F.: The variational formulation of the
Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998), no. 1, 1–17.

[24] Juillet, N.: Geometric inequalities and generalized Ricci bounds in the Heisenberg
group. Int. Math. Res. Not. IMRN 13 (2009), 2347–2373.

[25] Juillet, N.: Diffusion by optimal transport in Heisenberg groups. Calc. Var. Partial
Differential Equations 50 (2014), no. 3-4, 693–721.

[26] Khesin, B. and Lee, P.: A nonholonomic Moser theorem and optimal transport.
J. Symplectic Geom. 7 (2009), no. 4, 381–414.

[27] Le Donne, E.: A primer on Carnot groups: homogenous groups, Carnot–Cara-
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