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ABSTRACT

Temporal information plays a crucial role in many database appli-
cations, however support for queries on such data is limited. We
present an index structure, termed RD-index, to support range-
duration queries over interval timestamped relations, which con-
strain both the range of the tuples’ positions on the timeline and
their duration. RD-index is a grid structure in the two-dimensional
space, representing the position on the timeline and the duration
of timestamps, respectively. Instead of using a regular grid, we con-
sider the data distribution for the construction of the grid in order to
ensure that each grid cell contains approximately the same number
of intervals. RD-index features provable bounds on the running
time of all the operations, allow for a simple implementation, and
supports very predictable query performance. We benchmark our
solution on a variety of datasets and query workloads, investigat-
ing both the query rate and the behavior of the individual queries.
The results show that RD-index performs better than the base-
lines on range-duration queries, for which it is explicitly designed.
Furthermore, it outperforms state of the art indexes also on mixed
workloads containing queries that constrain either only the dura-
tion or the range along with range-duration queries. Finally, the
size of the RD-index is in all settings smaller than the competitors.
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1 INTRODUCTION

Temporal information plays a crucial role in many database appli-
cations: in fact, many database management systems and the SQL
standard [29] provide automated version control of the data and
time travel facilities, allowing to efficiently access past history. Past
research mainly concentrated on efficient solutions for important
temporal operators, such as temporal aggregation [9, 25, 31, 35],
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temporal joins [11, 17, 36], and time travel [24] queries. All these
approaches consider only the position of intervals along the time-
line, ignoring another important aspect, namely the duration of
intervals. As a result, index structures to support more general
selection queries that constrain both the duration and the position
in time of intervals have been missing [8, 16, 29] until recently [4].
In many application domains, however, both aspects of temporal
information are useful to formulate queries.

Example 1.1. As a concrete use case, consider the use of an-
tibiotics in healthcare. Antibiotic resistance is a world challenge,
and the emergence of new resistance factors is very difficult to
monitor and to predict due to the diversity of antibiotic usage
and events (e.g., environment, species evolution, medical practices,
etc.) [21, 30]. Selecting the most appropriate antibiotic and the ap-
propriate treatment duration is an essential step to reduce antibiotic
resistance [21]. Thus, defining guidelines for the duration of an-
tibiotic treatments, measuring the adherence to these guidelines,
and developing stewardship tools regarding antibiotics usage can
help clinicians in choosing the optimal treatment considering the
patient’s medical history [30, 41]. Such measures should be imple-
mented at a national level in order to monitor and audit antibiotic
resistance on a larger scale. In this context, the following types of
temporal queries are frequent:
𝑄1: “Find all antibiotics prescriptions fromOctober 1, 2016 toMarch

31, 2017.”

𝑄2: “Find all antibiotics prescriptions with a treatment duration

between 5 and 8 days.”

𝑄3: “Find all antibiotics prescriptions fromOctober 1, 2016 toMarch

31, 2017, with a treatment duration between 1 and 2 weeks.”

The first query 𝑄1 retrieves tuples based on the position of the
events on the timeline; we call it range query. In contrast, query𝑄2
imposes constraints on the duration of matching events, and we
call it duration query. Finally, query 𝑄3 constrains both types of
information; we call it range-duration query. This type of queries
can be found and have been reported as a primitive operation in
other application scenarios that deal with interval data, e.g., in air
traffic analysis [5, 39, 40], event detection for video surveillance [34],
or the analysis of clinical data [6].

Existing index structures typically support only one of the two
aspects, either the position of the interval on the timeline or the
duration of the interval. For instance, the well-known relational
interval tree [27] is optimized for efficiently determining tempo-
ral relationships between intervals but not interval lengths. In the
worst case, the entire index tree must be traversed if a query solely
contains restrictions on the interval length. Alternatively, the du-
ration of the intervals can be indexed straightforwardly using a
classic data structure such as a B-tree. In this case, however, queries
constraining only the range of the intervals will need to traverse
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the entire tree. Combining the two indexes is typically inefficient
since a query can have different selectivities in the two dimen-
sions. Therefore, to efficiently support workloads involving a mix
of all three types of queries mentioned above we seek a new index
structure that supports both dimensions at the same time.

In this paper, we introduce RD-index, a novel two-dimensional
data structure that indexes time intervals both on their position
on the timeline and their duration. Our index structure partitions
the intervals in a grid according to their start times and durations.
Rather than constructing a regular grid, the boundaries between the
grid cells are determined by taking into account the data distribu-
tion. Such a strategy ensures that each cell contains approximately
the same number of intervals, with the exception of some edge
cases if the distribution of the intervals is extremely skewed. The
uniform distribution of the data over all grid cells allows to ob-
tain very predictable query times, which are proportional to the
selectivity of the query. We prove that the time for answering a
range-duration query with RD-index is 𝑂 ( 𝑛

𝑠2 log 𝑛
𝑠 +

𝑛
𝑠 + 𝑠

2 + 𝑘),
where 𝑛 is the size of the input relation, 𝑘 is the number of in-
tervals matching the query predicate, and 𝑠 is the page size. The
index can be constructed in 𝑂 (𝑛 log𝑛) time. The page size 𝑠 is the
only parameter of our index structure, and it is independent of the
data distribution. The index structure also lends itself to a rather
simple implementation. While being explicitly designed to address
range-duration queries, RD-index also supports range-only and
duration-only queries efficiently.

We present the results of a detailed experimental evaluation. The
results show that the overhead introduced by the data structure is
indeed negligible and that the running time in practice is largely
proportional to the selectivity of the query. This is in contrast to
the competitors we compare to. On range-duration queries we
find that RD-index clearly outperforms the competitors. On mixed
workloads comprising all three types of queries, we find that RD-
index outperforms the competitors in the vast majority of the
workloads, even for cases for which specialized solutions exist.

Our contributions can be summarized as follows:
• We describe RD-index, a novel index structure that supports
temporal queries involving both the duration and the range
of time intervals.
• We provide efficient algorithms for constructing and query-
ing the index.
• We prove bounds on the performance of RD-index, which
can be tuned with a single page size parameter 𝑠 .
• Weprovide an extensible open source implementation, which
we benchmark against state-of-the-art competitors, showing
significantly better performance across several workloads.

We lay out the fundamental concepts underlying our approach
in Section 2, before reviewing the state of the art in Section 3. Our
data structure is introduced in Section 4, and the complexity of
all operations is analyzed in Section 5. Experimental results are
presented in Section 6, before drawing our conclusions in Section 7.

2 PRELIMINARIES

We assume a linearly ordered, discrete time domain, Ω𝑇 . A time
interval is a set of contiguous time points, and 𝑡 = [𝑡𝑠 , 𝑡𝑒 ) denotes
the closed-open interval of points from 𝑡𝑠 to 𝑡𝑒 . We use |𝑡 | = 𝑡𝑒 − 𝑡𝑠

drug 𝑇𝑠 𝑇𝑒 duration
𝑟1 Amoxicillin June 08 June 14 (6 days)
𝑟2 Amoxicillin June 10 June 12 (2 days)
𝑟3 Ceftriaxone June 20 July 05 (15 days)
𝑟4 Levofloxacin June 24 July 04 (10 days)

(a) Sample of relation with antibiotic prescriptions

𝑟2

𝑟3

𝑟4

𝑟1

Jun 15 Jul 01 Jul 15

(b) Range-duration query

Figure 1: Running example.

to denote the duration of time interval 𝑡 and 𝑡 ∩ 𝑡 ′ to denote the set
of time points shared by two intervals 𝑡 and 𝑡 ′, which, if not empty,
is itself an interval. The schema of a temporal relation is given
by 𝑅 = (𝐴1, . . . , 𝐴𝑚,𝑇 ), where 𝐴1, . . . , 𝐴𝑚 are the non-temporal
attributes with domains Ω𝑖 and𝑇 is the time interval attribute with
domain Ω𝑇 × Ω𝑇 representing, for instance, the tuple’s valid time.
A temporal relation r with schema 𝑅 is a finite set of tuples, where
each tuple has a value in the appropriate domain for each attribute
in the schema. We use 𝑟 .𝐴𝑖 to denote the value of attribute 𝐴𝑖 in
tuple 𝑟 , and 𝑟 .𝑇 = [𝑟 .𝑇𝑠 , 𝑟 .𝑇𝑒 ) to refer to its time interval.

The index we propose efficiently supports the three following
types of temporal queries (defined as in [4]).

Definition 2.1 (Range query). Given a temporal interval 𝑡 =

[𝑡𝑠 , 𝑡𝑒 ) and a temporal relation r, a range query is defined as

𝑄 (r, 𝑡) = {𝑟 ∈ r : 𝑟 .𝑇 ∩ 𝑡 ≠ ∅}
Definition 2.2 (Duration query). Given a duration interval 𝑑 =

[𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ] and a temporal relation r, a duration query is defined
as

𝑄 (r, 𝑑) = {𝑟 ∈ r : |𝑟 .𝑇 | ∈ [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ]}
Definition 2.3 (Range-duration query). Given a temporal interval

𝑡 = [𝑡𝑠 , 𝑡𝑒 ), a duration interval 𝑑 = [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ], and a temporal
relation r, a range-duration query is defined as

𝑄 (r, 𝑡, 𝑑) = {𝑟 ∈ r : 𝑟 .𝑇 ∩ 𝑡 ≠ ∅ ∧ |𝑟 .𝑇 | ∈ [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ]}
A range query retrieves all tuples whose time interval intersects

with the query range 𝑡 . A duration query retrieves all tuples whose
time interval has a duration that is between 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 . A
range-duration query is a combination of the former two.

Example 2.4. As a running example, we consider real-world drug
prescriptions from the MIMICIII open source database [22] (cf. use
case in Example 1.1). It stores antibiotic prescriptions, character-
ized by a start date and an end date of the prescription and the
duration of the treatment. An excerpt of four tuples is shown in
Figure 1a. Consider the following range-duration query: Retrieve all
prescriptions in the period from June 15 to July 15 with a treatment
duration between 5 and 15 days. Figure ?? shows a graphical repre-
sentation of the relation and the query, where the time intervals
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are drawn by thick solid horizontal lines. The red area indicates
the range constraint 𝑡 . The red segment below of each timestamp
interval denotes the duration constraint, where the dotted red line
indicates the range [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ]. Hence, an interval satisfies the
range constraint if it intersects with the red area, and it satisfies
the duration constraint if its end point is within the dotted red line.
Tuple 𝑟1 satisfies only the duration constraint, tuple 𝑟2 satisfies
neither constraint, tuple 𝑟3 satisfies only the range constraint, and
tuple 𝑟4 satisfies both.

3 RELATEDWORK

The type of selection queries we are studying in this paper are
queries with a conjunctive predicate, where one predicate in the
conjunction restricts the position of intervals on the time line and
the second the duration of intervals. In this section, we review
indexing structures that are (partially) suitable for such selection
queries, and also review structures similar to our approach that are
used for interval joins.

Range-only queries. There are several approaches devoted to in-
dexing interval timestamped data. Edelsbrunner’s Interval Tree [19]
is one of the most popular indexing structure for intervals. It is
asymptotically optimal for selection queries involving the over-
lap predicate, and there exists an implementation using standard
relational database technology based on B-tree indexes [27]. A
shortcoming of the interval tree is that, in contrast to our indexing
structure, it does not provide a mechanism to restrict the duration
of intervals, and thus can only solve one part of a range-duration
query. A similar indexing structure is the segment tree [7]. It builds
disjoint segments over intervals at the leaf level using all start and
end points in a relation, and recursively merges segments in in-
termediate nodes of the tree. This data structure was originally
designed for point queries over intervals (also known as time travel
queries), i.e., for retrieving all intervals overlapping a given time
point. The segment tree also supports selection queries with the
overlap predicate given a query interval, albeit in this case a du-
plicate elimination step for intervals retrieved multiple times is
required. Another index structure that support time travel queries
is the timeline index [23, 24]. The timeline index stores the start and
end points of intervals in an event list in sorted order and allows
to retrieve all tuples that overlap a given time point by scanning
through the event list and discarding tuples that ended before the
given time point. To avoid scanning through the entire event list,
the index maintains regular checkpoints that store all tuples that
overlap the time point of the checkpoint. Similarly to the interval
tree, the segment tree and timeline index do not support to restrict
the duration of intervals.

The HINT index structure [14] also addresses selection queries
with the overlap predicate. It is based on a hierarchy of grids of
increasing granularity. To efficiently handle skewed data, it uses
an additional index of non-empty partitions. HINT is very efficient
at indexing the position of intervals on the timeline, but does not
index their duration: for range-duration queries this implies that the
duration constraint has to be checked using an expensive filtering
of the result of the range query.

Range-duration queries. In a two dimensional space, intervals
can be represented as 2D points, where one dimension is the start

point and the second dimension is either the end point or the
duration of an interval. In such a space, a selection query with the
overlap predicate corresponds to a selection query over a 2D area.
For this, multidimensional indices can be used. R-trees [1, 3] are
multidimensional indices that group objects in a multidimensional
space using minimum bounding (hyper) rectangles. Quadtrees and
octrees [20, 38, 42] recursively divide the space into partitions and
place objects into the best fitting partition according to some criteria.
All of the aforementioned indexes are linked data structures, which
suffer from poor locality, both when implemented in-memory and
on disk. In contrast, our RD-index can be implemented by means
of simple arrays, and thus enjoys high cache locality.

Another multidimensional index structure is the grid file [33]. In
the context of time intervals, the idea would be to partition the span
of durations and of starting times into cells of equal width, thus
allowing efficient access to both dimensions. The main drawback
of this data structure is that in case of skewed data distributions
the load of the cells is unequal, which might significantly harm the
performance.

A recent approach tomultidimensional indexing is that of learned
indexes [26]: the proposition is that index structures are models

mapping keys to records. Therefore machine learning models can
be used to provide this mapping, in lieu of the classic data structures.
In particular, Flood and Tsunami [18, 32] use Recursive Model
Index [26] and a variant of decision trees to model the position of
records in the database, adapting to the distribution of the data and
of the query workload. Our approach shares some ideas with this
line of work, namely adapting to the data distribution by means of
the conditional cumulative distribution function. However, while
our index supports both insertions and deletions, both Flood and
Tsunami are tailored at read-onlyworkloads. Furthermore, we prove
bounds on the worst case running times for all the operations,
while [18, 32] provide an empirical evaluation. Finally, our approach
is arguably simpler, in that it is based just on sorting and iterating
through records.

Very recently, Behrend et al. [4] proposed an index, named
Period-Index★, that explicitly supports range-duration queries.
The index partitions the time domain in buckets. An interval is as-
signed to all buckets it intersects with.Within each bucket, intervals
are further partitioned in levels according to their duration, with the
minimum duration indexed within each level decreasing geometri-
cally. To support efficient indexing along the start time dimension,
each level is further partitioned in the time domain. This data struc-
ture is adaptive to the distribution of start times, while it assumes
a Zipf-like distribution for the duration of the intervals. Our index
structure removes this assumption, thus supporting datasets with
arbitrary distributions of the tuples’ duration. Furthermore, our
index features only one data-independent parameter, instead of the
two data-dependent parameters of Period-Index★, and it allows to
control whether to index first by duration or time. Moreover, we do
not replicate intervals in the index, yielding a significantly smaller
structure, thereby avoiding the consequent possible performance
degradation. Finally, Period-Index★ does not support updates of
the index.

Other types of queries. In recent years, algorithms for interval
joins, which can be seen as a sequence of range queries, have been
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actively studied. Approaches based on the timeline index [24] pro-
cess sets of intervals as sorted event lists of their start and end
points. The interval join is computed by scanning these event lists
in an interleaved fashion, thereby keeping and joining sets of active
intervals, i.e., intervals whose start has been encountered but not
the end point. To improve the performance of the original linked
list data structure for storing active intervals, a gapless hash map
has been proposed in [36] that provides a higher performance for
scanning active intervals. The same idea has also been extended for
joins using general Allen’s predicates [37] rather than only overlap
predicates. The works in [10, 11, 17] compute an interval join us-
ing sorting and backtracking. First, the input relations are sorted
by start time and then an interleaving merge-join is performed
to compute the temporal join between the two relations. Other
approaches [12, 15] for the interval join are based on partitioning
intervals according to their position and then produce the join re-
sult by joining relevant partitions. While all these approaches for
the interval join provide mechanisms to join overlapping intervals,
in contrast to our work they are not applicable for general selection
queries as they always require to read the entire relations. Moreover,
the duration of intervals is not considered at all in these works.

4 THE RD-INDEX STRUCTURE

4.1 Overview

An interval can be completely described by its starting time and
duration, alternatively, to its starting and ending time. Therefore, a
set of temporal intervals can be represented as a set of points in a
two dimensional space, with one coordinate being the start time
and the other the duration. A range-duration query 𝑄 (r, 𝑡, 𝑑) with
𝑡 = [𝑡𝑠 , 𝑡𝑒 ) and 𝑑 = [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ] in such a space is represented by
a polygon containing all tuples 𝑟 ∈ r such that

|𝑟 .𝑇 | ∈ [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ] (1)
𝑟 .𝑇𝑒 > 𝑡𝑠 (2)
𝑟 .𝑇𝑠 < 𝑡𝑒 (3)

An example of this representation of intervals and queries is
shown in Figure 3, along with the partitioning of this space induced
by our index.

The RD-index we are presenting is a two-dimensional grid,
partitioning the tuples into disjoint buckets according to the start
time and the duration of the intervals. The boundaries between
cells are defined by using the empirical cumulative distribution
function of the tuples’ duration and the starting times, so that each
cell contains approximately the same number of intervals, which
corresponds to the page size 𝑠 of our index. This allows the index
to adapt to the distribution of the input and to different scenarios.
In a main memory scenario, the parameter 𝑠 could be set such that
a cell fits in a cache line. In an external memory setting, it might
be set to the disk block size.

To simplify the presentation, in the following we will focus on
the timestamp interval attribute𝑇 of relation r: in the discussion we
assume that each interval being inserted in the index is associated
with a reference to the tuple in r it belongs to.

1 2 4 4 7 8 10 131313 13 13 13 13 13 13 1313 14 15 16 17 19 21 23

first group second group (heavy) third group

x
8 4 5 10 9 9 2 356 7 9 10 11 13 14 15 17 18 4 2 4 5 12 8

Start:
Dur:

Figure 2: Partitioning a sequence of intervals sorted by start

time using NextSubseq with parameter 𝑏 = 9, with the start

time being the key function.

4.2 Index Construction

The grid structure of the RD-index partitions an array of tuples
first along either the start time or duration dimension of the inter-
vals, and then along the other. The choice of which dimension to
index first may impact the performance of the index, depending on
the query workload and the data distribution (cf. Section 6). In the
following we assume that the start time dimension is partitioned
first, followed by the duration dimension. All the descriptions, con-
siderations, and proofs also hold with the dimensions swapped.

Before describing the algorithm to build the index, we present
the subroutine NextSubseq, which partitions an array of tuples
that is sorted according to a given key function. We will use this
subroutine to determine columns and cells of the grid structure,
using first the start time and then duration as keys. Given an indexℎ
and a size parameter 𝑏, NextSubseq returns a subsequence starting
at ℎ that either contains at most 𝑏 tuples, or contains tuples that
all share the same key. Additionally, all the tuples with the same
key are part of the same subsequence. The pseudocode is reported
in Algorithm 1 and works as follows. Starting from index position
ℎ, if there are fewer than 𝑏 elements after ℎ then we return all the
tuples from ℎ onwards. Otherwise, we look at the tuple at position
ℎ′ = ℎ +𝑏 and consider two cases1. If the tuples at position ℎ and ℎ′
have the same key, then we scan forward until the first tuple with
a different key occurs (lines 4–5). Otherwise, we scan backward
until two consecutive tuples have different keys (lines 6–7). In both
cases, the rationale is to avoid splitting runs of same-key tuples
between different subsequences.

Note that Algorithm 1 might return a subsequence with more
than 𝑏 elements if and only if all share the same key. In such case
we deem the returned subsequence heavy, otherwise we deem it
light. As we shall see in Section 4.3, heavy subsequences are easy
to deal with for our index.

Example 4.1. Figure 2 depicts three invocations of NextSubseq
on a sequence of sorted start times, with parameter 𝑏 = 9. The
first jump by 9 positions would split the run of intervals with start
time 13. Therefore, the algorithm iterates back until the first start
time < 13. The second invocation would again split the same run
since it contains more than 9 intervals with start time 13. This time,
since the endpoints of the jump have the same value, the algorithm
iterates forward until the last interval with the same start time,
thus finding a heavy subsequence. The last jump defines the third
group.

We are now ready to describe the index construction procedure
BuildIndex, which is shown in Algorithm 2. Let 𝑠 be the page size
1Therefore ℎ′ is the end index of the subsequence, non-inclusive.
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Algorithm 1: NextSubseq (r, ℎ, 𝑏, 𝑘)
Input: Relation r sorted according to 𝑘 ; current index position ℎ;

subsequence size 𝑏; key function 𝑘

Output: Subsequence of r starting from position ℎ, either of size
≤ 𝑏 or with all tuples having the same key

1 if ℎ + 𝑏 ≥ |r | then
2 return subsequence ⟨rℎ, . . . , r|r|−1 ⟩;

3 ℎ′ ← ℎ + 𝑏;
4 if 𝑘 (rℎ ) = 𝑘 (rℎ′ ) then
5 while ℎ′ < |r | ∧ 𝑘 (rℎ ) = 𝑘 (rℎ′ ) do ℎ′ ← ℎ′ + 1;
6 else

7 while 𝑘 (rℎ′−1 ) = 𝑘 (rℎ′ ) do ℎ′ ← ℎ′ − 1;

8 return subsequence ⟨rℎ, rℎ+1, . . . , rℎ′−1 ⟩;

Algorithm 2: BuildIndex(r, 𝑠)
Input: Temporal relation r and page size parameter 𝑠
Output: Grid𝐺 partitioning r by start time and duration, along

with auxiliary arrays.

1 grid← [][];
2 col_minstart← [];
3 col_maxend← [];
4 cell_mindur← [][];
5 cell_maxdur← [][];

6 Sort r by interval start time;
7 ℎ← 0 /* position in r */

8 𝑖 ← 0 /* column index */

9 while ℎ < |r | do
10 column← NextSubseq(r, ℎ, 𝑠2, 𝑟 .𝑇 → 𝑟 .𝑇𝑠 ) ;
11 col_minstart[i]← min{𝑟 .𝑇𝑠 : 𝑟 ∈ column};
12 col_maxend[i]←

max{col_maxend[i-1], {𝑟 .𝑇𝑒 : 𝑟 ∈ column}} ;

13 Sort column by duration;
14 𝑘 ← 0 /* position in column */

15 𝑗 ← 0 /* cell index */

16 while 𝑘 < |column | do
17 cell← NextSubseq(column, 𝑘, 𝑠, 𝑟 .𝑇 → |𝑟 .𝑇 | ) ;
18 Sort cell by end time;
19 grid[i][j]← cell;
20 cell_mindur[i][j]←

min{ |𝑟 .𝑇 | : 𝑟 ∈ cell};
21 cell_maxdur[i][j]←

max{ |𝑟 .𝑇 | : 𝑟 ∈ cell};
22 𝑗 ← 𝑗 + 1;
23 𝑘 ← 𝑘 + |cell |;
24 𝑖 ← 𝑖 + 1;
25 ℎ← ℎ + |column |;
26 return (grid, col_minstart, col_maxend, cell_mindur,

cell_maxdur);

parameter, and r be the relation to be indexed. First, we sort r by
increasing start time. Then, we repeatedly invoke NextSubseq
(line 10) to divide the relation into columns of 𝑠2 tuples each, based
on their start times. Defining columns in this way allows, intuitively,
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Figure 3: Instantiation of RD-index with page size 𝑠 =

70 on the example dataset. Above the plot we report the

col_minstart and col_maxend arrays.

to then further partition each column in 𝑠 cells of 𝑠 elements each
As a special case, if there are more than 𝑠2 tuples with the same start
time, NextSubseq will assign them to the same column, which we
then deem heavy. We also keep track of the minimum start time in
each column using an auxiliary array col_minstart. Similarly, the
array col_maxend stores the cumulative maximum end time in the
columns, i.e., the maximum end time found so far in the relation.
Both of these arrays will be used at query time: the first to find the
first column to inspect for a given query, the second to determine
when to stop iterating through columns. Note that col_maxend
records the cumulativemaximum end time of columns. This ensures
that no interval in columns ≤ 𝑖 ends after col_maxend[i], which
will be useful at query time.

Each column is further partitioned in cells in a similar way. First
we sort the tuples in the column by increasing duration. Then we
define cells of size 𝑠 by repeatedly invoking NextSubseq (line 17).
Again, if there are more than 𝑠 tuples with the same duration, they
will all be assigned to the same cell, which will then be deemed
heavy. Similarly to columns, also cells are complemented by two
arrays of ancillary information: cell_mindur stores the minimum
duration in each cell to be used at query time to find the first cell to
inspect, while cell_maxdur stores the maximum duration in each
cell, which at query time will determine when to stop iterating
through cells.

Finally, tuples in each cell are sorted by the end time. This is
useful at query time, since it allows to stop queries early, as we
shall discuss in the proof of Theorem 5.3.

We now formally define light and heavy columns and cells, since
they play a key role in the proof of the performance of our index
structure.

Definition 4.2. For a given page size 𝑠 , a heavy column (resp. cell)
contains > 𝑠2 (resp. > 𝑠) intervals. Conversely, a light column (resp.
cell) contains ≤ 𝑠2 (resp. ≤ 𝑠) intervals.

Example 4.3. Figure 3 shows the grid (in green) constructed by
Algorithm 2 on our example relation from Figure 3, with page
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size parameter 𝑠 = 70. Note that the columns, which contain 𝑠2 =

4 900 tuples each, span different ranges of start times, adapting
to the density of the points. Within each column, the points are
partitioned according to the distribution of durations. Since many
drug prescriptions have the same short durations, the cells at the
bottom of the columns are heavy (or span only a few different
duration values). In this setting, a uniform grid would be heavily
imbalanced. The red box denotes the area corresponding to the
query of Example 2.4.

4.3 Querying the Index

Given a range-duration query with time range 𝑡 = [𝑡𝑠 , 𝑡𝑒 ) and
duration interval 𝑑 = [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ], recall that a tuple 𝑟 ∈ r satisfies
the query if the conditions (1), (2), and (3) specified in Section 4.1
are met.

The pseudocode for querying the index structure is reported in
Algorithm 3. First, we seek the index of the last column that might
contain matching tuples. To this end, we perform a binary search
on the array col_minstart to find the last column 𝑖 such that the
minimum start time in the column (which is the column bound)
is strictly less than the query end time 𝑡𝑒 (line 2). This ensures
that the column contains at least one tuple satisfying condition (3).
Then, we iterate backwards through columns until column 𝑖 cannot
possibly contain tuples satisfying the query. For this, we use the
support array col_maxend: if col_maxend[i] ≤ 𝑡𝑠 then we know
that all the columns at index ≤ 𝑖 contain tuples that stop earlier
than the start of the query range. Hence, we can avoid inspecting
them because of condition (2).

For each column that we consider, a binary search on the array
cell_mindur[i] is performed, looking for the last cell 𝑗 such that
the minimum duration in the cell (which is the cell bound) is ≤ to
the maximum duration 𝑑𝑚𝑎𝑥 specified in the query (line 4). Doing
so ensures that at least one tuple in the cell satisfies the upper
bound of condition (1). Then, we iterate backwards through the
cells until we reach a cell whose maximum duration is less than the
minimum duration 𝑑𝑚𝑖𝑛 of the query. At this point we stop since
condition (1) can no longer be satisfied.

Finally, we iterate through the tuples of each considered cell by
decreasing end time and stop as soon as condition (2) is no longer
satisfied (line 7). All the intervals that satisfy the query are returned
in the result.

4.4 Updating the Index

Our index data structure can be extended to support both insertion
and removal of tuples. In any case, we stress that our focus is on
the analysis and exploration of data rather than on updates.

Interval Insertion. To insert a tuple 𝑟 , we query the index for
the start time 𝑟 .𝑇𝑠and the duration |𝑟 .𝑇 | to identify the cell that
should contain 𝑟 . Inserting new intervals into cells mightmake them
grow too large to be able to maintain the performance guarantees
on the query time. Luckily, as we shall see in Section 5, heavy
columns and cells do not present issues upon insertions by virtue
of containing intervals that all share either the same start time or
the same duration. If a light column exceeds size 𝑠2, we replace it
with two new columns. Similarly, if a light cell exceeds size 𝑠 , we
replace it with two new cells.

Algorithm 3:Query (grid, [𝑡𝑠 , 𝑡𝑒 ) , [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ])
Input: A range duration query with time range [𝑡𝑠 , 𝑡𝑒 ) and

duration range [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ]; An index grid with the
ancillary arrays col_minstart, cell_mindur, col_maxend,
and cell_maxdur

1 𝑟𝑒𝑠 ← ∅;
2 𝑖 ← argmax𝑖 col_minstart[i] < 𝑡𝑒 ;
3 while 𝑖 ≥ 0 ∧ 𝑡𝑠 < col_maxend[i] do
4 𝑗 ← argmax𝑗 cell_mindur[i][j] ≤ 𝑑𝑚𝑎𝑥 ;
5 while 𝑗 ≥ 0 ∧ cell_maxdur[i][j] ≥ 𝑑𝑚𝑖𝑛 do

6 for 𝑟 ∈ grid[i][j] do
7 if 𝑟 .𝑇𝑒 ≤ 𝑡𝑠 then break;
8 if |𝑟 .𝑇 | ∈ [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ] ∧ 𝑟 .𝑇𝑠 < 𝑡𝑒 then

9 𝑟𝑒𝑠 ← 𝑟𝑒𝑠 ∪ {𝑟 };

10 𝑗 ← 𝑗 − 1;

11 𝑖 ← 𝑖 − 1;

12 return 𝑟𝑒𝑠

Splitting a column entails to consider all the intervals it contains,
usingNextSubseqwith 𝑏 = 𝑠2/2+1 to find the breakpoint at which
to split (this way, we balance the size of the new columns). For each
of the two new columns that replace the original column, we apply
NextSubseq to split them into cells, exactly as in the inner loop of
the index construction. The array col_minstart and col_maxend
are updated to reflect the replacement of the old column with the
new ones.

Similarly, to split a cell that exceeds size 𝑠 in column 𝑖 we use
NextSubseq with 𝑏 = 𝑠/2 + 1 to find a new breakpoint and replace
the cell with two new cells. The auxiliary structures cell_mindur[i]
and cell_maxdur[i] are updated accordingly.

Both in the case of column and cell splitting, we sort all the
intervals in the newly created cells by end time.

Interval Removal. As for the removal of a tuple 𝑟 from the index,
we query the index to find the cell grid[i][j] that contains 𝑟 .𝑇
and remove the interval from the cell. As a consequence, the cell
might contain fewer than 𝑠/2 items. As we shall see with Lemma 5.2,
it is crucial for the performance of the index that cells contain at
least 𝑠/2 intervals.

Therefore, upon removal of an element from a cell, we check
whether the sum of elements of the cell and either of the adja-
cent ones is less than 𝑠 . In such case, we merge the two cells, i.e.,
we replace them with a single cell where all intervals are then
sorted by decreasing end time. After cells are merged, the arrays
cell_mindur[i] and cell_maxdur[i] are updated as well to re-
flect the changes.

Similarly, a removal might cause a column to have fewer than
𝑠2/2 elements. We then apply a similar reasoning. If the sum of
the number of items in the column and either adjacent ones is
smaller than 𝑠2/2, we merge the two columns, i.e., the two columns
are replaced by a single one. NextSubseq is then called to find
the breakpoints to divide the newly created column into cells. Af-
ter the two columns are merged, the arrays col_minstart and
col_maxend are updated to reflect the changes.
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5 ANALYSIS

In this section, we provide guarantees on the time required by all
the operations supported by our index structure. We assume that
the index is built by partitioning first in the time dimension, and
then in the duration dimension. The asymptotic results presented
in this section hold for both dimension orderings.

5.1 Querying the Index

The proofs of the following lemmas and theorem are given in the
full version [13] for the sake of space.

Lemma 5.1. A heavy cell in a heavy column contains only copies

of the same interval.

Lemma 5.2. The RD-index with parameter 𝑠 over 𝑛 intervals has

𝑂

(
𝑛
𝑠2

)
columns, each having 𝑂

(
𝑛
𝑠

)
cells.

Theorem 5.3. Given an index over a set of 𝑛 intervals and a page

size 𝑠 , the time for answering a range-duration query is

𝑂

( 𝑛
𝑠2 log

𝑛

𝑠
+ 𝑛
𝑠
+ 𝑠2 + 𝑘

)
where 𝑘 is the number of intervals matching the query predicate.

The above theorem exposes a fundamental tradeoff of our data
structure: using a smaller page size allows to improve the precision
of the data structure (by looking at fewer intervals that are not part
of the query output), while at the same time increasing the number
of columns that need to be queried. In Section 6.4 we investigate
experimentally the effect of 𝑠 on the performance, finding that the
best performance is attained for 𝑛/𝑠2 ∈ [50, 500].

The intuition in the proof of Theorem 5.3 is that each cell visited
by a query is either light, and thus contributes at most 𝑂 (𝑠) time
to the running time, or is heavy, in which case all its intervals are
part of the output, contributing 𝑂 (𝑘) to the running time.

The choice of the order of partitioning has no impact on the
theoretical complexity results, however it affects the practical per-
formance as we will discuss in Section 6 (Figure 7). It turns out that
generally it is better to index first the duration and then the start
time, as summarized in the following observation.

Observation 1. Changing the order in which dimensions are

indexed does not change the asymptotic behavior of RD-index, but

might affect the practical performance. A duration query is insensitive

to the position of start times. Conversely, a range query can benefit

from a partition of the end times, which is implied by the duration

partitioning. Hence, indexing first by duration might prove beneficial.

5.2 Index Construction and Update

For the sake of space, the proofs of the following theorems can be
found in the extended version [13].

Theorem 5.4. Given a set of𝑛 intervals, building the index requires
time 𝑂 (𝑛 log𝑛).

Theorem 5.5. Inserting a tuple 𝑟 into the index requires time

𝑂
(
log𝑛/𝑠 + 𝑛/𝑠 + 𝑠2 log 𝑠

)
.

Theorem 5.6. Removing a tuple 𝑟 from the index requires time

𝑂 (log𝑛/𝑠 + 𝑛/𝑠).

6 EXPERIMENTAL EVALUATION

To frame our evaluation, we consider the following data structures
as baselines. The implementation of B-Tree provided by the Rust
standard library, which is optimized for CPU cache usage; intervals
are indexed by duration in this case. The Interval-Tree index [27],
which we implemented ourselves, indexing intervals by their posi-
tion on the timeline. The Grid-File [33] and Period-Index★ [4],
which we also implemented, and which index both start times
and durations. We also consider the R-Tree as a baseline, specif-
ically the R*-Tree2 [3]: intervals are mapped to points identified
by the start time and duration of the interval, and then indexed by
the R*-Tree. Furhtermore, we consider HINT [14], extending the
original C++ implementation3to support range-duration queries.
Our proposed data structure will be denoted with RD-index-td
when start time is indexed before duration, and with RD-index-dt
otherwise. In cases where the order of the dimensions is not rele-
vant to the discussion, we will use RD-index instead. To account
for the potential shortcomings of our implementations, we will
also evaluate the relative performance of the data structures with
implementation-independent metrics [28].

Setup and Datasets. We implemented our index and the baseline
competitors in Rust 1.44.1, using a configurable and extensible
framework [2]. Code and data are available at https://github.com/
Cecca/temporal-index. The experiments presented in this section
were run on a machine equipped with 94 GB of memory and a
Intel®Xeon®CPU E5-2667 v3 @ 3.20GHz processor.

As a benchmark we consider the following datasets and work-
loads. Flight: A set of 701 353 flights, identified by their takeoff
and landing time at the granularity of minute, covering August
2018. Query ranges on this dataset are generated at random. Time
range durations are uniformly distributed between one and 31 days,
and duration ranges are uniformly distributed between one minute
and one day. Webkit: 1 547 419 file edits in the Webkit source code
repository. Intervals represent the timespan between successive
edits to a file. Query ranges on this dataset are generated at ran-
dom. Time range durations are uniformly distributed between one
minute and one year, and duration ranges are uniformly distributed
between up to three years. MimicIII: 4 134 909 drug prescriptions
from the open MimicIII database [22]. Each prescription is char-
acterized by its start and end day. Queries, generated at random,
span the entire domain of times and durations: the former take
values ∈ [1, 40 251], the latter ∈ [1, 200]. The large span of start
times (110 years) is due to the anonymization procedure applied
to the database. Synthetic: Randomly generated datasets with 10
million intervals by default. The interval start times are uniformly
distributed in [1, 𝑛], where 𝑛 is the size of the dataset; interval
durations follow a Zipf distribution with 𝛽 = 1.

6.1 Robustness of Index Structures Across

Different Workloads

In the first set of experiments, we consider both real-world and
synthetic datasets (with 10 million intervals). Table 1 reports, under
different combinations of dataset/query workload, an overview on

2https://github.com/georust/rstar
3https://github.com/pbour/hint

https://github.com/Cecca/temporal-index
https://github.com/Cecca/temporal-index
https://github.com/georust/rstar
https://github.com/pbour/hint
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Table 1: Performance of indices on different workloads: queries per second (best in blue), index build time (best underlined),

index size as number of bytes per interval (best in bold).

Queries per second | Index build time | Bytes per interval

dataset query RD-index-td RD-index-dt Grid-File Period-Index★ R*-Tree HINT Interval-Tree B-Tree

range-only 415 | 1 024 | 16.1 602 | 889 | 16.1 468 | 445 | 27.7 242 | 2 392 | 57.1 12 | 3 358 | 80.0 164 867 | 2 848 | 46.6 272 | 3 636 | 50.1 8 | 2 505 | 31.4

duration-only 842 | 1 030 | 16.1 734 | 785 | 17.1 77 | 983 | 24.1 69 | 6 139 | 178.1 106 | 3 398 | 80.0 6 | 2 102 | 29.3 12 | 3 636 | 50.1 43 103 | 2 469 | 31.4Synthetic

range-duration 11 737 | 1 052 | 16.1 14 085 | 829 | 16.5 1 581 | 857 | 24.1 1 403 | 6 566 | 178.1 2 591 | 3 402 | 80.0 72 | 2 109 | 29.3 215 | 3 674 | 50.1 502 | 2 529 | 31.4

range-only 54 945 | 42 | 17.1 57 471 | 44 | 16.1 49 505 | 20 | 23.2 15 015 | 80 | 40.0 4 921 | 195 | 97.9 1 342 098 | 116 | 52.7 51 813 | 139 | 44.5 2 798 | 39 | 23.3

duration-only 4 182 | 44 | 16.1 4 218 | 33 | 21.3 3 791 | 20 | 23.2 538 | 111 | 62.9 378 | 205 | 97.9 169 | 123 | 52.6 683 | 150 | 44.5 714 286 | 43 | 23.3Flight

range-duration 232 558 | 45 | 16.7 208 333 | 39 | 16.6 188 679 | 20 | 23.2 29 940 | 95 | 62.9 21 786 | 193 | 97.9 11 439 | 161 | 62.2 43 860 | 139 | 44.5 13 514 | 47 | 23.3

range-only 416 | 116 | 16.1 467 | 115 | 16.1 445 | 56 | 23.0 83 | 540 | 119.0 30 | 468 | 97.7 525 897 | 438 | 76.6 384 | 274 | 48.3 47 | 252 | 36.4

duration-only 2 544 | 112 | 16.1 2 520 | 104 | 16.9 1 938 | 52 | 23.0 57 | 559 | 124.4 234 | 469 | 97.7 64 | 264 | 54.6 157 | 274 | 48.3 3 393 | 255 | 36.4Webkit

range-duration 3 159 | 112 | 16.1 3 133 | 99 | 16.9 2 322 | 51 | 23.0 80 | 737 | 322.6 258 | 468 | 97.7 95 | 263 | 54.6 256 | 274 | 48.3 758 | 252 | 36.4

range-only 372 | 240 | 16.0 391 | 213 | 16.0 391 | 143 | 23.5 381 | 451 | 24.3 38 | 1 112 | 81.2 298 566 | 596 | 31.5 347 | 717 | 46.6 127 | 138 | 21.2

duration-only 3 560 | 275 | 16.0 2 876 | 202 | 17.5 2 075 | 184 | 27.7 520 | 718 | 41.3 452 | 1 175 | 81.2 25 | 580 | 24.1 76 | 733 | 46.6 2 500 000 | 141 | 21.2MimicIII

range-duration 10 246 | 241 | 16.0 10 730 | 201 | 17.5 5 227 | 185 | 27.7 1 779 | 720 | 41.3 1 384 | 1 081 | 81.2 84 | 587 | 24.2 232 | 721 | 46.6 3 347 | 135 | 21.2

the performance of different index structures on three indicators:
the queries per second, the time to build the index, and the size
of the index. The latter is measured in terms of bytes per interval,
i.e., the number of bytes that the index uses for each input interval.
Since we are representing intervals as pairs of 64-bits unsigned
integers, 16 bytes per interval are required just to represent the
data, and thus are a lower bound on this performance metric. Dark
blue and light blue cells denote, respectively, the best and second-
best performing data structures in terms of queries per second.
For index structures that take parameters, we report on the best
configuration. In particular, we defer the discussion of the effect of
different parameterizations of RD-index to Section 6.4.

We remark that the overall difference in throughput for different
workloads is due to the different output sizes: duration-only queries
are in general less selective than range-duration queries, hence it
takes more time to iterate through the output. This explains why, in
general, range-duration queries enjoy a higher throughput across
all the index structures.

In terms of throughput, we observe that RD-index always per-
forms better than competitors on range-duration queries. For duration-
only queries it is always the second best solution after the B-Tree,
while for range-only queries it is always the second after HINT. We
will, however, see in the next section how RD-index surpasses both
as soon as a few range-duration queries are introduced in the work-
load. In particular, HINT’s implementation stores identifiers of the
original records in the index, as opposed to our implementation
where the index stores the intervals themselves. The consequence
is that HINT suffers from cache misses whenever a duration con-
straint has to be checked.

We also observe that the grid-file ranks second or third in
several cases. Recall that this data structure is rather similar to
RD-index, the difference being that the latter is adaptive to the
input distribution. This shows the performance benefits of a data
structure that takes into account the data distribution.

Concerning the other performance indicators, we note that the
index construction time of RD-index is comparable with the one
of the Grid-File and B-Tree, and generally much faster than the
other approaches. As for the size of the index, RD-index always
produces the smallest index, across all tested configurations, using
just slightly more than the minimum 16 bytes to represent an inter-
val. The other approaches, especially pointer-based data structures
such as B-Tree, Interval-Tree, and R*-Tree require significantly
more space. The Period-Index★ has a much higher space require-
ment compared to the others, since each interval may be replicated
several times.

In summary, RD-index is a data structure that provides fast
query times, is fast to build, and has negligible space overhead.

6.2 Mixed Query Workloads

We now consider mixed query workloads, consisting of a mix of
range-only, duration-only, and range-duration queries. Rather than
fixing a particular combination of queries, we use the data of Table 1
to estimate the throughput of workloads composed by any combi-
nation of queries. Let 𝑓𝑟𝑑 , 𝑓𝑟 , and 𝑓𝑑 be, respectively, the fraction
of range-duration, range-only, and duration-only queries in the
mixed query workload, with 𝑓𝑟𝑑 + 𝑓𝑟 + 𝑓𝑑 = 1. Similarly, for a given
algorithm and dataset, let 𝜙𝑟𝑑 , 𝜙𝑟 , and 𝜙𝑑 be the throughputs of
range-duration, range-only, and duration-only queries, as reported
in Table 1. As is customary with rates, we use the harmonic mean

to compute the overall average rate of a mixed workload starting
from the rates reported in Table 1: (𝑓𝑟𝑑/𝜙𝑟𝑑 + 𝑓𝑑/𝜙𝑑 + 𝑓𝑟 /𝜙𝑟 )−1.

Figure 4 provides a summary of the best performing algorithm
for any workload that can be concocted with the formula above.
In each ternary plot, each point in the triangle identifies a combi-
nation of range-only, duration-only, and range-duration queries.
For instance, the center of each triangle corresponds to a workload
composed in equal parts by the three types of queries. Portions of
the triangles are colored according to the best-performing index
for the corresponding workloads. We observe that RD-index is the
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Figure 4: Ternary plots of best performing index structure

for different mixed workloads, on the four different datasets.

The online supplementary material provides an interactive

version of this plot.

best performing index structure in the vast majority of workloads.
The exception is for workloads where duration-only queries are the
majority (top corner), where the B-Tree outperforms RD-index
and workloads with mostly range-only queries (lower-left corner),
where HINT is the best index. On mixed workloads, we observe
that the performance of RD-index is rather robust to the ordering
of indexing dimensions.

The online supplemental material4 provides an interactive tool
to explore the performance of all different index structures on any
mixed workload.

6.3 Distribution of Query Times Against

Selectivity

We investigate the relationship between the selectivity of queries
(i.e., the fraction of the input that satisfies them) and the time
taken by different data structures to answer them. Given that range-
duration queries constrain both the time and the duration ranges,
for a query we can define the time selectivity as the fraction of
the input that satisfies the time range constraint of the query, and
the duration selectivity as the fraction of the input satisfying the
duration constraint of the query.

For a given dataset, we build a query set such that queries are
uniformly distributed on the time× duration selectivity plane: this
way we have queries that are very selective in only one dimension,
very selective in both dimensions, or not selective at all. The goal is
to investigate the behavior of each index structure for queries with
different characteristics. To account for the overhead of measuring
time and to level out the effect of the CPU cache, we run each query
100 consecutive times and report the average. For RD-index, we
set the page size to 𝑠 = 200, which is a good parameter choice of all
the datasets we consider.

Figure 5 reports the results for such a setup, with 1024 queries
arranged in a 32× 32 grid, running on a synthetic dataset with

4https://cecca.github.io/temporal-index/

10 million intervals, with uniformly distributed start times and
Zipf distributed durations. Colors encode the fraction of the dataset
inspected by each query. This metric allows a more implementation-
independent assessment of the relative performance of different
data structures. When reading Figure 5, remember that less selec-
tive queries require more time just to iterate through the output.
Interestingly, different data structures exhibit different patterns in
this plot, as a result of how they access data.

The Interval-Tree and HINT plots exhibit vertical bands. The
data structures are able to select intervals only based on their posi-
tion on the timeline. Therefore, for a fixed time selectivity of the
query the fraction of intervals inspected (and thus the time to an-
swer the query) does not depend on the selectivity in the duration
dimension, since all the candidate intervals need to be examined.
For similar reasons, the B-Tree shows horizontal bands. Data struc-
tures that explicitly index both dimensions, instead, tend to exhibit
a more diagonal pattern, in particular RD-index, with a milder
effect for Grid-File and R*-Tree. The pattern exhibited by Period-
Index★ tends to be more similar to the Interval-Tree. This means
that this index is more responsive to queries that are selective in
the time dimension. This is to be expected since Period-Index★ is
adaptive to the distribution of start times in the dataset. Its worse
performance compared to RD-index and Grid-File for queries of a
given selectivity is explained by the fact that some intervals might
be represented multiple times in the index.

Figure 6 reports the performance against the overall selectivity
of the same queries. The performance is assessed in terms of the
fraction of the input inspected by each query, which are represented
as dots whose position along the 𝑥 axis encodes their overall selec-
tivity. Ideally, a data structure should answer queries by inspecting
just the tuples which are part of the output. This behavior is repre-
sented by the black diagonal in Figure 6. We observe that RD-index
indeed shows the ideal behavior. As for the Grid-File, since the
efficiency in answering a query depends on the density of the cells
being considered, the performance is in many cases far from ideal.
This can be seen from the fact that several queries are far away from
the ideal diagonal. The B-Tree indexes intervals by their duration.
As such, duration-only queries are answered most efficiently: In
Figure 6 such queries lie on the ideal diagonal. On the other hand,
range-only queries are answered by simply enumerating the entire
dataset, thus scoring 1 on Figure 6. Similar considerations hold for
the Interval-Tree and HINT, with range-only queries performing
the best and duration-only queries performing the worst. Finally,
Period-Index★ inspects the same tuples multiple times for the
majority of queries, which are thus very far away from the ideal
diagonal line in the plot.

6.4 Influence of parameters

The aim of this section is to investigate the influence of the page
size and the order in which the two dimensions are indexed. We use
two datasets with 10 million intervals each: the first has uniform
start times and skewed durations (Zipf distribution), the second
has skewed start times and uniformly distributed durations. As for
the query workload, batches of 10 000 range-duration, range-only,
and duration-only queries are considered. The page size is varied
between 1 and 10 000.

https://cecca.github.io/temporal-index/
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Figure 5: Heatmaps of the performance of index structures against selectivity in the time and duration dimensions. The top

row reports the time, in milliseconds, required to answer a query with a given time and duration selectivity. The plots report

the fraction of intervals (over the total 𝑛 = 107
) examined by each query. A fraction larger than 1 means that a query examined

the same interval more than once. For readability the color scales are binned every 5 percentiles, therefore the scales are non

linear. In both plots, lighter is better.

Figure 6: Number of examined intervals against selectivity of the query. Each point represents a query: red dots • are range-only
queries, blue dots • are duration-only queries, black dots • are range-duration queries. The black line represents the ideal

behavior, in which onlymatching intervals are examined. Note that all the plots except for the one related to the Period-Index★

share the 𝑦 axis: in all plots the black diagonal has slope 1.

Due to the size of the dataset, any page size 𝑠 above
√
𝑛 ≈ 3 162

results in a degenerate configuration, where there is a single column
(of size 𝑠2 = 𝑛) that contains all the intervals. In this case the
intervals are partitioned according to a single dimension, with
the number of cells controlled by the page size parameter. This
situationmight also occur at lower values of the page size parameter,
depending on the number of distinct values in the dimension being
partitioned. On the other hand, for page size 1, each cell of the grid
contains only intervals with the same start time and duration, and
it contains all of them. Querying the data structure in this case
amounts to perform binary searches directly on the values of the
domains of start times and durations.

Figure 7 reports the results of this experiment in terms of queries
per second. To ease the comparison between the plots, we rescale
the throughput by the highest value for each combination of dataset
and query workload. Degenerate configurations resulting in a single
column are reported as triangles rather than dots. We observe very
different trends for different query workloads.

Consider first the dataset with skewed durations. For range-
duration queries, both orderings of dimensions exhibit a similar
behavior. The peak performance is reached by intermediate values
around the page size. If we consider duration-only queries the pro-
file changes. Indexing first by duration (blue line) slightly favors
smaller page sizes, which imply smaller columns and thus a more
fine grained access to the data. Indexing first by time, instead, re-
quires a duration-only query to traverse all the columns. In this
scenario high page sizes are favored, since they translate into fewer
columns to be iterated through. For range-only queries we observe
a symmetric pattern.

When data has skew on the start times, the patterns exhibited by
the two indexing orders are rather different. First, we note that the
gap between the best configurations of the two indexing orders for
range-duration queries is much wider than with the other dataset.
Second, while indexing first by duration exhibits a similar pattern
on both datasets, indexing first by start time performs best in the
degenerate cases of a single column, i.e., with no partitioning of
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Figure 7: Dependency of the performance, in terms of queries

per second, on the page size parameter.

the start times at all. This is a consequence of Observation 1. In
particular, having skewed start times exacerbates the difference in
selectivity between the range and duration constraints: when start
times are very concentrated on the timeline, the range constraint
of a query is satisfied by either most of the intervals or by almost
none.

Overall, we observe that indexing first by duration has either
better or comparable performance compared to indexing first by
time. Therefore, we recommend to choose the former ordering of
dimensions when building an RD-index.

6.5 Scalability with Respect to the Input Size

To test the scalability of the index structures, we consider range-
duration queries and datasets of increasing size, while maintaining
the output size constant. This allows to assess the influence of the
input size on the performance without conflating the results with
the time required to iterate over larger outputs.

We consider the three real-world datasets, along with a synthetic
one with uniform start times and Zipf-distributed durations, which
is representative of the distribution of many real-world datasets.
Then, we artificially increase their size as follows. Given a dataset
and a scale parameter [, let 𝑡 be the span of time covered by all
the intervals in the dataset. We make [ copies of each interval and
shift copy 𝑖 in time by 𝑖 · 𝑡 , for 𝑖 ∈ [0, [). The underlying idea is to
repeat the temporal patterns of the dataset on a longer time scale,
simulating the scenario in which the relation grows over time.

Figure 8 reports for each scale factor the performance of the
best configuration of each algorithm. First, we note that in general
the relative performance of the data structures does not change at
different dataset scales. There are some notable exceptions. The
performance of B-Tree degrades by a factor ≈10 from scale 1 to
scale 10. The reason is that the B-Tree indexes the durations, and
under our synthetic construction the number of intervals associated
to each duration increases by the same scale of the dataset. For

Figure 8: Scalability of the index structures for increasing

dataset sizes, in queries per second.

similar reasons, the performance of RD-index-dt degrades, albeit
in a much less pronounced way.

On Webkit, the performance of Grid-File and Period-Index★
increases with the scale as the dataset: the effect of our synthetic
construction in this case is to compensate for the skew in the start
times, giving to both data structures the chance of better partition-
ing the time dimension.

6.6 Insertion Performance

We now focus on the insertion operation. We omit from the compar-
ison Period-Index★ (which does not support updates) and HINT
(whose implementation on GitHub does not support updates, which
are described in the paper [14]), andGrid-File, which is a static data
structure that requires to know the range of the data beforehand.

For each of the four datasets we considered in the previous
sections, we insert intervals into initially empty indices. The expec-
tation is that the insertion performance degrades as the index grows
larger. To measure this effect, we insert the intervals in batches
of 50 000, measuring the time for each batch in order to be able to
estimate the throughput of the insertions as the size of the index
grows. We perform two sets of experiments. In the first the intervals
are inserted in random order. In the second intervals are inserted
by increasing start time, which simulates a natural append only

scenario for time-related data.
The figures can be found in the extended version of the paper [13].

In most cases, we find that the best performing data structure for
the insertion workload is the B-Tree, both when data is presented
in random and sorted order. RD-index follows on the second place
for most datasets, with the ordering first by time and then by dura-
tion usually performing better. For randomly-ordered insertions,
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we note that the performance of RD-index tends to slightly de-
crease as the index size increases. In the more realistic append only
scenario, instead, the insertion throughput of RD-index is more
stable and tends to remain constant over time. This is expected,
since in such a setting only the last column (when the start time is
the first dimension being indexed, otherwise the last cell of each
column) is ever restructured, requiring very little data to be moved.
Furthermore, the performance in this scenario improves compared
to the random order of insertions, in particular on the MimicIII
dataset, and is on par with the B-Tree on all datasets.

7 CONCLUSIONS

RD-index is an index data structure for temporal intervals that
allows to answer efficiently range-duration queries. Our approach,
which has provable theoretical guarantees, lends itself to a simple
and efficient implementation. In particular, its ability to adapt to the
distribution of the input data makes it compare favorably with the
state of the art on a variety of workloads. In particular, RD-index
has superior performance on a vast array of mixed workloads.

A direction of future work is to extend the RD-index to support
interval joins [37], thus addressing several needs with a single index.
Furthermore, the favorable comparison with the R*-Tree suggests
that a promising research direction is to extend the ideas on which
RD-index is based to the case of multidimensional spatial data.
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