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Abstract 

Fatigue actions of most engineering welded structures involve variable amplitude (VA) loading cycles. The fatigue design of 
welded joints in such structures is based on the use of a fatigue strength criterion for constant amplitude (CA) loading in conjunction 
with a cumulative damage rule. In the present work, the Peak Stress Method (PSM), has been reformulated to estimate the lifetime 
of welded joints subjected to VA loadings. The PSM is an engineering finite element (FE)-oriented technique to rapidly estimate 
the mode I, II, and III notch stress intensity factors (NSIFs) at the weld toe or at the weld root, by taking advantage of the singular 
linear elastic, opening, sliding, and tearing peak stresses, respectively. Such stresses are computed at the V-notch tip by means of 
2D or 3D FE models discretized using coarse meshes, provided that some conditions of applicability of the method are satisfied. 
The fatigue strength under CA loading is then evaluated by combining the simplicity and rapidity of the PSM in evaluating the 
NSIFs with a robust and validated fatigue strength criterion such as the one based on the averaged Strain Energy Density (SED), 
which can be written as a function of the relevant NSIFs. To preserve the simplicity of the method, its extension to VA loading 
conditions has been achieved by assuming the Miner’s Linear Damage Rule (LDR) as a cumulative damage rule. The proposed 
method has been validated against new experimental results generated by testing non-load-carrying (nlc) fillet-welded joints with 
double inclined attachment and made of structural steel under pure axial loading. 
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1. Introduction 

The Notch Stress Intensity Factor (NSIF) based approach (Lazzarin and Tovo 1998; Lazzarin et al. 2004; Radaj et 
al. 2006) for the fatigue design of welded structures assumes the worst-case geometry both at the weld toe and at the 
weld root of the joint, consisting in a sharp V-notch having a null tip radius (ρ = 0) and opening angles of 135° and 
0°, respectively. Then, the NSIF-parameters quantify the intensity of the singular linear elastic local stress fields. 
Gross and Mendelson (Gross and Mendelson 1972) defined the NSIFs according to Eq. (1). 

 

( ) i1-λ
i jk jk θθ rθ θzθ=0r 0

K = 2π lim σ r where i=1,2,3 and σ = σ ,τ ,τ
→

 ⋅ ⋅ 
 respectively                                      (1) 

 
where λi is the stress singularity exponent relevant to mode I, II, and III for i = 1, 2, and 3, respectively, that are 

functions of the V-notch opening angle 2α, while the stress components σθθ, τrθ and τθz are computed along the notch 
bisector line (θ =0 in Fig. 1a). 

 

  

Fig. 1. (a) Polar reference system centred at the weld toe of a typical tube-to-flange welded joint geometry subjected to multiaxial bending and 
torsion loading. (b) Sharp V-shaped notches in a welded joint at the weld root (2α = 0°) and at the weld toe (2α ≈ 135°) sides. Definition of peak 
stresses σθθ,θ=0,peak, τrθ,θ=0,peak and τθz,θ=0,peak. 

Lazzarin and co-workers (Lazzarin et al. 2008) proposed the average value of the strain energy density (SED) 
evaluated inside a material structural volume embracing the weld root or the weld toe, as a damage parameter to 
correlate the fatigue strength of welded components. The structural volume has been assumed as having a circular 
shape of radius R0. When considering a general multiaxial stress state (see Fig. 1), the averaged SED can be written as 
a function of the ranges of the NSIF-terms, i.e., ΔK1, ΔK2, and ΔK3, through Eq. (2) (Lazzarin et al. 2008): 
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In Eq. (2), E is the material modulus of elasticity; e1, e2, and e3 are parameters dependent on the sharp notch 
geometry and on the material, through the opening angle 2α and the Poisson’s ratio ν, respectively (Lazzarin et al. 
2008). R0 is the structural volume size, which has been calibrated considering arc-welded joints made of structural 
steel and it was found to be 0.28 mm (Livieri and Lazzarin 2005). It should be noted that Eq. (2) is valid for welded 
joints loaded in the as-welded conditions, which are almost not sensitive to mean stresses according to design standards 
(Eurocode 3 2005). On the other hand, Eq. (2) must be modified as discussed in (Lazzarin et al. 2004; Meneghetti and 
Campagnolo 2020) when dealing with stress-relieved joints, to properly account for their sensitivity to mean stresses. 
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Fig. 1. (a) Polar reference system centred at the weld toe of a typical tube-to-flange welded joint geometry subjected to multiaxial bending and 
torsion loading. (b) Sharp V-shaped notches in a welded joint at the weld root (2α = 0°) and at the weld toe (2α ≈ 135°) sides. Definition of peak 
stresses σθθ,θ=0,peak, τrθ,θ=0,peak and τθz,θ=0,peak. 

Lazzarin and co-workers (Lazzarin et al. 2008) proposed the average value of the strain energy density (SED) 
evaluated inside a material structural volume embracing the weld root or the weld toe, as a damage parameter to 
correlate the fatigue strength of welded components. The structural volume has been assumed as having a circular 
shape of radius R0. When considering a general multiaxial stress state (see Fig. 1), the averaged SED can be written as 
a function of the ranges of the NSIF-terms, i.e., ΔK1, ΔK2, and ΔK3, through Eq. (2) (Lazzarin et al. 2008): 
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In Eq. (2), E is the material modulus of elasticity; e1, e2, and e3 are parameters dependent on the sharp notch 
geometry and on the material, through the opening angle 2α and the Poisson’s ratio ν, respectively (Lazzarin et al. 
2008). R0 is the structural volume size, which has been calibrated considering arc-welded joints made of structural 
steel and it was found to be 0.28 mm (Livieri and Lazzarin 2005). It should be noted that Eq. (2) is valid for welded 
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2. The Peak Stress Method (PSM) 

The PSM is a numerical tool to rapidly estimate the NSIF-parameters K1, K2, and K3 (Eq. 1), taking advantage of 
the opening, in-plane shear and out-of-plane shear peak stresses σθθ,θ=0,peak, τrθ,θ=0,peak and τθz,θ=0,peak, respectively. Peak 
stresses are referred to the V-notch bisector line (see the example in Fig. 1b) and evaluated from a linear elastic FE 
analysis with coarse mesh. The NSIF-terms can be estimated thanks to the PSM from the following expressions 
(Meneghetti and Lazzarin 2007; Meneghetti 2012, 2013): 

 
11-λ*

1 FE θθ,θ=0,peakK K σ d≅ ⋅ ⋅ ; ** 0.5
2 FE rθ,θ=0,peakK K τ d≅ ⋅ ⋅ ;  31-λ***

3 FE θz,θ=0,peakK K τ d≅ ⋅ ⋅                  (3) 

 
where the parameter d is the average size of the finite elements, which is the input parameter of the FE code before 

generating the free mesh. Originally, the coefficients K*
FE, K**

FE and K***
FE have been calibrated by using 2D 4-node 

plane and 3D 8-node brick elements as summarised in (Meneghetti and Campagnolo 2020). Recently, to meet the 
growing demand for more efficient as well as time-saving fatigue approaches to be coupled with the 3D modelling of 
large-scale or even full-scale structures, the PSM has been calibrated by using 10-node tetra elements (SOLID 187 of 
Ansys® element library). In fact, this element type allows to efficiently discretize complex 3D joint geometries using 
free meshing techniques. However, the drawback of a mesh pattern made of tetra elements is its typical irregularity, 
so that the peak stresses could vary along the notch tip line, even though the NSIF parameters were constant. To 
overcome this drawback, an average peak stress value has been defined in (Campagnolo et al. 2019), smoothing the 
peak stress distribution along the notch tip line. More in detail, the peak stress was defined as the moving average of 
the peak stresses calculated on three adjacent vertex nodes; as an example, the peak stress at node n=k is computed 
as: 
 

ij,peak,n=k-1 ij,peak,n=k ij,peak,n=k+1
ij,peak,n=k

n=node

σ +σ +σ
σ =

3
                                   (4) 

 

Therefore, the PSM-coefficients K*
FE, K**

FE, and K***
FE have been calibrated by adopting 10-node tetra elements 

(SOLID 187 of Ansys® library) and by rewriting Eq. (3) using the average peak stresses according to Eq. (4). It is 
worth recalling that the PSM based on 10-node tetra elements should not be applied at nodes laying on a free surface 
of the analysed structure, since the peak stresses at those nodes are influenced by the distorted mesh pattern. Moreover, 
the peak stresses must be calculated only at the vertex nodes of 10-node tetra elements, while the peak stresses 
calculated at mid-side nodes must be neglected. The results obtained from the calibration of the 3D-PSM based on 
10-node tetra elements (Campagnolo et al. 2019) are summarised in Table 1, along with the minimum mesh density 
ratios a/d, a being the characteristic size of the considered sharp V-notch, which guarantee the convergence of the 
PSM parameters K*

FE, K**
FE, and K***

FE, respectively.  
 
Table 1. Summary of parameters K*

FE, K**
FE and K***

FE and mesh density a/d requirements to apply the PSM with Ansys® (Campagnolo et al. 
2019; Meneghetti and Campagnolo 2020). n.a. = not applicable 
 

Loading FE analysis PSM 
parameters 

2α = 0° 2α = 90° 2α = 120° 2α = 135° a –  
weld root° 

a –  
weld toe°  FE type# 

Mode I 3D+ Tetra-10 K*
FE 1.05±15% 1.05±15% 1.05±15% 1.21±10% min{l, z} t 

   (a/d)min 3 3 3 1   
Mode II 3D+ Tetra-10 K**

FE 1.63±20% 2.65±10% n.a. n.a. min{l, z} n.a. 
   (a/d)min 1 1 n.a. n.a.   
Mode III 3D+ Tetra-10 K***

FE 1.37±15% 1.37±15% 1.70±10% 1.70±10% min{l, z} t 
   (a/d)min 3 3 3 3   

+ ‘Full graphics’ option must be activated when calculating peak stresses according to 3D PSM 
#  FE of Ansys® code: Tetra 10 = SOLID 187 
°  l, z, t have been defined in (Meneghetti and Campagnolo 2020) 
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2.1. Fatigue design of welded joints under constant amplitude (CA) loading according to the PSM 

Equation (2) shows that the averaged SED can be expressed as a function of NSIF-terms K1, K2, and K3, which the 
PSM readily estimates thanks to Eq. (3). Therefore, the averaged SED can be rewritten as a function of the average 
peak stresses defined by Eq. (4). After that, an equivalent uniaxial plane strain state can be introduced so as 

( ) E2/1W 2
peak,eq

2 σν−=  to define an equivalent peak stress generating the same local SED (Meneghetti et al. 2017):  

2 2 2 2 2 2
eq,peak w1 , 0,peak w 2 r , 0,peak w3 z, 0,peakf f fθθ θ= θ θ= θ θ=∆σ = ⋅∆σ + ⋅∆τ + ⋅∆τ  where 

1 λi

i
wi FE 2

0

2e df K
1 R

−

 
= ⋅ ⋅ −  ν

   i=1,2,3           (5) 

where the coefficients fwi (i = 1, 2, 3 is the loading mode) take into account the stress averaging inside the material-
structural volume having size R0 = 0.28 mm for steel joints. Equations (3) and (5) highlight that both peak stresses 
and parameters fwi depend on the average finite element size d adopted to generate the free mesh pattern; on the other 
hand, the equivalent peak stress defined in Eq. (5) is independent of the FE size d, thanks to the multiplication of the 
peak stresses by the relevant fwi parameters. It is worth recalling that when the weld toe is under investigation, the 
mode II stress field is always non-singular since 2α ≅ 135° >102°, therefore the relevant contribution in Eq. (5) 
becomes null.  

In a recent review of the PSM (Meneghetti and Campagnolo 2020), a criterion has been proposed to select the 
appropriate curve for the fatigue design of arc-welded joints made of structural steel. It is based on the relative SED 
contributions due to mode II/III shear stresses and mode I normal stresses. Accordingly, a local biaxiality ratio λ has 
been defined and expressed as a function of the peak stresses as follows: 

 

2 2 2 2
w 2 r , 0,peak w3 z, 0,peak

2 2
w1 , 0,peak

f f
f

θ θ= θ θ=

θθ θ=

⋅ ∆τ + ⋅ ∆τ
λ =

⋅ ∆σ
                                 (6) 

 

Equation (6) delivers λ = 0 for a pure local mode I stress state, λ → ∞ for a pure local mode II+III shear stress state 
and λ in the range from 0 to ∞ when a mixed mode opening-shear stress condition is present. The criterion for selecting 
the proper fatigue design curve was provided in (Meneghetti and Campagnolo 2020) as a function of λ (Eq. (6)) for 
welded steels and aluminium alloys and it has been summarised in Table 2 for the former materials, which includes 
also the relevant endurable stresses and slopes of the master curves. 

 

Table 2: Criterion for selecting the reference PSM-based fatigue design curve for arc-welded joints 

Class of materials T 
(mm) 

λ 
Eq. (6), (10) 

Δσeq,peak,A,50% 
(MPa) 

Δσeq,peak,A,97.7% 
(MPa) 

k Tσ 

Structural steels T ≥ 2 mm λ = 0 214 156 3 1.90 
 T ≥ 2 mm λ > 0 354 257 5 1.90 

 
 

2.2. Fatigue design of welded joints under variable amplitude (VA) loading according to the PSM 

In the present work, the previous expressions (5) and (6) are extended to the case of welded joints subjected to 
variable amplitude (VA) fatigue loading conditions. First of all, the load history of each peak stress component 
σθθ,θ=0,peak(t), τrθ,θ=0,peak(t) and τθz,θ=0,peak(t) must be derived at each FE node of the weld toe or root side by means of a 
FE analysis according to PSM. Then, a cycle counting method (e.g., rainflow) must be applied to each load history 
σθθ,θ=0,peak(t), τrθ,θ=0,peak(t) and τθz,θ=0,peak(t) to derive the load levels of each peak stress component in terms of stress 
range and number of loading cycles, i.e. [(Δσθθ,θ=0,peak)i,(nI)i], [(Δτrθ,θ=0,peak)j,(nII)j], [(Δτθz,θ=0,peak)h,(nIII)h]. The number 
of load levels for mode I, II, and III loadings are defined as nσI, nτII and nτIII, respectively, while the total number of 
cycles of each loading mode is defined as the sum of the number of cycles of each load level, i.e. (nI)tot=Σ(nI)i, 
(nII)tot=Σ(nII)j e (nIII)tot=Σ(nIII)h, these values being correlated to the physical reference duration of the analysed load 
history. It is useful to define n0 = min{(nI)tot,(nII)tot,(nIII)tot}. In the example of Fig. 2a,b,c, it is assumed n0 = (nII)tot. 
After that, the equivalent peak stress for each load level can be calculated by the following equations, which have 
been derived from Eq. (5) with reference to a single loading mode: 
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2. The Peak Stress Method (PSM) 

The PSM is a numerical tool to rapidly estimate the NSIF-parameters K1, K2, and K3 (Eq. 1), taking advantage of 
the opening, in-plane shear and out-of-plane shear peak stresses σθθ,θ=0,peak, τrθ,θ=0,peak and τθz,θ=0,peak, respectively. Peak 
stresses are referred to the V-notch bisector line (see the example in Fig. 1b) and evaluated from a linear elastic FE 
analysis with coarse mesh. The NSIF-terms can be estimated thanks to the PSM from the following expressions 
(Meneghetti and Lazzarin 2007; Meneghetti 2012, 2013): 

 
11-λ*

1 FE θθ,θ=0,peakK K σ d≅ ⋅ ⋅ ; ** 0.5
2 FE rθ,θ=0,peakK K τ d≅ ⋅ ⋅ ;  31-λ***

3 FE θz,θ=0,peakK K τ d≅ ⋅ ⋅                  (3) 

 
where the parameter d is the average size of the finite elements, which is the input parameter of the FE code before 

generating the free mesh. Originally, the coefficients K*
FE, K**

FE and K***
FE have been calibrated by using 2D 4-node 

plane and 3D 8-node brick elements as summarised in (Meneghetti and Campagnolo 2020). Recently, to meet the 
growing demand for more efficient as well as time-saving fatigue approaches to be coupled with the 3D modelling of 
large-scale or even full-scale structures, the PSM has been calibrated by using 10-node tetra elements (SOLID 187 of 
Ansys® element library). In fact, this element type allows to efficiently discretize complex 3D joint geometries using 
free meshing techniques. However, the drawback of a mesh pattern made of tetra elements is its typical irregularity, 
so that the peak stresses could vary along the notch tip line, even though the NSIF parameters were constant. To 
overcome this drawback, an average peak stress value has been defined in (Campagnolo et al. 2019), smoothing the 
peak stress distribution along the notch tip line. More in detail, the peak stress was defined as the moving average of 
the peak stresses calculated on three adjacent vertex nodes; as an example, the peak stress at node n=k is computed 
as: 
 

ij,peak,n=k-1 ij,peak,n=k ij,peak,n=k+1
ij,peak,n=k

n=node

σ +σ +σ
σ =

3
                                   (4) 

 

Therefore, the PSM-coefficients K*
FE, K**

FE, and K***
FE have been calibrated by adopting 10-node tetra elements 

(SOLID 187 of Ansys® library) and by rewriting Eq. (3) using the average peak stresses according to Eq. (4). It is 
worth recalling that the PSM based on 10-node tetra elements should not be applied at nodes laying on a free surface 
of the analysed structure, since the peak stresses at those nodes are influenced by the distorted mesh pattern. Moreover, 
the peak stresses must be calculated only at the vertex nodes of 10-node tetra elements, while the peak stresses 
calculated at mid-side nodes must be neglected. The results obtained from the calibration of the 3D-PSM based on 
10-node tetra elements (Campagnolo et al. 2019) are summarised in Table 1, along with the minimum mesh density 
ratios a/d, a being the characteristic size of the considered sharp V-notch, which guarantee the convergence of the 
PSM parameters K*

FE, K**
FE, and K***

FE, respectively.  
 
Table 1. Summary of parameters K*

FE, K**
FE and K***

FE and mesh density a/d requirements to apply the PSM with Ansys® (Campagnolo et al. 
2019; Meneghetti and Campagnolo 2020). n.a. = not applicable 
 

Loading FE analysis PSM 
parameters 

2α = 0° 2α = 90° 2α = 120° 2α = 135° a –  
weld root° 

a –  
weld toe°  FE type# 

Mode I 3D+ Tetra-10 K*
FE 1.05±15% 1.05±15% 1.05±15% 1.21±10% min{l, z} t 

   (a/d)min 3 3 3 1   
Mode II 3D+ Tetra-10 K**

FE 1.63±20% 2.65±10% n.a. n.a. min{l, z} n.a. 
   (a/d)min 1 1 n.a. n.a.   
Mode III 3D+ Tetra-10 K***

FE 1.37±15% 1.37±15% 1.70±10% 1.70±10% min{l, z} t 
   (a/d)min 3 3 3 3   

+ ‘Full graphics’ option must be activated when calculating peak stresses according to 3D PSM 
#  FE of Ansys® code: Tetra 10 = SOLID 187 
°  l, z, t have been defined in (Meneghetti and Campagnolo 2020) 
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2.1. Fatigue design of welded joints under constant amplitude (CA) loading according to the PSM 

Equation (2) shows that the averaged SED can be expressed as a function of NSIF-terms K1, K2, and K3, which the 
PSM readily estimates thanks to Eq. (3). Therefore, the averaged SED can be rewritten as a function of the average 
peak stresses defined by Eq. (4). After that, an equivalent uniaxial plane strain state can be introduced so as 

( ) E2/1W 2
peak,eq

2 σν−=  to define an equivalent peak stress generating the same local SED (Meneghetti et al. 2017):  

2 2 2 2 2 2
eq,peak w1 , 0,peak w 2 r , 0,peak w3 z, 0,peakf f fθθ θ= θ θ= θ θ=∆σ = ⋅ ∆σ + ⋅∆τ + ⋅∆τ  where 

1 λi

i
wi FE 2

0

2e df K
1 R

−

 
= ⋅ ⋅ −  ν

   i=1,2,3           (5) 

where the coefficients fwi (i = 1, 2, 3 is the loading mode) take into account the stress averaging inside the material-
structural volume having size R0 = 0.28 mm for steel joints. Equations (3) and (5) highlight that both peak stresses 
and parameters fwi depend on the average finite element size d adopted to generate the free mesh pattern; on the other 
hand, the equivalent peak stress defined in Eq. (5) is independent of the FE size d, thanks to the multiplication of the 
peak stresses by the relevant fwi parameters. It is worth recalling that when the weld toe is under investigation, the 
mode II stress field is always non-singular since 2α ≅ 135° >102°, therefore the relevant contribution in Eq. (5) 
becomes null.  

In a recent review of the PSM (Meneghetti and Campagnolo 2020), a criterion has been proposed to select the 
appropriate curve for the fatigue design of arc-welded joints made of structural steel. It is based on the relative SED 
contributions due to mode II/III shear stresses and mode I normal stresses. Accordingly, a local biaxiality ratio λ has 
been defined and expressed as a function of the peak stresses as follows: 

 

2 2 2 2
w 2 r , 0,peak w3 z, 0,peak

2 2
w1 , 0,peak

f f
f

θ θ= θ θ=

θθ θ=

⋅ ∆τ + ⋅ ∆τ
λ =

⋅ ∆σ
                                 (6) 

 

Equation (6) delivers λ = 0 for a pure local mode I stress state, λ → ∞ for a pure local mode II+III shear stress state 
and λ in the range from 0 to ∞ when a mixed mode opening-shear stress condition is present. The criterion for selecting 
the proper fatigue design curve was provided in (Meneghetti and Campagnolo 2020) as a function of λ (Eq. (6)) for 
welded steels and aluminium alloys and it has been summarised in Table 2 for the former materials, which includes 
also the relevant endurable stresses and slopes of the master curves. 

 

Table 2: Criterion for selecting the reference PSM-based fatigue design curve for arc-welded joints 

Class of materials T 
(mm) 

λ 
Eq. (6), (10) 

Δσeq,peak,A,50% 
(MPa) 

Δσeq,peak,A,97.7% 
(MPa) 

k Tσ 

Structural steels T ≥ 2 mm λ = 0 214 156 3 1.90 
 T ≥ 2 mm λ > 0 354 257 5 1.90 

 
 

2.2. Fatigue design of welded joints under variable amplitude (VA) loading according to the PSM 

In the present work, the previous expressions (5) and (6) are extended to the case of welded joints subjected to 
variable amplitude (VA) fatigue loading conditions. First of all, the load history of each peak stress component 
σθθ,θ=0,peak(t), τrθ,θ=0,peak(t) and τθz,θ=0,peak(t) must be derived at each FE node of the weld toe or root side by means of a 
FE analysis according to PSM. Then, a cycle counting method (e.g., rainflow) must be applied to each load history 
σθθ,θ=0,peak(t), τrθ,θ=0,peak(t) and τθz,θ=0,peak(t) to derive the load levels of each peak stress component in terms of stress 
range and number of loading cycles, i.e. [(Δσθθ,θ=0,peak)i,(nI)i], [(Δτrθ,θ=0,peak)j,(nII)j], [(Δτθz,θ=0,peak)h,(nIII)h]. The number 
of load levels for mode I, II, and III loadings are defined as nσI, nτII and nτIII, respectively, while the total number of 
cycles of each loading mode is defined as the sum of the number of cycles of each load level, i.e. (nI)tot=Σ(nI)i, 
(nII)tot=Σ(nII)j e (nIII)tot=Σ(nIII)h, these values being correlated to the physical reference duration of the analysed load 
history. It is useful to define n0 = min{(nI)tot,(nII)tot,(nIII)tot}. In the example of Fig. 2a,b,c, it is assumed n0 = (nII)tot. 
After that, the equivalent peak stress for each load level can be calculated by the following equations, which have 
been derived from Eq. (5) with reference to a single loading mode: 
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( ) ( )22
w1eq,peak,I , 0,peaki i

f θθ θ== ⋅∆σ ∆σ ;  ( ) ( )22
w 2eq,peak,II r , 0,peakj j

f θ θ== ⋅∆σ ∆τ ;   ( ) ( )22
w3eq,peak,III z, 0,peakh h

f θ θ== ⋅∆σ ∆τ             (7) 
 

Then, the Palmgren-Miner linear-damage rule must be applied, separately for each loading mode (see Fig. 2a,b,c), 
to derive an equivalent peak stress which generates the same damage of the n load levels (i.e. nσI, nτII and nτIII) 
previously defined, but by acting for n0 cycles, i.e. the same number of cycles for all loading modes. To do so, the 
PSM master curve valid for the considered loading mode is adopted according to Table 2, e.g. when dealing with steel 
welded joints under mode I loading (λ = 0), the inverse slope is k1 = 3, while under mode II and mode III (λ → ∞) the 
inverse slopes are k2 = k3 = 5 (Table 2):  

( ) ( )
I 1

1

1
n kkI i

eq,peak,I eq,peak,I i
i 1 0

n
n

σ

=

 
∆σ = ∆σ 

 
∑ ;

( ) ( )
2II

2

1
n kkII j

eq,peak,II eq,peak,II j
j 1 0

n

n

τ

=

 
∆σ = ∆σ 

  
∑ ; ( ) ( )

III 3
3

1
n kkIII h

eq,peak,III eq,peak,III h
h 1 0

n
n

τ

=

 
∆σ = ∆σ 

 
∑              (8) 

  

  

Fig. 2. Palmgren-Miner linear-damage rule applied to derive an equivalent peak stress which generates the same damage of the n load levels (i.e. 
nσI, nτII and nτIII), but by acting for n0 cycles for: (a) mode I, (b) mode II and (c) mode III contributions. (d) Overall equivalent peak stress compared 
with the proper design curve to estimate the fatigue life of the considered welded joint under VA loading conditions.      
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Once calculated the equivalent peak stresses for all loading modes (Fig. 2a,b,c), the overall equivalent peak stress 
and the local biaxiality ratio can be derived by Eqs. (9) and (10) and adopted to estimate the fatigue life of the 
considered welded joint under VA loading condition (see Fig. 2d). 

2 2 2
eq,peak eq,peak,I eq,peak,II eq,peak,III∆σ = ∆σ + ∆σ + ∆σ                           (9) 

2 2
eq,peak,II eq,peak,III

2
eq,peak,I

∆σ + ∆σ
λ =

∆σ
                               (10) 

3. Experimental Validation 

3.1. Fatigue Tests 

The tested joints were non-load-carrying (nlc) fillet-welded joints with double inclined attachment made of a 8 mm 
thick S355 steel plate (see Fig. 3a). This joint geometry has been chosen because it allows to apply an in-phase 
multiaxial stress state at the weld toe through a uniaxial test machine. Accordingly, all specimens were tested in the 
as-welded state under pulsating loading (R = 0.05) by means of an MFL axial servo-hydraulic machine, with a load 
capacity of 250 kN and equipped with an MTS TestStar IIm digital controller. 

 

 

 
 

Fig. 3. Tested specimens (dimensions are in mm): (a) joint geometry and loading conditions; (b) FE analysis for fatigue lifetime estimation 
according to the PSM. 
 
 

All tests were carried out both under constant (CA) and variable amplitude (VA) loading adopting the p-type 
spectrum (Hobbacher 1977) reported in Fig. 4. The cycles distribution of the p-type spectrum is derived from that of 
a stationary zero-mean narrow-band Gaussian random process {𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)}. More in detail, it has been demonstrated that 
the probability density function of peaks, and of troughs for symmetry reasons, of a stationary zero-mean Gaussian 
random process {𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)} follows the Rice distribution and is a function of the bandwidth of the process (Rice 1944). In 
case the stationary zero-mean Gaussian random process is a narrow-band process, the probability density function of 
peaks (and troughs) can be simplified into a Rayleigh distribution and turns out to be equal to the probability density 
function of stress amplitudes 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎: 
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( ) ( )22
w1eq,peak,I , 0,peaki i

f θθ θ== ⋅∆σ ∆σ ;  ( ) ( )22
w 2eq,peak,II r , 0,peakj j

f θ θ== ⋅∆σ ∆τ ;   ( ) ( )22
w3eq,peak,III z, 0,peakh h

f θ θ== ⋅∆σ ∆τ             (7) 
 

Then, the Palmgren-Miner linear-damage rule must be applied, separately for each loading mode (see Fig. 2a,b,c), 
to derive an equivalent peak stress which generates the same damage of the n load levels (i.e. nσI, nτII and nτIII) 
previously defined, but by acting for n0 cycles, i.e. the same number of cycles for all loading modes. To do so, the 
PSM master curve valid for the considered loading mode is adopted according to Table 2, e.g. when dealing with steel 
welded joints under mode I loading (λ = 0), the inverse slope is k1 = 3, while under mode II and mode III (λ → ∞) the 
inverse slopes are k2 = k3 = 5 (Table 2):  
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Fig. 2. Palmgren-Miner linear-damage rule applied to derive an equivalent peak stress which generates the same damage of the n load levels (i.e. 
nσI, nτII and nτIII), but by acting for n0 cycles for: (a) mode I, (b) mode II and (c) mode III contributions. (d) Overall equivalent peak stress compared 
with the proper design curve to estimate the fatigue life of the considered welded joint under VA loading conditions.      
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Once calculated the equivalent peak stresses for all loading modes (Fig. 2a,b,c), the overall equivalent peak stress 
and the local biaxiality ratio can be derived by Eqs. (9) and (10) and adopted to estimate the fatigue life of the 
considered welded joint under VA loading condition (see Fig. 2d). 

2 2 2
eq,peak eq,peak,I eq,peak,II eq,peak,III∆σ = ∆σ + ∆σ + ∆σ                           (9) 

2 2
eq,peak,II eq,peak,III

2
eq,peak,I

∆σ + ∆σ
λ =

∆σ
                               (10) 

3. Experimental Validation 

3.1. Fatigue Tests 

The tested joints were non-load-carrying (nlc) fillet-welded joints with double inclined attachment made of a 8 mm 
thick S355 steel plate (see Fig. 3a). This joint geometry has been chosen because it allows to apply an in-phase 
multiaxial stress state at the weld toe through a uniaxial test machine. Accordingly, all specimens were tested in the 
as-welded state under pulsating loading (R = 0.05) by means of an MFL axial servo-hydraulic machine, with a load 
capacity of 250 kN and equipped with an MTS TestStar IIm digital controller. 

 

 

 
 

Fig. 3. Tested specimens (dimensions are in mm): (a) joint geometry and loading conditions; (b) FE analysis for fatigue lifetime estimation 
according to the PSM. 
 
 

All tests were carried out both under constant (CA) and variable amplitude (VA) loading adopting the p-type 
spectrum (Hobbacher 1977) reported in Fig. 4. The cycles distribution of the p-type spectrum is derived from that of 
a stationary zero-mean narrow-band Gaussian random process {𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)}. More in detail, it has been demonstrated that 
the probability density function of peaks, and of troughs for symmetry reasons, of a stationary zero-mean Gaussian 
random process {𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)} follows the Rice distribution and is a function of the bandwidth of the process (Rice 1944). In 
case the stationary zero-mean Gaussian random process is a narrow-band process, the probability density function of 
peaks (and troughs) can be simplified into a Rayleigh distribution and turns out to be equal to the probability density 
function of stress amplitudes 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎: 
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where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the Root Mean Square stress value of the random process. Accordingly, the number of exceeding 
cycles N of a stationary zero-mean narrow-band Gaussian random process can be obtained from the complementary 
cumulative distribution function, or exceedance, of the Rayleigh distribution: 

 
21

2

0
0

1 ( ) ( )
 −∞  
 = − = =∫ ∫

a
a

a

rmsN p d p d e
N

σ
σ

σ
ξ ξ ξ ξ               (12) 

 
where N is the exceedance number of cycles, i.e. the number of cycles whose stress amplitude is higher than or 

equal to 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎 and N0 is the total number of cycles, i.e. the length of the spectrum. Theoretically the Rayleigh distribution 
is defined for values ranging from 0 to infinity, but in practice peaks do not exceed a certain value of 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎/𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 called 
clipping ratio. Haibach et al. (Haibach et al. 1976) proposed to set the number of exceeding cycles N of the maximum 
stress level (clipping ratio) equal to one (in other words this means that the highest stress level is applied only once in 
the spectrum). Consequently, the clipping ratio becomes a function of the length of the spectrum according to Eq. 
(13). 
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function of the relative stress amplitudes σa/σa,max or of the relative stress ranges ∆σ/∆σmax as reported in Eq. (14) 
(Gaßner et al. 1964; Hanke 1970; Heuler et al. 2005): 
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In the present work, the length of the spectrum has been fixed to N0 = 104 cycles (Fig. 4).  
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In this work, the obtained p-type spectrum has been discretized in six steps (Fig. 4) and applied in a 

decreasing/decreasing sequence until failure. The spectrum was discretized with so few steps to allow the test 
equipment to correctly apply load levels while avoiding transients from one load level to another as much as possible. 
For the same reason, loads have been applied with a frequency between 0.1 and 10 Hz, depending on their level. 

A total of 9 specimens, 5 under CA loading and 4 under VA loading, have been tested. In all specimens, fatigue 
cracks initiated at the weld toe on the plate's side and then propagated through the thickness and through the width, as 
shown in Fig. 5. The number of cycles to failure Nf has been recorded and the fatigue test interrupted when the fatigue 
crack reached roughly half the plate thickness in length. In case no fatigue cracks were detected, 2∙106 cycles were 
defined as runout. The Whoeler curve for CA data and the Gassner curve for VA data are reported in Fig. 6 in which 
fatigue tests results are expressed in terms of number of cycles to failure versus the maximum applied nominal stress 
range Δσmax. The reported scatter bands have been fitted on experimental data and refer to survival probabilities of 
2.3% and 97.7% with a confidence level of 95%. 

 

Fig. 5. Fatigue crack initiation point: example of crack at failure observed in specimen I_12, tested under VA loading. 
 

4. Fatigue strength assessment according to the PSM 

In the present manuscript, the experimental fatigue results have been analysed by means of the 3D-PSM procedure 
discussed in Section 2. Accordingly, a 3D FE analysis of the welded joint has been performed assuming a sharp V-
notch at the weld toe (ρ = 0) with an opening angle 2α = 135°. As shown in Fig. 3b, only half of the welded joint was 
modelled using the ZX plane of symmetry. A free mesh pattern of tetrahedral 10-node elements (SOLID 187 of 
Ansys® element library) has been generated adopting a ‘global element size’ complying with the conditions of 
applicability of the PSM: the ‘global element size’ d has been imposed equal to a/3 = 4/3 ≈ 1.3 mm, the required mesh 
density ratio being a/d ≥ 3 (see Table 1) and the characteristic size being equal to half the plate thickness for the weld 
toe (a = 8/2 = 4 mm). After having solved the model, the peak stresses , 0,peakθθ θ=σ  and z, 0,peakθ θ=τ  have been extrapolated 
along the weld toe line and the corresponding average values , 0,peakθθ θ=σ  and z, 0,peakθ θ=τ  have been calculated according 
to Eq. (4). Then, the equivalent peak stress for each load level has been calculated both for CA and VA loadings by 
following the procedure explained in sections 2.1 and 2.2, respectively. Their distributions are reported as a function 
of the normalized curvilinear coordinate s/smax along the weld toe line in Fig. 7a. Noteworthily, the PSM exactly 
estimates the crack initiation point: the maximum value of the equivalent peak stress occurs at point B for both CA 
and VA loadings (see Fig.7a), i.e. at the experimental crack initiation location. Accordingly, the value of the equivalent 
peak stress at point B has been adopted to estimate the fatigue lifetime of the tested specimens. The result of this 
analysis is shown in Fig. 7b, which reports the fatigue test results expressed in terms of number of cycles to failure as 
a function of the range of the equivalent peak stress evaluated at the fatigue crack initiation point (Point B in Fig. 7a).  
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Fig. 6. Results of experimental fatigue tests performed on non-load-carrying (nlc) fillet-welded joints with double inclined attachment expressed in 
terms of nominal stress range: (a) the Whoeler curve of the CA loading and (b) the Gassner curve of the VA loading. 

Figure 7b also includes for comparison the PSM-based fatigue design scatter band calibrated on fatigue data 
generated from steel welded joints subjected to pure mode III loading (Meneghetti 2013) (k=5), which has been 
selected because of a computed local biaxiality ratio λ greater than zero (λ = 1.90 for CA and λ = 2.13 for VA). 
Interestingly, it can be observed from Fig. 7b that all experimental results fall inside the PSM-based scatter band, 
which has not been fitted on the fatigue results of the present paper. 
 

  
Fig. 7. Fatigue lifetime estimation according to the PSM. (a) FE analysis results: distributions of mode I peak stress range , 0, peakθθ θσ =∆ , mode III 
peak stress range , 0, peakθθ θτ =∆ and equivalent peak stress ranges ∆σeq,peak for both CA and VA loading along the weld toe line; (b) synthesis of the 
experimental fatigue results in terms of number of cycles to failure as a function of the range of the equivalent peak stress at point B. 

5. Conclusions 

In the present paper, the Peak Stress Method has been extended for the first time to steel welded joints in the as-
welded state subjected to multiaxial and Variable Amplitude (VA) fatigue loadings. Basically, the fatigue strength 
assessment under Constant Amplitude (CA) loading is performed by combining the simplicity and rapidity of the PSM 
in evaluating the NSIFs by means of FE analyses with a robust and validated fatigue strength criterion such as the one 
based on the averaged Strain Energy Density (SED), which can be written as a function of the relevant NSIFs. To 
preserve the simplicity of the method, its extension to VA loading conditions has been achieved by assuming the 
Palmgren-Miner’s Linear Damage Rule (LDR) as cumulative damage rule.  
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The capability and validity of the proposed method have been verified against new experimental results generated 
by fatigue testing non-load-carrying (nlc) fillet-welded joints with double inclined attachment and made of structural 
steel. The chosen geometry was adopted for generating an in-phase local multiaxial stress state at the weld toe through 
a uniaxial test machine. The welded joints were tested in the as-welded conditions both under CA and VA loadings. In 
the latter case, a p-type spectrum has been adopted and applied as a block program. Finally, the obtained fatigue results 
have been analyzed according to the proposed approach, obtaining a good agreement between theoretical estimations 
and experimental fatigue results.  
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Fig. 6. Results of experimental fatigue tests performed on non-load-carrying (nlc) fillet-welded joints with double inclined attachment expressed in 
terms of nominal stress range: (a) the Whoeler curve of the CA loading and (b) the Gassner curve of the VA loading. 
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which has not been fitted on the fatigue results of the present paper. 
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experimental fatigue results in terms of number of cycles to failure as a function of the range of the equivalent peak stress at point B. 
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The capability and validity of the proposed method have been verified against new experimental results generated 
by fatigue testing non-load-carrying (nlc) fillet-welded joints with double inclined attachment and made of structural 
steel. The chosen geometry was adopted for generating an in-phase local multiaxial stress state at the weld toe through 
a uniaxial test machine. The welded joints were tested in the as-welded conditions both under CA and VA loadings. In 
the latter case, a p-type spectrum has been adopted and applied as a block program. Finally, the obtained fatigue results 
have been analyzed according to the proposed approach, obtaining a good agreement between theoretical estimations 
and experimental fatigue results.  
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