Comparison of preclinical dosimetric studies of ¹⁷⁷Lu-scFvD2B, ¹⁷⁷Lu-PSMA-617 and ¹⁷⁷Lu-iPSMA.

Laura Meléndez-Alafort¹, Guillermina Ferro-Flores², Blanca Ocampo-Garcia², Clara Santos-Cuevas², Debora Carpanese¹, Giulio Fracasso³, Cristina Bolzati⁴, Antonio Rosato^{1,5}, Laura De Nardo⁶

¹IOV-IRCCS, Padua, Italy. ²Instituto Nacional de Investigaciones Nucleares, Estado de México, Mexico. ³Department of Medicine, University of Verona, Italy. ⁴ICMATE, CNR, Padua, Italy. ⁵DISCOG, University of Padua, Italy. ⁶DFA, University of Padua, Italy.

Aim: The efficiency of targeted radionuclide therapy (TRT) is mainly based on the potential of endoradiotherapeutic agents to combine selective uptake and high tumor cell internalization with minimal risk to healthy tissues¹. Consequently, internal dosimetry has become a very important tool to evaluate the risks and benefits of new endoradiotherapeutic agents. Currently, the low molecular weight (LMW) Glu-ureido Prostate-Specific Membrane Antigen (PSMA) inhibitors, labelled with ¹⁷⁷Lu-DOTA are the most successful TRT agents to treat prostate cancer (PCa) and its metastasis². However, it has been demonstrated that the DOTA chelating moiety reduces their internalization and so their radiation dose to the tumor¹. Previously, we developed the antibody-based construct ¹⁷⁷Lu-scFvD2B, wich demonstrated statistically significant higher cell uptake and internalization in LNCaP cells (PSMA-positive) when compared to two of the endoradiotherapeutic agents currently used in PCa therapy, the ¹⁷⁷Lu-PSMA-617 and the ¹⁷⁷Lu-iPSMA³. The aim of this study is to estimate the ¹⁷⁷Lu-scFvD2B organ and tumor-absorbed doses and to compare the values with those of ¹⁷⁷Lu-LMW agents.

Methods: ¹⁷⁷Lu-scFvD2B, ¹⁷⁷Lu-PSMA-617 and ¹⁷⁷Lu-iPSMA were prepared and their radiochemical purity determined. Biodistribution studies of each radiopharmaceutical were then carried out in healthy mice to define the main source organs (SO) and to calculate the number of disintegrations in each source organs per unit of administered activity (N_{SO}). Absorbed dose in the main organs were then calculated for each ¹⁷⁷Lu-conjugate by means of OLINDA/EXM 2.1.1 software, using as program inputs the calculated N_{SO} for both adult male and mouse phantoms. Tumor standardized uptake values (SUV) obtained from the 3D SPECT image reconstruction of mice bearing micro-pulmonary tumors injected with ¹⁷⁷Lu-conjugates, were used to calculated the number of disintegrations in a tumor site per unit of administered activity (N_T) of each conjugate. Then, tumor-absorbed dose was calculated using the electron S-values published for sphere models with diameters ranging from 10 µm to 10 mm, considering a tumor density equivalent to water density and uniform activity distribution.

Results: All ¹⁷⁷Lu-labelled agents were obtained in high yield (>98%). Dosimetric studies carried out using mouse and human phantoms demonstrated that organ absorbed doses of ¹⁷⁷Lu-scFvD2B were from 1.4 to 2.3 times higher than those for ¹⁷⁷Lu-iPSMA and from 1.5 to 2.6 times higher than those for ¹⁷⁷Lu-PSMA-617. However, the ¹⁷⁷Lu-scFvD2B values of tumor-absorbed doses for all investigated tumor sizes were higher, from 2.8 to 3.0 times greater than those calculated for ¹¹⁷⁷Lu-LMW agents. Moreover, ¹⁷⁷Lu-scFvD2B showed the highest tumor/kidney ratio when compared to those reported for ¹⁷⁷Lu-PSMA albumin conjugates⁴.

Conclusion: In this study, we demonstrated the potential of ¹⁷⁷Lu-scFvD2B as a therapeutic agent for PSMA-expressing tumors, due to its higher tumor-absorbed dose when compared with ¹⁷⁷Lu-LMW agents.

References:

- (1) Wustemann T, *et al. Theranostics* **2016**, *6*, 1085.
- (2) Kratochwil C, et al. Semin. Nucl. Med. 2019, 49, 313.
- (3) Carpanese D, *et al. Sci Rep* **2020**, *10*.
- (4) Melendez-Alafort L, et al. Medical Physics 2021, 48, 4064.