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Abstract

The commercialization of Virtual Reality (VR) headsets has made immersive

and 360◦ video streaming the subject of intense interest in the industry and

research communities. While the basic principles of video streaming are the

same, immersive video presents a set of specific challenges that need to be

addressed. In this survey, we present the latest developments in the relevant

literature on four of the most important ones: (i) omnidirectional video coding

and compression, (ii) subjective and objective Quality of Experience (QoE)

and the factors that can affect it, (iii) saliency measurement and Field of View

(FoV) prediction, and (iv) the adaptive streaming of immersive 360◦ videos.

The final objective of the survey is to provide an overview of the research on

all the elements of an immersive video streaming system, giving the reader an

understanding of their interplay and performance.
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1. Introduction

Over the past few years, the commercialization of Virtual Reality (VR) head-

sets and cheaper systems using smartphones as viewports [1] have fueled a strong

research interest in 360◦ immersive videos, and the technology is currently un-
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dergoing standardization [2]. Commercial Head-Mounted Displays (HMDs) are5

currently being sold by multiple companies, and the artistic potential of the new

medium is being explored for both gaming and movies.

This kind of technology has the potential to make video a more intense

experience, with a stronger emotional impact [3], thanks to the wider Field of

View (FoV) and the direct user control of viewing direction. 360◦ videos also10

have a huge potential for storytelling, as multiple story lines can be developed

in parallel [4]. Immersive video also has the potential to enhance empathy

and participation in news stories [5], although evidence regarding its use shows

mixed results [6]. Psychological factors such as perception of embodiment [7]

also affect immersiveness [8], particularly when an avatar is animated in the VR15

simulation [9].

Immersive video streaming presents some unique challenges [10], especially

for live streaming: since the full omnidirectional view is wider than traditional

video, it requires far more bandwidth to be streamed with a comparable quality.

In order to reduce the throughput of 360◦ streams [11], tile-based solutions20

have become a standard: the sphere is divided in several tiles, according to a

pre-defined projection scheme, and each tile can be downloaded as a separate

object. In this way, clients can concentrate most of their resources on the tiles

that are in the user’s FoV, i.e., the ones that will actually be displayed with the

highest probability, resulting in the same Quality of Experience (QoE) even if25

tiles outside the viewport have a very low resolution or are not downloaded at

all. Naturally, this kind of solution requires an accurate prediction of where the

user’s gaze will fall, which is in itself a complex research topic. The design of

the tiling scheme is also a significant factor in both the compression efficiency

of the video coding scheme and the final QoE of the user.30

Additionally, the geometric distortion [12] generated by the projection of

spherical omnidirectional video onto a flat surface reduces both the accuracy of

traditional QoE metrics and the efficiency of 2D video codecs. Since traditional

QoE metrics are designed for planar images and videos, their direct use does

not correctly represent the human perception of the video and is only loosely35
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correlated with actual QoE. The design of projective corrections for legacy met-

rics and 360-specific ones is an active area of research. Cybersickness [13] is

another major problem for immersive video streaming, requiring both a more

precise metric to evaluate quality variations and better streaming techniques to

reduce stalling.40

The distortion issue also affects automatic saliency estimation, which can

help predict the FoV, and even feature extraction and Convolutional Neural Net-

works (CNNs) [14] are affected by it, requiring ad hoc corrective methods [15].

This survey aims at providing readers with a broad overview of the state of

the art in all the major research directions on omnidirectional video. We give a45

full perspective on the building blocks of an omnidirectional streaming system:

• In Sec. 2, we examine coding methods, discussing different standards and

projections and how they can introduce different kinds of distortion and

enable more efficient compression;

• In Sec. 3, we describe subjective and objective metrics to evaluate the50

QoE of omnidirectional videos, and why it is a complex challenge;

• In Sec. 4, we examine the question of saliency and FoV prediction. We

review empirical approaches based on user behavior, analytical ones based

on image features, and joint ones that consider both past viewport direc-

tions and the current image;55

• In Sec. 5, we present the state of the art on omnidirectional video stream-

ing techniques, focusing on tiling-based approaches. We also review some

recent network-level innovations to provide support to omnidirectional

streaming.

• In Sec. 6, we present a summarized version of the lessons learned on each60

topic and conclude the paper with a discussion of the open research chal-

lenges in the field.

Each section of the paper includes a discussion of the key challenges and open

problems in the field.
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A number of recent surveys, whose contribution is summarized in Table 1,65

have examined the state of the art on different topics in the field. One work [16]

focuses on projection, explaining several state of the art methods in detail and

evaluating them on a public dataset with known quality metrics. The authors

explore viewport-adaptive coding as a possible solution to the demanding band-

width requirements of omnidirectional video, and briefly mention the possible70

sources of coding distortion, which are examined in detail in [17]: this work

considers the steps of the encoding chain, examining how each one introduces

different kinds of local and global image distortions. A more recent work [18]

takes a broader view, examining the existing QoE evaluation metrics, along with

viewer attention models for eye and head movements, while the networking as-75

pects of streaming, from resource allocation to caching, are reviewed in [19].

Finally, a survey focusing on system design and implementation [20] examines

some of the existing systems, protocol and standards for acquisition, compres-

sion, transmission, and display of omnidirectional videos.

These recent works only present a limited review of FoV-adaptive stream-80

ing, while our Sec. 5 has a more extensive review of the existing literature.

Furthermore, while all of these works concern themselves with QoE, this work

is the first to provide an analysis of the existing comparisons between objective

metrics, resulting in insights for further research and implementation. Finally,

these recent surveys only present a limited review of FoV-adaptive streaming,85

and none of them has a complete perspective that unifies evaluation and stream-

ing: since the efficiency of adaptation techniques strongly depends on both the

encoding techniques and the FoV, presenting them in a unified manner is im-

portant to get a full picture of the design requirements. The discussion of the

field developed in this survey has a unified perspective, linking the later sections90

to the earlier ones and proposing some ideas for a holistic development of 360◦

streaming systems.
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Table 1: Summary of the existing surveys on omnidirectional video

Survey Year Topic

Recent advances in omnidirectional video coding for virtual reality:

Projection and evaluation [16]

2018 Projection

Visual Distortions in 360-degree Videos [17] 2019 Visual distortion

State-of-the-Art in 360◦ Video/Image Processing: Perception, As-

sessment and Compression [18]

2020 Saliency, QoE

Network Support for AR/VR and Immersive Video Application: A

Survey [19]

2018 System implementation

A Survey on 360◦ Video Streaming: Acquisition, Transmission, and

Display [20]

2019 Protocol design

2. Coding, compression and distortion

The efficient encoding of omnidirectional video has all the well-known issues

of 2D video encoding, with an additional degree of complexity: since filters and95

coding tools are often based on 2D images, the spherical content needs to be

projected to a flat surface to be processed and encoded. In this section, we

discuss the different factors that should be considered when encoding omnidi-

rectional video, presenting the main projection schemes and coding solutions,

both in the spatial and temporal domains.100

2.1. Projection and tiling

The geometric distortion issue in 360◦ video is the same that cartographers

have faced for thousands of years when drawing maps of the Earth [21]: project-

ing a sphere onto a planar surface inevitably leads to some form of distortion.

However, projection is not the only source of distortion, as the omnidirectional105

video processing pipeline can cause it at every step [17]. The first one is the ac-

quisition of the image: omnidirectional images and videos are usually stitched

from multiple cameras [22], and this can introduce several kinds of issues at

the edges. These can range from missing information and misalignment of the

edges to differences in the exposure and “ghosting”, and are often particularly110

strong at the poles, which most camera systems cannot capture and are often

reconstructed in post-processing. Video can also have temporal discontinuities,

such as objects appearing and disappearing or warping as objects move close to

the stitching areas [23]. In order to avoid smoothness issues and increase the
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coding efficiency, appropriate motion models that explicitly use rotation need115

to be used [24].

After the omnidirectional image has been acquired, it needs to be converted

to a planar representation for encoding and storage. It can then be divided into

tiles to allow tile-based streaming, which we will discuss in detail in Sec. 5. The

warping patterns generated by the combination of the map projection and tile120

edges will then interact. Consequently, the form and severity of the geometric

distortion effects depend strongly on the projection and tiling scheme, which is

crucial for efficient compression of omnidirectional video.

The Equirectangular Projection (ERP) [25] is the oldest, simplest, and most

common projection for omnidirectional video: it is similar to the plate carrée125

geographic projection, as it divides the sphere of view in a number of rectangles

with the same solid angle. Distortion at the poles makes projection wasteful, as

it encodes the poles with more pixels than the equator: as viewers usually focus

their attention close to the equator, the poles are often outside the FoV.

The dyadic projection [26] tries to solve the pole oversampling issue by re-130

ducing the sampling for vertical angles above π
3 from the equator, while the

barrel projection [27] encodes the top and bottom quarters of the ERP as cir-

cles, reducing the number of pixels used for the two caps. The polar square

projection [28, 29] is another adaptation that works like the barrel projection,

but maps the poles to two squares. There are other techniques to compen-135

sate for the pole oversampling issue: the equal-area cylindrical projection [30]

reduces the height of the tiles with the latitude, while the latitude adaptive ap-

proach [31] adapts the number of tiles to the latitude. The result is also known as

Rhombic Mapping (RBM) [32], since the tiles are arranged in a rhombic shape,

which can then be rearranged onto a rectangle. The octagonal projection [33]140

does the same with a rough latitude quantization, resulting in its namesake

shape. Nested Polygonal Chain Mapping (NPCM) is another downsampling

technique [34], which starts from the ERP output and linearly approximates

the optimal sampling density.

The Cubic Mapping Projection (CMP) is the other projection to be widely145
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Table 2: Summary of state of the art projections

Projection Geometry Main advantages and issues

Equirectangular [25] Each rectangle has the same solid an-

gle

Oversampling at the poles

Dyadic [26] Equirectangular with reduced polar

sampling

Distortion at the poles

Barrel [27] The sphere is mapped to a cylinder Distortion at the edges

Polar square [28] Barrel-like, mapping the poles to

squares

Distortion at the poles

Equal-area cylindri-

cal [30]

Equirectangular with latitude-

dependent tile height

Reduced polar oversampling

Latitude adaptive [31] Equirectangular with latitude-

dependent number of tiles

Reduced polar oversampling

Rhombic mapping [32] Similar to latitude adaptive, arranging

tiles in a rhombus

Efficient retiling

Nested polygonal

chain [34]

Downsampling from equirectangular Reduced polar oversampling

Cubic mapping [35] Projection from sphere to cube Higher efficiency, lower polar dis-

tortion, edge distortion

Equiangular cubic map-

ping [39]

Equiangular mapping on cube faces Reduced face edge distortion

Other solids [41, 42, 43] Projection on solids with more faces Lower projection distortion,

higher edge distortion

Variable tile shape [44] Tiles can be adapted to the content Low distortion, complex encoding

and decoding

Rotated sphere [45] Baseball-like unfolding Increased coding efficiency, low

edge distortion

ClusTile [46] Viewer behavior-based adaptive sam-

pling

Low distortion, complex encoding

and decoding

adopted. It constructs a cube around the sphere [35], then projects rays outward

from the center. Each ray intersects with a single point on the surfaces of both

solids, resulting in the projection mapping. The CMP [36] is more efficient

than the ERP in terms of compression [37], and is currently used by Facebook

for omnidirectional videos [38]. A comparison between the ERP and CMP150

projections is shown in Fig. 1. It is easy to see that distortion at the poles is far

lower, while objects close to the edges and corners of a face are more distorted.

This should be intuitive, as the cube mapping approximates a sphere better close

to the center of each face: this effect can be mitigated by applying equiangular

mapping to the cube faces [39], or in general by adjusting the sampling to155

privilege the center of each face [40].

Solids with a larger number of faces, such as octahedrons [41], rhombic do-

decahedrons [42], or icosahedrons [43], can reduce the effect of edges by having

a lower stretch and area distortion, like the Sinusoidal Projection (SP) [47],
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which is an equal area projection. However, there is a trade-off when choos-160

ing the number of faces: polyhedrons with more faces have a lower projection

distortion, but a higher number of discontinuous boundaries. An example of

octahedral projection is shown in Fig. 2. Other less regular projection shapes

are also possible, with tiles of variable size and shape [44]. The Rotated Sphere

Projection (RSP) [45] unfolds the sphere under two rotation angles and stitches165

them like a baseball; this can be obtained from the ERP, and it can increase

coding efficiency.

Finally, a more advanced approach to projection integrates content and

viewer behavior in the design [48]: areas that have salient content and are often

watched will be sampled at a higher rate. ClusTile [46] is another projection170

that uses past viewer behavior, designing a set of tiles that minimizes bandwidth

requirements for past views. A framework evaluating the projections presented

above was described in [14], and some results comparing the basic projections’

compression efficiency and distortion with H.264 and H.265 codecs are presented

in [49], finding that the equal-area cylindrical projection outperforms both the175

ERP and CMP. The main projection methods we presented in this section are

summarized in Table 2.

Offset projection is a concept meant to save bandwidth and exploit the

available knowledge of the user’s viewing direction: offset projections use more

pixels to encode regions close to the predicted gaze direction, while regions at180

wide angles from it have a higher compression. The Truncated Square Pyra-

mid (TSP) [50] projection constructs a truncated pyramid around the sphere,

with the bottom facing the same way as the viewer. The projection is then

constructed like the CMP. The construction of the solid is shown in Fig. 3, in

which two truncated pyramids with different settings are shown: the one on the185

right has a smaller upper base, giving more relative importance and more pixels

to the region facing the viewport directly. When the pyramid’s upper base is

very small, regions at wide angles from the user’s expected gaze are encoded by

very few pixels [51], with extreme compression gains.

The Offset Cubic Projection (OCP) [52] adopts another way to perform off-190
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Figure 1: Equirectangular and cubemap projection comparison. The figure was adapted from

the Facebook video engineering blog: https://engineering.fb.com/video-engineering/

under-the-hood-building-360-video/

Figure 2: Equirectangular and octahedral projection of the same scene. Image credits: Omar

Shehata, https://omarshehata.me/

Figure 3: Truncated square pyramid projection with different settings.

9
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set projection: it is a version of the CMP, with an offset that distorts the sphere

before projecting it to the six cube faces. In the resulting frame, views in one

direction have a higher pixel density than in other directions. The same concept

can be applied to any combination of the equirectangular and barrel projection,

and a possible option is to consider only an offset on the horizontal plane. Off-195

set projections can significantly improve the QoE of an omnidirectional image,

as long as the view orientation is close to the offset. Another offset projection

is the asymmetric circular projection [53], which decreases sampling density in

the area outside the FoV smoothly by using a circle with a center closer to the

surface in the direction of the user’s gaze. In this way, there are no explicit200

seams. If an FoV prediction is available, streaming clients can select the appro-

priate offset orientation and increase QoE without a corresponding throughput

increase [16]. The same operation can be performed for the equirectangular and

barrel projection. An evaluation of the quality of different offset projections is

available in [52], for different viewing angle errors and offset distortion settings.205

2.2. Compression and encoding

There are a number of competing video encoding standards being devel-

oped [54]: the most popular are High Efficiency Video Coding (HEVC) [55], or

H.265, and AOMedia Video 1 (AV1) [56], but the older Advanced Video Coding

(AVC) [57], or H.264, is still widely used. Additionally, Versatile Video Coding210

(VVC) [58], the future H.266, promises to add new capabilities to the existing

standards. The 2D encoding techniques in the standards are highly optimized

and close to ubiquitous, and most omnidirectional streaming systems reuse the

2D coding pipelines [59]. However, all the distortion issues discussed in Sec. 2.1

do not just impact the QoE of the projected and encoded video, but also the215

coding efficiency. Furthermore, the resampling and interpolation steps of the

encoding pipeline often cause aliasing and blurring, and if these steps are not

managed carefully [60] they can also introduce visible seams and combine with

the projection scheme to create distortion. While older works can get good

results using custom techniques on the spherical image, often without projec-220
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tion [61], most of the recent literature follows the standard approach, with all

its advantages and pitfalls. The decision on the representations that need to be

encoded and stored [62] in a streaming system can affect the requirements on

bandwidth support, server storage space and distortion.

Naturally, coding efficiency depends on the projection used, and it is pos-225

sible to optimize coding for a certain projection, reducing its downsides and

increasing compression performance. Since ERP oversamples the polar regions,

it is possible to use smoothing [63] or reduce the accuracy of motion vectors

and the coding block resolution [64] as a function of the latitude, increasing

the coding efficiency with minimal QoE impacts. Another way to compensate230

for this distortion is to adaptively set the Quantization Parameters (QPs), us-

ing the Weighted to Spherically Uniform PSNR (WS-PSNR) weights: regions

that are less important in the metric will be encoded with a rougher compres-

sion [12]. The same optimization can be performed for other metrics, such as

Sphere-based PSNR (S-PSNR) [65]. A more advanced way to set the QPs is to235

combine the geometric information with the saliency [66], privileging the salient

areas which will be watched more often.

The ERP latitude-adaptive quantization technique is adopted in [67], com-

bined with some steps to terminate the coding unit partition early in these areas,

speeding up the encoding process. Early coding unit termination can also be240

performed in a content-dependent way [68], computing the local texture com-

plexity. Another optimization for ERP concerns the edges of the image: since

the left and right edges are actually continuous, the coding unit parameters need

to be set to avoid visible seams [69]. In [70], the region-adaptive quantization

scheme is combined with an adaptive mechanism that reduces the frame rate to245

increase picture quality if the motion in the content is not too fast. An alterna-

tive strategy is rotation: since regions close to the equator have less distortion,

interesting regions of the image with high motion and fine-grained textures can

be rotated to the equator, while the less interesting regions are rotated to the

poles and have more distortion [71]. This approach is extended in [72], using a250

CNN to predict the orientation that maximizes the achievable compression over
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the Group of Picture (GoP), as both content and motion vector discontinuities

can affect the compressibility.

Filters are another important concern in omnidirectional coding, as their

effectiveness relies on proper adaptation to the projection. In [73], the Sample255

Adaptive Offset (SAO) filter that can improve coding quality for sharp edges

is adapted to the ERP, reducing the coding complexity by up to 80% with no

QoE impacts. A correction to the standard HEVC deblocking filter can reduce

the CMP edge distortion [74] by aligning the face edges with the filter edges,

filtering only the left and top borders to maintain rotational symmetry, and260

using the correct pixels in the 3D representation for the filter decision-making.

A similar approach is used in [39], limiting the coding unit splits at the face

edges and adapting the HEVC filter to the equiangular CMP by enforcing the

face boundaries and using the correct pixels. The authors also adapt a CNN

denoising filter to the projection. Coding unit depths can also be adapted to265

the content and CMP geometry, reducing coding time significantly [75].

In projections with more irregular face shapes, the inactive samples that are

used to pad the 2D projected frame to a rectangular shape can be ignored in the

rate-distortion optimization, resulting in further compression benefits [76]. A

full coding system using a sampling-adjusted CMP is presented in [77], including270

padding and other techniques to limit face boundary discontinuities such as

packing, i.e., reshuffling of the cube faces in the representation so that contiguous

objects in the 3D sphere are close in the projected image.

2.3. Motion estimation and temporal coding

The temporal element is critical when encoding omnidirectional video: since275

the content is dynamic and encoded in GoPs, considering the motion in sub-

sequent frames significantly increases the compression efficiency. The first ex-

ample is downsampling: performing the operation on each frame statically does

not achieve the same compression efficiency as considering the quality of the

dependent B and P frames [78] when downsampling the independent I frames280

they are tied to. It is also possible to reduce the number of independent frames
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by adopting the Shared Coded Picture (SCP) technique, which introduces P-

coded pictures that are the same across all representations. This enables longer

GoPs, increasing the efficiency of the code, but also the encoding and decoding

complexity [79].285

Motion estimation is inextricably tied into saliency, which we will discuss

in Sec. 4: the content that is most important to viewers, and on which their

gaze usually fixates, is often also the fastest-moving one. This has important

consequences for streaming systems which use prediction of the future FoV to

optimize the bandwidth utilization, as these systems require accurate predic-290

tions and efficient coding. As the use of offset projection, temporal coding,

and FoV-oriented predictive streaming all aim at improving compression while

maintaining an accurate representation of moving content, the interplay of these

subsystems must be considered when designing a streaming system.

The effects of projection also complicate motion modeling in omnidirectional295

video: since projection is a non-linear transformation, a simple translational

motion of all the projected pixels in a local block (like in the HEVC standard)

will not be able to capture the actual motion of the content. This distortion

can become catastrophic if the motion crosses face boundaries, causing texture

discontinuities that seriously impair QoE.300

A possible solution is to reproject the motion vector: if the motion on the

sphere is translational (i.e., the movement is on the surface of the sphere),

the motion vector on the projected video is converted to the spherical motion

vector, which is then interpolated [80]. In this way, the coding efficiency and

the QoE increase; the same can be done for purely rotational motion. This305

technique was proposed for the CMP [35, 39] and ERP [24], integrating it with

standard HEVC motion modeling schemes. In [81], a general model is tested

for ERP, CMP and octahedron projections. The spherical coordinate transform

can be used to further improve performance and extend the possible motions

to the whole 3D space [82], working in spherical coordinates and using relative310

depth to convert between ERP and the 3D space. It is also possible to assign

different motion vectors to pixels in the same block, correcting the motion vector
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distortion [83]. A less efficient but less computationally demanding way to

correct motion vectors in ERP is to exploit the WS-PSNR [84] weight map to

calculate a scaling factor for the motion vectors [85].315

Another technique deals with distortion due to motion compensation failures

at face boundaries extends a face by linearly projecting the pixels in the other

faces [86] to preserve texture continuity [87]. This operation can be performed

more efficiently using polytope geometry [88]. Another work [81] considers the

angle of the block in the sphere in the ERP projection when computing the320

padding.

Deep learning is a new alternative to traditional motion estimation: in [89],

CNNs are used to reconstruct future cubemap frames, combining the encoded

P or B frame with the last received I frame. This scheme can improve Peak

Signal to Noise Ratio (PSNR) without increasing the required bandwidth.325

3. Quality of Experience in Immersive Videos

QoE is the ultimate measure of performance for both standard and panoramic

video streaming. However, its subjective nature makes finding a general metric

to measure it extremely difficult [90]. Although most of the research on stan-

dard video is still applicable, 360◦ video presents some unique challenges [91]:330

an important factor in the perceived quality of panoramic video is the geometric

distortion given by the projection of the spherical image on a planar display [92],

which is more pronounced with wide FoVs. It is possible to assess these distor-

tions objectively [93], but not their impact on QoE. For a more comprehensive

survey on the possible sources of distortion in 360◦ videos, we refer the reader335

to [17]. Another important factor in the quality of omnidirectional video is the

mosaic technique, which can generate distortion in dynamic scenes [94].

In this section, we consider subjective and objective methods to measure

omnidirectional video QoE, and present the wide body of literature on the eval-

uation of these metrics. We conclude the section with a discussion of dynamic340

effects on omnidirectional video QoE.
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3.1. Measuring QoE: subjective methods

QoE is a complex concept, as it involves the human interaction with the con-

tent, and its automatic assessment is a challenging problem [95]. Since a direct

measure of QoE requires human subjects, the assessments need to be performed345

in controlled and replicable conditions. The standard methodologies for con-

ducting these assessments are specified by the International Telecommunication

Union (ITU) in [96], and distinguish between Absolute Category Rating (ACR)

and Degradation Category Rating (DCR) scoring. The standard methodologies

were developed for 2D video, and they often have to be adapted for omnidirec-350

tional video: in [97], an example of a new ACR methodology for omnidirectional

video without requiring users to take off their HMD is presented. The standard

testing conditions specified by the Joint Video Exploration Team (JVET) [98]

are also often used, although slightly different from the ITU recommendations.

The golden standard for ACR quality assessment is Mean Opinion Score355

(MOS): the content is shown in controlled conditions to a large number of human

subjects, who then rate it on a scale from 1 to 5. When evaluating compression

schemes, Differential Mean Opinion Score (DMOS) is often used as a DCR

metric, evaluating the difference between the quality of the compressed content

and the original’s: this is a fundamental step of the evaluation of new coding360

schemes, for both standard and omnidirectional content [99]. Omnidirectional

video content is even more challenging, as static image quality is not the only

component that influences QoE, and even subjective studies need to consider

FoV changes and how the different encoding of foreground and background

affects the experience [100]. A testing methodology that considers the dynamic365

aspect of QoE, accounting for delays between user motion and the high-quality

rendering of the video in the new direction, is presented in [101].

Double Stimulus Impairment Scale (DSIS) is another way to measure quality

impairment of compressed sequences specified in [96]: instead of rating the con-

tent QoE on an absolute scale, and possibly comparing it with the unimpaired370

version’s score, this assessment method asks users to rate the degradation di-

rectly, after being shown the original and impaired sequence one after the other.
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Table 3: Available subjective QoE assessment datasets

Reference Type Subjects Videos or images Total sequences

[109] Video 221 60 600

[110] Video 88 6 48

[97] Video 30 6 60

[111] Video 30 13 364

[112] Video 30 10 60

[113] Static images 20 16 320

[114] Video 21 5 75

[100] Video 12 3 24

[115] Video 27 2 10

[116] Video 13 10 150

[117] Video 23 16 384

[118] Video 340 30 1608

[119] Stereoscopic video 30 13 364

However, this method may cause cybersickness more often [102] when used for

omnidirectional video. A more complete comparison between various assessment

methods is presented in [103].375

Immersiveness is another factor that needs to be considered in omnidirec-

tional video QoE assessment, as the quality of the video can significantly im-

prove the sense of presence in a VR environment. In order to do so, more factors

than just picture quality need to be considered , as audio quality and spatial

features can have a strong impact on sense of presence, as well as the propri-380

oceptive matching between the user’s movements and the video displayed on

the HMD [104]. Multi-sensory environments [105] that include haptic feedback

or even smells present yet more challenges: n [106], immersiveness is evaluated

when an external sensory stimulus is combined to the omnidirectional video,

finding that this kind of addition can improve immersiveness and enrich user385

experience.

Finally, an interesting development that straddles the line between subjective

and objective metrics is the creation of metrics based on objective physiological

data from the user collected by smart watches and other simple sensors [107].

In [108], the authors develop a QoE metric based on the combined electroen-390

cephalographic, electrocardiographic and electromyographic signals, achieving

high correlation with MOS.

Several QoE studies have published their datasets, providing a common base
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for future research on QoE assessment. The largest dataset is the one presented

in [109], with 221 total subjects watching 60 video sequences, following the395

methodology described in [110], which also presents a public dataset with a

total of 88 subjects watching 48 video sequences extracted from 6 videos. The

dataset presented in [97] contains data from 30 users watching 60 sequences, and

it was obtained using different methodologies, so it can be used to compare them.

In [111], 13 videos are processed into 364 sequences, watched by 30 subjects.400

In [112], 10 omnidirectional videos of 10 seconds each are evaluated by 30 non-

expert subjects. The dataset in [120] uses static images, having 20 subjects

evaluate 528 compressed versions of 16 base images, as does the one in [113],

with 320 compressed versions of 16 images watched by 20 subjects. The authors

of [114] also released their dataset, with 21 participants watching 75 impaired405

video sequences with different resolution and compression levels. There are other

small-scale datasets associated to other measurement studies [100, 115], while

two more large dataset, with 13 subject watching 150 videos and 23 subjects

watching 384, were presented in [116] and [117], respectively. To the best of our

knowledge, the largest available dataset was presented in [118], and is divided in410

5 scenarios with an approximately uniform division of samples. Finally, there is

a large-scale dataset for stereoscopic omnidirectional video, which was presented

in [119]. The datasets above are summarized in Table 3.

3.2. Objective QoE metrics

The easiest method to objectively measure the QoE of an omnidirectional415

image is to directly use a classic 2D metric such as PSNR, Structural Similarity

Index (SSIM) [121], Multiscale SSIM (MS-SSIM) [122], Visual Information Fi-

delity in Pixel Domain (VIFP) [123], or Feature Similarity Index (FSIM) [124].

However, these metrics do not take the geometric distortion caused by the pro-

jection of the spherical image into account; indeed, most objective QoE metrics420

for omnidirectional images and videos are adaptations of these metrics, with

some corrections for the geometrical distortion resulting from the projection of

spherical images on a plane.
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S-PSNR [98] is an adaptation of PSNR that takes a number of uniformly

distributed sampling points on a spherical surface, then reprojects them on425

the reference and distorted omnidirectional images and computes PSNR. Points

that are between sampling positions in the 2D plane are mapped to the near-

est neighbor. WS-PSNR [125] takes the opposite approach, computing PSNR

on each pixel of the projected image, then weighting the results proportionally

to the area occupied by the pixel on the sphere. PSNR for Craster Parabolic430

Projection (CPP-PSNR) [126] is a projection-independent adaptation of PSNR;

it applies a Craster parabolic projection that preserves areas in the spherical

domain, then calculates PSNR on the resulting image. By virtue of being inde-

pendent of the projection used in the image, it allows the comparison of different

projection methods. Finally, Spherical SSIM (S-SSIM) [127] and Weighted to435

Spherically Uniform SSIM (WS-SSIM) [128] are adaptations of SSIM to the

spherical domain: the structural similarity is adjusted to compensate the geo-

metrical distortion using a weighting function similar to the one used by WS-

PSNR. In [114], the sphere is divided into patches using a Voronoi diagram, and

the 2D algorithms are applied on the patches, reducing the distortion.440

The content itself can be the basis of the weighting system, as in [99]: Con-

tent Preference PSNR (CP-PSNR) and Content Preference SSIM (CP-SSIM)

are adaptations of the two metrics that take the viewport direction and con-

tent saliency into account, using a predictive model to gauge future viewing

direction. However, saliency and eye movement models are not always perfect,445

and using the center of the viewport as a proxy for gaze direction is still very

imprecise [129].

More complex metrics take into account several factors, often combining

the objective metrics mentioned above: in [130], a non-linear Perceptual Video

Quality (PVQ) model is derived, starting from SSIM and other metrics and450

matching them to a predicted MOS. The same operation is performed by the

Normalized Quality versus Quality factor (NQQ) model in [131], which com-

putes QoE as a non-linear function of a combination of coding parameters such

as spatial resolution and quantization factor, whose parameters are derived from
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the spatial activity in the image and the low-order moments of the luminance455

distribution.

Learning tools can also be used to estimate these models: in [132], Back

Propagation (BP) is applied on inputs on multiple scales, considering single

pixels, regional superpixels, salient objects, and the complete projection, re-

sulting in the Quality Assessment in VR systems (QAVR) metric. Generative460

Adversarial Networks (GANs) are another learning tool that can be used to

train neural networks to estimate QoE, and the Deep VR Image Quality As-

sessment (DeepVR-IQA) [133] metric is based on them. GANs involve two

neural networks in opposition to each other: as one network is trained to es-

timate the QoE, the other’s objective is to generate examples that trick the465

other into estimating an incorrect quality. This improves training convergence

and can increase overall correlation with subjective test scores. The metric in

[109] includes head and eye movement data in the learning process, concatenat-

ing patch-level CNNs with a fully connected network to obtain the QoE score.

CNNs can also be used to determine 3D omnidirectional video quality [113],470

with additional preprocessing. The Viewport-based CNN (V-CNN) model com-

bines viewport prediction with a CNN [134]: the QoE for different viewports

is computed by the CNN, while another spherical CNN predicts possible future

viewports’ viewing probability and determine the weights of their contribution

to the expected QoE. Table 4 presents a summary of the main full-reference QoE475

metrics presented in this section, along with the references of the comparison

studies they appear in.

No reference metrics can measure QoE in different context, in which no

uncompressed image is available. Metrics such as the Natural Image Quality

Evaluator (NIQE) [140], based on natural image statistics, and the Six-Step480

Blind Metric (SISBLIM) [141], which is the combination of six different distor-

tion measurements, have good performance on 2D images and videos, but the

only study to check their effectiveness for immersive video [111] has found that

their performance is significantly affected by the geometric distortion, making

them only weakly correlated with subjectively perceived quality. The Multi485
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Table 4: Summary of the main presented objective QoE metrics

Metric Description Comparison studies

PSNR Pixel-level Mean Square Error (MSE) over the

whole image (2D)

[84, 98, 126, 135, 133, 99, 136, 132]

[137, 124, 131, 111, 127, 114, 112, 120, 138]

SSIM [121] Structural similarity on a small scale (2D) [130, 99, 133, 124, 131, 114, 111]

[132, 127, 112, 120, 138]

MS-SSIM [122] Structural similarity on multiple scales (2D) [137, 133, 124, 131, 111, 114, 120, 138]

VIFP [123] Shannon model measuring shared information

(2D)

[137, 133, 131, 120]

FSIM [124] Feature-based model [124, 120]

S-PSNR [98] PSNR on sampling points from a sphere,

remapped on the 2D projection

[98, 99, 139, 135, 133, 132]

[114, 136, 137, 111, 127, 112, 109, 138]

WS-PSNR [84] PSNR weighted proportionally to pixel area on

the sphere

[84, 99, 139, 114, 135, 133]

[136, 137, 131, 111, 127, 112, 109, 138]

CPP-PSNR [126] Compares quality across projection methods

with equal area projection

[126, 139, 99, 114, 135]

[133, 136, 137, 111, 127, 112, 109, 138]

S-SSIM [127] SSIM with corrections for projective distortion

in the spherical domain

[127]

WS-SSIM [128] SSIM weighted proportionally to pixel area on

the sphere

[128]

Voronoi [114] SSIM and PSNR on Voronoi patches [114]

CP-PSNR [99] Saliency- and viewport-weighted PSNR [99]

CP-SSIM [99] Saliency- and viewport-weighted SSIM [99]

PVQ [130] Non-linear function of SSIM [130]

NQQ [131] Non-linear function of the coding parameters [131]

QAVR [132] Learning-based model based on features at mul-

tiple scales

[132]

DeepVR-IQA [133] Adversarial generative model to learn QoE [133]

Model in [109] Learning-based metric with head and eye move-

ment input

[109]

V-CNN [134] CNN on viewports weighted by viewing proba-

bility

[134]

Channel 360◦ Image Quality Assessment (MC360IQA) metric [142] is a no ref-

erence metric using a multi-channel CNN on the six faces of a cube, trained on

the dataset in [111]: the metric outperforms even 2D full reference metrics on

the dataset.

3.3. Evaluating QoE metrics490

The conditions for testing QoE metrics in immersive video are specified by

the JVET in [98]; a wider discussion on the framework [139] also provides some

reference experiments, with objective and subjective quality metrics; it also in-

troduces the evil viewport problem. Evil viewports correspond to FoVs in which
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Table 5: Performance of the main presented objective QoE metrics. The table should be read

horizontally: the metric in each row is compared to one for each column. Metrics whose rows

have more green cells are more closely correlated with subjective MOS
PSNR SSIM MS-

SSIM

VIFP WS-

PSNR

S-PSNR CPP-

PSNR

PSNR Worse Worse Worse Worse Worse Worse

SSIM Better Similar Worse Better Better Slightly

better

MS-

SSIM

Better Similar Worse Better Better Slightly

better

VIFP Better Better Better Better Better Better

WS-

PSNR

Better Worse Worse Worse Slightly

worse

Slightly

worse

S-PSNR Better Worse Worse Worse Slightly

better

Slightly

worse

CPP-

PSNR

Better Slightly

worse

Slightly

worse

Worse Slightly

better

Slightly

better

the discontinuous edge caused by the stitching of images from different cameras495

is clearly visible; it is important to consider evil viewports as a separate case,

as QoE metrics that take the whole sphere into account might underestimate

their impact on QoE because of the relatively small area of the stitching edge.

Furthermore, another study [143] argues that short videos should not be used

for QoE evaluation in VR, as users’ attention takes longer to focus in this kind500

of environment. A detailed evaluation of the JVET database, with subjective

experiments, is presented in [112].

In recent years, several studies have compared objective quality metrics to

measure their correlation with actual subjective QoE: due to the strong de-

pendence of the correlation between objective metrics and MOS on the actual505

content of the images, tests performed on different datasets often have con-

tradictory results, and the wide variation across videos of the same dataset

confirms that the effect is fundamental and not due to experimental design.

The subjective experiments in [136], for example, show no advantages of the

360-specific PSNR-based metrics over the baseline 2D metric; however, this510

contradicts the results in [135, 112], which both find that CPP-PSNR has bet-

ter performance than the other metrics, and S-PSNR and WS-PSNR also out-

perform standard PSNR. All of the works above [135, 136] confirm that MOS

decreases sharply if the resolution is lower than 1920p; since only part of the
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video is inside the viewport at any time, even 1080p video has a low perceived515

resolution. All later studies confirm that standard PSNR is worse than any

other quality metric, but they often include other metrics, such as SSIM [121]

and VIFP [123]. In [137, 120, 131], VIFP significantly outperforms SSIM, MS-

SSIM and WS-PSNR, which achieve a similar performance, while PSNR does

even worse. Similar results are reported in [127], which includes S-SSIM but not520

VIFP or MS-SSIM; the 360-specific SSIM variant outperforms both its 2D an-

cestor and the PSNR-based metrics. The most complete study, which includes

several less common 2D QoE metrics and SSIM flavors, finds that SSIM outper-

forms both MS-SSIM and the various PSNR-based metrics. The results of the

various experimental studies are summarized in Table 5, which compares all the525

algorithms that are present in at least two of the works presented in this section.

The table should be read horizontally: in each row, the corresponding metric

is compared to the others (one in each column), and a qualitative summary of

the comparison is given by the cell color. The row corresponding to VIFP, for

example, is completely green, showing that it does better than any other metric530

in the studies in which it is examined, while PSNR’s row is entirely red. An

interesting case is presented by the comparison between SSIM and MS-SSIM,

whose relative performance is similar, but with a very high variance: MS-SSIM

performs better on some datasets [137], but worse in others [111], and neither

is clearly better in others [131]. Another work [138] compares the basic metrics’535

performance and complexity, and finds that most are well-correlated to MOS

in the studied scenarios. The experiments by the authors show that the more

complex methods in [130, 131, 109, 132, 133] have a higher performance than

traditional metrics, but they have not been corroborated by independent studies

yet.540

The results of the analyses and comparisons are summarized in Table 5, with

a color-coding scheme to give the reader a first-glance impression of the metrics.
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3.4. Dynamic factors in video QoE

The dynamic nature of video is also a major factor in QoE that should be

taken into account: as in 2D video streaming, stalling events [144] can signif-545

icantly affect both the perceived quality of 360◦ videos [145] and the sense of

presence of the experience [115]. Since omnidirectional video is more bandwidth-

intensive than standard video of the same quality, and buffering is limited by

the accuracy of FoV prediction, as we will discuss in detail in Sec. 5, avoiding

rebuffering events is likely to be a major issue in bitrate adaptation algorithm550

design.

Quality fluctuations also have an impact on QoE, and omnidirectional video

can have two sources of picture quality variation: as in all adaptive video stream-

ing systems, the bitrate adaptation algorithm can change the quality to adapt

to the connection, either decreasing it if the available bandwidth does not sup-555

port the current quality level or increasing it if there is unused capacity. The

second cause of quality fluctuations is specific to omnidirectional video: as we

will discuss in Sec. 5, streaming systems transmit regions outside the predicted

viewport at a lower quality to save bandwidth, which causes sharp decreases in

QoE when the user turns and the lower-quality content is displayed.560

The impact of quality variations due to FoV changes in adaptive systems

is modeled in [146], using quotients between exponential functions of the qual-

ity variation rate to approximate the subjective quality when fluctuations are

present. This model is extended in [118], which considers a more complete

model for several different possible scenarios and tests it on a large-scale sub-565

jective evaluation dataset. Naturally, a more precise model of the trajectory of

the user’s gaze could improve the accuracy of these QoE models, tying quality

evaluation, encoding, and FoV tracking inextricably.

Another study [147] investigates the impact of head turn movements on sub-

jective QoE, finding that these movements can have a strong impact on perceived570

quality. However, the effect of user movements on the QoE of omnidirectional

video is still largely unexplored, and should be investigated further. Another

interesting issue, which is explored in [148], is the impact of audio degradation
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on omnidirectional video QoE: the authors use a neural network to combine the

effects of video and audio impairment, training it on a subjective assessment575

dataset.

Immersive videos with fast camera motions are also subject to cybersick-

ness [149], which is caused by a mismatch between perceived motion and visual

input. Cybersickness symptoms often include oculomotor disturbances, nausea,

and disorientation, and they are strongly dependent on the content [13]: immer-580

sive scenarios with strong pitch motion such as rollercoaster rides or parachute

dives can induce far stronger symptoms than more horizontal scenes. The tech-

nical challenges of designing immersive systems are explored in more detail

in [150, 105].

Gaming is another important application of VR, and the definition of QoE585

can be slightly different in this context, as both enjoyment and performance need

to be taken into account. Immersive gaming is affected both by the quality of

the video and by other factors such as the control scheme [151], which should

include the headset movement input: measurement studies have been performed

in different contexts, such as driving simulators [152], first-person shooters [153],590

sport simulators [154], or even training simulators [155].

4. Saliency and FoV tracking

Saliency is the quality that makes part of an image or video stand out and

capture viewers’ attention [156]. In this section, we discuss how to evaluate

saliency in omnidirectional videos, then apply the concepts to FoV tracking,595

which represents not just the importance of parts of images but the trajectory

that users’ gazes have over the whole duration of the video.

While saliency estimation and FoV tracking are not, in and of themselves,

optimizations that improve the QoE of 360◦ video streaming, they are closely

intertwined with all the other components that we discuss in this survey. The600

most effective projection methods take user behavior into account [48], as pri-

oritizing the content that is watched most often will usually lead to a higher
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compression efficiency. The same reasoning applies to QoE estimation: while

we can look at the quality of a 360◦ frame from all possible angles, the actual

experience of users will always entail a single trajectory throughout the video,605

as their eyes can only look in one direction at a time. Naturally, different users

might follow different paths during the videos, looking at different points at

different times, and even the same user might focus on different content when

rewatching an omnidirectional video, but this makes extensive studies of saliency

all the more important.610

Finally, FoV tracking is a key component of streaming systems, as we will

discuss in detail in Sec. 5: since QoE only depends on the parts of the video

that the user is currently watching, buffer-aided streaming systems can improve

their efficiency by predicting which direction the user will look and prefetching

the correct parts of the video, or adjusting the projection to improve quality in615

that direction. A precise, long-term FoV tracking can then enable the streaming

client to make more foresighted choices,

4.1. Saliency evaluation

While there is a wide body of literature on 2D saliency evaluation [157],

omnidirectional video saliency is still a recent field. The Boolean Map Saliency620

(BMS) and Graph-Based Visual Saliency (GBVS) 2D saliency metrics were

adapted to omnidirectional images and videos in [158], applying them directly on

the omnidirectional images by using the ERP and automatically compensating

for the distortion in the CIELAB color space [159]. Another attempt to adapt

saliency metrics to panoramic video was made in [160], using similar tools to625

compensate for the equirectangular distortion. A later work [161] considers

multiple projections, taking into account the bias towards looking at the center

of the panorama [162], i.e., keeping close to the equator of the video sphere [163],

and combining it with 2D metrics. Other saliency metrics, taking center bias and

multi-object confusion into account, are proposed in [164] and [165]; the latter630

also includes a movement tracking framework. A metric considering a linear

combination of low-level features and high-level ones such as faces and people
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was proposed in [166], obtaining good results for images containing humans. It

is also possible to apply 2D techniques such as weakly supervised CNNs directly

by using the appropriate projection and adjustments [167], or by using CNNs635

to correct the distortion, combining the output of the traditional saliency map

of each path with its spherical coordinates [168]. Spherical CNNs can also be

used directly [169].

In [170], a superpixel decomposition is applied to the image, which is then

converted to the CIELAB color space; the difference in contrast and color is640

then used to train an unsupervised learner to determine saliency, according to

the boundary connectivity measure [171]. A similar approach is taken in [172],

in which the authors derive sparse color features and apply a model of human

perception, biased towards the equator, to derive saliency. It is also possible

to combine 2D saliency maps on different projections with spherical domain645

optimization to generate a hybrid metric [173], or to include illumination nor-

malization [174] to compensate for lighting variations in the omnidirectional im-

ages. GANs [175] are another supervised learning tool that can be used to infer

saliency; unsupervised learning from bottom-up features has also been applied

successfully [176]. An experimental comparison of several standard and omni-650

directional state-of-the-art saliency detection techniques is presented in [177].

Scanpaths [178] are a natural extension of the saliency metric, adding the

time dimension to the static map; image metrics can often be straightfor-

wardly extended to the video domain, both for standard and omnidirectional

video [179]. Scanpaths can also act as predictors of future gaze directions when655

used as the training model for learning agents such as deep networks [180] or

GANs [181]. However, scanpath models often have the same issues as static

saliency models: since saliency is extremely content-dependent, different mod-

els can have higher performance on different datasets. For this reason, standard

evaluation datasets and metrics have been proposed [182, 183]. In [184], an660

approximate saliency metric is derived by clustering multiple users’ head move-

ments, but the training is video-specific and does not generalize on other content.

A more general model based on user movement statistics is derived in [185] by
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Table 6: Summary of the main presented saliency FoV prediction methods

Reference Type Basic principle

[181] Content- and popularity-based GAN

[184] Popularity-based Clustering

[187] History-based Dead reckoning

[188] History-based Polynomial regression

[189, 190] History-based Kalman filtering

[191, 192] History- and popularity-based Gaussian filtering

[193] History- and popularity-based Clustering

[194] History- and popularity-based CNN

[195] History- and popularity-based Recurrent Neural Network (RNN)

[195, 196,

197, 198]

Content-, history- and popularity-based Long Short-Term Memory (LSTM)

[199] Content-, history- and popularity-based Convolutional LSTM

[200] Content- and history-based Attention-based encoder-decoder network

combining Fused Saliency Maps (FSMs) [186] with head movement data and

applying an equator bias.665

In general, saliency evaluation is more related to coding and compression

than to streaming, as streaming systems have the benefit of knowing the current

trajectory of the user, which can lead to more effective FoV tracking tools

discussed below. On the other hand, the compression and coding phase must

be performed once, so saliency and most frequent scanpath estimation are the670

only available tools to use content information during it. As with other fields,

the development of machine learning tools to combine content features and user

experience is one of the major research challenges: the field is rapidly developing,

and a one-step network that can automatically learn to extract saliency and

encode the video at the same time is just behind the corner.675

A task related to saliency and scanpath estimation is automatic navigation,

i.e., moving through a panoramic video to catch the most important parts of the

action. A simple optimization is performed in [201], while another work [202]

proposes a combination of object recognition and reinforcement learning, im-

plementing the policy gradient technique to track interesting objects in sports680

videos. A similar approach can be applied to explore a space by rewarding an

agent when it examines unexplored portions of its environment [203].
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4.2. Field of View prediction

As discussed in Sec. 3, the viewport direction is a fundamental factor in

assessing the QoE of immersive video, and needs to be considered proactively685

both in the coding phase and when performing adaptive streaming. In particu-

lar, the difficulty of predicting future viewport orientation leads to diminishing

returns on capacity, limiting the amount of prefetching [204] and exposing users

to the risk of annoying stalling events [115].

The prediction of gaze direction has been studied since the ’90s by using690

simple analytical tools, and it parallels the work on motion prediction: the first

studies used dead reckoning [187] and polynomial regression [188], and several

streaming systems that exploit FoV prediction still apply simple linear regres-

sion on historic data [205]. However, the models are often too simplistic, not

capturing viewer behavior complexity: an early frequency-domain analysis [206]695

highlights the difficulty of predicting long-term trends using these strategies.

Kalman filtering approaches use similar underlying models, but they can deal

with imprecise measurements of the orientation [189, 190].

Recently, more complex statistical tools such as Gaussian filtering [191, 192]

and clustering [193] have been used with good results, modeling viewer gaze700

direction as a random variable whose distribution is determined by their own

history as well as past users’ behavior. Another study on the correlation in the

behavior of users [207] concentrates on the caching implications of predicting

FoV.

Recently, deep learning has also been applied to the problem, as FoV pre-705

diction is a classical regression problem: both CNNs [194], and RNNs [195] had

good performance on standard datasets [208]. Three other works [196, 197, 198]

introduce LSTMs, including content-related metrics such as saliency maps and

scanpaths along with the motion information. In [209], ladder convolution is

used before the LSTM to extract contextual information from the encoded im-710

age and correct for the projection. Naturally, a richer state with more infor-

mation from different sources can improve the quality of the prediction, which

is further enhanced in [200] by the use of an encoder-decoder network with an
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attention mechanism that can have high tracking accuracy over multiple sec-

onds. However, these methods have not been tested on large datasets yet, and715

their significant computational complexity poses a challenge in real-time mo-

bile applications. The search for an efficient FoV tracking algorithm that can

allow Dynamic Adaptive Streaming over HTTP (DASH) clients to achieve sim-

ilar levels of buffer filling to traditional planar video is still open, and as these

works are all from the past 3 years, the state of the field is rapidly changing and720

improving.

Prediction on even longer timescales is possible by leveraging the watching

history of other users and identifying similarities [199], maintaining a viewport

hit rate over 75% even at a distance of 10 seconds. For additional accuracy,

users can be clustered by similarity [210, 211], identifying common patterns725

within clusters more effectively. This approach can also be combined with deep

reinforcement learning [212] to reduce training costs. It is also possible to use

combine saliency metrics and head movement with more precise gaze tracking,

obtaining a higher precision in the prediction [213]. FoV prediction can also be

tested on public datasets, often used by existing saliency estimation [177] and730

prediction methods [212]; the latter provides a dataset with the head movements

of 58 users across 76 video sequences. The datasets used for QoE measurement

often include both the ratings and head movements of the viewers, so they can

also be used for this purpose. A dataset with the head movements of 59 users

watching 7 YouTube immersive videos was presented in [214], while another735

dataset with partly overlapping videos and 50 different subjects was presented

in [215]. Another dataset includes the head trajectories of 48 users watching 18

videos [216], and yet another [217] contains the FoV trajectories and saliency

maps of 48 users on 24 videos. The dataset presented in [218] includes both

head movements and the results of a cybersickness questionnaire for 20 subjects740

watching 48 video sequences. The same kinds of data are available in [219], with

60 subjects watching 28 videos, and in [220], with 20 subjects watching 5 videos

created and edited by professional filmmakers. Another dataset [221] provides

eye tracking data, which is more precise than head movements, for 98 static
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Table 7: Available FoV tracking datasets

Reference Type Subjects Videos

[212] Head movements 58 76

[214] Head movements 59 7

[215] Head movements 50 10

[216] Head movements 48 18

[217] Head movements (with saliency maps) 48 24

[218] Head movements (with cybersickness questionnaire) 20 48

[219] Head movements (with cybersickness questionnaire) 60 28

[220] Head movements (with cybersickness questionnaire) 20 5

[221] Eye movements (static images) 63 98

[222] Eye movements (desktop platform) 50 12

images, observed by 63 subjects for 25 seconds each. Viewer gaze direction is745

usually analyzed on VR headsets, but there is a public dataset [222] of immer-

sive video FoVs on a desktop platform. The datasets on FoV prediction and

tracking are summarized in Table 7, while the main methods of FoV prediction

we presented in this section are summarized in Table 6.

5. Streaming750

Serving omnidirectional video content over the Internet is a complex prob-

lem of its own: a naive approach sending the whole sphere at the highest quality

will be extremely inefficient, and an intelligent way to adapt to network con-

ditions and user behavior needs to be devised. In this section, we discuss the

standardization work on omnidirectional video streaming and the solutions to755

optimize bitrate adaptation by considering spatiotemporal elements such as FoV

prediction. Finally, we present some of the work on network support of omnidi-

rectional video in the context of VR, which is one of the key applications that

will be enabled by 5G networks.

5.1. Streaming standardization760

Today, the DASH streaming standard is almost universally used for 2D video

streaming over the Internet: it divides videos into short segments, which are

encoded independently and at several different qualities by the server. The

streaming client can then choose the quality level for each segment, depend-

ing on the bitrate its connection can support, by requesting the appropriate765
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HTTP resource. The low computational load on the server and transparency to

middleboxes make DASH highly compatible with the existing Internet infras-

tructure, and the possibility of implementing different adaptation algorithms

makes it versatile to different network conditions. In the early 2010s, the stan-

dard was extended to enable the transmission of omnidirectional, zoomable and770

3D content: the Spatial Representation Description (SRD) extension [223] spec-

ifies spatial information on each segment, allowing servers to present spatially

diverse content. The standard only specifies the spatiotemporal coordinates of

each segment, and the choice of which ones to download and show to the user

is still client-side, in accordance with the client-based DASH paradigm.775

The Omnidirectional Media Format (OMAF) standard [224] is another spec-

ification that can extend DASH or other streaming systems by specifying the

spatial nature of video segments. Furthermore, OMAF also specifies some re-

quirements for players, taking another step towards a complete standard spec-

ification for omnidirectional streaming. In fact, OMAF-based players have al-780

ready been implemented and demonstrated [225]. The standard specifies a

viewport-independent video profile using the HEVC coding standard, as well

as two viewport-dependent profiles using HEVC or the older AVC, supporting

the ERP and CMP projections and tile-based streaming. OMAF further de-

fines a viewport-dependent projection approach, in which the client chooses the785

projection with the highest quality for its current viewport, as well as three dif-

ferent tile-based streaming approaches: in the simplest one, the viewport region

is downloaded at a high quality, along with an additional low-quality version of

the whole sphere. The other two allow a freer choice by the client, which can

download a set of tiles with either mixed encoding quality or mixed resolutions,790

privileging the viewport area in both cases.

A DASH SRD or OMAF compliant server can allow clients to stream omni-

directional video, presenting either segments with different viewport-dependent

projections or separate tiles for the client to choose. The client can download

the appropriate projected content, potentially discarding or downloading low-795

quality versions of tiles with a low viewing probability and saving bandwidth.
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It is also possible to exploit the features of HEVC to enable fast FoV switch-

ing or to give users the option to zoom into certain areas of the sphere [226],

as high-quality chunks can be requested at any moment if the user moves

their head [227], seamlessly integrating the functions with minimal server-side800

changes. The techniques for streaming content at the highest possible quality

exploiting viewport information are described in detail in the following.

5.2. Viewport-dependent streaming

Omnidirectional streaming has all the complexity of traditional streaming,

with buffer concerns and dynamic quality considerations, but it has an addi-805

tional degree of freedom: since the viewer only sees the portion of the sphere in

their FoV, quality is strongly dependent on the direction of their gaze [228]. the

parts of the sphere inside the FoV are visualized by the user, and their attention

focuses on a narrower foveal cone [229]. Naturally, adaptive streaming systems

try to exploit this by maximizing the quality of the predicted FoV at the expense810

of unwatched regions, which do not contribute to the QoE. This approach is not

without pitfalls: standard DASH buffered streaming often prefetches segments

several seconds in advance, with no performance loss, but prefetching an un-

watched region at a high quality does not lead to any QoE improvement [230],

so the advantages of prefetching in adaptive 360◦ video are closely tied with the815

quality of the viewport prediction [204]. The paradigm can also deal reactively

to dynamic viewpoint changes [231].

Transmission factors can significantly affect the quality of the image [115]:

viewport-agnostic streaming, which transmits the whole omnidirectional video

with the same quality, does not introduce additional distortion, but it is ex-820

tremely bandwidth-inefficient. There are two viewport-dependent approaches

to adapting omnidirectional streaming systems to the FoV. The first, and most

common, approach is tile-based streaming, which divides the omnidirectional

video into independent rectangular tiles [232]. In this case, the bitrate adapta-

tion becomes multi-dimensional [233]: each tile can be streamed independently825

at a different quality level, and the client reconstructs the whole sequence. It
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is also possible to exploit the HTTP/2 weight parameter to control the tile

interleaving and prioritization [234]. The main downsides of tiling-based ap-

proaches are the frequent spatial quality fluctuations [235] and artifacts close to

tile borders.830

The second approach is viewport-dependent projection, which uses offset

projection [236] or differentiated QP assignment [237] to improve the quality of

the FoV [238]. This approach avoids obvious seams between tiles at different

qualities. However, it can have temporal quality fluctuations as the projection

changes when the user moves their head, and it is rarely used in the literature835

because of the server-side memory requirements of storing several different pro-

jections with different encoding parameters. A third, even less common, solution

in wireless channels is to transmit the video directly, using analog modulation

after applying the Discrete Cosine Transform (DCT) [239]. This leads to a more

graceful quality decrease than the sharp fall caused by digital transmission, but840

is not without its disadvantages, as the transmitter and receiver hardware need

to be designed ad hoc.

In the following, we concentrate on tile-based streaming methods, as they

are by far the most common, although they involve a higher computational

costs due to the necessity of stitching [183]. While the simplicity in the design845

of tile-based systems is attractive, we remark that they might not be optimal

in terms of encoding efficiency, and a more holistic solution that takes both

encoding efficiency and streaming factors into account might provide an even

better solution in the future. As we discussed in the previous sections, the

design of projection and encoding methods is inextricably linked to the expected850

scanpath of the user’s gaze, while the streaming adaptation strategy strongly

relies on FoV prediction. As some users might behave in an atypical manner

and follow uncommon scanpaths, the encoding system and streaming systems

need to guarantee a minimum QoE in all cases, while optimizing the QoE for

as many users as possible. These conflicting objectives present an interesting855

trade-off, which is mostly unexplored in the current literature and would be

extremely interesting to investigate.
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An accurate prediction of the FoV can improve the efficiency of omnidirec-

tional streaming significantly: since the only area that the viewer sees is the

one in the viewport, other parts of the video sphere can be streamed with a860

much higher compression, or even discarded, without affecting the QoE. Several

authors have proposed streaming algorithms exploiting this prediction, often

using it in one of two ways:

• The viewport-based approach maximizes the quality of the predicted FoV,

or a slightly wider region to account for inaccuracies in the prediction, and865

streaming the rest of the sphere at the lowest quality.

• The probabilistic approach weights the tiles by their viewing probability,

then optimizing the expected quality.

• The reinforcement learning approach implicitly optimizes the expected

long-term QoE by applying its namesake learning paradigm.870

Naturally, the capacity of the connection is the constraint that limits the QoE,

and various capacity prediction methods can be employed. Since there is no

correlation between the capacity of the channel and the viewport orientation,

the two predictions can be performed separately with different methods, and the

use that the streaming adaptation algorithm makes of the results is usually not875

constrained by the prediction method. An interesting way to improve the pre-

diction and the streaming quality is to devise the content in a way that implicitly

or explicitly leads users to direct their attention in certain directions [240].

The viewport-based approach is simpler, as it does not require solving a

complex optimization problem: there are only two regions, the one around880

the viewport and the rest of the sphere, and the second one is usually either

not streamed at all or streamed at the maximum possible compression [241].

Naturally, the approach is optimal if the predictor is perfect. In [205], both

a linear regression and a neural network-based prediction are tested with a

simple algorithm that transmits a circular portion of the omnidirectional video,885

comprised of the circle inscribing the predicted viewport with an additional

34



safety margin. The authors assume that an efficient projection method is used

and that capacity is constant. It is also possible to adapt the safety margin to

the estimated prediction error variance [242], increasing the area in case of quick

head movements or highly unreliable predictions. Naturally, linear regression is890

not the only possible model: a second-degree model with constant acceleration

is proposed in [243], and Support Vector Regression (SVR) with eye tracking

data is used in [244]. The latter distinguishes a small attention area of about

10◦ close to the gaze direction, while the rest of the FoV is a larger sub-attention

area. The two areas have different weights in the optimization, and a third area895

(non-attention) completes the sphere with the unwatched portions. This kind

of three-tier optimization is a first step towards the probabilistic approach.

It is also possible to mix a popularity-based approach with linear regression:

the scheme presented in [245] uses the two at the same time, weighting the

regression outputs by the popularity and fetching the predicted viewport tiles,900

with some margin for errors, at the highest quality supported by the connection.

A more refined server-side approach is adopted in [246], which uses a neural

network to estimate the future viewport of multiple users. The algorithm then

sends the data for the predicted viewport to each user at the highest possible

quality, while sending the invisible parts of the sphere at the lowest one to905

save bandwidth. Another work [194] takes the same approach, replacing the

fully connected neural network with a CNN. Object tracking is another kind of

information that can be used for the prediction: this semantic information [247]

is often correlated to users’ viewing patterns, as their gaze follows one of the

object across the panoramic video.910

The probabilistic streaming approach weights the quality of each tile by

their viewing probability and optimize expected quality assuming constant ca-

pacity. This scheme has been combined with linear and ridge regression for

the equirectangular [248], triangular [249], and truncated pyramid [250] tiling

schemes. In all three cases, the capacity of the connection is assumed to be915

constant. In [251], the linear regression is combined with a buffer-based stream-

ing approach to maintain playback smoothness, adapting the estimate of the
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total bitrate to control the buffer level. Bas-360 [252] is another scheme which

combines spatial adaptation with a temporal factor, optimizing a sequence of

multiple future frames together and using stream prioritization and termina-920

tion to correct bandwidth and FoV prediction errors. A similar method [253]

considers both temporal and spatial quality smoothness in the optimization,

considering a sequence of future segments. The Optimal Probabilistic Viewport

(OPV) scheme [254] tackles prediction error from a different angle, correcting

its decisions by streaming higher-quality tiles for already buffered segments if925

necessary. This allows the client to keep a long buffer and avoid stalling without

having to lower quality.

As for the viewport-based approach, popularity can be considered to per-

form the prediction: a proposed scheme [255] tries to maximize the overall

expected QoE, considering only the popularity of each tile, corrected for the930

equirectangular tiling (if the viewport is closer to the poles, more tiles will be

part of the FoV). The algorithm considers the rate-distortion curve for each

tile, weighted by its corrected navigation probability. In this case, capacity is

assumed to be constant. This approach can also exploit the popularity of tiles

and linear regression jointly: in [256], a transition threshold between the two935

methods is set, and the popularity-based model is used if the measured capacity

of the connection is insufficient to support the other one. The concept behind

this scheme is that regression incurs a higher risk of rebuffering events in low-

bandwidth scenarios, and switching to a more conservative scheme is desirable

in this context. Another work [257] mixing the two prediction methods uses940

a linear combination of the two outputs, considering the trade-off between the

flexibility of the adaptation and the coding efficiency, which decreases as the

number of tiles grows. A k-Nearest Neighbors (k-NN) was exploited in [258]

to make use of previous users’ data by finding similar scanpaths and assigning

future FoVs from those users a larger probability.945

A more sophisticated approach, presented in [196], combines saliency and

motion information with the FoV scanpath using an LSTM. The predicted

viewing probability for each equirectangular tile can then be used in the usual
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Table 8: Summary of the main presented FoV prediction-based streaming schemes

Ref. Projection Optimization Prediction method

[205] Ideal Circular region around the viewport Linear regression and neural networks

[242] ERP Adaptable region around the viewport Linear regression

[243] CMP Highest quality for predicted viewport Second-degree regression

[244] ERP Attention-based weights SVR with eye tracking

[245] ERP Highest quality for predicted viewport Popularity-weighted linear regression

[246] ERP Highest quality for predicted viewport Neural network with motion history

[194] ERP Highest quality for predicted viewport CNN with motion history

[247] Direct Highest quality for predicted viewport Semantic object tracking

[248] ERP Expected quality Linear regression

[249] Triangular Expected quality Linear and ridge regression

[250] TSP Expected quality Linear regression

[251] ERP Expected quality with buffer control Linear regression

[252] ERP Expected quality over multiple future

steps

Unspecified

[253] ERP Expected quality over multiple future

steps

Unspecified

[254] ERP Expected quality, past action fixes Unspecified

[255] ERP Expected quality Popularity-based model

[256] ERP Expected quality Popularity/linear regression switching

[257] ERP Expected quality Popularity/linear regression linear

combination

[258] SP Expected quality k-NN with other users’ patterns

[196] ERP Expected quality LSTM with saliency, motion, and FoV

info

[259] ERP Expected quality 3D-CNN with saliency, motion, and

FoV info

[260] ERP Minimum visible quality, stalling

avoidance

Unspecified

[261] Unspecified Reinforcement learning Unspecified

[262] ERP Reinforcement learning Neural network from [263]

[264] ERP Reinforcement learning LSTM

[265] ERP Reinforcement learning LSTM

[266] ERP Reinforcement learning Implicit in the solution

[267, 268] Adap. ERP Expected quality Known FoV

[263] Adap. ERP Expected quality Popularity-based model

[269] Adap. Expected quality Popularity-based model

probability-weighted quality optimization. The same technique was compared

to a 3D-CNN approach in [259]: both prediction methods had extremely good950

performance, but the latter had a slight advantage.

A complete streaming algorithm, which considers stalling and a more so-

phisticated capacity prediction method based on the harmonic mean of past

samples, is presented in [260]. The authors derive an efficient heuristic that can

maintain a high quality even when the FoV is uncertain, optimizing the quality955

of the worst tile in the viewport to guarantee a minimum QoE while limiting
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stalling. However, they do not present a specific FoV prediction method, but

analyze performance as a function of the prediction error.

The third way to achieve the same objective without explicitly optimizing

the expected QoE is to use Deep Reinforcement Learning (DRL): the sequential960

approach reduces the multi-dimensional tile quality decision to a sequence of

decisions for each single tile [261]. Another DRL solution [262] models the

problem as a Markov Decision Problem (MDP), optimizing a complex function

considering the FoV picture quality, quality variations, and stalling events. The

work assumes that FoV prediction is performed by a neural network, as in [246],965

and includes the prediction in the model state, along with the capacity and buffer

history. Plato [264] is another system that assumes an external prediction as

input to a DRL system, in this case performed by an LSTM. A similar solution

was presented in [265], modeling buffer overflows explicitly. Another work using

DRL [266] performs the FoV prediction implicitly, using an LSTM to keep track970

of the historical trends in capacity and viewport orientation.

It is also possible to adaptively change the projection: in [267, 268], the com-

pression or size of the tiles of an ERP can be changed according to the user’s

expected behavior and the expected quality resulting from each scheme. While

the authors assume that the future FoV is known in advance, which is obvi-975

ously unrealistic, this kind of scheme adds a degree of freedom to the streaming

optimization. It is also possible to use the adaptive projection with popularity-

based prediction, as in [263]. In [269], the popularity-based prediction is used

to derive an adaptive projection with an irregular shape. The trade-off between

changing the compression of the tiles at the same resolution and lowering the980

resolution to increase the bandwidth efficiency has also been explored [100], and

the results show that the viewport-based approach has a higher QoE with the

same compression.

Techniques based on packet-level coding or Scalable Video Coding (SVC) [270,

271] are also possible: a scheme that protects immersive video data with fountain985

codes, increasing the redundancy for areas in the FoV while leaving unwatched

areas of the sphere unprotected, has been proposed in [272]. In a multipath
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wireless scenario in which multiple links with fast-varying capacity are avail-

able, it is possible to use a wireless path to transmit the video’s base layer and

another to to transmit enhancement layers, improving the quality of live VR990

streaming while maintaining full reliability [273].

5.3. Network-level innovations

The DASH paradigm is entirely end-to-end, and does not require any net-

work support. However, several studies have explored the possibility of imple-

menting explicit network support for video streaming: the network can either995

explicitly communicate with the client and help it make decisions, or provision

resources and indirectly improve the situation perceived by the client, which

will then improve the video quality autonomously. Since immersive streaming

requires more resources from the network, implicit or explicit support is even

more helpful in this scenario.1000

The most basic form of network support for immersive video is at the design

level: the lower layer protocols and their interplay can negatively affect the

360◦ stream, and design adjustments based on an analysis of these effects can

significantly improve performance. Such a study was performed for the LTE

network [274], finding several simple solutions that can be implemented without1005

changing the network architecture. The standardization of the 5G requirements

and solutions for immersive and VR video streaming are ongoing [275].

Caching is another form of basic network support that can be implemented

simply, and is often already in place thanks to Content Delivery Networks

(CDNs). Explicitly considering the nature of immersive video can significantly1010

enhance the efficiency of edge caching strategies [276, 277]: by caching the most

common fields of view closest to the network edge [278], it is possible to in-

crease the cache hit rate and, consequently, the average QoE. Caching can be

combined with edge computing strategies to improve the QoE of Augmented

Reality (AR) [279], rendering the virtual content in the user’s FoV without1015

the latency that cloud processing entails. It is also possible to extend these

techniques, along with a measure of user popularity at any given moment, to
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optimize multicast immersive streaming in mobile networks [280].

More explicit approaches aim at resource allocation when multiple Radio Ac-

cess Technologies (RATs) are available [281], exploiting FoV prediction to pair1020

users with access points and effectively use wireless resources. The same opti-

mization can be performed for multiple users on the same network, maximizing

the overall QoE by cooperatively downloading different SVC layers [282]. FoV

prediction can also be used in multicast scenarios, clustering users with similar

points of view and exploiting mmWave multicast [283] to serve them together.1025

With the gradual adoption of 5G technology, it is also possible to combine cel-

lular resource scheduling optimization with encoding tile rate selection [284] to

provide low delay upload of VR content.

Live streaming of AR and VR content is another issue, which is complicated

by the limited delay tolerance: experimental studies [285, 286] show that any1030

delay over 10 ms can be perceived by users as annoying, although higher latencies

can be tolerated [287]. The issue becomes even more complex when viewport-

adaptive schemes are taken into account, as the adaptation scheme needs to

react fast enough to changes in the FoV to avoid quality drops [237]. Future

networks need to be able to guarantee reliable end-to-end communication below1035

this latency, requiring innovation both from the physical [288] to the transport

layer [289] to enable these applications.

However, network support is not limited to communication: in the case of

rendered VR, the network can also help with computation tasks. Most VR

platforms are tethered, using a desktop computer to render the environment in1040

real-time: current smartphones do not have the computing and battery power

to provide a high-quality VR experience without offloading some of the compu-

tational load [290]. Several works have tried to mitigate the latency problems

caused by the remote rendering, either by reducing the throughput using com-

pression [291] or by using servers close to the network edge [292]. The Furion1045

platform [293] tries to solve this issue by using FoV prediction techniques to

prefetch rendered background content from a remote server, rendering only the

foreground objects locally. The use of Mobile Edge Computing (MEC) to pro-
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vide rendering support to multiple VR users at the same time has also been

investigated [294]. The several components of latency in a VR application were1050

analyzed in [295]: the trade-off between network and computation delay, as

cloud servers are more powerful but farther away, is a critical design choice for

future systems.

6. Conclusions and open challenges

Omnidirectional video has gained significant traction, both in the research1055

community and in the industry, and the first commercial HMDs are now several

years old. This kind of video presents challenges that call for a redesign of the

whole video coding, streaming and evaluation pipeline, taking into account two

critical aspects specific to 360◦ video: geometric distortion due to the mapping

of a spherical surface to 2D planes, and the fact that viewers only experience a1060

limited FoV.

In this survey, we analyzed all aspects of omnidirectional video coding and

streaming. First, we reviewed projection methods and the geometric distortion

that they can cause, with a description of their effects on video encoders and

their compression efficiency. The choice of a projection scheme is often a trade-1065

off between different types of distortion: while approaches based on solids with

a larger number of faces approximate the spherical nature of the image better,

they also increase the number of edge distortion, and thus the possibility of

visible errors at the seams. The same is true for offset projection: dedicating

more pixels to the most probable view increases the average QoE, but highly1070

reduces it if the user turns around unexpectedly. The subsequent encoding

parameters also have effects on the image quality, and they should be optimized

jointly with the projection settings.

The projection and encoding of omnidirectional videos is a critical procedure,

as it determines the rate-distortion efficiency of the video streaming system. The1075

research on the subject has evolved far from the first simple examples using

simple projection schemes and the 2D encoding pipeline, but some fundamental
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trade-offs limit possible performance. In particular, the choice of projection af-

fects the rest of the encoding pipeline significantly, and ad hoc region-adaptive

quantization schemes need to be devised. Motion models and inter-frame com-1080

pression also need to be carefully tuned, as no projection can avoid geometric

distortion and discontinuities caused by objects crossing face boundaries at the

same time.

We then focused on QoE in omnidirectional video: as several subjective

studies prove, 2D quality metrics are inaccurate in this scenario, and more1085

intelligent ones that take geometric distortion and viewer attention are needed.

The dynamic factor also plays a role, as quality variations between segments

and tiles can affect QoE in unpredictable ways. In general, measuring QoE in

omnidirectional video is a complex problem, and will probably require the use of

content-aware learning tools. We then discussed automatic saliency estimation1090

and FoV prediction techniques, which have a critical role in QoE estimation and

video streaming: being able to predict the FoV, both for the average user and for

the current viewing session, can help compress video better by allocating more

pixels to regions with more important content and which are viewed more often,

but also increase the efficiency of tile-dependent streaming and the accuracy of1095

QoE metrics.

The strong dependence between video content and the effectiveness of differ-

ent metrics, along with the lack of a single large-scale database of experimental

results to use, can result in contradictory evidence, and multiple studies often

have different outcomes. However, there are a few guidelines for future research:1100

the inadequacy of 2D metrics such as PSNR in the omnidirectional video domain

is evident from most studies, even when corrected and weighted to account for

the different geometry. VIFP seems to be a promising base to develop better

omnidirectional QoE metrics, but the hot topic in the field is machine learn-

ing: a few learning-based metrics have already been proposed, but they have1105

not been tested on a wider scale or released publicly. Whether the significant

performance improvements that machine learning achieved in other applications

can be replicated in QoE measurement of omnidirectional video is arguably the
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biggest open question. Another important, and often overlooked, factor is the

dynamic nature of video, which can be crucial in omnidirectional video due to1110

the cybersickness issue: the study of dynamic metrics for omnidirectional video

taking stalling events and quality fluctuations due to the adaptive streaming

and the user’s head movements into account is still limited to a few works.

Streaming itself is another active research topic: we considered the three

most common approaches to tile-based streaming as well as a brief overview of1115

viewport-dependent streaming. In particular, schemes that weigh the tiles by

their viewing probability and importance in the projected FoV and maximize the

overall expected QoE, often including dynamic factors such as stalling and qual-

ity variations in the optimization, obtain the best performance. However, better

FoV prediction is not the only way to improve streaming systems: additional1120

options such as adaptive tiling schemes and SVC are also being investigated,

as they can increase bandwidth efficiency and robustness in mobile streaming

scenarios. Reinforcement learning-based schemes have recently been under their

spotlight, as they can seamlessly integrate data from different sources in their

prediction and optimize even complex QoE functions in difficult scenarios with1125

little design effort. Learning-based solutions provide higher accuracy and al-

low prediction for up to 10 seconds, a critical requirement to avoid stalling in

buffer-based streaming systems.

Finally, network-level optimization to support omnidirectional streaming

and VR is another subject that is beginning to attract interest: the promises1130

of 5G with regard to resource allocation and optimization, higher capacity, and

edge and fog computing provide new interesting scenarios to simplify streaming

systems and enable VR over simple devices with limited battery and computing

power.

Streaming techniques, along with all other aspects of omnidirectional video1135

coding and evaluation, are rapidly converging towards machine learning as a

general solution: the complexity of omnidirectional videos requires a level of

context-awareness that is too complex for traditional analytical techniques. Fur-

thermore, the trend in the field is towards joint optimization, not considering
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each step of the process separately but optimizing them all at once, from projec-1140

tion and coding to streaming and quality evaluation. The first fully integrated

models, incorporating historical data from other users, spatial and temporal

features of the content, and past history for the specific user, are beginning to

appear in the literature, although larger datasets with a varied population of

viewers for proper evaluation are not available yet. Gaze tracking, which is more1145

precise than head orientation tracking, is another possibility that is still largely

unexplored due to the cost and complexity of the required experimental setup.

However, the research related to several of the topics presented in this survey

is still ongoing, and, given the fast update rate of communication technologies

and the rapid growth of deep learning, we can expect the interest in the topic1150

not to fade. In particular, VR is central to the 5G paradigm, and innovations

in each of the subjects we considered is needed to meet the high expectations.
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[108] P. Arnau-González, T. Althobaiti, S. Katsigiannis, N. Ramzan, Perceptual

video quality evaluation by means of physiological signals, in: 9th Interna-1500

tional Conference on Quality of Multimedia Experience (QoMEX), IEEE,

2017, pp. 1–6.

[109] C. Li, M. Xu, X. Du, Z. Wang, Bridge the gap between VQA and hu-

man behavior on omnidirectional video: A large-scale dataset and a deep

learning model, in: 26th International Conference on Multimedia, ACM,1505

2018, pp. 932–940.

[110] M. Xu, C. Li, Y. Liu, X. Deng, J. Lu, A subjective visual quality as-

sessment method of panoramic videos, in: International Conference on

Multimedia and Expo (ICME), IEEE, 2017, pp. 517–522.

[111] W. Sun, K. Gu, S. Ma, W. Zhu, N. Liu, G. Zhai, A large-scale compressed1510

360-degree spherical image database: From subjective quality evaluation

to objective model comparison, in: 20th International Workshop on Mul-

timedia Signal Processing (MMSP), IEEE, 2018, pp. 1–6.

[112] Y. Zhang, Y. Wang, F. Liu, Z. Liu, Y. Li, D. Yang, Z. Chen, Subjec-

tive panoramic video quality assessment database for coding applications,1515

IEEE Transactions on Broadcasting 64 (2) (2018) 461–473.

57



[113] J. Yang, T. Liu, B. Jiang, H. Song, W. Lu, 3d panoramic virtual reality

video quality assessment based on 3d convolutional neural networks, IEEE

Access 6 (2018) 38669–38682.

[114] S. Croci, C. Ozcinar, E. Zerman, J. Cabrera, A. Smolic, Voronoi-based1520

objective quality metrics for omnidirectional video, in: 2019 Eleventh In-

ternational Conference on Quality of Multimedia Experience (QoMEX),

IEEE, 2019, pp. 1–6.

[115] R. Schatz, A. Sackl, C. Timmerer, B. Gardlo, Towards subjective quality

of experience assessment for omnidirectional video streaming, in: 9th In-1525

ternational Conference on Quality of Multimedia Experience (QoMEX),

IEEE, 2017, pp. 1–6.

[116] H. Duan, G. Zhai, X. Yang, D. Li, W. Zhu, IVQAD 2017: An immer-

sive video quality assessment database, in: International Conference on

Systems, Signals and Image Processing (IWSSIP), IEEE, 2017, pp. 1–5.1530

[117] B. Zhang, J. Zhao, S. Yang, Y. Zhang, J. Wang, Z. Fei, Subjective and

objective quality assessment of panoramic videos in virtual reality envi-

ronments, in: International Conference on Multimedia & Expo Workshops

(ICMEW), IEEE, 2017, pp. 163–168.

[118] S. Xie, Y. Xu, Q. Shen, Z. Ma, W. Zhang, Modeling the perceptual quality1535

of viewport adaptive omnidirectional video streaming, IEEE Transactions

on Circuits and Systems for Video Technology 30 (9) (2020) 3029–3042.

[119] J. Yang, Y. Zhu, C. Ma, W. Lu, Q. Meng, Stereoscopic video quality

assessment based on 3D convolutional neural networks, Neurocomputing

309 (2018) 83–93.1540

[120] H. Duan, G. Zhai, X. Min, Y. Zhu, Y. Fang, X. Yang, Perceptual quality

assessment of omnidirectional images, in: International Symposium on

Circuits and Systems (ISCAS), Vol. 1, IEEE, 2018, pp. 1–5.

58



[121] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality as-

sessment: from error visibility to structural similarity, IEEE Transactions1545

on Image Processing 13 (4) (2004) 600–612.

[122] Z. Wang, E. P. Simoncelli, A. C. Bovik, Multiscale structural similarity

for image quality assessment, in: 37th Asilomar Conference on Signals,

Systems & Computers, Vol. 2, IEEE, 2003, pp. 1398–1402.

[123] H. R. Sheikh, A. C. Bovik, Image information and visual quality, IEEE1550

Transactions on Image Processing 15 (2) (2006) 430–444.

[124] L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: A feature similarity index

for image quality assessment, IEEE Transactions on Image Processing

20 (8) (2011) 2378–2386.

[125] Y. Sun, A. Lu, L. Yu, Weighted-to-spherically-uniform quality evaluation1555

for omnidirectional video, IEEE Signal Processing Letters 24 (9) (2017)

1408–1412.

[126] V. Zakharchenko, E. Alshina, A. Singh, A. Dsouza, AHG8: Suggested

testing procedure for 360-degree video, Tech. Rep. D0027, JVET (Oct.

2016).1560

[127] S. Chen, Y. Zhang, Y. Li, Z. Chen, Z. Wang, Spherical structural sim-

ilarity index for objective omnidirectional video quality assessment, in:

International Conference on Multimedia and Expo (ICME), IEEE, 2018,

pp. 1–6.

[128] Y. Zhou, M. Yu, H. Ma, H. Shao, G. Jiang, Weighted-to-spherically-1565

uniform ssim objective quality evaluation for panoramic video, in: 14th

International Conference on Signal Processing (ICSP), IEEE, 2018, pp.

54–57.

[129] Y. Rai, P. Le Callet, P. Guillotel, Which saliency weighting for omni

directional image quality assessment?, in: 9th International Conference1570

on Quality of Multimedia Experience (QoMEX), IEEE, 2017, pp. 1–6.

59



[130] W. Zou, F. Yang, S. Wan, Perceptual video quality metric for compression

artefacts: from two-dimensional to omnidirectional, IET Image Processing

12 (3) (2017) 374–381.

[131] M. Huang, Q. Shen, Z. Ma, A. C. Bovik, P. Gupta, R. Zhou, X. Cao,1575

Modeling the perceptual quality of immersive images rendered on head

mounted displays: Resolution and compression, IEEE Transactions on

Image Processing 27 (12) (2018) 6039–6050.

[132] S. Yang, J. Zhao, T. Jiang, J. W. T. Rahim, B. Zhang, Z. Xu, Z. Fei, An

objective assessment method based on multi-level factors for panoramic1580

videos, in: International Conference on Visual Communications and Image

Processing (VCIP), IEEE, 2017, pp. 1–4.

[133] H. G. Kim, H.-t. Lim, Y. M. Ro, Deep Virtual Reality image quality as-

sessment with human perception guider for omnidirectional image, IEEE

Transactions on Circuits and Systems for Video Technology 30 (4) (2020)1585

917–928.

[134] C. Li, M. Xu, L. Jiang, S. Zhang, X. Tao, Viewport proposal cnn for

360deg video quality assessment, in: Conference on Computer Vision and

Pattern Recognition (CVPR), IEEE, 2019, pp. 10177–10186.

[135] H. T. Tran, N. P. Ngoc, C. M. Bui, M. H. Pham, T. C. Thang, An eval-1590

uation of quality metrics for 360 videos, in: 9th International Conference

on Ubiquitous and Future Networks (ICUFN), IEEE, 2017, pp. 7–11.

[136] H. T. Tran, N. P. Ngoc, C. T. Pham, Y. J. Jung, T. C. Thang, A subjective

study on QoE of 360 video for VR communication, in: 19th International

Workshop on Multimedia Signal Processing (MMSP), IEEE, 2017, pp.1595

1–6.

[137] E. Upenik, M. Rerabek, T. Ebrahimi, On the performance of objective

metrics for omnidirectional visual content, in: 9th International Confer-

60



ence on Quality of Multimedia Experience (QoMEX), IEEE, 2017, pp.

1–6.1600

[138] H. T. Tran, C. T. Pham, N. P. Ngoc, A. T. Pham, T. C. Thang, A study

on quality metrics for 360 video communications, IEICE Transactions on

Information and Systems 101 (1) (2018) 28–36.

[139] P. Hanhart, Y. He, Y. Ye, J. Boyce, Z. Deng, L. Xu, 360-degree video

quality evaluation, in: Picture Coding Symposium (PCS), IEEE, 2018,1605

pp. 328–332.

[140] A. Mittal, R. Soundararajan, A. C. Bovik, Making a completely blind

image quality analyzer, IEEE Signal Processing Letters 20 (3) (2012) 209–

212.

[141] K. Gu, G. Zhai, X. Yang, W. Zhang, Hybrid no-reference quality metric for1610

singly and multiply distorted images, IEEE Transactions on Broadcasting

60 (3) (2014) 555–567.

[142] W. Sun, W. Luo, X. Min, G. Zhai, X. Yang, K. Gu, S. Ma, MC360IQA:

The multi-channel CNN for blind 360-degree image quality assessment, in:

International Symposium on Circuits and Systems (ISCAS), IEEE, 2019,1615

pp. 1–5.

[143] H. Huang, J. Chen, H. Xue, Y. Huang, T. Zhao, Time-variant visual

attention in 360-degree video playback, in: International Symposium on

Haptic, Audio and Visual Environments and Games (HAVE), IEEE, 2018,

pp. 1–5.1620

[144] V. Kelkkanen, M. Fiedler, Coefficient of throughput variation as indi-

cation of playback freezes in streamed omnidirectional videos, in: 28th

International Telecommunication Networks and Applications Conference

(ITNAC), IEEE, 2018, pp. 1–6.

[145] P. A. Kara, W. Robitza, M. G. Martini, C. T. Hewage, F. M. Felisberti,1625

Getting used to or growing annoyed: How perception thresholds and ac-

61



ceptance of frame freezing vary over time in 3d video streaming, in: Inter-

national Conference on Multimedia & Expo Workshops (ICMEW), IEEE,

2016, pp. 1–6.

[146] Y.-F. Ou, Y. Xue, Y. Wang, Q-STAR: A perceptual video quality model1630

considering impact of spatial, temporal, and amplitude resolutions, IEEE

Transactions on Image Processing 23 (6) (2014) 2473–2486.

[147] R. Schatz, A. Zabrovskiy, C. Timmerer, Tile-based streaming of 8K om-

nidirectional video: Subjective and objective QoE evaluation, in: 11th In-

ternational Conference on Quality of Multimedia Experience (QoMEX),1635

IEEE, 2019, pp. 1–6.

[148] B. Zhang, Z. Yan, J. Wang, Y. Luo, S. Yang, Z. Fei, An audio-visual qual-

ity assessment methodology in Virtual Reality environment, in: Interna-

tional Conference on Multimedia & Expo Workshops (ICMEW), IEEE,

2018, pp. 1–6.1640

[149] S. Davis, K. Nesbitt, E. Nalivaiko, A systematic review of cybersickness,

in: Conference on Interactive Entertainment, ACM, 2014, pp. 8:1–8:9.

[150] X. Liu, Q. Xiao, V. Gopalakrishnan, B. Han, F. Qian, M. Varvello, 360

innovations for panoramic video streaming, in: 16th Workshop on Hot

Topics in Networks, ACM, 2017, pp. 50–56.1645

[151] E. Martel, K. Muldner, Controlling VR games: control schemes and the

player experience, Entertainment Computing 21 (2017) 19–31.

[152] I. Hupont, J. Gracia, L. Sanagustn, M. A. Gracia, How do new visual im-

mersive systems influence gaming QoE? a use case of serious gaming with

Oculus Rift, in: 7th International Workshop on Quality of Multimedia1650

Experience (QoMEX), IEEE, 2015, pp. 1–6.

[153] J.-L. Lugrin, M. Cavazza, F. Charles, M. Le Renard, J. Freeman,

J. Lessiter, Immersive FPS games: User experience and performance, in:

62



International Workshop on Immersive Media Experiences, ACM, 2013,

pp. 7–12.1655

[154] R. Wood, F. Loizides, T. Hartley, A. Worrallo, Investigating control of Vir-

tual Reality snowboarding simulator using a Wii FiT board, in: Human-

Computer Interaction (INTERACT), Springer, 2017, pp. 455–458.

[155] K. Yue, D. Wang, X. Yang, H. Hu, Y. Liu, X. Zhu, Evaluation of the

user experience of astronaut training device: an immersive, VR-based,1660

motion-training system, in: Optical Measurement Technology and Instru-

mentation, Vol. 10155, Society of Photo-Optical Instrumentation Engi-

neers, 2016.

[156] G. Underwood, T. Foulsham, Visual saliency and semantic incongruency

influence eye movements when inspecting pictures, The Quarterly Journal1665

of Experimental Psychology 59 (11) (2006) 1931–1949.

[157] A. Borji, Saliency prediction in the deep learning era: An empirical inves-

tigation, CoRR [Online]. ArXiV Prepr. abs/1810.03716 (2018).

[158] P. Lebreton, A. Raake, GBVS360, BMS360, ProSal: Extending existing

saliency prediction models from 2D to omnidirectional images, Signal Pro-1670

cessing: Image Communication 69 (2018) 69–78.

[159] C. Connolly, T. Fleiss, A study of efficiency and accuracy in the transfor-

mation from RGB to CIELAB color space, IEEE Transactions on Image

Processing 6 (7) (1997) 1046–1048.

[160] M. Startsev, M. Dorr, 360-aware saliency estimation with conventional1675

image saliency predictors, Signal Processing: Image Communication 69

(2018) 43–52.

[161] V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Ma-

sia, G. Wetzstein, Saliency in VR: How do people explore virtual envi-

ronments?, IEEE Transactions on Visualization and Computer Graphics1680

24 (4) (2018) 1633–1642.

63



[162] T. Judd, K. Ehinger, F. Durand, A. Torralba, Learning to predict where

humans look, in: 12th International Conference on Computer Vision,

IEEE, 2009, pp. 2106–2113.

[163] T. Suzuki, T. Yamanaka, Saliency map estimation for omni-directional1685

image considering prior distributions, in: International Conference on Sys-

tems, Man, and Cybernetics (SMC), IEEE, 2018, pp. 2079–2084.

[164] Y. Ding, Y. Liu, J. Liu, K. Liu, L. Wang, Z. Xu, Panoramic image saliency

detection by fusing visual frequency feature and viewing behavior pattern,

in: Pacific Rim Conference on Multimedia, Springer, 2018, pp. 418–429.1690

[165] A. Nguyen, Z. Yan, K. Nahrstedt, Your attention is unique: Detecting

360-degree video saliency in head-mounted display for head movement

prediction, in: Conference on Multimedia, ACM, 2018, pp. 1190–1198.

[166] F. Battisti, S. Baldoni, M. Brizzi, M. Carli, A feature-based approach for

saliency estimation of omni-directional images, Signal Processing: Image1695

Communication 69 (2018) 53–59.

[167] H.-T. Cheng, C.-H. Chao, J.-D. Dong, H.-K. Wen, T.-L. Liu, M. Sun,

Cube padding for weakly-supervised saliency prediction in 360 videos, in:

Conference on Computer Vision and Pattern Recognition (CVPR), 2018,

pp. 1420–1429.1700

[168] R. Monroy, S. Lutz, T. Chalasani, A. Smolic, SalNet360: Saliency maps

for omni-directional images with CNN, Signal Processing: Image Commu-

nication 69 (2018) 26–34.

[169] Z. Zhang, Y. Xu, J. Yu, S. Gao, Saliency detection in 360 videos, in:

Proceedings of the European Conference on Computer Vision (ECCV),1705

Computer Vision Foundation, 2018, pp. 488–503.

[170] Y. Fang, X. Zhang, N. Imamoglu, A novel superpixel-based saliency de-

tection model for 360-degree images, Signal Processing: Image Communi-

cation 69 (2018) 1–7.

64



[171] Y. Yan, J. Ren, G. Sun, H. Zhao, J. Han, X. Li, S. Marshall, J. Zhan,1710

Unsupervised image saliency detection with Gestalt-laws guided optimiza-

tion and visual attention based refinement, Pattern Recognition 79 (2018)

65–78.

[172] J. Ling, K. Zhang, Y. Zhang, D. Yang, Z. Chen, A saliency prediction

model on 360 degree images using color dictionary based sparse represen-1715

tation, Signal Processing: Image Communication 69 (2018) 60–68.

[173] B. Dedhia, J.-C. Chiang, Y.-F. Char, Saliency prediction for omnidirec-

tional images considering optimization on sphere domain, in: International

Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,

2019, pp. 2142–2146.1720

[174] S. Biswas, S. A. Fezza, M.-C. Larabi, Towards light-compensated saliency

prediction for omnidirectional images, in: 7th International Conference on

Image Processing Theory, Tools and Applications (IPTA), IEEE, 2017, pp.

1–6.

[175] F. Chao, L. Zhang, W. Hamidouche, O. Deforges, SalGAN360: Visual1725

saliency prediction on 360 degree images with Generative Adversarial

Networks, in: International Conference on Multimedia Expo Workshops

(ICMEW), 2018, pp. 1–4.

[176] C. Xia, F. Qi, G. Shi, Bottom–up visual saliency estimation with deep

autoencoder-based sparse reconstruction, IEEE Transactions on Neural1730

Networks and Learning Systems 27 (6) (2016) 1227–1240.

[177] C. Ozcinar, A. Smolic, Visual attention in omnidirectional video for vir-

tual reality applications, in: 10th International Conference on Quality of

Multimedia Experience (QoMEX), IEEE, 2018, pp. 1–6.

[178] M. Cerf, J. Harel, W. Einhaeuser, C. Koch, Predicting human gaze using1735

low-level saliency combined with face detection, in: Advances in Neural

65



Information Processing Systems, Curran Associates, Inc., 2007, pp. 241–

248.

[179] P. Lebreton, S. Fremerey, A. Raake, V-BMS360: A video extention to the

BMS360 image saliency model, in: International Conference on Multime-1740

dia & Expo Workshops (ICMEW), IEEE, 2018, pp. 1–4.

[180] M. Assens, X. Giro-i Nieto, K. McGuinness, N. E. OConnor, Scanpath

and saliency prediction on 360 degree images, Signal Processing: Image

Communication 69 (2018) 8–14.

[181] M. Assens, X. Giro-i Nieto, K. McGuinness, N. E. O’Connor, PathGAN:1745

Visual scanpath prediction with Generative Adversarial Networks, in:

Computer Vision – ECCV 2018 Workshops, Springer International Pub-

lishing, 2019, pp. 406–422.

[182] J. Gutiérrez, E. J. David, A. Coutrot, M. P. Da Silva, P. Le Callet, In-

troducing UN Salient360! benchmark: A platform for evaluating visual1750

attention models for 360◦ contents, in: 10th International Conference on

Quality of Multimedia Experience (QoMEX), IEEE, 2018, pp. 1–3.

[183] J. Gutiérrez, E. David, Y. Rai, P. Le Callet, Toolbox and dataset for the

development of saliency and scanpath models for omnidirectional/360 still

images, Signal Processing: Image Communication 69 (2018) 35–42.1755

[184] L. Xie, X. Zhang, Z. Guo, CLS: A cross-user learning based system for

improving QoE in 360-degree video adaptive streaming, in: Conference

on Multimedia, ACM, 2018, pp. 564–572.

[185] A. De Abreu, C. Ozcinar, A. Smolic, Look around you: Saliency maps

for omnidirectional images in VR applications, in: 9th International Con-1760

ference on Quality of Multimedia Experience (QoMEX), IEEE, 2017, pp.

1–6.

66



[186] K.-Y. Chang, T.-L. Liu, H.-T. Chen, S.-H. Lai, Fusing generic objectness

and visual saliency for salient object detection, in: International Confer-

ence on Computer Vision, IEEE, 2011, pp. 914–921.1765

[187] P. Ramanathan, M. Kalman, B. Girod, Rate-distortion optimized interac-

tive light field streaming, IEEE Transactions on Multimedia 9 (4) (2007)

813–825.

[188] S. K. Singhal, D. R. Cheriton, Exploiting position history for efficient

remote rendering in networked Virtual Reality, Presence: Teleoperators1770

& Virtual Environments 4 (2) (1995) 169–193.

[189] A. Kiruluta, M. Eizenman, S. Pasupathy, Predictive head movement

tracking using a Kalman filter, IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics) 27 (2) (1997) 326–331.

[190] T. Aykut, C. Zou, J. Xu, D. Van Opdenbosch, E. Steinbach, A delay com-1775

pensation approach for pan-tilt-unit-based stereoscopic 360 degree telep-

resence systems using head motion prediction, in: International Confer-

ence on Robotics and Automation (ICRA), IEEE, 2018, pp. 1–9.
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Glossary2135

ACR Absolute Category Rating.

AR Augmented Reality.

AV1 AOMedia Video 1.

AVC Advanced Video Coding.

BMS Boolean Map Saliency.2140

BP Back Propagation.

CDN Content Delivery Network.

80



CMP Cubic Mapping Projection.

CNN Convolutional Neural Network.

CP-PSNR Content Preference PSNR.2145

CP-SSIM Content Preference SSIM.

CPP-PSNR PSNR for Craster Parabolic Projection.

DASH Dynamic Adaptive Streaming over HTTP.

DCR Degradation Category Rating.

DCT Discrete Cosine Transform.2150

DeepVR-IQA Deep VR Image Quality Assessment.

DMOS Differential Mean Opinion Score.

DRL Deep Reinforcement Learning.

DSIS Double Stimulus Impairment Scale.

ERP Equirectangular Projection.2155

FoV Field of View.

FSIM Feature Similarity Index.

FSM Fused Saliency Map.

GAN Generative Adversarial Network.

GBVS Graph-Based Visual Saliency.2160

GoP Group of Picture.

HEVC High Efficiency Video Coding.

HMD Head-Mounted Display.
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ITU International Telecommunication Union.

JVET Joint Video Exploration Team.2165

k-NN k-Nearest Neighbors.

LSTM Long Short-Term Memory.

MC360IQA Multi Channel 360◦ Image Quality Assessment.

MDP Markov Decision Problem.

MEC Mobile Edge Computing.2170

MOS Mean Opinion Score.

MS-SSIM Multiscale SSIM.

MSE Mean Square Error.

NIQE Natural Image Quality Evaluator.

NPCM Nested Polygonal Chain Mapping.2175

NQQ Normalized Quality versus Quality factor.

OCP Offset Cubic Projection.

OMAF Omnidirectional Media Format.

OPV Optimal Probabilistic Viewport.

PSNR Peak Signal to Noise Ratio.2180

PVQ Perceptual Video Quality.

QAVR Quality Assessment in VR systems.

QoE Quality of Experience.
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QP Quantization Parameter.

RAT Radio Access Technology.2185

RBM Rhombic Mapping.

RNN Recurrent Neural Network.

RSP Rotated Sphere Projection.

S-PSNR Sphere-based PSNR.

S-SSIM Spherical SSIM.2190

SAO Sample Adaptive Offset.

SCP Shared Coded Picture.

SISBLIM Six-Step Blind Metric.

SP Sinusoidal Projection.

SRD Spatial Representation Description.2195

SSIM Structural Similarity Index.

SVC Scalable Video Coding.

SVR Support Vector Regression.

TSP Truncated Square Pyramid.

V-CNN Viewport-based CNN.2200

VIFP Visual Information Fidelity in Pixel Domain.

VR Virtual Reality.

VVC Versatile Video Coding.

WS-PSNR Weighted to Spherically Uniform PSNR.

WS-SSIM Weighted to Spherically Uniform SSIM.2205
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