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1 Introduction

From a purely bottom-up perspective, light axions can provide a solution to several open
problems in particle phenomenology: they are well known to offer an elegant solution to the
strong CP problem [1–3], to be interesting dark matter candidates [4–7] and possibly drive
inflation [8]. Remarkably, since the early eighties it was recognized that string theory offers a
natural framework for such particles, see for instance [9] for an overview and references to
the older literature. In fact, the low-energy description of string theory generically features a
number of moduli fields; some of these are axions, spinless particles carrying shift symmetries
that are broken solely by non-perturbative effects. In generic string theory models the
number N of low-energy axions can easily be in the hundreds, if not thousands. A setup
with N ≫ 1 axions can lead to an array of interesting phenomenological signatures and is
often referred to as axiverse [10]. A recent review and an updated list of references on the
string theory axiverse can be found in [11].

Despite their genericity, stringy axions can be phenomenologically relevant only if their
potential interactions are very small. The non-perturbative effects, expected to break the
axionic shift symmetries in generic string constructions, must somehow be more suppressed
than naively expected. Non-perturbative effects can belong to two qualitatively different
classes. The first class has a genuinely UV nature and, in string theory models, typically
includes worldsheet and brane instantons. We will refer to them as fundamental instantons.
These would appear to any effective field theory (EFT) observer simply as bare symmetry-
breaking local operators. Yet, non-perturbative effects may also emerge within the EFT
itself. Besides the familiar gauge theory instantons, in the presence of axions the second class
includes axionic wormholes [12] (for a review and more references on aspects relevant for
the present paper, see [13]). Given the variety of non-perturbative contributions available
in these theories, and their genericity, we should ask: how likely is it to find light axions in
axiverse models compatible with quantum gravity? More generally, how and under which
conditions are non-perturbative corrections to their potentials suppressed?

The answer to the first question might simply turn out to be a mere probabilistic
argument: the number of axions in the axiverse is so large that it becomes statistically likely
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that at least a few of them remain light. A more interesting possibility is perhaps that some
structural property of quantum gravity lies behind it, though. Yet, to assess the viability of
this option one must at least partially address the second question. In particular, we must
improve our understanding of the string axiverse and all non-perturbative effects therein.
Encouraging results have been obtained in particular in [14, 15], where it was shown that
in a large class of IIB models with N ≫ 1 axions non-perturbative stringy corrections are
suppressed in an unexpectedly strong way.

The present paper makes a further contribution to this subject. We adopt the formalism
of [16–18] and consider four-dimensional effective field theories with an arbitrary, possibly
large, number N of axions and minimal N = 1 supersymmetry. For simplicity we take the
minimal field content that is sufficient to describe the low-energy limit of an axiverse, but our
framework can be easily generalized by including additional degrees of freedom, if needed.
We focus on fundamental axions, which originate directly from the UV completion of the
EFT, rather than arising as (approximate) Nambu-Goldstone bosons of some linearly realized
accidental compact symmetry within the EFT. The structure of our theories is constrained by
quantum gravity and string theory in a number of non-trivial ways; we will make heavy use of
those constrains. Two are the main objectives of our work. The first is a clear identification of
the regime of validity and of the relevant quantum gravity scales of such effective theories. The
second is a characterization of the non-perturbative gravitational effects within that setup.

After an introduction of our EFTs (section 2), in section 3 we present a careful analysis
of their regime of validity both in energy and field space. An interesting result is a lower
bound of order N on the (field dependent) coefficient of the Gauss-Bonnet operator. We
also present a detailed discussion of the highest possible UV cutoff of our theory, namely the
species scale Msp [19–22]. The determination of the species scale is by itself a very active
area of research especially in the context of the Swampland program (see [23–26] for reviews).
Our contribution is the proposal of a new upper bound on that quantity:

Msp ≤
√
2πT , (1.1)

where T is the field-dependent tension of the lightest EFT string [16–18], see section 3.4
for more details. Our upper bound is fully determined by EFT data already available at
the two-derivative level and has the advantage of having a clear physical interpretation and
being radiatively stable. We subsequently test our lower bound on the coefficient of the
Gauss-Bonnet operator and our upper bound on the species scale in a number of explicit
string theory models in section 4.

Having firmly established our framework and its perturbative regime, we can next move
to wormholes. We begin in section 5 recalling the derivation of O(4)-invariant wormhole
configurations in Euclidean space, and presenting an analysis of their regime of validity.
In particular, we discuss the relation between extremal wormholes and fundamental BPS
instantons, and subsequently introduce the notion of EFT instanton [17]. Section 6 is
dedicated to non-extremal wormholes. We identify a universal class of homogeneous wormhole
solutions, which involve all N axions and their supersymmetric saxionic partners, taking
advantage of crucial inputs from string theory. Their perturbative domain is analyzed, and
a universal constraint relating the minimal radius of the wormhole throat to the species
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scale is pointed out. We later show how these homogeneous solutions are instrumental in
understanding some properties of more general solutions. We argue that a peculiar role is
played by marginally degenerate non-extremal wormholes, unveiling a suggestive analogy
between this type of wormholes and the fundamental EFT instantons carrying the same
charges, which will be explored in more detail subsequently. The general discussion is
illustrated and tested, also through numerical simulations, in concrete string theory models.

The physical implications of the non-perturbative effects associated to the configurations
discussed in section 6 are analyzed in section 7. We argue that extremal wormholes can induce
potentially relevant symmetry-breaking effective superpotentials, as well as higher derivative
F-terms [27, 28], at low energies. On the other hand, non-extremal non-degenerate wormholes
can at most induce corrections to the Kähler potential. However, such D-terms come with
associated Coleman’s α-parameters [29], which are undetermined in the EFT, and so their
physical relevance cannot be firmly established within our framework. String theory experience
and quantum gravity arguments strongly suggest [30, 31] that the α-parameters should be
determined by the UV completion, possibly in terms of other dynamical fields, but the actual
mechanism by which such determination might occur remains a mystery. Interestingly, the
physics of a specific subclass of non-extremal wormholes, which we call marginally degenerate,
might shed light on this puzzling open problem. Indeed, various considerations indicate that
marginally degenerate wormholes represent the low-energy manifestation of fundamental
EFT instantons and, as such, should be capable of inducing effective superpotentials at low
energies, generalizing a mechanism first pointed out in [32, 33]. If correct, this conclusion in
turn implies that the α-parameters of marginally-degenerate wormholes must necessarily be
fixed by the UV-complete description of the fundamental EFT instantons. Perhaps something
similar might happen to the α-parameters of non-degenerate wormholes as well. In section 7
we also discuss how our results are inherited by non-supersymmetric scenarios UV-completed
by an N = 1 axiverse. Our conclusions are presented in section 8.

Our work is complemented by a few appendices. Naive Dimensional Analysis is proposed
in appendix A as a guide to estimate the factors of 2π appearing in some of the formulas of
the paper. Some details on dual heterotic/F-theory models, which we use in section 4, are
presented in appendix B. Additional evidence of the validity of our new bound on the species
scale is given in appendix C. Appendix D discusses in some detail the wormhole fermionic
zero-modes and their implications on the structure of the wormhole-induced low-energy
effective operators.

2 N = 1 axiverse models

The basic assumption underlying our work is the existence of an effective four-dimensional field
theory (EFT) with a possibly large number N of light axions. We will focus on fundamental
axions, namely periodic axions like those that typically originate from string theory, and that
cannot be regarded as angular components of some elementary field in four dimensions.

Because in quantum gravity (QG) global symmetries are expected to be at most ap-
proximate, the global shift symmetries that prevent our axions to acquire large masses must
ultimately be broken. It is then crucial to identify a concrete and realistic general framework
in which the axionic shift symmetries can be considered exact up to small corrections dictated
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by QG. Such a framework is provided by the N = 1 setup outlined in [16–18]. The associated
EFTs emerge from large classes of string theory models and naturally take into account
the relevant QG constraints.

In section 2.1 we review the basic setup of [16–18]. We focus on the leading two-derivative
approximation but, for reasons that will become clearer later, also keep an eye on the (semi-
)topological higher-derivative couplings to gravity, and in particular on the Gauss-Bonnet
interaction (see section 2.2). Section 2.3 reformulates the EFT in a dual 2-form language
in preparation of the subsequent sections.

2.1 Axions in N = 1 EFTs

Let us start recalling the minimal structure of an N = 1 effective theory involving N periodic
axions ai, i = 1, . . . , N and their bosonic partners. Without loss of generality we normalize
the ai’s so as to have unit periodicity:

ai ≃ ai + 1 . (2.1)

The “angular” variables θi often used to denote axions are related to our fields via θi = 2πai.
By supersymmetry the axions combine with saxions si into complex fields

ti = ai + isi ≃ ti + 1 , (2.2)

which represent the bottom components of corresponding N = 1 chiral multiplets. The EFT
in general contains other fields. For simplicity we will ignore them and just consider ti plus
gravity. Our main conclusions do not depend on this assumption.

The exact gauge symmetry (2.1) combined with supersymmetry constrains significantly
the EFT. The only manifestly supersymmetric non-derivative couplings of the axions can be
either semi-topological or functions of e2πiqit

i with qi ∈ Z, and of their complex conjugate,
exponentially suppressed by the saxions. We will discuss the semi-topological couplings
shortly and postpone an analysis of the exponentially suppressed instanton-like corrections to
the following subsection, where we also provide a quantitative definition of the perturbative
regime in which such corrections can be considered small.

Up to semi-topological couplings and instanton-like effects, the EFT is invariant under
arbitrary constant shifts of the axions. At the two-derivative level and in Lorentzian signature,
the contribution of the terms involving only gravity and ti to the most general N = 1 shift-
symmetric action is

1
2M

2
P

∫
R ∗ 1− 1

2M
2
P

∫
Gij(s)

(
dsi ∧ ∗dsj + dai ∧ ∗daj

)
(2.3)

where Gij(s) is a symmetric positive matrix function of the saxion fields and we have omitted
appropriate Gibbons-Hawking boundary term. By supersymmetry, the kinetic terms of the
scalars are specified by a Kähler potential K. Within our perturbative regime, K depends on
the complex fields ti only through their saxionic component si = − i

2(t
i − t̄i), i.e. K = K(s)

(a possible dependence on additional spectator multiplets is ignored), via the relation

Gij ≡ 1
2
∂2K

∂si∂sj
. (2.4)
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We can actually say more about our EFT if we take into account additional non-trivial inputs
from the UV completion. Indeed, within the perturbative regime we are considering (to be
more precisely defined later), for a large class of string theory models the Kähler potential reads

K(s) = − logP (s) , (2.5)

where P (s) is a positive homogeneous function, P (λs) = λnP (s) and n is an integer ranging
from 1 to 7 — see sections 4 and 6 for explicit examples. As discussed in [16, 17] the pertur-
bative structure (2.5) conforms with various formulations of the weak gravity conjecture [34]
and the distance conjecture [35] in the present setting. The homogeneity of P and the
relation (2.5) will play a crucial role in some of the subsequent sections.

2.2 Semi-topological couplings to gravity

Eq. (2.3) just represents the leading two-derivative term in our EFT. In general one should
also allow the presence of higher dimensional interactions suppressed by some mass scale
MUV that depends on the UV completion of the EFT and in general on the EFT scalar
fields. On the other hand, from the Wilsonian viewpoint any EFT is associated with a
(field independent) cutoff scale Λ, which defines the upper bound on the allowed momentum
scales (p ≤ Λ) and must obey Λ ≪MUV. Note that MUV in general depends on saxions si,
MUV =MUV(s), and then the condition Λ ≪MUV(s) will in general restrict the field space
region in which the EFT is valid. But how can we know what MUV(s) is without knowing the
UV completion of the EFT? We will come back to this important question in section 3.4. For
the moment we observe that imposing Λ ≪ MUV one may naively presume that the effect
of all higher dimensional operators can be safely neglected. However, a very special class of
higher-dimensional operators may be unsuppressed at low scales. These are the topological
terms which can be obtained as integrals of total derivative operators. Because of their nature,
they do not affect the equations of motion nor induce particle vertices. Nevertheless, they
can contribute to the on-shell action and therefore impact semiclassical calculations.

In a four-dimensional gravitational context, a well-known example of such a topological
term is provided by the integral of the Gauss-Bonnet (GB) operator

EGB ≡ 1
32π2

(
RabcdR

abcd − 4RabR
ab +R2

)
, (2.6)

which can indeed be locally written as a total covariant derivative. In an N = 1 SUSY
framework, this operator originates from a superspace combination of the form [36–39](∫

d4x d2θ 2E fWαβγWαβγ + c.c.
)
+ D-terms , (2.7)

where Wαβγ is the Weyl chiral superfield, f is a holomorphic function of chiral superfields
and the D-terms take a specific form which will not be relevant in the following — see [40]
for more details in the present context. If f is constant then (2.7) is topological, but in our
context can in general depend on the chiral fields ti. More precisely, the F-term appearing
in (2.7) includes both a coupling of Imf to the bosonic Weyl density and of Ref to the
Pontryagin form tr(R∧R), while the D-terms provide the RmnRmn and R2 counterterms
which combine with the Weyl density to give the GB operator (2.6).

– 6 –



J
H
E
P
0
7
(
2
0
2
4
)
2
4
0

Consistency with (2.1) implies that, in addition to a constant, f(t) can contain a linear
combination C̃it

i for some real constants C̃i, plus possible exponentially suppressed instanton-
like corrections which will be ignored. Adopting the same normalization conventions of [40],
the C̃it

i contribution in (2.7) gives a GB term∫
d4x

√
−g γ(s)EGB , (2.8)

with
γ(s) ≡ π

6 C̃is
i , (2.9)

and a Pontryagin term proportional to C̃i
∫
ai tr(R ∧R). Taking into account the precise

numerical factors and imposing various consistency conditions on the Pontryagin operator,
one finds that the constants C̃i must be integrally quantized [40]: C̃i ∈ Z.1 Note that in
presence of boundaries (2.8) must be supplemented by Gibbons-Hawking-like boundary terms,
which will be explicitly discussed in section 5.

The coefficients of the D-terms appearing in (2.7) are instead not protected by holomorphy
and hence supersymmetry is not enough to provide robust information about them. In
particular, they can in principle have a more complicated dependence on si, and moreover be
affected by radiative corrections. Fortunately, Ricci squared terms are also basis-dependent,
in the sense that re-defining the metric one can always trade them for operators involving
derivatives of si. Hence, without loss of generality, we can choose a field basis in which the
non-derivative saxions couplings to curvature squared operators reduce to the GB term (2.8).

The coefficient of the GB operator receives non-perturbative as well as perturbative
corrections. The former are negligible in our setup (see section 3.1). The latter are of two
types. By supersymmetry, radiative contributions to γ are exhausted by a constant 1-loop
correction ∝ N log Λ. Yet, a more subtle correction to the GB appears in our scenario. This
is because, strictly speaking, the standard manifestly supersymmetric formulation [41] is not
automatically in the Einstein frame, which instead we used in (2.3). In order to pass to the
Einstein frame a Weyl rescaling Φ → eβKΦ of all fields, with β some number, is necessary.
Such transformation is anomalous and brings a non-manifestly supersymmetric correction to
the coefficient of the GB term of the parametric form ∼ N ln eβK = βNK.2 Despite the ∝ N

nature of these two perturbative corrections, however, we will see in section 3.3 that they
are both subleading compared to (2.9) in any tractable framework. Therefore (2.8) and (2.9)
provide an accurate approximation of the GB term.

The above GB term is singled out from the infinite set of higher-derivative interactions
by its quasi-topological nature. For example, after stabilization of the saxions (2.8) (and

1In complete analogy, supersymmetry fixes linear couplings of (s)axions to vector fields to take the form

− 1
8π

∫
Cis

i tr(F ∧ ∗F ) − 1
8π

∫
Cia

i tr(F ∧ F ) . (2.10)

We will study only solutions with trivial gauge configurations, and so the above couplings are not of primary
interest here. See section 2 of [40] for a more detailed discussion of these quasi-topological terms in the present
setting.

2Similarly, the re-definition of the metric necessary to remove the saxion couplings to RabRab and R2 may
induce a Weyl anomaly, but that does not carry an ∼ N enhancement and is hence parametrically smaller.
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supplemented by the boundary terms discussed in section 5), it becomes a purely topological
term that does not alter the axions’ equations of motion but nevertheless contributes to the
on-shell action of topologically non-trivial space-times. In particular it plays an important
role in wormhole physics, as we will see. At the perturbative level, the topological nature of
GB is connected to the absence of ghosts, which is why string theory effective actions of any
dimension seem to favor it, so to speak, over other higher curvature terms [42].

2.3 Dual formulation and EFT strings

In order to make contact with the QG structures highlighted in [16, 17, 40], it is convenient to
recall the basic features of the dual formulation, in which the axions are traded for two-form
potentials B2,i with corresponding field-strengths H3,i = dB2,i = −M2

PGij ∗ dai. This duality
transformation can be completed into a full supersymmetric duality which trades the ti

chiral multiplets for corresponding linear multiplets [43]. Following [44], with the notation
of [16, 17], the linear multiplets have as bottom components the dual saxions ℓi, which are
related to the saxions si by

ℓi = −1
2
∂K

∂si
. (2.11)

The kinetic terms are specified by the kinetic potential

F = K + 2ℓisi , (2.12)

which must be considered as a function of the dual saxions ℓi (and of the spectator fields).
Note that K and F are defined up to an arbitrary constant. The leading order action (2.3)
is equivalently re-written as

1
2M

2
P

∫
R ∗ 1− 1

2M
2
P

∫
Gijdℓi ∧ ∗dℓj −

1
2M2

P

∫
GijH3,i ∧ ∗H3,j , (2.13)

where
Gij ≡ −1

2
∂2F
∂ℓi∂ℓj

(2.14)

is the inverse matrix of (2.4). Furthermore the inverse of the relation (2.11) is given by

si = 1
2
∂F
∂ℓi

. (2.15)

The dualization from the axions ai to the two-forms B2,i produces also a boundary term,
to be added to (2.13),

−i
∫

∂M
aiH3,i , (2.16)

which may be relevant in evaluating the on-shell actions.
The field-strengths H3,i satisfy the Bianchi identity

dH3,i = − 1
96π C̃i tr(R∧R) . (2.17)
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In fact, for our purposes one can consistently neglect the Pontryagin four-form appearing
in (2.17), since it will be identically vanishing in all the configurations that we will explore.
Because in the following discussions gauge fields will play no role, in (2.17) we have not
included their contributions, which is dual to the axionic terms appearing in (2.10) (see for
instance section 3.2 of [40]). Eq. (2.17) can also be corrected by the localized contribution
of fundamental instantons, of the type considered in section 5.3.

Note that by the homogeneity of P (s) (see eq. (2.5)) we have ℓisi = n
2 and then, omitting

an irrelevant additional constant, the dual saxion kinetic potential (2.12) takes the form

F(ℓ) = log P̃ (ℓ) , (2.18)

where
P̃ (ℓ) ≡ 1

P (s(ℓ)) (2.19)

is a homogeneous function of degree n:

P̃ (λℓ) = λnP̃ (ℓ) . (2.20)

Similarly, the (semi-)topological couplings to gravity can be written as in (2.8)–(2.9) provided
we interpret si as a function of the dual saxions, as dictated by (2.15).

In the present setting it is natural to consider strings carrying magnetic axionic charges
ei ∈ Z, around which ai → ai + ei. If such strings are BPS, their tension is completely
fixed by supersymmetry [44]:

Te =M2
Pe

iℓi ≡M2
P⟨ℓ, e⟩ , (2.21)

where we have introduced the index-free notation ⟨ℓ, e⟩ ≡ ℓie
i, which will be largely used in

the following.3 The formula (2.21) imposes a non-trivial constraint ⟨ℓ, e⟩ ≥ 0 on the charges
as well as the dual saxions. We will elaborate on this constraint in the next section, when
a domain for the saxions and dual saxions is identified.

3 EFT regime of validity

The EFT described in the previous section has a limited domain of validity. First, as any
low-energy description, it has an associated derivative expansion and thus a maximal UV
cutoff. Second, any such EFT can reliably describe the low-energy limit of string theory
models only in a limited domain in field space. Furthermore, in the spirit of the Swampland
Program, compatibility with QG/string theory imposes some non-trivial constraints on the
EFT structure, in addition to the standard QFT ones. In this section we will discuss these
aspects in some detail. Specifically, in section 3.1 we quantify the size of the QG effects that
violate the axionic shift-symmetry and introduce the concept of saxionic cone. In section 3.2
we provide an unambiguous definition of the domain of validity of our EFT in field space. In
section 3.3 it is then shown that, within this perturbative domain and in the large N limit,
the coefficient of the Gauss-Bonnet interaction is subject to an interesting lower bound. The
domain of validity of our EFT in momentum space is finally analyzed in section 3.4.

3See [16, 17] for a thorough discussion on the precise interpretation of the field-dependence of (2.21).
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Before embarking in our detailed analysis it is useful to make some simple consideration
based on dimensional analysis, which is sufficient to qualitatively understand how the EFT
domain of validity may be controlled by the saxions si. If we momentarily restore the powers
of ℏ and insist that C̃i in (2.8) — see also Ci in (2.10) — be truly dimensionless integers,
one infers that si and ai have dimension [si] = [ai] = [ℏ]. Because quantum corrections
come with powers of ℏ, one realizes that

α∗ ≡
1
s∗
, (3.1)

with s∗ denoting some appropriate positive linear combination of the saxions si, represents a
sort of “fine structure constant” of our theory. Accordingly, in order for our EFT to make
sense one should require the dimensionless “loop counting parameter” in four-dimensional
theories to be small, namely

α∗ℏ
2π ≡ ℏ

2πs∗
≪ 1

(ℏℓ∗
2π ≪ 1

)
, (3.2)

where (2π)−1 arises from the usual four-dimensional loop factor.4 As a simple example, which
is obvious from the effective field theorist’s viewpoint, the gauge coupling squared appearing
in (2.10) takes the form 2πα∗ = 2π/s∗ with s∗ = Cis

i, and so (3.2) represents the standard
perturbative regime for the gauge theory. What the effective field theorist cannot know,
however, is that conditions of the form (3.2) are in fact instrumental in computing EFTs
from string theory models and, for instance, disguise large volume or weak string coupling
expansions. As an example, of crucial importance for the present paper is the form (2.5) of the
Kähler potential: such form holds only to first approximation in an appropriate large-saxion
expansion and is expected to receive both perturbative and non-perturbative corrections. In
view of our dimensional analysis argument, it should not come as a surprise that perturbative
corrections are controlled by α∗/(2π) whereas the non-perturbative effects that break the
axionic shift symmetries are of order e−

2π
α∗ℏ = e−

2πs∗
ℏ , and are hence exponentially suppressed

by a requirement of the form (3.2).
Non-perturbative effects may be due to fundamental instantons beyond the EFT or by

physics within the EFT, e.g. gauge instantons or wormholes. Wormholes will be discussed
at length in the following sections while gauge instantons, not being directly related to QG
aspects, will not be considered in the present paper. In the following subsection we will
instead focus on fundamental instantons, since they encode non-trivial information on the
UV completion of the theory and turn out to strongly characterize the EFT structure. From
now on we will go back to the more conventional ℏ = 1 units.

3.1 Saxionic cones, fundamental instantons and strings

The contribution of point-like fundamental instantons are ubiquitous in string theory com-
pactifications, in which they are typically associated to Euclidean branes wrapping internal

4Recall that the structure constant is a coupling squared divided by 2π. Throughout the paper we will
keep track of the “geometric” factors of 2π but ignore factors of order unity (see appendix A), and 2πα∗ will
represent our “coupling squared”. The analogous expansion in ℏ/(2πa∗) simply cannot appear because of the
approximate shift symmetry.
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cycles — see for instance [45] for a review. Their effects show up in the four-dimensional
EFT defined at its highest possible UV cutoff as shift-symmetry breaking local operators.
Imposing that these are sufficiently small is what defines our perturbative regime. Among all
fundamental instantons, the BPS ones — preserving 1

2 of the bulk supersymmetry — are
expected to be the most relevant.5 These carry a set of quantized axionic charges qi ∈ Z
and contribute to the effective action by terms proportional to e2πiqia

i . By holomorphy, BPS
instantons generate terms proportional to e2πiqit

i . For each BPS instanton of charges qi

there exists an anti-instanton of charges −qi preserving the opposite 1
2 supersymmetry and

contributing by terms proportional to e−2πiqi t̄
i . Hence, BPS and anti-BPS instantons combine

and contribute to the effective action via operators proportional to

e−2π⟨q,s⟩ , (3.3)

where we are again using the index-free pairing introduced in (2.21):

⟨q, s⟩ ≡ qis
i. (3.4)

In our notation ⟨ . , . ⟩ is the canonical pairing between the elements of dual vector spaces
VR and V ∗

R , and corresponding dual lattices VZ ⊂ VR and V ∗
Z ⊂ V ∗

R . One can introduce
an integral basis {vi}N

i=1 of generators of VZ and the dual basis {wi}N
i=1 of generators of

V ∗
Z , such that ⟨wi,vj⟩ = δi

j . The saxions si and the charges qi are the components of
the vectors s = sivi ∈ VR and q = qiwi ∈ V ∗

R respectively. The set of all BPS instanton
charges is denoted by

CI = {set of BPS instanton charges q} ⊂ V ∗
Z . (3.5)

Given two BPS instantons of charge vectors q1 and q2, being mutually BPS, they can be
superimposed to form a BPS instanton of charge vector q1 + q2. Hence CI can be regarded
as discrete convex cone, generated by a set of “elementary” BPS instanton charges.

The combination 2π⟨q, s⟩ appearing in (3.3) represents the real part of the BPS instanton
Euclidean action, and must be positive. Hence the saxions necessarily take values in the
saxionic cone:6

∆ ≡ {s ∈ VR|⟨q, s⟩ ≥ 0, ∀q ∈ CI} . (3.6)

This is a convex cone, whose prototypical example is provided by the Kähler cone in heterotic
or type IIA string compactifications on Calabi-Yau spaces, where CI represents the cone of
effective curves which can be wrapped by world-sheet instantons. These and other string
theory realizations will be more explicitly discussed in the following.

5Experience with supersymmetric instantons suggests that the action Sinst of a possible non-BPS funda-
mental instanton carrying charges qi obeys a BPS bound Snon-BPS > SBPS. On the other hand, the axion
form of the weak gravity conjecture [34] suggests the possible existence of non-BPS instantons violating such
bound — see for instance [46, 47] and appendix B of [15] for related discussions in string theory contexts. We
nevertheless expect such possible violations not to affect the following considerations.

6The definition of saxionic cone of [16, 17] slightly differs from (3.6), in that it does not include the boundary
faces at which ⟨q, s⟩ = 0 for some q, and then some instanton action degenerates. We include these faces
since we will anyway restrict ourselves to more interior regions — see section 3.2.
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The magnetic axionic string charges ei ∈ Z introduced around (2.21) specify an element
e = eivi of VZ. We call EFT strings those strings associated to charge vectors e belonging
to the set [16–18]

CEFT
S = VZ ∩∆− {0} . (3.7)

According to this definition, one may regard the saxionic cone ∆ as being generated by the
EFT string charges. We will assume ∆ to be polyhedral — see [17] for a more detailed
discussion on this assumption — and hence to be generated by a finite number of elementary
EFT string charges, i.e. charges e ∈ CEFT

S that cannot be written as a sum with positive
integral coefficients of other elements of CEFT

S . (We will extend this terminology to BPS
strings and BPS instantons in an obvious way.) As we will see, EFT strings will play a
key role in the following discussions.

We can now define the dual saxionic domain P as the closure of the image of ∆ under
the transform (2.11):

P =
{

ℓ = ℓiwi ∈ V ∗
R

∣∣∣ℓi = −1
2
∂K

∂si

∣∣∣
s∈∆

}
. (3.8)

While the general structure of P can be a priori complicated, if K takes the form (2.5) then
P becomes conical. Indeed, if ℓ ∈ P is the image of s ∈ ∆ then λℓ is the image of λ−1s, for
any λ > 0. Since also λ−1s belongs to ∆, then λℓ belongs to P. (On the other hand, P is
not necessarily convex.) Note that by consistency any BPS (non-necessarily EFT) string
tension (2.21) must be positive in the interior of P , and the condition ⟨ℓ, e⟩ ≥ 0 for any ℓ ∈ P
can be taken as defining condition of the BPS string charges e ∈ CS, that is:7

CS ∈ VZ ∩ P∨ − {0} . (3.9)

This implies that different boundary components of ∂P can be associated with the possible
vanishing of different BPS string tensions (2.21). In particular, components of ∂P which
are at infinite field distance are detected by the vanishing of some EFT string tensions, i.e.
corresponding to some e ∈ CEFT

S [17]. On the other hand, finite distance components of ∂P
could be associated with (classically) tensionless non-EFT BPS strings, i.e. with e ∈ CS−CEFT

S .
These tensionless strings naturally identify a rational polyhedral part of the boundary of
P. There may also be more general finite distance boundaries of P, not directly associated
with tensionless strings. In any case, one should keep in mind that finite distance boundaries
are not so sharply defined, since around them non-perturbative corrections can a priori
become relevant and may for instance generate strong corrections to the formula (2.21).
Other strongly coupled regions are reached by radially moving away from the tip of P along
different directions. If one insists in using the “bare” kinetic potential (2.18), these appear
as infinite distance limits in which all the BPS tensions (2.21) diverge. However in these
limits the above description breaks down since it assumes that

Te < 2πM2
P , (3.10)

7We recall that, given two dual vector spaces VR and V ∗
R and any subset I ⊂ VR, its dual cone I∨ is by

definition the set of elements a ∈ V ∗
R such that ⟨a, b⟩ ≥ 0 for any b ∈ I.
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in order for the string to have a weak gravitational backreaction [16].8 Therefore, non-
perturbative physics may again completely change the nature of these limits. In any case,
we see how the behavior of the BPS tension (2.21) can be a useful proxy to qualitative
characterize the different boundary components of P.

3.2 Perturbative domain and saxionic convex hull

The realization that saxions must necessarily belong to ∆ is bringing us closer to a precise
definition of the domain of validity of our EFT. Unfortunately, s ∈ ∆ is not sufficient to
suppress instantons nor to ensure the perturbativity requirement suggested in (3.2) holds.
In this subsection we will more precisely identify a perturbative domain with a subset of ∆,
controlled by a single perturbative coupling α < 2π, analogous to (3.1). We will consider two
possible perturbative domains: the α-saxionic convex hull ∆̂α and the α-stretched saxionic
cone ∆̃α, the latter being defined in analogy to the stretched Kähler cones introduced in [14].
Since ∆̂α ⊆ ∆̃α, for simplicity in the rest of the paper we will adopt the more conservative
∆̂α as our main definition perturbative domain, though most of our conclusions would clearly
hold for ∆̃α as well.

Consider the set of all the elementary EFT string charges {eA}A∈J ⊂ CEFT
S , which

generate the entire CEFT
S , where J denotes the corresponding set of indices. Take any subset

Jσ ⊂ J of N elements, such that the corresponding elementary charges {eA}A∈Jσ are linearly
independent. Each of these subsets is associated to a regular simplicial cone

σ = {
∑

A∈Jσ

λAeA|λA ≥ 0}. (3.11)

For each of these cones we construct a corresponding “α-stretched” cone

σ̃α = {
∑

A∈Jσ

λAeA|λA ≥ 1
α
} (3.12)

with α > 0 some small number that represents the largest possible value of the couplings of
the form (3.1). The α-saxionic convex hull ∆̂α, anticipated at the beginning of this subsection,
is defined as the convex hull of all the stretched sub-cones σ̃α, that is

∆̂α =
{

s =
∑

σ

λσsσ ∈ ∆
∣∣∣ λσ ≥ 0,

∑
σ

λσ = 1, sσ ∈ σ̃α

}
. (3.13)

Intuitively, any element of ∆̂α can be considered as a linear average of saxions whose compo-
nents satisfy si ≥ 1/α in some basis of elementary EFT strings charges. The perturbative
regime can now be precisely identified by the requirement s ∈ ∆̂α. With a sufficiently small
α, this definition simultaneously formalizes the perturbativity requirement (3.2) as well as
guarantees the suppression of non-perturbative corrections.

8The 2π factor is introduced to match the NDA arguments of appendix A, but can also be understood
recalling that a string of constant tension T generates a deficit angle ∆θ = T /M2

P (see e.g. [48]) and imposing
∆θ < 2π.
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In order to better understand this latter point, let us relate ∆̂α to the α-stretched
saxionic cone9

∆̃α ≡
{

s ∈ ∆|⟨q, s⟩ ≥ 1
α
, ∀q ∈ CI

}
. (3.14)

This definition is more directly motivated by the non-perturbative corrections (3.3) (rather
than the perturbative ones), since in ∆̃α all such corrections are bounded from above by
e−2π/α. Now, because our σ̃α appearing in (3.13) are clearly subsets of ∆̃α, by convexity the
same inclusion extends to the entire saxionic convex hull, so that:

∆̂α ⊂ ∆̃α ⊂ ∆ . (3.15)

Hence the condition s ∈ ∆̂α is stronger, though qualitatively similar, to the condition s ∈ ∆̃α.
(Clearly ∆̂α = ∆̃α if ∆ is a simplicial cone.) As a result, the non-perturbative corrections
to our EFT are at least suppressed by e−2π/α when s ∈ ∆̂α.10

The perturbative saxionic regions ∆̃α, ∆̂α ⊂ ∆ are associated to corresponding dual
saxionic regions P̃α, P̂α ⊂ P through the map (2.11). In the case of Kähler potentials of the
form (2.5) the regions dual to ∆̃α, ∆̂α are concentrated around the dual saxion origin ℓ = 0

— see figure 1 below for a simple but non-trivial concrete example.
To summarize, by assuming s ∈ ∆̂α (or ℓ ∈ P̂α) we are certain that our EFT (2.3)

with (2.5) provides a reliable low-energy description of a large class of string theory models
up to controllable powers of α/2π ≪ 1 and e−2π/α. In particular, the latter exponential factor
suppresses any explicit breaking of the axion shift symmetries. Our expansion parameter α is
nothing but an upper bound on the quantity α∗ alluded to in eq. (3.1). In the following we
will therefore assume that s ∈ ∆̂α and for concreteness have in mind α ≃ 0.1 as benchmark
value. In fact, α ≃ 1 might already be enough to sufficiently suppress both perturbative and
non-perturbative effects. However, such values of α do not necessarily ensure the reliability
of the leading order expression (2.5). Concretely, in the case of the Kähler cone of heterotic
compactifications, setting α ≃ 1 allows for string-size internal cycles, which for instance cast
doubts on the geometric formula corresponding to (2.5) — see section 4 for more details.
From these considerations α ≃ 0.1 seems a more reassuring choice. Much smaller values
face another problem, though, which will be analyzed in section 3.4: in the limit α→ 0 the
maximal possible UV cutoff of the EFT tends to zero!

3.3 Quantum gravity bounds

In [40] it was shown how quantum consistency in the presence of EFT strings imposes strong
constraints on the structure of the bulk theory. These constraints crucially involve the
constants C̃i appearing in (2.9). In particular C̃i must satisfy the quantization condition
⟨C̃, e⟩ ≡ C̃ie

i ∈ Z, for any string charge vector e ∈ VZ. More importantly for us, in [40] it
9We are adapting the terminology of [14] which may be slightly misleading, since ∆̃α is generically not a

cone, but rather a convex polyhedron.
10Note that, given a saxionic cone ∆, its boundary can be regarded as the union of conical faces ∆′ ⊂ ∂∆ of

various codimensions. These may be associated with corresponding perturbative domains ∆̃′
α or ∆̂′

α (which
are not subsets of ∆̃α or ∆̂α).
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was argued that ⟨C̃, s⟩ enter some positivity bounds which, in their weakest form, imply that

⟨C̃, e⟩ ≥ 0 ∀e ∈ CEFT
S . (3.16)

Recalling (2.9) and the fact that the EFT string charges generate the saxionic cone, (3.16)
has as a consequence that γ(s) ≥ 0 for any s ∈ ∆.

In order to get a stronger lower bound for γ(s) we observe that ⟨C̃, e⟩ is proportional to
the two-dimensional gravitational anomaly of the EFT string of charge vector e. Since such
strings break half of the bulk supersymmetry and support a chiral (0, 2) world-sheet, they
generically have a chiral spectrum with non-vanishing gravitational anomaly. This means
that (3.16) generically translates into the stricter bound

⟨C̃, e⟩ ∈ Z≥1 ∀ generic e ∈ CEFT
S . (3.17)

Note that in many models (3.17) can be strengthened to ⟨C̃, e⟩ ∈ 3Z≥1. This stronger bound
holds if the world-sheet normal bundle U(1)N symmetry is classically preserved (though
generically anomalous at the quantum world-sheet level). This is a conceivable expectation,
which is indeed realized in large classes of string theory models, such as the F-theory/type
IIB ones of section 4.1. On the other hand, in [40] it was pointed out that in addition to the
standard quantum U(1)N anomaly there could be classical Green-Schwarz-like terms on the
world-sheet, which signal the existence of an intermediate microscopic description in terms
of a five dimensional N = 1 supergravity (in presence of possible supersymmetry breaking
defects). The five-dimensional arguments of [49] hence lead to (3.16), and then also (3.17).
For instance, this weaker bound can hold in the E8 × E8 heterotic models of section 4.2.

Let us now assume that in our models there are N ≫ 1 (s)axions and an even larger
number of elementary EFT string charge vectors {eA}A∈J (since these generate the generically
non-simplicial ∆). We can then assume (3.17) to be satisfied for all eA, since for N ≫ 1 any
non-generic violation of this assumption would affect our conclusions by negligible corrections.
Hence we will assume that

⟨C̃, eA⟩ ∈ Z≥1 , (3.18)

for any elementary eA ∈ CEFT
S . Take now any regular simplicial sub-cone (3.11) and an element

sσ of the corresponding α-stretched cone: sσ ∈ σ̃α. We can write sσ = 1
α

∑
A∈Jσ

eA + vσ,
where the first contribution represents the tip of sσ and vσ is an element of σ. As a
consequence, the lower bounds (3.17) and (3.18) imply that

⟨C̃, sσ⟩ =
1
α

∑
A∈Jσ

⟨C̃, eA⟩+ ⟨C̃,vσ⟩ ≥
1
α

∑
A∈Jσ

⟨C̃, eA⟩ ≥
N

α
. (3.19)

Consider next a more general point s of the saxionic convex hull (3.13). By definition, we
can write it as s =

∑
λσsσ, with

∑
σ λ

σ = 1 and λσ ≥ 0. According to (3.19) we thus have

⟨C̃, s⟩ =
∑

σ

λσ⟨C̃, sσ⟩ ≥
N

α

∑
σ

λσ = N

α
. (3.20)

Hence we conclude that for s ∈ ∆̂α the coefficient (2.9) of the GB term (2.8) satisfies the
lower bound

γ(s)|∆̂α
≥ Nπ

6α . (3.21)
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This bound may receive 1/N corrections due to non-generic violations of (3.18), but in the
large N regime these can be safely neglected. We also observe that, as stressed above, in
many models we could alternatively adopt ⟨C̃, eA⟩ ∈ 3Z≥1 instead of (3.18), obtaining a
slightly stronger lower bound γ(s)|∆̂α

≥ Nπ
2α .

At the end of section 2.2 we discussed the possible corrections to the GB coefficient (2.9).
Within the perturbative regime α ≪ 2π the radiative effects not included in (2.9) are
parametrically smaller than the one in (3.21), as anticipated there. We can thus conclude
with confidence that in this regime the bound (3.21) is not significantly spoiled by such
corrections. Note that while this result was derived by restricting s to the α-stretched saxionic
convex hull, we expect it to qualitatively hold (up to a possible overall constant) also if
we consider the stretched saxionic cone. We will provide some evidence of this claim in
section 4, where we will show that (3.21) is actually very conservative in a set of concrete
string theory models.

3.4 UV mass scales

Any EFT is associated with a cutoff energy Λ above which it is no longer valid. As in
the Wilson’s view of the renormalization group, Λ is not in general a physical scale, but
rather a conventional definition of the regime of validity of the description. As anticipated
in section 2.2, the EFT cutoff must satisfy Λ < MUV, where MUV is some UV mass scale
suppressing the irrelevant operators appearing in the effective action. In the present context,
the UV physical mass scales beyond the EFT do depend on the moduli fields of (2.3), and
specifically on si. As a result, MUV not only represents the highest possible energy above
which the momentum expansion ceases to be effective, but also an implicit constraint on
the domain of the saxions through the condition MUV(s) > Λ.

In this section we would like to identify a proxy for MUV in the specific scenarios
introduced in section 2. We will see that these models are characterized by two relevant
scales: the tower scale [35] and the species scale [19–22]. The former identifies the energy
threshold beyond which a four-dimensional EFT should be replaced by a more fundamental
description whereas the latter scale sets the absolute maximum UV cutoff at which any EFT
inevitably breaks down. In the process of discussing these two relevant scales we will also
propose a novel upper bound on the species scale defined solely in terms of EFT data. In the
reminder of the paper we will then conservatively take the species scale as our proxy for MUV.

In the perturbative framework outlined in the subsection 3.2, the weak coupling limit
α→ 0 pushes the entire domain ∆̂α to infinite field space distance. According to the Distance
Conjecture [35] (see also [26] for a recent review) this signals the appearance of towers of
massive single-particle states. More precisely, denoting by Mt the tower scale, i.e. the mass
of the lightest particle of such towers, the Distance Conjecture implies that Mt/MP decreases
exponentially with the field space distance — see also [50]. Furthermore, the possible nature
of such towers, and with it of the UV completion of our EFT, is significantly restricted
by the Emergent String Conjecture (ESC) [51], which states that (in appropriate duality
frames) those UV towers can be formed by either Kaluza-Klein modes or by excitation
modes of a weakly coupled critical superstring. The former modes become massless in limits
involving decompactifications to higher-dimensional EFTs, whereas the latter in limits in
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which the critical string coupling goes to zero. In the following we will assume the validity
of the ESC conjecture and take

Mt ≡ min {MKK,Ms} , (3.22)

where MKK and Ms are the KK and superstring scales (as measured by the four-dimensional
observer).

In general it is not known how to precisely determine Mt without knowing the details of
the UV completion, that is, of the higher dimensional EFT and/or string theory. Yet, in the
present context, useful information is encoded in the tension (2.21) of EFT strings, as indicated
by the Integral Weight Conjecture (IWC) [17, 18]. Namely, each EFT string charge e ∈ CEFT

S
identifies an infinite distance saxionic flow s = s0 + eσ, with σ → ∞, and is associated with
an integral scaling weight we ∈ {1, 2, 3}. Along this EFT string flow Te ∼ M2

P/σ and the
scaling weight relates this behavior with the asymptotic scaling of Mt as follows:

M2
t ∼

( Te
M2

P

)we

M2
P . (3.23)

Note that this relation reveals the scaling behavior in σ, but does not allow one to precisely
determine M2

t . Nevertheless, combined with the ESC, (3.23) contains important pieces of
information on the UV nature of the EFT strings and of the corresponding infinite distance
limits. First of all, any we = 1 EFT string in the corresponding EFT string limit must uplift
to a weakly coupled critical superstring. This in turn implies that any we = 1 EFT string
flow11 is dual to a ten-dimensional weak string coupling limit gs → 0, along which the tower
scale Mt can be identified with the mass of the first excited string mode. Thus, for any
elementary EFT string charge e of scaling weight we = 1, (3.23) can actually be promoted to
the identity M2

t |we=1 =M2
s = 2πTe. On the other hand, EFT strings with we ≥ 2 cannot be

identified with critical strings, and the corresponding infinite distance limits must correspond
to decompactification limits along which Mt corresponds to a Kaluza-Klein (KK) mass scale.

There is another important mass scale that controls the transition away from the EFT:
the species scale Msp [19–22] — see also the recent review [26]. Various definitions of species
scale have been given. In this paper, by Msp we mean the highest possible scale at which our
gravitational setup admits a reliable (possibly higher dimensional) EFT description. The
ESC allows us to make this concept more concrete: Msp is either the lightest string excitation
mass or the scale at which the KK excitations become strongly-coupled, depending on which
of the two is lower. If a weakly coupled string description exists, then the KK excitations
are never strongly coupled and the scale Msp can be identified with the critical superstring
mass, properly converted to the four-dimensional frame: Ms =

√
2πTF1. On the other hand,

if no perturbative stringy description exists then Msp corresponds to a quantum gravity scale
MQG, at which the gravitational interactions become strong, which roughly coincides with
the higher-dimensional Planck mass (properly converted to the four-dimensional frame). In
the latter case, a quantitative criterion for determining the quantum gravity scale, based
on “Naive Dimensional Analysis” (NDA), is discussed in appendix A and tested on some
concrete string theory models in section 4.

11For instance, assuming a dual E8 × E8 string model of the type discussed below in section 4.2, this limit
corresponds to s0 ∼ σ → ∞, with s0 as in (4.38) and fixed sa.
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We will refer to Msp = min {Ms,MQG} as “species scale” to conform to the terminology
adopted in most of the literature. Such terminology originates from more general models with
a large number Nsp ≫ 1 of species [19, 20], in which perturbative as well as non-perturbative
arguments indicate that the gravitational interactions become strong at a scale of order

2πMP√
Nsp

. (3.24)

In our setup, identifying Nsp with the number of (massless and massive) KK modes of mass
smaller than MQG, one can show that MQG is indeed consistent with (3.24), see for instance [52]
and appendix A for a systematic discussion. Yet, MQG ceases to be a reliable measure of
the species scale when Ms < MQG. In such circumstances black-hole arguments [21, 22] (see
also [26]) lead to the identification Msp = Ms adopted above.12

As the tower scale, also the species scale generically depends on the details of the EFT
UV completion. However, it was recently proposed [56] that information on the species scale
is captured by the coefficient of certain higher-derivative gravitational interactions — see
also [57–63] for related discussions. By applying the proposal of [56] to our context one
gets a relation of the form γ ∼ O(1)M2

P/M
2
sp between the species scale and GB coefficient

appearing in (2.8). This relation can be understood as follows.
The four-dimensional gravitational theories we consider in this paper represent the

low-energy description of some UV complete theory. The lowest threshold that characterizes
the latter theory has been denoted by Msp. It is therefore natural to imagine deriving our
EFT by matching it to its UV completion precisely at that scale. On general grounds, the
resulting QFT will contain operators of arbitrary dimensions with coefficients set by powers
of Msp times dimensionless coefficients c. Perturbativity at the matching scale demands
that |c| ≲ 1. One would thus be naively tempted to claim that MUV should be identified
with Msp. However, a further step is usually needed when MKK < Msp. In order to arrive
at our four-dimensional EFT one should first integrate out the KK excitations within the
intermediate higher-dimensional description. In carrying out this last step some of the
higher-dimensional operators of our four-dimensional EFT will inevitably receive corrections
proportional to powers of Msp/MKK. In particular, any operator of the form “current squared”
can in principle receive tree-level corrections from the integration of KK resonances of the
appropriate spin. This is for instance the case for R2 and RabR

ab, unless protected by
extended supersymmetries, which may a priori be mediated by scalar and spin-2 KK modes.
On the other hand, there is no KK excitation with the quantum numbers appropriate to
couple linearly to Rabcd in any known low-energy description of string theory, and so the
coefficient of RabcdR

abcd is not expected to be renormalized at tree-level. The same tree-level
non-renormalization property thus extends to the GB operator (2.6). Moreover, by power-
counting the coefficient of the latter operator can only receive logarithmic corrections and
cannot depend on inverse powers of MKK. This is particularly clear in the N = 1 context we
are considering, see section 2.2. Taking into account our normalization conventions, which

12Applying (3.24) to string excitation modes, one gets Ms up to logarithmic corrections [52, 53] — see also
related discussions in [54, 55]. One may adopt that “stringy species scale” as a definition of species scale, but
that would not significantly affect our conclusions.
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are discussed in more detail in appendix A, it follows that

γ = 4π2 cGB
M2

P

M2
sp
, (3.25)

where cGB is some dimensionless coefficient that, up to logarithmic radiative corrections,
directly arises from some higher-dimensional description. The consistency condition |cGB| ≲ 1
implies an upper bound on the GB coefficient, which combined with (3.21) gives

πN

6α ≤ γ ≲ 4π2 M
2
P

M2
sp
. (3.26)

A particular implication of this relation is an upper bound on the species scale, as pointed
out in [60]:

Msp ≲Mγ ≡ 2πMP√
γ(s)

. (3.27)

We emphasize the moduli-dependence of Mγ , which expectedly vanishes as α → 0. Note
that (3.27) is defined in terms of a Wilson coefficient, and therefore in general the mass
scale Mγ has no direct physical interpretation, which may for instance provide some sharper
criterion to fix its normalization. Furthermore, in non-supersymmetric as well as our N = 1
context, the EFT coefficient γ(s) receives scheme-dependent renormalization corrections (see
section 2.2). It could therefore be useful to identify an alternative and more physical proxy
for the species scale. This is what we will do next.

We propose that an alternative upper bound on the species scale can be derived from
the physics of EFT strings. Take the set of EFT string charges (3.7). As emphasized above,
if an elementary EFT charge e has scaling weight we = 1, then there exists an asymptotic
regime, defined by the associated EFT string limit, in which this EFT string uplifts to a
critical superstring at weak string coupling. Hence, according to the above definitions, in this
regime we can make the identifications M2

sp =M2
t =M2

s = 2πTe. In all the other cases, in
which either we = 1 but the theory is not in the corresponding asymptotic regime, or we ≥ 2,
the EFT string does not uplift to a weakly coupled critical superstring. Hence it should not
be quantizable, and so its would-be excitation masses should be above the species scale, that
is 2πTe ≥M2

sp. This is what was emphasized in [64], which compared the species scale with
the EFT string tensions along the corresponding EFT string limits in F-theory models.

The above considerations motivate us to propose the following general upper bound

M2
sp ≤M2

T , (3.28)

where we have introduced the dominant EFT string scale

M2
T (ℓ) ≡ min

{
2πTe(ℓ) | e ∈ CEFT

S
}
, (3.29)

with Te(ℓ) = ⟨ℓ, e⟩M2
P , as in (2.21). This is the bound anticipated in (1.1). The strict equality

holds only when we = 1 and the saxions are in the asymptotic regime identified by the
corresponding EFT string flow. We stress that the simple formula (2.21) is fixed by N = 1
supersymmetry and is thus protected against perturbative corrections. Hence, as a function
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of the dual saxions ℓi, the dominant EFT string scale (3.29) gives an explicit and robust
upper bound on the species scale, valid for instance also if classical or quantum perturba-
tive corrections to (2.5) and (2.18) cannot be neglected anymore (while non-perturbative
corrections continue to be negligible). In other words, it enjoys a sort of non-renormalization
theorem. By expressing (3.29) in terms of the saxions si by means of (2.11), we would
get a formula that formally depends on the Kähler potential K, which itself is sensitive to
perturbative corrections. Despite that, such corrections get all “resummed” in the ℓi, as
manifest in the dual saxionic formulation.

Note that the dominant EFT string scale (3.29) depends on the dual saxions ℓi in such
a way that, under an overall constant rescaling of the saxions, it behaves precisely as M2

γ

in (3.27). However, (3.29) is fully determined by data available within the two-derivative EFT,
namely the EFT string tensions Te. Once the Kähler potential and the saxionic cone are given,
or analogously the dual saxions ℓi and the set of EFT string charges (3.7), (3.29) is determined
at each point of the perturbative region. It is sufficient to restrict to the elementary generators
of CEFT

S , compute the corresponding tensions and identify the lowest one. Of course, the
charge corresponding to the lowest tension generically changes as we move in the saxionic
domain. Hence M2

T is a continuous but possibly non-smooth function of the dual saxions.
In section 4 we will verify the bound (3.28) in explicit string theory models and compare

it to (3.27). Other checks are provided in appendix C. In fact, MT turns out to provide a
good estimate of the species scale, not only when Msp =Ms (in which case by construction
Msp = MT ), but also more generically, at least for “not-too-large” saxions si. Instead, a
large hierarchy Msp ≪ MT can occur in extreme limits in asymptotic field space regions
where the species scale is set by MQG, a typical example being realized in the strong string
coupling limit of M-theory.

We conclude this section by stressing that one of the basic assumptions that underlie our
analysis is that supersymmetry is exact and in particular that no perturbative stabilizing
mechanism for axions and saxions is present. Clearly, if supersymmetry gets broken at low
energies a potential for the saxions is generically induced. In that case some of the results
obtained using our formulation would be qualitatively wrong. For example one could not
reliably identify the vacuum configuration of a realistic string theory model using eq. (2.3).
Nevertheless, the considerations presented in our paper are short-distance in nature and,
therefore, largely insensitive to IR deformations like supersymmetry breaking. To guarantee
this we will restrict our attention to Λ’s satisfying

Λ > MIR (3.30)

where MIR is some physical IR mass scale below which the long-distance modifications of (2.3)
can no longer be ignored.

4 String theory models

In order to make the general discussion of sections 2 and 3 more concrete, we now describe
two broad classes of string theory models, namely the F-theory and heterotic models in the
large volume regime. These have the advantage that can be described quite easily in our
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general framework, and will allow us to provide a few explicit examples thereof to better
illustrate and check our main points. As in [17, 40], our general claims also apply to other
string theory models or perturbative regimes — e.g. type I, type IIA and M-theory — which
are however either very similar/dual to the heterotic and F-theory cases, or admit a less
explicit EFT description. Hence, for concreteness and clarity, in section 4.1 we focus on
the F-theory and in section 4.2 on heterotic models. We will encounter M-theory models
on G2 manifolds in section 6.5.3.

For clarity, we collect here the conventions we adopt on the relevant scales in string/M-
theory. The ten-dimensional Ricci scalar for type I, IIA, IIB appears in the Einstein and
string frame actions as

2π
l8(10)

∫
R(10) =

2π
l8(10)

∫
e−2ϕR

(s)
(10) , (4.1)

where l(10) = 2π
√
α′ represents the ten-dimensional Planck length in the Einstein frame, and

the string length in the string frame. The string and Einstein frame metrics are related by
ds2

(s) = e
ϕ
2 ds2

(E). Concerning M-theory, the eleven-dimensional Einstein-Hilbert term is

2π
l9(11)

∫
R(11), (4.2)

where l(11) is the Planck length in M-theory. Choosing

ds2
11 = e−

1
6 ϕds2

10 + l2(11)e
4
3 ϕdy2 , (4.3)

and compactifying on the interval y ∈ [0, 1], (4.2) reduces to the Einstein frame action
in (4.1) with l(10) = l(11).

In both cases, the four-dimensional metric is embedded in the higher-dimensional one
according to the ansatz

ds2
d = e2Ads2

4 + ds2
X . (4.4)

The Weyl rescaling factor e2A = M2
P l

2
(d)/(4πVX), where VX denotes the volume of the

(d− 4)-dimensional compactified space in l(d) units, is necessary to identify ds2
4 with the four-

dimensional Einstein frame metric. Explicit expressions of this quantity for our models will
be provided below. Note that the appropriate dimension d generically depends on the saxions.

According to appendix A, the strong coupling scales for ten-dimensional string theory
and M-theory are, respectively,

M̂(10) =
(2π)

3
4

l(10)
, M̂(11) =

(2π)
2
3

l(11)
. (4.5)

The quantum gravity scale introduced in section 3.4 is then given by MQG = eAM̂(d).

4.1 F-theory/type IIB orientifold models

An important large class of examples is provided by the F-theory compactifications — see
e.g. [65, 66] for reviews. An F-theory model corresponds to a type IIB compactification on
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a Kähler space X in presence of 7-branes. The space X can be regarded as the base of an
elliptically fibered Calabi-Yau four-fold, whose fiber’s complex structure can be identified
with the type IIB axio-dilaton. In particular, this requires the base X to have an effective
anti-canonical divisor KX .13 In the following we will for simplicity assume that the ellipti-
cally fibered Calabi-Yau four-fold has vanishing third Betti number, so to avoid technical
complications associated with moduli of the M-theory gauge three-form.

These models admit a natural perturbative regime corresponding to the large volume
limit. Let us pick a basis of divisors Da ∈ H4(X,Z) of X and a dual basis of two-cycles
Σa ∈ H2(X,Z), such that Da · Σb = δa

b , a = 1, . . . , b2(X). The Kähler moduli va are
obtained by expanding the (Einstein frame) Kähler form J of X in the Poincaré dual basis
[Da] ∈ H2(X,Z). Keeping Poincaré duality implicit, we can write

J = vaD
a ⇔ va =

∫
Σa

J = Σa · J . (4.6)

The corresponding saxions sa are then defined as follows:

sa = 1
2κ

abcvbvc , (4.7)

where we have introduced the triple intersection numbers κabc = Da · Db · Dc. Hence in
this case N = b2(X).

As discussed in [17], one can identify the saxionic cone with the cone Mov1(X) generated
by movable curves (see e.g. [67]). We can then write

s = saΣa ∈ ∆K ≃ Mov1(X) . (4.8)

Note that the string charge vectors e can be identified with effective curves Σe = eaΣa and,
in particular, the EFT string charges correspond to movable curves

CEFT
S ≃ Mov1(X)Z . (4.9)

Physically, EFT strings are realized by D3-branes wrapping movable curves. The corre-
sponding BPS instantons are instead realized by Euclidean branes wrapping effective divisors
D ∈ Eff1(X)Z, so that we can make the identification CI ≃ Eff1(X)Z.

The constants C̃a defining γ(s) as in (2.9) admit a nice geometrical interpretation [40]:

C̃a = 6KX · Σa . (4.10)

In particular, the pairing appearing in (3.16) corresponds to the intersection number

⟨C̃, e⟩ = 6KX · Σe . (4.11)

Recalling that KX is an effective divisor, the bound (3.16) is always satisfied, since movable
curves can be precisely characterized as those curves that have non-negative intersection with
all effective divisors [68]. In order to test the bound (3.21), which is expected to hold up

13We adopt the quite common usage of denoting holomorphic line bundles and corresponding divisors by
the same symbol.
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to subleading corrections in 1/N ≪ 1, let us focus on the large class of models with toric
X — see for instance [69]. Then the anti-canonical divisor is given by

KX =
∑

I∈toric div.
DI , (4.12)

where the sum is over the set of prime toric divisors DI , I = 1, . . . , N + 3. All these divisors
are effective, and in fact generate the whole cone of effective divisors. So any movable curve
Σe has strictly positive intersection number with at least one toric divisor DI , and then

KX · Σe ≥ 1 . (4.13)

Combined with (4.12), this implies that

⟨C̃, e⟩ ≥ 6 , ∀e ∈ CEFT
S . (4.14)

We then see that, in this large class of models, the condition (3.18) is indeed satisfied,
strengthened by a factor of 6, and then the bound (3.21) is realized in the stronger form:

γ(s) ≥ Nπ

α
. (4.15)

The effective theory is more easily described in the dual saxionic formulation

ℓa = 3va

κ(J, J, J) , (4.16)

where κ(J, J, J) ≡ J · J · J = κabcvavbvc. The dual saxionic cone PK can be identified with
an “extended” Kähler cone K(X)ext obtained by gluing different spaces connected by flop
transitions, in which curves collapse or blow-up:

PK = Kext(X) =
⋃

X′∼X

K(X ′) . (4.17)

Here X ′ ∼ X means that X ′ can be obtained from X by a chain of flops (which may also
be trivial, corresponding to X ′ = X). Hence ℓ ∈ PK if there exists one chamber of Kext(X),
associated with a compactification space X ′ ∼ X, in which ℓ = ℓaD

a is a nef R-divisor,
that is ℓ ∈ K(X ′).14

At large volume, the kinetic potential F(ℓ) takes the form (2.18):

FK(ℓ) = log κ(ℓ, ℓ, ℓ) . (4.18)

Hence P̃ (ℓ) = κ(ℓ, ℓ, ℓ), which is clearly homogeneous as in (2.20), with n = 3.
If one can take Sen’s orientifold limit, the space X can be regarded as the Z2-orientifold

quotient of a Calabi-Yau three-fold X̂. A new saxion ŝ ≡ e−ϕ appears, detected by D(−1)-
instantons, where ϕ is the standard type IIB dilaton, so that we now have N = b2(X) + 1.
The corresponding dual saxion is

ℓ̂ = 1
2e

ϕ . (4.19)

14 In the following we will often focus on spaces X which are toric or orientifold quotients of Calabi-Yau
three-folds. In these cases K(X)ext can be identified with the space of the so-called movable divisors. Hence
we can write ℓ = ℓa Da ∈ PK ≃ Mov1(X). This identification can actually hold more generically — see [17]
for more details.
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In the perturbative regime described by the dual saxions ℓi = (ℓ̂, ℓa), the leading contribution
to the Kähler potential is given by

F = log ℓ̂+ FK(ℓ) = log ℓ̂+ log κ(ℓ, ℓ, ℓ) (4.20)

and can then be written as in (2.18) with P̃ = ℓ̂ κ(ℓ, ℓ, ℓ), which has homogeneity n = 4.15

The conversion factor from ten- to four-dimensional scales, appearing in (4.4), is given by

e2A =
M2

P l
2
(10)

4πV (X) =
M2

P l
2
(10)

2π

√
κ(ℓ, ℓ, ℓ)

3 , (4.21)

where V (X) = κ(J, J, J)/6 is the compactification volume in l(10)-units. By applying this
conversion factor to M̂(10) in (4.5) we get

M2
QG = e2AM̂2

(10) =

√
2πκ(ℓ, ℓ, ℓ)

3 M2
P . (4.22)

It is interesting to explicitly check how the powers of 2π’s precisely combine so that M2
QG is the

square of 2πMP — the scale a naive low-energy observer would identify as the quantum gravity
scale — times a non-trivial suppression ∼ (ℓ/2π)3/2 controlled by the “loop parameter” (3.2).

4.1.1 Model 1: P3

For illustrative purposes, it is useful to describe a couple of simple explicit models (though
with a small number of (s)axions) and their relevant energy scales. The first and easiest
example is obtained by choosing X = P3.

In this case, the set of effective divisors Eff1(X)Z is spanned by a single element, the
hyperplane divisor D ≡ H, which has triple self-intersection κ(D,D,D) = 1. Hence, in the
large volume perturbative regime, ℓ = ℓD, the dual saxionic cone is just given by ℓ ≥ 0
(including the degenerate boundaries) and (4.18) reduces to

FK = 3 log ℓ . (4.23)

The corresponding saxionic cone is spanned by the curve Σ ≡ D ·D. The only saxion s of this
model encodes the volume of the hyperplane divisor, has Kähler potential K = −3 log s and
is related to the dual saxion by ℓ = 3

2s , see (2.11). The saxionic cone is simply given by s ≥ 0.
Moreover the α-saxionic convex hull is just ∆̂α = {s ≥ 1/α}, and then P̂α = {ℓ ≤ 3

2α}.
The hyperplane divisor D generates the set of BPS instanton charges CI = {q = qD|q ∈

Z≥0}, while the curve Σ defines the elementary EFT string charge, which generates the set
of EFT string charges CEFT

S = {e = eΣ|e ∈ Z≥0}. All these EFT string charges have scaling
15In fact, the saxionic and dual saxionic cones are expected to receive corrections coming from higher

derivative terms. This type of effect has been discussed in some detail for heterotic models in [40] and we will
encounter it in subsection 4.2 — see e.g. (4.38). In particular, if we choose ℓ0 so that ℓ0M2

P gives the tension
of the lightest D7-string, we generically have ℓ0 = ℓ̂ + caℓa, where ca ∈ Q accounts for possible world-volume
curvature/bundle corrections. This means that in (4.20) we should set ℓ̂ = ℓ0 − caℓa, which induces also a shift
sa → ŝa = sa + cas0 in the Kähler potential. These subtleties will be studied in more detail elsewhere, but
since they are not crucial to our purposes for simplicity we will just ignore them, tacitly keeping them in mind.
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weight w = 2 [17], and the tension of the elementary string is given by T = M2
P ℓ. The

anti-canonical divisor in this setting is just KX = 4H and, by using (2.9) and (4.10), it yields

γ(s) = 4πs . (4.24)

This is manifestly positive in the saxionic cone and we have also γ(s)|∆̂α
≥ 4π

α , stricter
than (3.21) with N = 1 by a factor of 24.

Let us now discuss the species scale. The upper bounds given by (3.27) and (3.29) become

M2
γ = πM2

P

s
, M2

T = 2πM2
Pℓ =

3πM2
P

s
. (4.25)

We see that Mγ ∼ MT in the entire perturbative domain. Because the dominant EFT
string scale MT is associated to a w = 2 string and there are no w = 1 EFT strings (and,
correspondingly, no weak string coupling), we expect Msp = MQG < MT , realizing the
bound (3.28) in its strict form. We can verify this by using the quantum gravity scale (4.22),
which reads

M2
QG =

√
2πℓ3
3 M2

P = 3
2

√
π

s3 M
2
P . (4.26)

It follows that MT /Msp = (4πs)
1
4 ≥ (4π/α)

1
4 , and the strict form of the bound (3.28) is

always satisfied in the perturbative regime α/2π ≪ 1. Nevertheless, MT provides a good
proxy for Msp, say up to an O(10) factor, for s ≲ 103.

4.1.2 Model 2: P1 fibration over P2

In our context this model has already been discussed in [17], which we can then follow. The
internal space X is a P1 fibration over P2, and the fibration is specified by the integer p ≥ 0.

The cone Eff1(X)Z of effective divisors, which can be identified with the cone of BPS
instanton charges CI, is simplicial and is generated by two effective divisors E1, E2: E1 is
the divisor obtained by restricting the P1 fibration over P1 ⊂ P2, while E2 corresponds to
a global section of the P1 fibration. One can then identify a basis of nef divisors D1 = E1

and D2 = E2 + pE1, which generate the Kähler cone: J = v1D
1 + v2D

2, with v1,2 > 0.
The triple intersection numbers are given by the coefficients of the formal object I(X) =
(D1)2D2 + pD1(D2)2 + p2(D2)3. Hence, by using the expansion ℓ = ℓaD

a the kinetic
potential (4.18) becomes

FK = log κ (ℓ, ℓ, ℓ) = log
(
3ℓ21ℓ2 + 3pℓ1ℓ22 + p2ℓ32

)
(4.27)

In this model the dual saxionic cone coincides with the closure of the Kähler cone: PK =
{ℓ = ℓ1D

1 + ℓ2D
2|ℓ1 ≥ 0, ℓ2 ≥ 0}. From (2.15) one can obtain the corresponding saxions:

s1 = 6ℓ1 + 3pℓ2
6ℓ21 + 6pℓ1ℓ2 + 2p2ℓ22

, s2 = 3(ℓ1 + pℓ2)2

6ℓ21ℓ2 + 6pℓ1ℓ22 + 2p2ℓ32
. (4.28)

The (Mori) cone of effective curves is generated by Σ1 = E1 · E2 and Σ2 = (E1)2,
which are dual to the nef divisors Da: Da · Σb = δa

b . The cone of movable curves is instead
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(a) Saxionic convex hull ∆̂α. (b) Dual saxionic convex hull P̂α.

Figure 1. Saxionic convex hull ∆̂α and dual saxionic convex hull P̂α for the F-theory model 2. The
plot has been drawn with the reference values α = 1/10 and p = 3. The hatched area in figure 1(a) is
outside the saxionic cone ∆, which comprise the gray and white regions.

generated by Σ̂1 = D1 · D2 = Σ1 + pΣ2 and Σ̂2 = (D1)2 = Σ2, which are dual to the
effective divisors Ea: Ea · Σ̂b = δa

b . Hence s = s1Σ1 + s2Σ2 = s1Σ̂1 + (s2 − ps1)Σ̂2, and
the saxionic cone is ∆ = {s = saΣa|s1 ≥ 0 , s2 ≥ ps1}. One can also invert the relation
between saxions and dual saxions:

ℓ1 = 3p
√
s2 − ps1

2
[
(s2)

3
2 − (s2 − ps1)

3
2
] , ℓ2 =

3
(√

s2 −
√
s2 − ps1

)
2
[
(s2)

3
2 − (s2 − ps1)

3
2
] (4.29)

As in our general discussion, we can characterize the boundaries of PK in terms of
tensionless strings. The set of EFT string charges

CEFT
S = {e = e1Σ1 + e2Σ2|(e1, e2) ∈ Z2 , e1 ≥ 0 , e2 ≥ pe1} (4.30)

is generated by e(1) = Σ̂1 = Σ1 + pΣ2 and e(2) = Σ̂2 = Σ2, which have tensions T(1) =
M2

P(ℓ1 + pℓ2) and T(2) = M2
Pℓ2. We notice that T(2) vanishes at ℓ2 = 0, while T(1) vanishes

at the tip ℓ1 = ℓ2 = 0. These are infinite distance boundary components of PK. On the
other hand, on the boundary component ℓ1 = 0 no EFT string tension vanishes. This is
instead characterized by the vanishing of the tension M2

Pℓ1 associated with the non-EFT
string charge Σ1, which together with Σ2 generates the set of BPS charges CS. This implies
that, even if the saxionic convex hull is simply given by ∆̂α = {s1 ≥ 1

α , s
2 − ps1 ≥ 1

α}, the
corresponding dual saxionic image P̂α is more complicated — see figure 1.

Remember that the GB coefficient is determined by the anti-canonical divisor. In the
present examples, the latter is given by

KX = (3− p)D1 + 2D2 = (3 + p)E1 + 2E2 . (4.31)

From (2.9) and (4.10) we then get

γ(s) = π
[
(3− p)s1 + 2s2

]
, (4.32)
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which is positive since s2 ≥ ps1. Furthermore, we see that γ(s)|∆̂α
≥ (5+p)π

α , which is
stronger than (3.21) with N = 2. It is for instance sufficient to take α ≤ 1

10 and p ≥ 1
to get γ(s)|∆̂α

> 188.
Now let us turn our attention to the relevant energy scales at play. It is easy to check

that K ≃ − log σ asymptotically along the EFT string flow associated with e(2), while
K ≃ −3 log σ along the EFT string flow associated with e(1). This is consistent with the fact
that only e(2) has scaling weight w = 1, while e(1) has w = 2 [17]. Indeed, the string obtained
by wrapping a D3 on Σ̂2 is dual to a fundamental heterotic superstring via F-theory/heterotic
duality — see appendix B for a more general discussion. We can then distinguish different
regimes set by the two elementary EFT string tensions T(1) =M2

P(ℓ1 + pℓ2) and T(2) =M2
Pℓ2.

Let us start assuming that p > 0, the particular case p = 0 will be discussed at the end.
For p > 0 we have T(2) ≤ T(1) and for any value of the saxions the dominant EFT

string scale (3.29) is given by

M2
T = 2πM2

Pℓ2 . (4.33)

Furthermore, the condition (3.10) requires that ℓ2 < 2π/p, and so MT < 2πMP/
√
p. We can

distinguish two regimes, namely T(2) ≪ T(1) or T(2) ≃ T(1). If ℓ2 ≪ ℓ1 we are in the first regime,
where T(2) corresponds to the tension of a dual weakly coupled critical string. Here (3.28) is
actually saturated. The second regime is defined by T(2) ≃ T(1). Since T(1)/T(2) = p+ℓ1/ℓ2 > p,
this can be reached only if p ∼ O(1) and ℓ1/ℓ2 ≲ 1. In this second regime there should not
exist a controlled dual weakly coupled string theory description. The species scale should then
be identified with the quantum gravity scale (4.22). By combining (4.22) and (4.27) we get

M2
QG =

√
2π
(
ℓ21ℓ2 + pℓ1ℓ22 +

1
3p

2ℓ32

)
M2

P ≲
√
2πℓ32M2

P =

√
ℓ2
2π M

2
T , (4.34)

where in the second step we have used ℓ1 ≲ ℓ2 <
2π
p and p ∼ O(1), and we have neglected an

O(1) overall constant. Consistently with the bound (3.28) we find that MQG ≲MT whereas
MQG ≪ MT for ℓ2 ≪ 2π, that is, far away from the tip of the saxionic domain. Other
regimes can be better studied through the dual heterotic M-theory description, which will be
discussed in subsection 4.2.1 and will confirm that M2

sp is still bounded by (4.33).
It is instructive to also discuss the bound (3.27) for this model. Recalling (4.32) and (4.28)

we get

M2
γ = 4πM2

P

(3− p)s1 + 2s2 = 8πℓ2(3ℓ21 + 3pℓ1ℓ2 + p2ℓ22)
6ℓ21 + (3 + p)(6ℓ1ℓ2 + 3pℓ22)

M2
P . (4.35)

A comparison between the two mass scales (4.33) and (4.35) gives:

M2
T

M2
γ

= 1
2

[
1 + 18ℓ1ℓ2 + (9p+ p2)ℓ22

4(3ℓ21 + 3pℓ1ℓ2 + p2ℓ22)

]
. (4.36)

Since we are assuming p > 0, we have

1
2 ≤ M2

T
M2

γ

≤ 5
8 + 9

8p ≤ 7
4 , (4.37)
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where the two extrema correspond to ℓ2 = 0 and ℓ1 = 0, respectively. This shows that MT
and Mγ are always of the same order, and then the upper bound (3.27) is satisfied too.

The case p = 0, which we ignored so far, is characterized by M2
T = 2πM2

P min{ℓ1, ℓ2}
and M2

γ = 4π ℓ1ℓ2
ℓ1+3ℓ2

M2
P , so that 1

2 ≤ M2
T /M

2
γ ≤ 3

2 . Again, the two upper bounds on the
species scale parametrically agree. Invoking (3.10) we require ℓ1, ℓ2 ≤ 2π and obtain the
inequality M2

T ≤M2
QG for ℓ2 ≤ ℓ21/2π, consistently with the identification M2

sp =M2
T =M2

Pℓ2,
while M2

sp = M2
QG ≤ M2

T for ℓ2 ≥ ℓ21/2π.
A similar discussion can be carried out for the models where X is P1 fibration over an

Hirzebruch surface Fp, and is presented in appendix C.1.

4.2 Heterotic models

Our second class of models is given by E8 × E8 heterotic compactifications on Calabi-Yau
spaces, and their M-theory counterpart, at large volume. (The SO(32) case is completely
analogous.) As discussed in [40], the relevant saxionic cone is affected by ten- and eleven-
dimensional higher derivative terms. Here we summarize only the necessary information.

We consider a perturbative regime associated to N = b2(X) + 1 saxions si = (s0, sa),
which include the Kähler moduli sa of the Calabi-Yau compactification space X. These
are obtained by expanding the string frame Kähler form J = saDa in (a basis Poincaré
dual to) a basis of divisors Da, a = 1, . . . , b2(X). The remaining saxion s0 combines the
dilaton and the Kähler moduli:

s0 = 1
6e

−2ϕκabcs
asbsc + 1

2pas
a . (4.38)

where κabc ≡ Da · Db · Dc and

pa ≡ −
∫

Da

[
λ(E2)−

1
2c2(X)

]
∈ Z , (4.39)

where E1 and E2 denote the two E8 internal bundles, and

λ(E) ≡ − 1
16π2 tr(F ∧ F ) . (4.40)

The tadpole cancellation condition imposes the topological constraint λ(E1)+λ(E2) = c2(X).
Let us also introduce the integer

na ≡ 1
2

∫
Da

c2(X) . (4.41)

Notice that nas
a = 1

2
∫

X c2(X) ∧ J ≥ 0 [70] and that, by supersymmetry, the internal E8
bundles must satisfy

∫
X λ(E1,2) ∧ J ≥ 0. Combining these positivity conditions with (4.39)

and the tadpole condition, one gets

|pas
a| ≤ nas

a . (4.42)

One could also include NS5/M5-branes wrapping internal curves (see [40]), but for simplicity
here we will not do that.
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The saxionic cone is given by

∆ =
{
(s0, sa)

∣∣ s = saDa ∈ K(X) , s0 ≥ 0 , s0 ≥ pas
a
}
, (4.43)

and the GB coupling (2.9) takes the form

γ(s) = π

(
2s0 − pas

a + 1
6nas

a
)
. (4.44)

Let us also recall that in the M-theory realization [71, 72], the Calabi-Yau X three-fold is
fibered over an interval, representing the 11-th M-theory direction. Then s0 and s0 −pas

a can
be interpreted as the volume of X at the two endpoints of this interval [40]. For simplicity
we will henceforth assume that pas

a ≥ 0. (By (4.42), we can actually have 0 ≤ pas
a ≤ nas

a.)
In this case the saxionic cone (4.43) reduces to

∆ =
{
(s0, s)

∣∣ s = saDa ∈ K(X) , s0 ≥ pas
a
}
. (4.45)

The Kähler potential can be in principle obtained by dimensionally reducing the ten-
and eleven-dimensional heterotic (M-)theory. One must take into account the corrections
discussed in [73] (see also [74]). These affect the choice of saxionic variables and induce the
tilting of the saxionic cone (4.45) due to the constants pa, which encode the effect of ten- and
eleven-dimensional higher derivative terms. Moreover, these terms may induce additional
corrections to the Kähler potential. Fully determining these corrections is beyond the scope of
the present paper, and so we will content ourselves with considering contributions coming from
the leading heterotic M-theory terms [72], while taking into account the tilting of the saxionic
cone (4.45) and possible additional information coming from heterotic/F-theory duality.

Under these working assumptions and using the above saxionic parametrization, the
Kähler potential takes the form

K = − log(s0 − 1
2pas

a)− log κ(s, s, s) , (4.46)

where κ(s, s, s) ≡ κabcs
asbsc, and we ignore irrelevant additional constants. By (2.11), the

corresponding dual saxions are then given by

ℓ0 = 1
2(s0 − 1

2pbsb)
, ℓa = 3κabcs

bsc

2κ(s, s, s) −
pa

4(s0 − 1
2pbsb)

≡ ℓ̂a − 1
2paℓ0 , (4.47)

and their kinetic potential takes the form

F = log ℓ0 + log P̂ (ℓ̂) . (4.48)

Here ℓ̂a ≡ ℓa+ 1
2paℓ0 and log P̂ (ℓ̂) are the dual saxions and the kinetic potential that one would

obtain by ignoring the s0 saxion and starting from a Kähler potential K̂ = − log κ(s, s, s).
Note that the Calabi-Yau volume changes along the M-theory interval [73] and that

s0 − pas
a represents its smallest value in l(11) units. Hence the assumed validity of the

geometric heterotic M-theory regime of [72] requires that s0 − pas
a ≫ 1, which in turn

implies that the pas
a contribution in (4.46) may be considered as a subleading contribution,

potentially of the same order of other neglected corrections coming from higher-derivative
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M-theory terms. More information can be obtained by looking at the models that admit a dual
F-theory description, whose perturbative regime described in section 4.1 should correspond to
freezing one of the heterotic saxions sa. In appendix B we show how, in the regime ℓ0 ≪ |ℓa|,
the corresponding restriction of (4.47) matches the F-theory Kähler potential (4.18), up to
ℓ20 corrections. We then expect the F-theory Kähler potential (4.18) to capture possible
corrections to the corresponding restricted version of (4.47).

These uncertainties clearly affect the identification of the dual saxionic cone. First
focus on the modified dual saxionic vector ℓ̂ = ℓ + 1

2ℓ0p = ℓ̂aΣa, where Σa is the basis
of curves dual to Da (Da · Σb = δb

a). The second relation in (4.47) implies that ℓ̂ ∈ Phet
K ,

where Phet
K ⊂ H2(X,R) is the Poincaré dual of the closure of the image of K(X) under the

map J → J ∧ J . Note that Phet
K is a subcone of the cone Mov1(X) introduced in (4.8).

However, this condition may not precisely represent the dual saxionic domain, as we may
be missing modifications of the dual saxionic cone which are negligible only if ℓ0 ≪ |ℓa|.
Indeed, as discussed in more detail in appendix B, in models admitting a dual F-theory
description ℓ, rather than ℓ̂, should belong to Phet

K . This suggests the following possible
refinement of the dual saxionic cone P:

P ≃ {(ℓ0, ℓ) | ℓ0 ≥ 0 , ℓ ∈ Phet
K } . (4.49)

While P may receive further corrections and it would certainly be more satisfying to have a
more precise derivation thereof, for concreteness we will henceforth assume (4.49), keeping
in mind that its reliability is more robust for models admitting an F-theory dual in the
regime ℓ0 ≪ |ℓa|.

Going back to the saxionic coordinates, the saxionic convex hull is now given by

∆̂α =
{
(s0, s)

∣∣ s = saDa ∈ K̂α(X) , s0 ≥ 1
α
+ pas

a
}
. (4.50)

where K̂α(X) is the Kähler convex hull defined as in the generic saxionic case, which is
contained in the stretched Kähler cone introduced in [14]. If one restricts to ∆̂α, (4.44) satisfies

γ(s)|∆̂α
≥ π

[ 2
α
+
(
pa + 1

6na
)
sa|K̂α(X)

]
. (4.51)

For concreteness, consider for instance the models with λ(E2) = 0. In this case pa = na

and by (4.42) pas
a takes its highest possible value, i.e. nas

a ≥ 0. (Smaller values of pas
a ≥ 0

lead to similar conclusions.) By applying the same arguments that led us to (3.21), we expect(
nas

a
)
|K̂α(X) ≥ b2(X)/α, which implies that

γ(s)|∆̂α
≥ π

( 2
α
+ 7

6nas
a|K̂α(X)

)
≥ (5 + 7N)π

6α . (4.52)

Note that this lower bound is stronger than (3.21). We numerically tested this bound in a set
of explicit Calabi-Yau compactifications with CYtools [75]. The result is reported in figure 2,
in which we plot the value of αγ(s) evaluated at the tip of stretched Kähler cone against
b2(X) = N−1. Because the saxionic convex hull ∆̂α is contained in the stretched Kähler cone,
the numerical analysis provides an important non-trivial check of our general bound (4.52),
as well as of (3.21), which relied on certain non-trivial quantum gravity constraints.
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Figure 2. Value of αγ(s) at the tip of the α-stretched saxionic cone as a function of b2(X) = N − 1.
This quantity, which is α-invariant, has been computed in an explicit set of Calabi-Yau compactifications
analyzed with CYtools [75]. The set consists of 71908 Calabi-Yau manifolds with b2(X) ranging
from 2 to 491, with up to 100 polytopes per fixed b2(X) and with 25 triangulations per polytope
obtained with the random_triangulation_fast method. The quantity nas

a of equation (4.44) has
been obtained with the second_chern_class method and evaluated at the tip of the α-stretched
Kähler cone. The black solid line refers to the lower bound of equation (4.52). The best fit of our
numerical result, obtained assuming a power-law scaling, is αγ ≃ 100.9b1.7

2 , and is shown by the black
dashed line.

4.2.1 Energy scales in heterotic models

Finally, let us consider the scales characterizing the heterotic models discussed in this section.
By discretizing (4.45) one gets CEFT

S , which is generated by (1,0) and vectors of the form
(eapa, e), where e ≡ eaDa are generators of the cone of nef divisors. These EFT strings
have tensions

T∗ =M2
Pℓ0 = M2

P

2(s0 − 1
2pasa)

= 3M2
Pe

2ϕ

κ(s, s, s) , (4.53a)

Te =M2
P(eaℓa + eapaℓ0) =

(
3κ(e, s, s)
2κ(s, s, s) +

eapa

2(s0 − 1
2pbsb)

)
M2

P , (4.53b)

where we have used (4.47). By looking at the behavior of (4.46) under the corresponding
EFT string flows we can check that K ∼ − log σ under the (1,0) flow, and w = 1, consistently
with the fact that (1,0) indeed represents a critical heterotic string. On the other hand,
under the flow of the EFT string charges (eapa, e) we have K ∼ −n log σ, with integer n
determined by the self-intersections of e. If eapa ≥ 1, one has n = 2, 3, 4, and consistently
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these strings have scaling weights w = 2 or w = 3 [40]. If instead eapa = 0, one can also
have n = 1 and w = 1 [17].

It is now interesting to compare the dominant EFT string scale MT introduced in (3.29)
with Mγ , see (3.27), and the species scale Msp. We will approach this task first analytically,
in certain controllable limits, and then numerically in more general setups.

Consider first the asymptotic regime identified by the EFT string flow generated by
(1,0), that is, s0 ≫ 1 with sa fixed within (4.50). Inspecting (4.38) and (4.53), one finds
that this limit corresponds to the weak string coupling limit eϕ ≪ 1, and that in this limit
T∗ ≪ Te, for any nef divisor e. Hence in this regime M2

T = 2πT∗ and the bound (3.28) is
saturated, since T∗ corresponds to the critical string tension: Msp =Ms =MT . In order to
move away from this specific regime, we have to distinguish whether there exists or there
does not exist a nef divisor e = eaDa such that eapa = 0.

Assume first that eapa ≥ 1 for any nef divisor e, which also implies the strict positivity
pas

a > 0. In this case, the equations (4.53) clearly show that T∗ ≤ Te, and therefore that
M2

T = 2πT∗, at any point of (4.50). We can now compare M2
T to M2

γ :

M2
T

M2
γ

= 1
2

[
1 + nas

a

12(s0 − 1
2pasa)

]
, (4.54)

where M2
γ can be obtained by using (4.44) in the definition (3.27). Since s0 ≥ pas

a and
nas

a ≥ 0, we can then conclude that

1
2 ≤ M2

T
M2

γ

≤ 1
2

(
1 + nas

a

6pasa

)
. (4.55)

By (4.42) the smallest possible value of the upper bound in (4.55) is 7
12 and is obtained by

picking a trivial E2 bundle, that is pa = na. Therefore, in this case the two scales clearly agree
within a factor of order one. Even though for more general pa the upper bound appearing
in (4.55) is a priori larger than 7

12 , by our assumption that pae
a ≥ 1 for any nef divisor e

we expect pas
a not to be much smaller than nas

a in our perturbative domain. Verifying
this expectation would require a thorough investigation of the internal bundle structure,
which enters the definition (4.39), but this is beyond the scope of the present paper. We can
however get some qualitative information by rewriting (4.54) in the form

M2
T

M2
γ

= 1
2

[
1 + 1

2e
2ϕ nas

a

κ(s, s, s)

]
. (4.56)

By using CYtools [75] we have evaluated numerically the ratio nas
a/κ(s, s, s) at the tip of

the α-stretched Kähler cone of a large number of models. The result is shown in figure 3,
which presents the value of the α-invariant combination nas

a/[α2κ(s, s, s)]. If for instance
α = 0.1, nas

a/κ(s, s, s) is roughly given by N−3 for large N . Moving away from the tip of
the stretched Kähler cone we expect an even larger suppression. This suggests that MT and
Mγ basically agree also in more general N ≫ 1 models, at least if eϕ is not unnaturally large.

Let us now allow for the existence of one or more nef divisors ê = êaDa such that
paê

a = 0. We will restrict to the elementary charges ê of this type. The corresponding
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Figure 3. Scaling of the ratio nas
a/α2κ(s, s, s), appearing in (4.56), as a function of b2(X) = N − 1.

The ratio has been evaluated at the tip of the α-stretched Kähler cone in the same set of Calabi-Yau
compactifications analyzed in figure 2. The best fit for the approximate scaling with N , again assuming
a power-law behavior, is given by nas

a/α2κ(s, s, s) ≃ 102.1 b−3.3
2 and is qualitatively compatible with

the scaling of nas
a from figure 2 and with that of κ(s, s, s) from [14] (modulo a small difference due

to the algorithms used to generate Calabi-Yau manifold, which are different in the latter reference
and lead to manifolds with qualitatively different properties).

tensions (4.53b) reduce to

Tê =M2
P ê

aℓa =M2
P
3κ(ê, s, s)
2κ(s, s, s) , (4.57)

and control M2
T in the region of the saxionic domain such that e2ϕ ≥ 1

2κ(ê, s, s) for some of
these ê. By recalling (4.38), this condition corresponds to s0 ≤ M2

P
2Tê

+ 1
2pas

a. Unfortunately,
in this case it is not easy to draw general conclusions about the ratio M2

T /M
2
γ . In order to

get some quantitative understanding, we pragmatically assume that pa ≡ 0, and we again use
CYtools [75] to numerically investigate M2

T /M
2
γ . The result is shown in figure 4. Again we

see that, up to irrelevant numerical factors of order one, the two scales agree at the tips of
the stretched Kähler cones of the entire set of geometries that we explored. Note that these
results hold also for the more general case with non-vanishing pa, as long as we go far enough
along the EFT string flows s = s0 + σê, σ ≫ 1. Indeed, precisely in this limit we can neglect
the contribution pas

a ≃ pas
a
0, which does not scale with σ, and Tê is expected to identify the

lightest EFT string tension, and then to determine MT . Furthermore, the same conclusions
immediately apply to N = 2 type IIA models. This clearly indicates that M2

T agrees (in the
geometric regime) with the estimate of the species scale proposed for these models in [56].
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Figure 4. Sample of values of the ratio between M2
T and M2

γ in a large class of heterotic models,
assuming pa ≡ 0. This ratio, which is α-invariant, is evaluated at the tip of the α-stretched saxionic
cone, that is, at the tip of the α-stretched Kähler cone and with s0 = 1/α, in an explicit set of
11962 distinct Calabi-Yau compactifications analyzed with CYtools [75]. The manifolds have been
obtained with the random_triangulation_fast method with up to 100 polytopes per fixed b2(X)
and 25 triangulations per polytope. M2

γ can be obtained by using (4.44) in the definition (3.27), with
the numerical values of na obtained with the second_chern_class function. M2

T has been estimated
using (4.53b), in which we employed the minimum volume among the nef divisors that we found in
each compactification. These have been individuated requiring eaMαa ≥ 0 ∀α, where Mαa is the
matrix of Mori cone generators associated to the basis of the inherited b2(X) + 4 prime toric divisors
obtained using the toric_mori_cone function. Their volumes have been then computed at the tip
of the Kähler cone with compute_divisor_volumes. As typically only a small fraction of the basis
divisors are also nef divisors, the available statistic is reduced compared to the analysis of figure 2.

Let us now turn to the verification of the bound (3.28) beyond the weak string coupling
limit, that is, in the regime in which Msp is given by the quantum gravity scale MQG,
rather than the string scale Ms. Let us again first assume that eapa ≥ 1 for any nef divisor
e = eaDa, so that M2

T = 2πT∗ as already pointed out. We can check (3.28) analytically in
the M-theory supergravity regime. This requires eϕ and e−

2ϕ
3 s to be large enough, since

the internal six-dimensional M-theory and heterotic string frame metrics are related by
ds2

M(X) = e−
2ϕ
3 ds2

st(X). For instance we may require that e−
2ϕ
3 s ∈ K̂α. Recalling the

ansatz (4.3) (which implies l(11) = l(10)), the scaling factor appearing in (4.4) is given by

e2A =
M2

P l
2
(11)

4πV (X)e
− 2

3 ϕ , (4.58)

where V (X) = 1
6e

−2ϕκ(s, s, s) is the average value of the Calabi-Yau volume, as measured
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in M-theory and in l(11) units, along the M-theory interval. The quantum gravity scale
is then given by

M2
QG = e2AM̂2

(11) =
1
2

[
12π

(s0 − 1
2pasa)2κ(s, s, s)

] 1
3

M2
P , (4.59)

where M̂2
(11) is as in (4.5), and we have used (4.38). Since M2

T = 2πT∗, with T∗ as in (4.53a),
we conclude that

M2
T

M2
QG

=
[
(2π)2κ(s, s, s)
6(s0 − 1

2pasa)

] 1
3

=
(
2πeϕ

) 2
3 (for 2πeϕ > 1) . (4.60)

(This formula could have been derived more directly by identifying M2
T /2π = T∗ with the

tension of a string corresponding to an open M2-brane stretching along the M-theory interval,
which has length l(11)e

2ϕ/3.)
Note that the ratio (4.60) is controlled by the expansion parameter 2πeϕ, which more

precisely distinguishes the ten- and eleven-dimensional regimes, as also discussed in appendix A.
The bound (3.28) is satisfied almost tautologically, since the M-theory regime we are working
in requires 2πeϕ > 1. If instead 2πeϕ < 1, the M-theory description is not trustable anymore,
and one should rather compute M2

QG starting from M̂(10) in (4.5). Since T∗ corresponds to an
F1-string tension, the ratio (4.60) is more easily obtained by comparing 2πTF1 = (2π)2l−2

(10)e
1
2 ϕ

and M̂2
(10) directly in ten dimensions. This gives (see also appendix A)

M2
T

M2
QG

= 2πTF1

M̂2
(10)

=
(
2πeϕ

) 1
2 (for 2πeϕ < 1) . (4.61)

Clearly MT < MQG if 2πeϕ < 1, and hence the bound (3.28) is saturated: Msp =Ms =MT .
The case in which there is some nef divisor ê = êaDa such that paê

a = 0 again requires a
separate discussion. In this case, the corresponding lightest possible tension (4.57) determines
M2

T if (2πeϕ)2 ≥ 1
2κ(ê, 2πs, 2πs). Clearly, in our perturbative saxionic regime this can happen

only if 2πeϕ > 1, namely in the M-theory regime, since s ∈ K̂α and then we certainly have
1
2κ(ê, 2πs, 2πs) > 1. As discussed above, while we will not attempt to make exact statements,
we can nevertheless get non-trivial information assuming that we can set pa ≡ 0, either
exactly or approximately. Hence, picking the charge ê with lightest tension, which thus
determines M2

T , combining (4.57) and (4.59) we get

M2
T

M2
QG

= κ(ê, 2πs, 2πs)
2(2πeϕ)

4
3

. (4.62)

Applying the perturbative condition (4.50) to (4.38) with pa = 0 we get

e2ϕ ≤ α

6 κ(s, s, s) (4.63)

and hence

M2
T

M2
QG

≥
(2π
α

) 2
3 V (ê)
V (X)

2
3
= 1

2

(12π
α

) 2
3 κ(ê, s, s)
κ(s, s, s)

2
3

(for pa = 0) . (4.64)

– 35 –



J
H
E
P
0
7
(
2
0
2
4
)
2
4
0

Figure 5. Plot of the lower bound (4.64) evaluated at the tip of the α-stretched saxionic cone with
α = 1 in the same set of Calabi-Yau manifolds of figure 4. Since the r.h.s. of (4.64) is invariant under
an overall rescaling of the saxions si, the result for more general α can be obtained through a rescaling
by α− 2

3 .

We have numerically evaluated κ(ê, s, s)/κ(s, s, s)
2
3 at the tip of the stretched Kähler cone of

a large sample of models using again CYtools [75]. The result is shown in figure 5 and, since
2π/α ≫ 1 and the combination κ(ê, s, s)/κ(s, s, s)

2
3 is invariant under an overall saxionic

rescaling, it clearly indicates that (4.64) should always be greater than one, compatibly with
the bound (3.28) with Msp = MQG.

One can further check the bound (3.28) in other limits. These are discussed in ap-
pendix C.3, which partly apply also to N = 2 models.

5 SO(4)-symmetric wormhole configurations

In this section we show that the broad class of models described by the two-derivative
action (2.3), or equivalently (2.13), admits non-extremal and extremal wormhole configurations
with SO(4) symmetry, after continuation to Euclidean space. These solutions can be considered
as generalizations of the ones provided in the seminal paper [12] and encompass several
other generalizations already appeared in the literature — see for instance [13] for a review
and [76–78] for recent discussion on the stability of these types of wormholes. In sections 5.1
and 5.2 we present the Euclidean formulation of our models, derive the equations of motion
associated to the SO(4)-symmetric ansatz, and finally calculate the on-shell action for non-
extremal wormholes. This part of our work is not new but serves to set the stage for the
original results presented in the subsequent sections. Extremal wormholes are discussed in
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section 5.3 and their relation to fundamental instantons is clarified. The concept of EFT
instantons is introduced in section 5.4. A puzzling BPS bound on the on-shell action of
non-extremal wormholes is briefly commented upon in section 5.5, a possible interpretation
of which is suggested in later sections.

5.1 Euclidean action

When discussing non-perturbative effects such as wormholes we have to pass to the Euclidean
formulation. The way in which one identifies charged saddles in the axionic Euclidean action
has been clarified in [79] (see also [80]) and involves a continuation to imaginary axion fields
as well as the introduction of boundary terms. No such subtleties appear if one works with
the dual formulation, which is what we do. One just has to Wick rotate (2.13), giving

S = − 1
2M

2
P

∫
M

√
g R− 1

2M
2
P

∫
∂M

√
h(K −K0)

+ 1
2M

2
P

∫
M

Gijdℓi ∧ ∗dℓj +
1

2M2
P

∫
M

GijH3,i ∧ ∗H3,j ,
(5.1)

where the Gibbons-Hawking term [81] for asymptotically flat vacua has been included. In
this dual formulation H3,i must satisfy (2.17), up to possible localized terms corresponding
to fundamental instantons.16 The GB term (2.8) will play an important role. Rotated to
Euclidean signature, this reads

SGB ≡ −
∫
M

√
g γ(ℓ)EGB −

∫
∂M

√
h γ(ℓ) (Q−Q0) , (5.2)

where in γ(ℓ) = π
6 C̃is

i ≡ π
6 ⟨C̃, s⟩ (see (2.9)) we regard si as functions of the dual saxions

ℓi as defined by (2.15), and we included the appropriate boundary term [85] necessary to
make the variational principle well defined. This term is analogous to the Gibbons-Hawking
term in (5.1), and we will not need its precise form. Suffice it to say that it allows one to
make the identification [86] (see also [87, 88])∫

M

√
g EGB +

∫
∂M

√
hQ = χ(M) , (5.3)

where χ(M) =
∑

k(−)kbk(M) is the Euler characteristic of M. On the other hand, the
counterterm

∫
∂M

√
h γ(ℓ)Q0 in (5.2) subtracts the contribution of a flat vacuum configuration

so as to have a vanishing action in flat space, analogously to what done with the Gibbons-
Hawking term.

5.2 Effective one-dimensional action and equations of motion

In deriving the relevant equations of motion we will follow the approach of [80], but will work
with the formulation in terms of gauge two-forms B2 i and dual linear multiplets.

16Apart from the additional contribution to dH3 of standard gauge fields (see for instance [40]), which
we set to zero, dH3 can also get a contribution from the field-strengths of three-forms potentials. As
discussed in [44, 82, 83], in N = 1 supersymmetry this effect is dual to the presence of special multi-branched
superpotentials which are often realized in flux compactifications [84]. In this paper we assume that such
superpotential terms are not present or do not affect the (s)axionic sector under discussion.
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We are looking for Euclidean wormholes preserving SO(4) rotational symmetry. This
means that we can restrict the metric to take the form

ds2 = 1
M2

P

[
e2A(ρ)dρ2 + e2B(ρ)dΩ2

]
. (5.4)

Here ρ ∈ I is an arbitrary dimensionless radial coordinate taking values in some interval
I ⊂ R, to be defined below, and dΩ2 is the line element of a three-sphere of unit radius,
which has volume 2π2. One can of course remove the arbitrariness of ρ by gauge-fixing eA(ρ)

or eB(ρ). A particularly convenient choice is given by

eB = ρ =MPr (5.5)

where r represents the radius of the three-sphere. This gauge fixing corresponds to the
following line element

ds2 = e2A(r)dr2 + r2dΩ2. (5.6)

Note that, however, in this case r can smoothly parametrize only half wormhole.17 Another
useful parametrization is discussed below, but for the moment we keep ρ arbitrary.

In addition to the metric, we will allow the fields ℓi,H3,i to have non-trivial profiles. By
SO(4) symmetry, they can only depend on the radial coordinate: ℓi = ℓi(ρ), or equivalently
si = si(ρ). Instead the field-strengths H3 i must necessarily take the form

H3 i =
1
π
qi volS3 , (5.7)

with qi constants. Notice that such a choice satisfies dH3,i ≡ 0, and this is consistent
with (2.17) since the SO(4) symmetry implies that tr(R∧R) ≡ 0. Observing that ∗H3 i =
M2

PGijdai corresponds to the 1-form current associated to the axion shift symmetry, the
quantities qi are to be interpreted as the wormhole charges

1
2π

∫
S3

H3 i = qi ∈ Z . (5.8)

Charge quantization can be either seen as a consequence of the axion periodicity (2.1) (i.e.
the momentum conjugate to a periodic variable is quantized) or, in the dual language, to
the quantization of the H3 i field-strengths.

The SO(4) symmetry ensures that our ansatz can be regarded as a consistent truncation
of the full theory. Inserting it in eq. (5.1), the action reduces to

S|ansatz = − 6π2
∫

I
dρ
[
eA+B +

(dB
dρ

)2
e3B−A

]
+ 6π2

[
e2B

]
∂I

+
∫

I
dρ
[
e3B−Aπ2Gij dℓi

dρ
dℓj
dρ + eA−3BGij qiqj

]
.

(5.9)

17This issue is avoided if instead we use the ‘geodesic’ radial coordinate χ defined by MPdχ = eAdρ. With
this coordinate the metric takes the form ds2 = dχ2 + M−2

P e2B(χ)dΩ2, corresponding to the gauge-fixing
eA = 1 and the identification ρ = χMP.
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Extremizing (5.9) with respect to A we get the constraint

e6B−2Aπ2Gij dℓi
dρ

dℓj
dρ − Gij qiqj = 6π2

(dB
dρ

)2
e6B−2A − 6π2 e4B . (5.10)

The equations of motion for ℓi are derived from the second line of (5.9) and will be shown
shortly. The variation of (5.9) with respect to B is on the other hand redundant once the
former two conditions are satisfied, and hence will not be discussed.

To write the field equations for ℓi it is convenient to introduce [80] a ‘proper’ radial
coordinate τ such that

dτ = ± 1
π
eA−3Bdρ , (5.11)

where the two signs correspond to the two possible relative orientations between τ and
ρ. With such a choice, the second line of (5.9) resembles the action for a particle with
non-canonical kinetic term moving in a non-trivial potential:

2π
∫

dτ
[1
2G

ij(ℓ) ℓ̇iℓ̇j − Vq(ℓ)
]

(5.12)

with ℓ̇i ≡ dℓi
dτ . The potential is

Vq(ℓ) ≡ −1
2G

ij(ℓ) qiqj ≡ −1
2∥q∥2 (5.13)

where we have introduced the norm defined by the metric (2.14):

∥q∥2 ≡ Gij(ℓ) qiqj . (5.14)

The (dimensionless) “particle” energy

E ≡ 1
2G

ij(ℓ) ℓ̇iℓ̇j + Vq(ℓ) (5.15)

is thus manifestly conserved. From (5.12) — or equivalently (5.9) — we may now obtain
the equations of motion for ℓi

GijDℓ̇j
dτ = −∂Vq

∂ℓi
⇔ F ij ℓ̈j = 1

2F
ijk
(
qjqk − ℓ̇j ℓ̇k

)
, (5.16)

where Dℓ̇j/dτ is the Levi-Civita covariant derivative associated with the metric Gij ; we have
used (2.14) and we have introduced the shorthand notation F i ≡ ∂F/∂ℓi, F ij ≡ ∂2F/∂ℓi∂ℓj ,
etc. In addition the dual saxions ℓi satisfy appropriate boundary conditions, which we assume
to be Dirichlet.18

We are interested in asymptotically flat wormhole configurations manifesting a Euclidean
“time-reversal” symmetry.19 We can take a symmetric τ interval, τ ∈ [−τ∞, τ∞], with both

18In presence of low-energy supersymmetry breaking, the asymptotic values ℓ∞ may ultimately be determined
by an hypothetical stabilizing potential for the saxions. We will come back to this in section 7.5.

19The Euclidean time-reversal symmetry ensures that by cutting these solutions at the minimal radius one
gets half-wormholes which, once analytically continued back to a Lorentzian spacetime, describe the nucleation
or absorption of a baby universe, with real boundary values of the fields and of their time derivatives [12].
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endpoints τ = ±τ∞ corresponding to r = ∞. The dual saxions can then flow from some
asymptotic value ℓ∞ at τ = −τ∞ to some value ℓ∗ at the neck of the wormhole τ = 0, and
eventually back to the asymptotic value ℓ∞ at τ = τ∞. The analogy with the point particle
makes it clear that the saxionic flow can be interpreted as a scattering process, in which the
particle climbs the potential (5.13) until it reaches the turning point ℓ∗, at which it stops
and then rolls down back to its original position. Since Vq < 0, the saxions can bounce only
if E = −|E| < 0. We will however be a bit more general and consider

E = −|E| ≤ 0 . (5.17)

We will refer to the configurations with E < 0 and E = 0 as non-extremal and extremal
wormholes, respectively, even though strictly speaking the extremal configurations do not
describe proper wormholes connecting two asymptotically flat regions, see section 5.3 below
for more details. (Rather, they can be formally considered as half-wormholes in the extreme
E → 0 limit.) In the following we will concentrate on these cases, without considering the
configurations with E > 0, which have a singular geometry. See for instance the review
papers [13, 89, 90] for additional discussions on these three cases.

Inserting (5.15) in the constraint (5.10), and writing the result in the gauge (5.5) one gets

e2A = 1
1− L4

r4

(5.18)

where
L4 ≡ |E|

3π2M4
P
= ∥q∥2

∗
6π2M4

P
, (5.19)

with ∥q∥2
∗ ≡ ∥q∥2(ℓ∗). Hence the metric takes the form

ds2 = 1
1− L4

r4

dr2 + r2dΩ2
3, (5.20)

with r ∈ [L,∞) and L can be identified with the minimal S3 radius r∗ = L. In the second
equality in (5.19) we used the fact that, if E < 0, at the turning point of the wormhole
throat the particle stops (ℓ̇i|τ=0 = 0) and E reduces to Vq(ℓ∗). We see that the minimal S3

radius of non-extremal wormholes is controlled by the charge norm ∥q∥ at such radius. If
instead E = 0, then L = 0 and the metric becomes flat.

By using (5.18) in (5.11) (in the gauge (5.5)) one gets a differential relation between r

and τ , which can be easily integrated. For non-extremal (E < 0) wormholes, the integration
constant can be fixed by imposing that

τ = 0 ⇔ r = L . (5.21)

Then (5.11), with +/− sign for positive/negative τ , integrates to

τ = ± 1
2πM2

PL
2

[
π

2 − arcsin
(
L2

r2

)]
(5.22)

or similarly L2/r2 = cos
(
2πM2

PL
2τ
)
. This in particular implies that e−2A as a function of τ is

given by e−2A = sin2 (2πM2
PL

2τ
)
. The maximal extension of the τ interval is |τ | ≤ τ∞, with

τ∞ ≡ 1
4M2

PL
2 ⇔ r∞ = ∞ , (5.23)
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where cos
(
2πM2

PL
2τ∞

)
= 0. In particular, the region 0 ≤ τ ≤ τ∞ parametrizes the first

half-wormhole, while the interval −τ∞ ≤ τ ≤ 0 parametrizes the second half-wormhole. In
other words, the particle takes a proper time τ∞ to make half of its journey.

The particle interpretation also suggests a simple characterization of regular wormholes.
The point particle is at rest at τ = 0 and starts rolling down the potential Vq. If it reaches
τ∞ remaining inside the perturbative dual saxionic domain, then the corresponding trajectory
describes an everywhere regular on-shell wormhole. Whenever along its path the particle
exits the allowed domain, the solution develops a singularity and should either be somehow
regularized or discarded.

Finally, the on-shell wormhole action can be obtained by plugging (5.10) into (5.9),
using the gauge (5.5) and the explicit solution (5.18). Alternatively, we can use the traced
Einstein equation

R ∗ 1 = Gij
(
dℓi ∧ ∗dℓj −

1
M4

P
H3 i ∧ ∗H3 j

)
(5.24)

in (5.1), observing that the asymptotic Gibbons-Hawking boundary term vanishes for the
metric (5.20). In either case, one obtains the wormhole action

S|w = 2π
∫

dτ ∥q∥2 = 1
M2

P

∫
GijH3,i ∧ ∗H3,j . (5.25)

As argued in [12] (see also section 7), the physically relevant quantity is 1/2 of S|w, namely
the on-shell action of half-wormhole:

S|hw = 2π
∫ τ∞

0
dτ ∥q∥2 . (5.26)

The latter can also be written using (5.13), (5.19), and (5.23) in an alternative form:

S|hw = −4π
∫ τ∞

0
dτ Vq

= 3π3M2
PL

2 + 4π
∫ τ∞

0
dτ (E − Vq)

≥ 3π3M2
PL

2 .

(5.27)

The first term in the second line coincides with what one would find for a purely axionic
theory, with dual saxions “frozen” at their throat values ℓi,∗.20 The second contribution
can be identified with the integrated “kinetic” energy of the dual saxions, see (5.15), and
is hence always positive.

The on-shell action (5.27) does not include the imaginary contribution of the boundary
term (2.16). These are generically non-vanishing and will be taken into account in section 7.

We remind the reader that the results obtained in this section rely on the assumption that
a truncation of the action at the 2-derivative level is justified. As emphasized in section 3.4
this requires L > 1/Λ, where Λ is an appropriate UV cutoff. A reasonable bound would

20Up to a different convention for the Planck scale, the semi-wormhole action (5.27) agrees with the one first
derived in [12]. It also agrees with [91] provided no Gibbons-Hawking term is added at the inner boundary of
the half-wormhole.
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be Λ < Mt, since the tower scale Mt represents the highest possible energy at which our
four-dimensional EFT makes sense. However, in principle a wormhole with L ≲M−1

t could
still make sense in a weakly coupled higher-dimensional EFT. This is certainly not possible if
L−1 exceeds the species scale Msp. So, we will impose the less conservative bound

L2 > M−2
sp (5.28)

as the most fundamental consistency condition. Note that this requirement can always be
satisfied by rescaling q, so to increase ∥q∥.

The analysis of this section may also require the introduction of an IR cutoff, as discussed
in general at the end of section 3.4. Suppose for example that a more complete description
includes a small saxion potential Vs(s), see for instance [92, 93] for recent discussions and
more references, as well as section 7.5. This would contribute to the equations of motion
and to the on-shell action. A sufficient condition for these corrections to be negligible
and not to significantly affect our results is that r6Vs ≪ M2

PL
4. If the overall size of

the potential is Vs ≪ M2
P/L

2, such condition is certainly satisfied sufficiently close to the
wormhole throat. In the same regime our equations of motion are reliable as well. Yet, for
r > M−1

IR ∼ (M2
PL

4/Vs)1/6 both the classical configuration and its action can significantly
depart from what we have found. We should thus either stay away from the asymptotic
region, or properly take into account the non-trivial potential.

5.3 Extremal wormholes and fundamental BPS instantons

So far in this section we have not really exploited supersymmetry, and what we have found
would hold even if the kinetic matrices of ℓi and H3,i were different from each other (see for
instance the recent work [94]). On the other hand supersymmetry forces such matrices to
be identical, see (5.1), and this allows for a particularly simple class of BPS extremal E = 0
configurations. These solutions can be considered a generalization of the extremal wormholes
found in [95] — see also [96] for their ten-dimensional counterpart.

Given the form of the potential (5.13), we see that taking ℓ̇i = −qi obviously satisfies (5.15)
with E = 0 (another possible choice is ℓ̇i = qi and can be viewed as being associated to
conjugate charges). The equations of motion (5.16) are manifestly solved as well. The
condition can be easily integrated to ℓ(τ) = ℓ(τ∞) + q(τ∞ − τ). The wormhole metric (5.6)
is flat in the extremal case E = 0, and in the gauge (5.5) our solution has e2A = 1 with the
coordinate r ≥ 0 spanning the entire space. In flat space (5.7) implies that H3,i = −M2

P ∗ dℓi
and dH3,i = 2πδ4(0). As discussed in appendix D.1, these relations can be generalized to
BPS multi-centered extremal wormhole solutions.

When considering extremal wormholes it is more convenient introduce a new proper
radial coordinate

τ̂ ≡ τ∞ − τ , (5.29)

which has opposite orientation with respect to τ and is such that r = ∞ corresponds to
τ̂∞ = 0, while r = 0 corresponds to τ̂∗ = τ∞. This is motivated by the fact that in the extremal
solution r = 0 will soon be shown to correspond to a singular point, which is then moved to
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infinite τ̂ -distance, and this simplifies our presentation. By solving (5.11) one obtains

τ̂ = 1
2πM2

Pr
2 (5.30)

and
ℓ(r) = ℓ∞ + qτ̂ = ℓ∞ + q

2πM2
Pr

2 . (5.31)

As promised, the solution is singular at r = 0. The nature of the singularity will be explored
shortly. Similarly, the conditions on ℓ∞ and q necessary for (5.31) to lie within the allowed
saxion domain identified in section 3.1 will be analyzed in detail below.

For the moment let us point out a suggestive fact. By recalling (2.11), one can easily
derive the identity Gijqiqj = Gijqi

dℓj

dτ̂ = −qi
dsi

dτ̂ . Thus, paying attention to the relation (5.29),
the on-shell action (5.26) of our extremal solution reads21

S|hw-extr. = 2π
∫ τ̂∗

τ̂∞
dτ̂ Gijqiqj = −2π

∫ τ̂∗

τ̂∞
dτ̂ qi

dsi

dτ̂ = 2πqis
i
∞ − 2πqis

i
∗ . (5.32)

This action reminds us of that of a BPS instanton, which appears in the exponential of (3.3)
(with si replacing si

∞), but differs from it because of the term −2πqis
i
∗. Yet, inspecting (5.31)

we see that the dual saxions diverge as r → 0. If the Kähler potential is as in (2.5), this
implies that s∗ → 0 in this limit. So, apparently, the two actions do in fact coincide. Note
that this in particular implies that the charge vector q = {qi} should belong to the set CI
of BPS instanton charges introduced in (3.5). These observations suggest that extremal
wormholes be somehow related to fundamental BPS instantons. In order to clarify this
relation we need to understand how to interpret the singularity.

The singularity at r = 0 indicates that the expression (5.31) is not fully reliable. From a
genuinely EFT perspective, that solution should be interpreted as viable only in a region
r ≥ 1/Λ away from the origin, where Λ lies in the range (3.30) and a derivative expansion
is meaningful. Below the UV cutoff the singularity should be regularized by some local
counterterm placed around r = 0. Restricting the integral in (5.32) to the reliable region
r ≥ 1/Λ we obtain the on-shell contribution

SΛ
bulk = 2πqi(si

∞ − si
Λ) , (5.33)

where we defined

si
Λ ≡ si(r = Λ−1) . (5.34)

That action should then be supplemented by a cutoff-dependent localized term SΛ
loc accounting

for the effect of the unknown physics at scales above Λ. Such a localized term cannot
be determined by sole considerations of the low-energy observer. Fortunately we have
crucial information about the UV. The analysis presented in appendix E of [17] shows that
fundamental BPS instantons localized at r ∼ 1/Λ are captured within the EFT precisely
by the introduction of a localized term of the form

SΛ
loc = 2πqis

i
Λ = 2π⟨q, sΛ⟩ , (5.35)

21The coordinate r here describes the whole space. Hence the notation “half extremal wormhole” may be a
bit misleading.
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along with its supersymmetric counterpart −2πi⟨q,aΛ⟩. Hence the real part of the complete
on-shell action for an extremal wormhole, including the localized term, should be given by

SBPS = SΛ
bulk + SΛ

loc = 2πqis
i
∞ ≡ 2π⟨q, s∞⟩ (5.36)

and exactly reproduces the expression appearing in (3.3).
The BPS fundamental instanton acts as a magnetic source for the potentials B2,i, as

codified by the modified Bianchi identity dH3,i = 2πδ4(0). In the dual axionic formulation,
this arises from the localized imaginary term written below (5.35), see appendix E of [17] for
more details. Keeping track of the boundary term (2.16) arising in the duality transformation,
one find that the BPS action, including its imaginary part, reads

SBPS − 2πi⟨q,a∞⟩ = −2πi⟨q, t∞⟩ , (5.37)

which is holomorphic, as expected by supersymmetry. Extremal wormholes are therefore
a low-energy description of BPS fundamental instantons.

Not all BPS fundamental instantons can be reliably described by extremal wormholes
within the EFT, though. Those that admit such a description will be called EFT instantons,
as in [17]. This class is the subject of the next subsection.

5.4 EFT instantons

EFT instantons are BPS instantons whose charges belong to the set

CEFT
I ≡ P ∩ CI , (5.38)

where P is the dual saxionic domain (3.8). A trivial example is provided by the model
of section 4.1.1, in which CEFT

I = CI is generated by the hyperplane divisor D. As a less
trivial example, in the model of section 4.1.2 CI is generated by the effective divisors E1, E2,
while CEFT

I ⊂ CI is generated by the nef divisors D1, D2. In more general F-theory models
satisfying the conditions of footnote 14, the set of EFT instantons corresponds microscopically
to D3-branes wrapping movable divisors. If one instead considers the heterotic models of
section 4.2, according to (4.49) EFT instantons are represented by F1-strings wrapping
movable curves in Phet

K , and to NS5-branes wrapping the entire internal Calabi-Yau and
possibly supporting additional F1-charge.

One reason for the requirement (5.38) is the following. In the perturbative models in
which the Kähler potential takes the form (2.5), P has conical shape. Since (5.31) describes
a straight dual saxionic line generated by q, any q ∈ CEFT

I identifies profiles completely
contained in P . In general P may be non-convex, and in that case q ∈ CEFT

I is not enough to
ensure that the trajectory (5.31) is completely contained in P for any ℓ∞ ∈ P. Yet, if q is
in the interior of P and ℓ∞ ∝ q then the solution certainly exists. By continuity we thus
expect the same to be true for nearby choices of ℓ∞. We conclude that for any q ∈ CEFT

I one
can judiciously adjust ℓ∞ in order to get extremal solutions belonging to P.

Yet, the discussion of section 5.3 seems to suggest that any BPS instanton charge q ∈ CI,
either EFT or non-EFT, can be associated with a corresponding extremal wormhole provided
r > 1/Λ. As we will now show, for charges in the domain (5.38) there is no obvious obstruction
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to extending our solutions all the way to r ∼ 1/Msp. Extremal wormholes carrying non-EFT
charge can instead reach a finite distance boundary of P at some finite radial distance,
uncorrelated to the species scale. Hence, in a sense, non-EFT instantons are associated
to strong coupling effects of non-gravitational nature. This does not happen if q belongs
to (5.38). In the following we will offer a few arguments motivating this claim.

Let us first make some preliminary remark on the tensions of BPS strings. Recall that
tensionless strings signal field space boundaries of P : tensionless EFT strings are associated
with boundaries at infinite field space distance, while finite distance boundaries may be
detected by tensionless BPS but non-EFT strings. As one approaches either of these two
types of boundaries, the EFT becomes strongly coupled, but in a different way. To see
this difference, recall that the semiclassical description of BPS strings roughly requires their
tension to be larger than the EFT cutoff Λ:

Λ2 < 2πTe . (5.39)

The violation of (5.39) by EFT and non-EFT strings has different implications, though.
Indeed, in the former case, the bound (3.28) would imply that

Λ2 ≥M2
T ≥M2

sp . (5.40)

That is, the violation of (5.39) by an EFT string implies that the theory has entered a phase
in which gravity does not admit any semiclassical gravitational description. On the other
hand, the tension of an elementary BPS but non-EFT string is not directly correlated with
the species scale, and can be much smaller. So, the violation of (5.39) by some elementary
BPS but non-EFT string signals an EFT break-down of non-gravitational nature. Phases
of this type have been for instance studied in [97].

Let us now use this consideration to better appreciate the distinction between EFT and
non-EFT string instanton charges. Take first a BPS instanton charge q that is not EFT, i.e.
that does not belong to (5.38). Recalling (3.9), this means that there may exist a BPS but
non-EFT string charge e such that ⟨q, e⟩ < 0.22 In such a case, the corresponding tension
decreases along the flow (5.31), as one approaches the instanton:

Te(r) = T ∞
e − |⟨q, e⟩|

2πr2 . (5.41)

Hence Te(r) violates (5.39) at a critical radius

r2
cr =

|⟨q, e⟩|
2πT ∞

e − Λ2 . (5.42)

Since 2πT ∞
e − Λ2 can be much smaller than M2

sp, the theory can enter a non-gravitationally
strongly coupled phase at distances rcr ≫M−1

sp . If q is not EFT and nevertheless ⟨q, e⟩ ≥ 0
for any e ∈ CS, we cannot run this argument, but we still expect the radial flow to reach
some finite distance boundary of P at some finite rcr uncorrelated to Msp. It would be very

22This certainly happens only if P = C∨
S . More generically P ⊂ C∨

S , and there may be BPS instanton charges
q in C∨

S − P, which would then have ⟨q, e⟩ ≥ 0 for any e ∈ CS.
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interesting to more thoroughly investigate the possible non-perturbative effects associated
with the various non-EFT instantons.

Suppose instead that q belongs to (5.38). In this case the condition ⟨q, e⟩ ≥ 0 is
guaranteed. Hence, not only can one always find extremal wormholes that never exit P,
but it is also guaranteed that any BPS (either EFT or non-EFT) string tension always
increases as one approaches r = 0,

Te(r) = T ∞
e + ⟨q, e⟩

2πr2 ≥ T ∞
e . (5.43)

Therefore, if (5.39) is asymptotically satisfied by T ∞
e , then it will hold true for any r and

the theory will never enter a phase in which the semiclassical EFT description necessarily
breaks down.

While along an EFT instanton flow there do not appear dangerous light string tensions,
the theory formally exits the perturbative domain P̂α as r → 0, since the dual saxions (5.31)
diverge in the q-direction. This is signaled also by the divergence of BPS string tensions,
which should instead satisfy the condition (3.10) in order not to have a too strong backreaction.
In particular, (3.10) should be satisfied by all elementary EFT string charges. (At the same
time, (3.10) determines an upper bound on the string charges which can admit a weakly
coupled world-sheet description.) The formal divergence of the string tensions as r → 0 is not
really a problem, since one should actually restrict the flow to r ≥ Λ−1 > M−1

sp . Combined
with (5.43), this restriction implies that

Te(r) ≤ T ∞
e + ⟨q, e⟩

2π Λ2 . (5.44)

Hence, if (3.10) is asymptotically satisfied, then it is satisfied for any r ≥ Λ−1 provided

⟨q, e⟩ < (2πMP)2

Λ2 . (5.45)

Since Λ ≪ 2πMP, this condition can be easily satisfied if the charges are not too large. This
shows that the condition (3.10) is certainly satisfied by the elementary EFT instantons.

So far we have thus shown that, approaching an EFT instanton string, tensions never
vanish but rather diverge, and this latter behavior does not signal a loss of calculability.
We next proceed our discussion by comparing the dominant EFT string scale (3.29) to r−1,
which represents the energy scale probed by the solution (5.31). From (5.31) it is easy to see
that, as one approaches r = 0, MT is identified by the tension of an EFT string charge e
with minimal possible paring ⟨q, e⟩. We will denote such charge as eq. If ⟨q, eq⟩ ≥ 1, then
MT is always larger than r−1 along the entire flow:

r2M2
T = 2πr2T ∞

eq + ⟨q, eq⟩ > ⟨q, eq⟩ . (5.46)

(Of course, no weakly coupled description is possible anymore below Planckian radii.) The
situation is different if instead ⟨q, eq⟩ = 0. In such a case MT ≡ 2πT ∞

eq would remain constant
and there would exist a minimal radius at which r−1 exceeds MT . Note that this can happen
only if q belongs to some infinite distance boundary of P, and viceversa. Indeed, for any
e ∈ CEFT

S , ⟨q, e⟩ can be identified with an EFT string tension in Planck units evaluated
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at ℓ = q. If ⟨q, e⟩ = 0 then this tension vanishes and ℓ = q is at infinite field distance.
Viceversa, if ℓ = q is at infinite field distance, then it should correspond to a tensionless
point of some EFT string. We will see that the same distinction will be relevant when we
discuss regular wormholes in section 6.

Finally, we emphasize that the existence of fundamental instantons depends on the UV
completion of the theory, while our identification of BPS and EFT instanton charges just uses
EFT data. Hence, a priori, one is not guaranteed that for any q ∈ CI or q ∈ CEFT

I there actually
exists a corresponding fundamental instanton (rather than a multi-instanton configuration
carrying total charge q). Regarding this point, we notice the analogy between our distinction
between EFT and non-EFT BPS instantons, and the extremal and non-extremal BPS particles,
respectively, discussed in [98] in the context of five-dimensional N = 1 models. In particular,
in our axionic context the counterpart of the BPS tower and sublattice versions of the weak
gravity conjecture (WGC) [34] proposed in [98] may be formulated as follows:23

BPS instanton tower WGC. For any q ∈ CEFT
I there exists an integer k ≥ 1 such that

there is a fundamental EFT instanton of charge kq.

BPS instanton sublattice WGC. There exists an integer k ≥ 1 such that for any q ∈ CEFT
I

there is a fundamental EFT instanton of charge kq.
The latter conjecture is clearly stronger than the former, but both imply that there

is an infinite subset of EFT instanton charges (which coincides with the complete CEFT
I if

k = 1) which is populated by fundamental instantons. On the other hand, in analogy with
the results of [98], we expect no tower or sublattice WGC to hold for BPS but non-EFT
instanton charges. We will see how the above conjectures are compatible with some of the
physical effects associated with non-extremal wormholes that we will discuss in section 7.

5.5 A non-standard BPS bound

Given the underlying supersymmetric structure of our EFT, one expects some kind of
BPS bound relating the action of the (non-BPS) wormhole (5.26) and the one of the BPS
instanton (5.36). In the following section we will show that regular wormholes solutions are
generically expected to exist only for charges belonging to (a subset of) CEFT

I . However, the
observations of this subsection do not really rely on that, and we can just assume there
exists a regular wormhole carrying a BPS instanton charge q ∈ CI. Recalling (5.15), we
observe that the extremality bound (5.17) is equivalent to ∥q∥2 ≥ ∥ℓ̇∥2. Employing (2.14)
and (2.15) we then have

∥q∥2 ≥ ∥q∥∥ℓ̇∥ ≥ |qiGij ℓ̇j | = |qiṡ
i| , (5.47)

which is saturated only in the extremal BPS instanton case: ℓ̇ = ±q. The action (5.26)
is therefore subject to the following bound:

S|hw ≥ 2π
∫ τ∞

0
dτ
∣∣∣qiṡ

i
∣∣∣ ≥ 2π

∣∣∣qi

∫ τ∞

0
dτ ṡi

∣∣∣ = ∣∣SBPS − 2π⟨q, s∗⟩
∣∣ , (5.48)

23The five-dimensional setting considered in [98] is more directly related to an N = 2 version of our four-
dimensional framework, in which the BPS fundamental instantons may be regarded as BPS particle world-lines
wrapped along a compactified Euclidean time in five dimensions. We leave a more detailed investigation of
this relation, and of its connection with wormhole effects in N = 2 models, to future work.
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where SBPS is as in (5.36) and we have again adopted the condition (5.21). The bound
involves in a crucial way the neck contribution ⟨q, s∗⟩. In the extremal case, as we have seen
in the previous section, that contribution is actually absent once one takes into account the
counterterm representing the insertion of the fundamental BPS instanton at the singularity.
On the other hand, in the non-extremal wormhole case there is no singularity and no need
for a local counterterm. A large enough ⟨q, s∗⟩ in that case may indicate that S|hw < SBPS,
which would contradict the expectation that supersymmetric solutions saturate inequalities
like (5.48). This puzzling relation has indeed been observed in some explicit wormhole
solutions (see e.g. [80]) and will be encountered and further discussed in the following section.
A possible correction to that puzzling result is suggested at the end of section 6.1.

6 Wormholes in the N = 1 axiverse

We are now ready to analyze explicit non-extremal (non-supersymmetric) wormhole config-
urations. We will restrict our focus on the large class of models characterized by a Kähler
potential of the form (2.5), or equivalently by a kinetic potential of the form (2.18). We
would like to show that, under rather general conditions, if the degree n of homogeneity of
P (s) satisfies n ≥ 3 then the subset of EFT instanton charges

CWH ≡ {q ∈ CEFT
I | ⟨q, e⟩ ≥ 1, ∀e ∈ CEFT

S } ⊂ CEFT
I , (6.1)

admits corresponding non-extremal wormhole configurations. Recalling (5.38), the condition
⟨q, e⟩ ≥ 1 for any e ∈ CEFT

S is basically equivalent to the requirement that either q belongs to
the interior of P , or to its finite field distance boundary ∂P|fin.dist.. Indeed, without imposing
this condition we would have ⟨q, e⟩ ≥ 0 anyway. Hence the condition can be violated only
if there exists an EFT string charge e such that ⟨q, e⟩ = 0. But, as already discussed
below (5.46), this would mean that q should lie on an infinite field distance boundary of
P.24 Note also that the existence of the wormholes does not depend on the overall sign of
q. Hence, if a wormhole exists for q ∈ CWH, one with −q ∈ CWH must exist as well. We
will refer to these latter wormholes as anti-wormhole. (Of course, the distinction between
wormholes and anti-wormholes is only a matter of convention.)

In the following subsections we will provide evidence that the set (6.1) identifies the
charges of physically acceptable non-extremal wormholes. The general homogeneous solution
is introduced in section 6.1 and its reliability is investigated in section 6.2. Considerations
applying to more general wormhole solutions are presented in section 6.3. Wormholes
arising from kinetic potentials with degree of homogeneity n = 3 are discussed separately in
section 6.4. Explicit realizations in string theory models are finally presented in section 6.5.

6.1 The homogeneous solution

The sharpest statements can be made for wormhole charges q ∈ CWH belonging to the
interior of P. For each of these charges we will show that one can construct an explicit

24 CWH depends on the boundary properties of the (dual) saxionic cone. A restriction of the perturbative
domain, corresponding to the removal of some generator e ∈ ∂∆ of ∆, may result in the inclusion in the new
CWH of some q ∈ CEFT

I that were excluded in the initial perturbative domain.
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wormhole configuration, no matter how complicated P (s) or P̃ (ℓ) are, as long as they are
homogeneous functions of degree n ≥ 3. In a certain sense, our result can be considered as a
four-dimensional generalization of the string theory solutions found in [32], which also applies
to many more string models. So, we will first focus on charges in the interior of P, while
those belonging to the finite-distance boundary of P will be discussed afterwards.

Now, since P is conical, if q is in its interior the whole “ray” generated by q is contained
in P. It is then natural to consider homogeneous wormhole configurations with

ℓ(τ) = ℓ̃(τ)q . (6.2)

Note that the condition ℓ ∈ P simply reads ℓ̃ > 0. Inserting the ansatz (6.2) into (5.12) leads to

2π
∫

dτ

 n

4ℓ̃2

(
dℓ̃
dτ

)2

+ n

4ℓ̃2

 , (6.3)

where we used the identity Gij(q)qiqj = n
2 , which follows from degree-n homogeneity of P̃ .

Furthermore, one can verify that the homogeneity of P̃ guarantees that the equations of
motion (5.16) for ℓi coincide with those derived from the effective action in eq. (6.3). This
drastically simplifies the study of homogeneous multi-saxion wormholes.

We have basically reduced the problem to a simple axio-dilaton model with kinetic
potential

F̃ = n log ℓ̃ (6.4)

and (effective) unit charge, as the ones studied in [12, 32]. Similar results also follow. In
particular, since the reduced effective potential is

Ṽ (ℓ̃) = − n

4ℓ̃2
, (6.5)

the wormhole radius (5.19) and the maximal proper time (5.23) are given respectively by

L4 = n

12π2ℓ̃2∗M
4
P

⇒ τ∞ = π

2

√
3
n
ℓ̃∗ . (6.6)

We note in particular that L explicitly depends on ℓ̃∗, but not on q. The explicit profile ℓ̃(τ)
can be obtained by integrating directly (5.15) in our reduced one-saxion model. Imposing
the boundary conditions ℓ̃|τ=0 = ℓ̃∗ and dℓ̃

dτ |τ=0 = 0 fixes completely the solution:

ℓ̃(τ) = ℓ̃∗ cos
(
τ

ℓ̃∗

)
= ℓ̃∗ cos

(
π

2

√
3
n

τ

τ∞

)
, (6.7)

where the asymptotic value is determined by

ℓ̃∞ = ℓ̃∗ cos
(
π

2

√
3
n

)
. (6.8)

Since by definition ℓ̃ must be positive, eq. (6.7) describes a completely smooth wormhole
if and only if

n ≥ 3 . (6.9)
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In all string theory models we are aware of, n is an integer taking values from 1 to 7 — see
sections 4 and 6.5 for some examples. We hence have regular wormholes only in models
with n = 3, . . . , 7. Note that in the limiting case n = 3 wormholes are asymptotically
degenerate, since the dual saxions reach the infinite field distance point ℓ∞ = 0 at spatial
infinity. They are nevertheless sensible and will be further investigated in sections 6.4 and 7.4.
In section 6.4 we will also more precisely see how wormholes corresponding to n = 1, 2
become singular at a radial distance of order L, and should then be discarded. If instead
n > 3 the homogeneous wormholes are everywhere regular and asymptotically flow to a
finite ℓ̃∞ > 0. The condition n > 3 represents a lower bound on the coefficient of the scalar
kinetic term of the type first identified in [12, 32] for the case of simple dilatonic models,
and subsequently generalized in [80].

We can next present the on-shell action. Observing that ∥q∥2 = n
2ℓ̃2 , the integral

appearing in (5.26) is easily computed:

S|hw = nπ

ℓ̃∗
tan

(
π

2

√
3
n

)

= 2π sin
(
π

2

√
3
n

)
⟨q, s∞⟩ .

(6.10)

Sticking for now to the everywhere controllable solutions corresponding to n > 3, we observe
that the last line of (6.10), where the relation (6.13) was used, implies S|hw < SBPS, explicitly
realizing the puzzling possibility mentioned in subsection 5.5. Perhaps the claim that non-
extremal wormholes have actions smaller than the extremal BPS ones is a bit rushed, though.
Other contributions, beyond the two-derivative approximation, may not always be negligible,
at least for not too large wormhole charges. Consider for example the GB term (5.2). Treating
it as a perturbation and working at the first non-trivial order, it contributes to the on-shell
action without modifying the two-derivative solution. This suggests that GB may contribute
non-negligibly to the on-shell action of non-extremal wormholes, while of course it does not
in the case of (flat) extremal wormholes. Interestingly, for sufficiently small charges we have
checked that SBPS < (S + SGB)|hw in some of the examples discussed in section 6.5, despite
of S|hw < SBPS. What we can infer from this simple exercise is that higher order terms can
significantly affect the relation between the on-shell action of non-supersymmetric wormholes
and the corresponding BPS actions. Still, we cannot firmly conclude that the puzzle is solved.
As soon as the GB starts competing with the leading two-derivative contribution, one should
in principle also worry about other higher derivative corrections, which we did not consider
because not under theoretical control. Furthermore, for sufficiently large charges we can show
that in the case of homogeneous solutions Stot|hw ≃ S|hw < SBPS. In fact, by rescaling q (with
fixed ℓ∗), we can make L and (6.10) arbitrarily large (for fixed s∞) and all higher-derivative
corrections, including the GB one, arbitrarily small.25

Let us finally discuss the case in which q ∈ CWH belongs to some finite distance boundary
of P. Our proposal (6.1) is based on the expectation that, being at finite field distance,

25Note, however, that large charge non-extremal wormholes may in fact be less relevant, not only because
their contribution e−S is strongly suppressed, but also because their very existence is put under question once
one has included the corrections due to the smaller-charge ones [99, 100].
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this boundary region can be identified with a restricted perturbative sector P ′ ⊂ ∂P|fin.dist..
Furthermore, it implicitly assumes that this boundary perturbative sector is sufficiently
decoupled from any strongly coupled sector that may appear in the limit, so that a description
according to our general scheme is reliable. If q lies in the interior of P ′, or if P ′ is one-
dimensional, one can in such a case run the same arguments followed above for charges
in the interior of P. While we do not have a general proof that these expectations are
certainly realized, these are partially supported by the observation that the homogeneous
function P̃ (ℓ) appearing in (2.18) cannot degenerate, either vanishing or diverging, as one
approaches finite distance boundaries.26 This can be understood in the following way. Take
a finite distance boundary point ℓ ∈ ∂P|fin.dist.. By definition, it can be connected to an
interior point ℓ0 ∈ IntP by a path γ of finite length d(γ) < ∞. The variation of logP
along this path is always finite, since:

∣∣∣log P̃ (ℓ)− log P̃ (ℓ0)
∣∣∣ = ∣∣∣ ∫

γ

dP̃
P̃

∣∣∣ = 2
∣∣∣ ∫

γ
Gijℓidℓj

∣∣∣ ≤ n

∫
γ
∥dℓ∥ = n d(γ) <∞ , (6.11)

where we have again used the degree-n homogeneity of P̃ (ℓ). Since log P̃ (ℓ0) is finite by
assumption, log P̃ (ℓ) is necessarily finite too, and P̃ (ℓ) can neither diverge nor vanish. Note
that by continuity the restriction of P̃ (ℓ) to ∂P|fin.dist. is still homogeneous of degree n.

What said so far holds for charges q belonging to (6.1). This does mean that there
cannot exist non-extremal wormhole solutions carrying other charges q. In particular, there
may exist wormholes carrying an EFT instanton charge belonging to the infinite distance
boundary of P, for which there exists an EFT string charge e such that ⟨q, e⟩ = 0. This
for instance happens in presence of decoupled perturbative sectors, which separately admit
regular wormholes. However, as we will discuss in section 6.2, precisely these wormholes
appear not to be consistent with the energetic bounds imposed by the species scale in
the original perturbative regime. Nevertheless, wormholes carrying these charges may be
compatible with the energetic bounds in appropriate restricted perturbative regimes, which
are sufficiently far from the infinite distance boundary of the original P.27

6.2 Perturbative conditions and relevant scales

In this subsection we verify that the homogeneous wormholes described in section 6.1 are
compatible with the perturbative domains defined in section 3.1 and with the energy bounds
associated with the species scale (see section 3.4).

Let us first discuss the compatibility with the perturbative regime. Without loss of
generality, we can assume that q ∈ CWH belongs to the interior of P, since as discussed
in section 6.1 the case of charges q belonging to a finite distance boundary of P can be
treated similarly by restricting the perturbative regime. We note that, once expressed in

26Here we are of course using the kinetic potential (2.18) to compute distances, neglecting corrections that
may a priori be present. Again, we expect these corrections not to significantly affect our main points.

27 Consider a toy model with P = {ℓ = (ℓ1, ℓ2)|ℓ1, ℓ2 ∈ R≥0}, so that CEFT
I = {q = (q1, q2)|q1, q2 ∈ Z≥0},

and F = log ℓ1 + 4 log ℓ2. The charges q = (q1, 0) and q = (0, q2) are at infinite field distance in P and must
be excluded from (6.1): CWH = {q = (q1, q2)|q1, q2 ∈ Z>0}. On the other hand, the charges q = (0, q2) with
q2 > 0 can still be regarded as elements of the set (6.1) associated with the restricted perturbative regime
obtained by assuming ℓ1 ≃ 1, which is parametrized only by ℓ2.
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terms of saxions si, the profiles (6.2) move along straight saxionic radial lines as well. Indeed
from (2.15) and (2.20), (6.2) is mapped to

si(τ) = F i(q)
2ℓ̃(τ)

, (6.12)

where F i(q) ≡ ∂F/∂ℓi(q) is a charge dependent constant. Homogeneity also implies that

⟨q, s⟩ = n

2ℓ̃
. (6.13)

Combining (6.12) and (6.7), we clearly see that s is rescaled by a number > 1 as we move
away from the wormhole throat. Hence, if the s∗ belongs to the perturbative region ∆̂α,
s∗(τ) will remain so for all other values of τ . Since s∗ can be freely chosen to be any point
of the ray in P generated by q, we can always choose it such that the entire trajectory lies
in the perturbative region ∆̂α. We are thus confident that our solution is within the “large
saxion”, and “small dual-saxion”, regions identified in section 3.1. The smallness of the dual
saxions can be bounded as follows. If s∗ belongs to ∆̂α, by repeating the same argument
leading to (3.21) with q now playing the role of C̃, we get the lower bound ⟨q, s∗⟩ ≥ cqN/α,
where cq ≥ 1 is some q-dependent constant scaling as ckq = kcq. By using (6.13) and the
explicit form of the solution (6.7), this can be translated into an upper bound on ℓ̃ along the
entire wormhole ℓ̃(τ) ≤ ℓ̃∗ ≤ nα

2cqN . Note that combined with (6.2), this sets an upper bound
on the value of the dominant EFT string scale (3.29) along the wormhole:

M2
T = 2πM2

P ℓ̃(τ) min
e∈CEFT

S

⟨q, e⟩ . (6.14)

For not loo large charges we therefore see that M2
T ≲ 2παM2

P/N . This has the same scaling
of the upper bound on M2

γ obtained by applying (3.26) to (3.27), indicating that MT and
Mγ again agree parametrically with each other.

We can also get a lower bound on M2
T . Since we are assuming that q ∈ CWH, by our

definition (6.1) we have

⟨q, e⟩ ≥ 1 ∀e ∈ CEFT
S . (6.15)

Combined with (6.14), this shows that q ∈ CWH implies

M2
T ≥ 2πM2

P ℓ̃(τ) , (6.16)

which suggests that the species scale increases monotonically as one approaches the wormhole
throat. Furthermore, from (6.6) and (6.16) we get the identity

L2M2
T |τ=0 =

√
n

3 min
e∈CEFT

S

⟨q, e⟩ . (6.17)

Therefore, by (6.15) and the regularity condition n ≥ 3, we deduce that

LMT |τ=0 ≥ 1 if q ∈ CWH . (6.18)
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This conclusion provides an important and non-trivial consistency check on the universal
reliability of our homogeneous wormhole solutions, even for small charges q. It is interesting
to compare (6.17) to the analogous (5.46) for extremal wormholes. In the latter case the
charge q is bounded from above by (5.45), while in the regular non-extremal case the charge
can be arbitrarily large. For them such an upper bound does not exist, and LMT |τ=0 can be
made arbitrarily large by increasing q (and consistently rescaling ℓ̃ to keep ℓ of the same
order). Note that these observations hold not only for n > 3, but also for the marginally
degenerate case n = 3 discussed in section 6.4.

Finally, from (6.7) and (6.6), we can also easily compute the field distance traveled
by the saxions, or equivalently the dual saxions, along the half-wormhole. In Planck units
it is given by

d(ℓ∗, ℓ∞) =
∫ τ∞

0
dτ
√
Gij(ℓ)ℓ̇iℓ̇j =

√
n

2 log
[
cos

(
π

2

√
3
n

)]−1

. (6.19)

This is clearly well defined only for n > 3. For instance d(ℓ∗, ℓ∞)|n=4 ≃ 2.2, while
d(ℓ∗, ℓ∞)|n=7 ≃ 1.2. In those cases the total displacement is moderately super-Planckian,
indicating no severe problem associated to the swampland Distance Conjecture [35]. This
is even more so once we introduce an IR cutoff. Even if, as we will discuss in more detail
in section 6.4, such an IR regularization is strictly necessary only if n = 3, it is physically
motivated also for n > 3.

6.3 Non-homogeneous generalization

As emphasized in section 6.2, the endpoints s∗ and s∞ of the saxionic trajectory along a
homogeneous wormhole can be freely chosen to be any point of the ray in P generated by q.
In fact, this property comes from a more general scaling symmetry of the wormhole equations.
Namely, if ℓ(τ) is a solution of the equations of motion then ℓ′(τ ′) = λℓ( τ ′

λ ) (λ > 0) is a
solution too, which starts from ℓ′∗ = λℓ∗ (at τ ′ = 0) and arrives at ℓ′∞ = λℓ∞ (at τ ′∞ = λτ∞).
The corresponding saxionic flow is s′(τ ′) = 1

λs( τ ′

λ ), which shows that for any given regular
wormhole solution we can always make such a rescaling in order to ensure that the flow
is inside ∆̂α. We would now like to use this property to identify more general wormhole
solutions corresponding to an EFT instanton charge q ∈ CWH. In order to understand this
possibility, it is useful to discuss some properties of the metric Gij and the potential Vq.

First of all, the saxionic metric admits as particular geodesics the radial directions. This
“isotropy” is broken by the presence of the potential Vq(ℓ) which in fact identifies q as preferred
direction. Indeed, assuming that q belongs to the interior of P, if we restrict along the q
direction as in (6.2), we get Gij

∂Vq
∂ℓj

= qi

ℓ̃
. Hence along the radial direction identified by q the

“force” associated with Vq is directed along −q. The sign can be understood by noticing that
Vq(λℓ) = 1

λ2Vq(ℓ) and then, since Vq is negative definite, it decreases as one moves radially
towards the tip of the dual saxionic cone P. Correspondingly, Vq(λs) = λ2Vq(s) and then
Vq(s) decreases as we move radially away from the tip of the saxionic cone ∆.

We can say something more about the shape of the potential Vq. Still assuming that
q belongs to the interior of P, take a particular point ℓ̂ along the ray in P generated by q
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q
Vq(ℓ)

O

ℓ

Figure 6. Schematic representation of the potential Vq(ℓ). The potential has a hill shape with crest
descreasing along the direction −q. On the homogeneous solution the profile of the dual saxions follow
the geodesic identified by the crest.

and the corresponding point ŝ along the ray generated by s|ℓ=q = 1
2

∂F
∂ℓ (q),

28 and consider
the saxionic plane Sŝ passing through it and ‘orthogonal’ to q:

Sŝ =
{

s ∈ ∆
∣∣∣⟨q, s⟩ = ⟨q, ŝ⟩

}
. (6.20)

By using again the homogeneity, one can easily show that Vq(ŝ)=− 1
n |⟨q, ŝ⟩|2=− 1

n |⟨q, s⟩|2 |Sŝ
.

On the other hand |⟨q, s⟩|2 ≤ ∥q∥2∥ℓ∥2 = −nVq(s). We deduce that

Vq(ŝ) ≥ Vq(s)|Sŝ
(6.21)

and that the potential restricted to Sŝ has an absolute maximum at ℓ̂. Hence Vq(s) is negative
definite and has a hill shape with crest descending along s|ℓ=q (which belongs to ∆) or,
correspondingly, Vq(ℓ) has a hill shape with crest descending along −q, as schematically
depicted in figure 6. An additional confirmation comes by inspecting the Hessian of Vq(ℓ),

∂2Vq
∂ℓi∂ℓj

|ℓ̂ =
1
4F

ijkl(ℓ̂)qkql =
1
4ℓ̃4

F ijkl(q)qkql =
3
2ℓ̃4

F ij(q) = − 3
ℓ̃2
Gij(ℓ̂) , (6.22)

where we have set ℓ̂ = ℓ̃q. As expected, this is negative definite and also reveals that as
we move towards the origin of the dual saxionic space the steepness of the hill becomes
more and more accentuated.

It is now clear why, if we start from a point s∗ initially at rest along the ray identified by
s|ℓ=q, the point is radially driven away from the tip of the cone P along the hill’s crest down
to the point s∞. If n ≥ 3 one gets precisely the saxionic counterpart of the homogeneous
solution described in section 6.1 and, as already discussed, we can rescale it in order to
make it lie inside ∆̂α (or equivalently P̂α).

28By ∂F
∂ℓ

(q) we mean the saxionic vector with components ∂F
∂ℓi

(q). Since q belongs to P, then by definition
∂F
∂ℓ

(q) belongs to ∆.
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Restrict now to n > 3, with q ∈ CWH still in the interior of P , so that the corresponding
homogeneous wormhole is everywhere regular and does not degenerate asymptotically. If we
slightly move s∗ away from the ray generated by s|ℓ=q, the potential will drive it further
away the radial direction, but if s∗ is close enough to the initial position one should still get a
sensible wormhole solution, ending at some s∞ inside ∆. Combining this observation with the
above scaling symmetry, we then expect to be able to fine-tune the initial value s∗ to reach
any final point s∞ inside ∆̂α. For instance, this is certainly true in the case of a diagonal
metric (which corresponds to a completely factorized P (s) = (s1)n1(s2)n2(s3)n3 . . ., with
n1 + n2 + . . . > 3), which is a case already discussed in the literature — see for instance [80].
The above argument suggests that this property holds also for more general models with
non-factorizable P (s). While we do not have a general proof, this expectation is confirmed
by the following perturbative analysis. Consider a given homogeneous solution ℓ0(τ) of
the form (6.2), with ℓ̃ as in (6.7), and take a small deformation ℓ(τ) = ℓ0(τ) + δℓ(τ). By
expanding the action (5.12) up to quadratic order, we get the quadratic contribution

π

∫
dτ Gij(q)

{
δℓ̇iδℓ̇j

ℓ̃2
+
[
1− sin2

(
τ

ℓ̃∗

)]
δℓiδℓj

ℓ̃4

}
, (6.23)

where we have ignored all boundary terms since we are only interested in the equations of
motion for δℓi. By setting δℓi = ℓ̃fi , (6.23) can be rewritten as

π

∫
dτ Gij(q)

{
ḟiḟj +

2
ℓ̃2
fifj

}
. (6.24)

from which the equations of motion for fi follow

f̈i =
2
ℓ̃2
fi =

2
ℓ̃2∗ cos2 ( τ

ℓ̃∗

)fi . (6.25)

The general solution of (6.25) satisfying the initial condition ḟi(0) = 0, corresponding to
δℓ̇i(0) = 0, is29

fi(τ) = f∗i

[
1 + τ

ℓ̃∗
tan

( τ
ℓ̃∗

)]
= f∗i

[
1 + π

2

√
3
n

τ

τ∞
tan

(
π

2

√
3
n

τ

τ∞

)]
, (6.27)

where f∗i = fi(0) is the integration constant representing the value of fi(τ) at the throat.
For the perturbative expansion to make sense |fi(τ)/qi| must remain small all along the flow,
and since the perturbation grows monotonically towards τ = τ∞ this requires |f∗i/qi| ≪ 1.30

Even though this implies that we cannot fully trust the quadratic approximation, the growing
29Without loss of generality we can impose the transversality condition Gij(q)f∗iqj = 0, so that the

deformation changes the wormhole radius (5.19) only to second order in f∗i:

L4 = L4
(0) (1 + δ) with δ = 6

n
Gij(q)f∗if∗j (6.26)

Recalling (5.23), this implies τ∞ is only modified by second order corrections too.
30For n = 3 the perturbation (6.27) diverges at infinite radial distance and thus, for any arbitrarily small

initial values f∗i, the perturbative expansion breaks down at some finite radius. Nevertheless, as discussed in
section 6.4, it can still make sense by introducing an IR cutoff.
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behavior of the deformation suggests that in a complete non-perturbative treatment it may
be sufficient to pick a small |fi(0)/qi| to allow for a much larger |fi(τ∞)/qi|. This is confirmed
by the numerical study presented in section 6.5.1, in which we inspect non-homogeneous
wormhole solutions in some concrete string theory models.

So far we have mostly assumed that q ∈ CWH belongs to the interior of P. However, by
reasoning as in section 6.1 one can extend the above arguments to the cases with q ∈ CWH

belonging to some finite distance boundary of P. Hence, at least for n > 3, all these
considerations support the main claim of this section: if the perturbative regime is described
by a Kähler potential (2.5) (or a kinetic potential (2.18)) with homogeneous P (s) (or P̃ (ℓ))
of degree n ≥ 3, then for each q ∈ CWH there exists a corresponding smooth wormhole
solution, and an anti-wormhole solution carrying charge −q. The marginally degenerate
case n = 3 will be discussed in section 6.4.

Finally, let us revisit the consistency condition LMT |τ=0 ≥ 1, already discussed in
section 6.2 for homogeneous wormholes. In that case we proved (6.17), which shows that the
consistency condition is always satisfied. Even though we are not able to derive such a sharp
result for the more general wormholes discussed in the present subsection, we still expect no
serious issue to show up for the following reasons. From (5.19) and (3.29) we get

L2M2
T |τ=0 =

√
2
3∥q∥∗ min

e∈CEFT
S

⟨ℓ∗, e⟩ . (6.28)

Note that all wormhole solutions related by the scaling symmetry discussed at the beginning
of this subsection have the same LMT |τ=0, since (6.28) is invariant under an overall rescaling
of ℓ∗. Therefore, in order to investigate its behavior as we move ℓ∗ away from the radial
direction identified by q, with no loss of generality we can impose s∗ to lie in a saxionic
hyperplane S∗ of the form (6.20). Let ŝ∗ be the point of S∗ corresponding to ℓ̂∗ ∝ q. At this
point (6.17) holds. Recalling (5.13), the inequality (6.21) translates into

∥q∥∗ ≥ ∥q∥ℓ̂∗
. (6.29)

Hence the first factor appearing on the right-hand side of (6.28) increases as ℓ∗ moves away
from ℓ̂∗. Of course, this may be compensated by a faster decrease of mine∈CEFT

S
⟨ℓ∗, e⟩. However,

since ⟨ℓ∗, e⟩ represents an EFT string tension in Planck units, its decrease should correspond
to approaching an infinite distance boundary of P. Qualitatively, we therefore expect the
wormhole to exist only for ℓ∗ sufficiently close to ℓ̂∗ and away from the infinite distance
boundaries, since otherwise there would be “no room” for accommodating the corresponding
flow. This suggests that an hypothetical decrease of ⟨ℓ∗, e⟩ should not overwhelm the increase
of ∥q∥∗, so that overall we expect no violation of LMT |τ=0 ≥ 1. In section 6.5 we will provide
numerical support to this expectation.

6.4 Marginally degenerate case

In this section we will have a closer look at the wormhole solutions corresponding to Kähler
and kinetic potentials (2.5) and (2.18) with n = 3. But before discussing that specific case,
it is instructive to quantify how much homogeneous wormholes with n = 1, 2, 3 fail to be
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globally non-degenerate. This will reveal that the “marginally” degenerate case n = 3 is in
fact special and, as we will see in section 7, also physically relevant.

We begin observing that, for general n, (6.6) implies

ℓ̃∗ =
√
n

3
1

2πM2
PL

2 (6.30)

whereas (5.22) reads

τ

ℓ̃∗
=
√

3
n

[
π

2 − arcsin
(
L2

r2

)]
. (6.31)

The homogeneous solution (6.7) may thus be rewritten as

ℓ̃(r) = ℓ̃∗ cos
[√

3
n

(
π

2 − arcsin
(
L2

r2

))]
. (6.32)

This equation shows that if n ≤ 3 then ℓ̃(r) vanishes at the radius

rdeg = L√
sin
[

π
2

(
1−

√
n
3

)] . (6.33)

At the degeneration point the theory reaches the tip ℓ = 0 of the dual saxionic cone, which is at
infinite field distance. This means that all BPS string tensions (2.21) and the dominant EFT
string scale MT defined in (3.29) vanish, and with them Mt and Msp vanish as well. When
this happens the solution can no longer be trusted. From (6.33) one gets rdeg|n=1 ≃ 1.27L
and rdeg|n=2 ≃ 1.88L. Therefore, for n = 1, 2 already at rdeg ∼ L the solution degenerates
and does not appear to make any physical sense. So, if the n = 1, 2 the charges belonging
to the set (6.1) can only be regarded as charges of fundamental EFT instantons of the
type discussed in section 5.3.

The story is very different for the n = 3 case. First of all, in that case rdeg|n=3 → ∞.
So the solution is everywhere well defined and degenerates only asymptotically at spatial
infinity. The degeneration ℓ(r → ∞) → 0 is of course associated to an infinite field distance
limit, as it was for the n = 1, 2 cases, but here this degeneracy occurs at infinite radius.
This is not a real concern since it is natural to introduce an IR cutoff which sets a finite
maximal radial distance below which the solution is required to be non-degenerate. The IR
cutoff may correspond to a physical mass scale MIR, as mentioned at the end of section 3.4.
Alternatively, as we will presently elaborate upon, it may correspond to a new lower Wilsonian
cutoff ΛIR ≪ L−1 associated with an infra-red EFT. In any event, the IR cutoff allows us
to make physical sense of the marginally degenerate solution. On the contrary, there is no
way to interpret the n < 3 configurations as wormholes connecting asymptotically flat spaces
because rdeg|n=1,2 ∼ L would force us to take MIR,ΛIR ≳ 1/L, leaving essentially no room
for such an interpretation. For completeness we emphasize that there is instead no urgent
reason to introduce a regulator for n > 3, because those solutions are regular everywhere.
Nevertheless, physically we should expect a non-trivial MIR in those cases as well, or we
may still be interested in introducing a lower Wilsonian cutoff ΛIR, as we will do below —
see also the comments below (5.28) and (6.19).
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There is another peculiarity of the marginally degenerate wormhole. Indeed, for n = 3
eq. (6.32) reduces to

ℓ̃(r) = 1
2πM2

Pr
2 ⇒ ℓ(r) = q

2πM2
Pr

2 . (6.34)

We then see that, as a function of r, the dual saxionic profile is the same as the extremal BPS
profile (5.31) with vanishing (and hence degenerate) asymptotic saxionic value ℓ∞ = 0. While
this observation is strictly valid only for homogeneous solutions, it remains approximately
true also for more general wormholes corresponding to n = 3. To see this we look for new
n = 3 solutions via a perturbative expansion around the homogeneous configuration as we
did in the previous section. At leading order δℓi = ℓi − ℓ0i ≡ ℓ̃fi with fi as in (6.27). At the
same order, specifying n = 3 and employing (6.31), the result is

ℓ ≃ qℓ̃∗ cos
(
τ

ℓ̃∗

)
+ f∗ℓ̃∗

[
cos

(
τ

ℓ̃∗

)
+ τ

ℓ̃∗
sin
(
τ

ℓ̃∗

)]
(6.35)

= q
2πM2

Pr
2 + f∗

4M2
PL

2

[
1 +O(L4/r4)

]
,

where f∗i are arbitrary constants satisfying |f∗i/qi| ≪ 1 and in the second line we assumed
r/L≫ 1. Strictly speaking the perturbative expansion breaks down at very large distances
r2/L2 > |qi/f∗i|, as shown in section 6.3. Nevertheless, we already emphasized that an IR
cutoff is necessary. We can thus safely conclude that, for n = 3 and within the regime
of validity of our EFT, there exist more general solutions that have approximately the
same saxionic profile as a BPS extremal wormhole, including a (small but non-vanishing)
ℓ∞ = f∗/(4M2

PL
2). In the following subsection we will provide numerical evidence that the

same conclusion generalizes to non-perturbative deformations of the homogeneous solution.
The only qualitative difference between the n = 3 non-extremal half-wormholes and the
extremal ones is in the metric (which is flat in the extremal case) and in the range or the
radial coordinate r, which is restricted to r ∈ [L,∞) in the half-wormhole case. Yet, the
two solutions are completely indistinguishable to an observer at distances r ≫ L from the
wormhole throat, up to corrections of order O(L4/r4).

This observation extends to the on-shell action as well. Let us start from the homogeneous
solution first, whose complete on-shell action (6.10) diverges, since the solution degenerates
asymptotically. However, as already emphasized, it is natural to introduce an IR regulator.
To compute the action we hence introduce an IR cutoff ΛIR as above. We thus assume
ΛIR ≪ L−1 and remove the region r > Λ−1

IR , for some ΛIR comfortably within the region (3.30),
from the n = 3 version of (5.26). This gives

S|ΛIR
hw = 2π

∫ τIR

τ∗
dτ ∥q∥2 = 3π

ℓ̃∗
tan τIR

ℓ̃∗
(6.36)

= 2π⟨q, sIR⟩
[
1 +O(Λ4

IRL
4)
]

where τIR ≡ τ(r = Λ−1
IR ) and sIR ≡ s(τIR). Moreover, we used (6.31) and (6.13) with

n = 3 and ℓ̃IR = ℓ̃∗ cos(τIR/ℓ̃∗) — see (6.7). Up to O(Λ4
IRL

4) corrections, the cutoff on-
shell action (6.36) is therefore equivalent to the localized operator (5.35) accounting for
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the insertion of a BPS fundamental instanton in an EFT with Wilsonian cutoff ΛIR. The
cutoff on-shell action for the more general solutions (6.35) is again given by (6.36) within
the quoted uncertainty. Analogously, one can verify that the Gauss-Bonnet term evaluated
on (6.34) vanishes with Λ2

IRL
2 → 0.

We also note that for n = 3 (6.30) reduces to

ℓ̃∗ =
1

2πM2
PL

2 , (6.37)

and that this formula is not affected by the above perturbations up to corrections of order
|f∗i|2 — see section 6.3 for more details. We emphasize that one can freely change ℓ̃∗ and L

without affecting the profile (6.34) and its perturbation (6.35), provided f∗ is appropriately
chosen. This implies that we can consider L and ℓIR as independent quantities. This is in
sharp contrast with what happens in the n > 3 wormholes, in which ℓ(r) depends explicitly
on L, which is then fixed by ℓ∞.

We finally show that the n = 3 IR-regularized version of (6.19) reads

d(ℓ∗, ℓIR) = −
√

3
2 log(Λ2

IRL
2) , (6.38)

which e.g. for Λ2
IRL

2 = 10−1 or Λ2
IRL

2 = 10−2 gives the moderately super-Planckian distances
d(ℓ∗, ℓIR) ≃ 2.8 or d(ℓ∗, ℓIR) ≃ 5.6, respectively. This suggests that marginally degenerate
wormholes (and their deformations) may have potential control issues related to the Distance
Conjecture [35]. Nevertheless, because of the almost-BPS nature noticed above, we expect
their physical effects to be protected by supersymmetry and hence to be reliable. This
expectation will be strengthened by the discussion of section 7.4, where we will clarify the
physical meaning of the IR regularization leading to (6.36) and further elaborate on the
almost-BPS nature of the marginally degenerate wormholes.

6.5 Examples in string theory models

Let us now discuss explicit realizations of our wormholes in string theory models.

6.5.1 Wormholes in F-theory models

Consider first the F-theory models discussed in subsection 4.1. In this case, we recall that
the set CI of BPS instanton charges can be identified with the cone of effective divisors.
Microscopically, these instantons correspond to Euclidean D3-branes wrapping effective
divisors. In order to identify the possible wormhole configurations, we must first identify
the set (5.38) of possible EFT instanton charges. Recalling the discussion around (4.17), we
immediately conclude that q = qaD

a ∈ CEFT
I is a nef divisor in some space X ′ which can

be obtained from X through small transitions. In the following we will for simplicity take
q = qaD

a to be nef already in X. Note that the cone generated by nef divisors is contained in
the cone generated by movable divisors [101]. Any movable effective divisor D ⊂ X admits a
multiple mD, for some integer m ≥ 1, that can be freely deformed along the entire X. Hence
for any EFT instanton of charge q = qaD

a ∈ CEFT
I , there exists an EFT instanton of charge

mq, with m ≥ 1, corresponding to a non-isolated Euclidean D3-brane that can freely explore
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the entire internal space. Even though if m > 1 a single Euclidean D3-brane of charge q does
not have such a property, m such D3-branes can recombine into a single non-isolated one
that does. This shows the intrinsically gravitational nature of all these EFT instantons (for
both m = 1 or m > 1), which would not exist if we decoupled gravity by decompactifying
the internal space. We expect these qualitative features to characterize the UV completion
of EFT instantons also in other models. We will provide other examples in the following
subsections. Note also that, if correct, the BPS instanton tower and sublattice WGCs of
section 5.4 imply the existence of an infinite set of Euclidean D3-brane wrapping irreducible
movable divisors populating a (possibly non-strict) infinite subset of CEFT

I .
As already mentioned below (4.18), the ℓa-sector alone corresponds to n = 3. This means

that, in addition to the extremal wormholes corresponding to EFT instantons, it only allows
for the marginally degenerate wormholes of section 6.4. As anticipated therein and further
elaborated in section 7, it makes perfect sense to regularize these wormholes by introducing
an IR cutoff. However, for illustrative purposes, in this section we prefer to first discuss
everywhere regular wormholes, which can be obtained by extending the ℓa-sector in order to
get an overall n > 3. One such extension is provided by Sen’s weak coupling limit, which
adds the IIB axio-dilaton, and hence one extra dual saxion ℓ̂ as defined in (4.19), getting an
overall n = 4.31 In this case we know that the family of homogeneous wormholes certainly
exists for any charge vector (q̂,q) belonging to the set CWH defined in (6.1). Since the set
of EFT string charges take the form (ê, e), where ê ≥ 0 and e = eaΣa is a (possibly trivial)
movable curve, this means that q̂ > 0 and q = qaD

a represents a nef divisor in X with
non-vanishing (positive) intersection with any non-trivial movable curve. In these wormholes
the dual saxions have a profile of the form ℓ̂(τ) = q̂ ℓ̃(τ) and ℓ(τ) = ℓa(τ)Da = q ℓ̃(τ), where
ℓ̃(τ) is as in (6.7) with n = 4. Note that, since we will consider the two sectors as decoupled as
in (4.20), by “forgetting” the ℓ̂ direction, one gets information on the profile of the marginally
degenerate wormhole of charge q as well.

According to the general arguments of section 6.3, we also expect that there exist other
wormhole solutions whose initial position (ℓ̂∗, ℓ∗) is non-aligned but sufficiently closed to the
direction identified by the charge vector (q̂,q). Note that the scaling symmetry discussed at
the beginning of section 6.3 identifies equivalence classes of solutions. It is hence convenient
to rephrase our discussion in the projectivized dual saxionic cone, obtained by modding out
their overall rescaling. In the present case, it is conveniently parametrized by the vector

x(τ) ≡ xa(τ)Da ≡ q̂ ℓ(τ)
ℓ̂(τ)

, (6.39)

which characterizes wormholes that are not equivalent under scaling symmetry. Note that the
homogeneous solution corresponds to the constant profile x(τ) ≡ q (hence with x∗ = x∞ = q),
while other equivalence classes of solutions correspond to any other profile x(τ) completely
contained in PK and with x∗ ̸= q. Not only do we expect to find admissible solutions for
any x∗ in a sufficiently small neighborhood of q, but we also expect that we can tune x∗
in this neighborhood to get any x∞ ∈ PK. Note also that by the scaling symmetry, for

31This is just one simple possibility. For instance, we may also turn on charges corresponding to the
(s)axionic sector appearing in some asymptotic region of the complex structure moduli space.
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Figure 7. Sample of x(τ) trajectories corresponding to the charge vector q = (1, 1, 1) in the F-theory
model 2 of section 4.1.2 (with p = 3), with throat position x∗ displaced from the homogeneous solution,
indicated by a black star in the plot. The gray region is an interpolation of the red x∗ acceptable
domain of figure 8(a). Small displacements around the star lead to completely different trajectories.

any admissible solution x(τ), we can always find a non-empty subset of corresponding flows
(ℓ̂(τ), ℓ(τ)) that lie inside the α-saxionic convex hull.

We can more explicitly test our expectation by considering the simple models described
in section 4.1.2 and in the appendix C.1, in which x(τ) should belong to R2

>0 and R3
>0

respectively. Consider first the model of subsection 4.1.2. Ignoring for the moment the sector
associated with the dilaton (4.19), the cone of BPS instanton charges is generated by the
effective divisors E1 and E2. Hence, in the basis of nef divisors D1, D2 the components of
a BPS instanton charge q = q1D

1 + q2D
2 ∈ CI must satisfy q1 + pq2 ≥ 0 and q2 ≥ 0. On

the other hand, q belongs to the subset CEFT
I of EFT instanton charges only if q1 ≥ 0 and

q2 ≥ 0. For instance the charge vector q = E2, which corresponds to (q1, q2) = (−p, 1), is
BPS but not EFT. Including back the dilaton, according to our general claim there should
exist a large family of wormhole solutions for charges in the set (6.1), in addition to the
corresponding homogeneous wormholes which certainly exist. Recalling (4.30), we see that
CWH includes charge vectors (q̂, q1, q2) with q̂, q2 > 0 and q1 ≥ 0. Let us first consider charge
vectors which are in the interior of P , that is with q̂, q1, q2 > 0. One can numerically integrate
the equations (5.16) for different choices of the twisting constant p > 0 (the case p = 0
reducing to a trivial factorized model), charges q̂, q1, q2 > 0 and initial values (x∗1, x∗2).
The results confirm our expectations, as exemplified in figures 7 and 8. We stress that the
specific choice of the charges used in these plot has been made for purely visual reasons
and we explicitly verified that our qualitative conclusions hold also for more general charges.
The plots show how, even if the allowed throat values (x1,∗, x2,∗) are confined to a sharp
specific sub-region, the corresponding asymptotic values (x1,∞, x2,∞) spread all over R2

>0, as
predicted by our general arguments. The set CWH includes also charge vectors with q1 = 0
and q̂, q2 > 0, which are on the finite distance boundary ℓ1 = 0 of P, and we thus expect to
find non-homogeneous wormhole solutions around the homogeneous one for these charges
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(a) Scanned throat values x∗ ≡ x|r=L. (b) Corresponding asymptotic values x∞ ≡
x|r=∞.

Figure 8. Numerical scan obtained by integrating the equations of motion (5.16) with charge vector
q = (1, 1, 1) in the F-theory model of section 4.1.2 with p = 3 and with random initial conditions for
the dual saxions. The first plot contains the allowed throat points x∗ identified by the scan: all the
points in the box have been randomly scanned, but we just show the ones that lead to acceptable
solutions, i.e. with x1, x2 > 0 all along their trajectory. The shape of the domains of acceptable
solutions are clearly distinguished and visible and have been indicated with different colors. The black
star denotes the point corresponding to the homogeneous solution and the red dots in its neighborhood
can be identified with the solutions predicted by our general arguments, while the blue set on the
left represents “accidental” solutions, not predicted by our argument. The second plot shows the
asymptotic values x∞ associated to the acceptable solutions. We can again clearly distinguish two
sets of points, corresponding to the two disjoint sets of the first plot: the set corresponding to the red
neighborhood of the black star in the first plot, which is spread out all over R2

>0, as predicted by our
general argument; the set corresponding to the accidental solutions, which identifies the blue thin
denser cone which is visible in the second plot.

as well. This is indeed what we find, as shown in the plots of figure 9(a) and 9(b). Almost
surprisingly, as shown in figure 9(c) and 9(d), we also find solutions for charge vectors with
q̂, q1 > 0 and q2 = 0, which are not included in CWH and for which no homogeneous solution
is possible. A closer inspection of the plots reveals however how these solutions do not form
a dense open set around the would-be homogeneous solution, with a spread distribution of
end points (x1,∞, x2,∞), but rather look like the class of “accidental” solutions of figure 8.

It is also interesting to explicitly check the correspondence between fundamental EFT
instantons and n = 3 wormholes of section 6.4 beyond the homogeneous and perturbative
regime. We can do this by keeping only the ℓa sector, which identifies an n = 3 model, and
performing the numerical scan. Applying the IR regularization outlined in section 6.4, which
introduces an IR cutoff radius rIR = Λ−1

IR , we can test the correspondence by comparing the
complete numerical action of the IR regulated half-wormhole solutions to the associated
BPS value (5.35). The result of the scan is reported in the plots of figure 10, where we
show both the usual spread in the asymptotic values associated to deformations around
the homogeneous solutions and the comparison between the complete and the BPS action.
If we introduce the expansion parameter ϵIR ≡ Λ2

IRL
2 ≪ 1, in the neighborhood of the
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(a) Throat values x∗ ≡ x|r=L of solutions with
boundary charge vector q = (1, 0, 1) ∈ CWH.

(b) Asymptotic values x∞ ≡ x|r=∞ of solutions
with boundary charge vector q = (1, 0, 1) ∈ CWH.

(c) Throat values x∗ ≡ x|r=L of solutions with
boundary charge vector q = (1, 1, 0) /∈ CWH.

(d) Asymptotic values x∞ ≡ x|r=∞ of solutions
with boundary charge vector q = (1, 1, 0) /∈ CWH.

Figure 9. Same scan as in figure 8 but with charges q = (1, 0, 1) and q = (1, 1, 0), as indicated in the
captions of the plots. While the solution with vanishing q1 charge is expected, the one with vanishing q2
charge is apparently surprising as the points with ℓ2 = q2 = 0 are at infinite distance. Indeed, a closer
look at 9(c) reveals how getting closer to the point associated to the would-be homogeneous solution
(indicated as star in the plot) the domain shrinks so that the homogeneous solution is never actually
reached, confirming that ℓ2,∗ = 0 never delivers a valid configuration. This is a completely different
behavior with respect to figure 9(a), where the homogeneous solution has a “dense” neighborhood of
valid solutions.

homogeneous solutions the actions coincide up to O(ϵ2IR), exactly as predicted by (6.36).
Interestingly, a new region around ℓ1 = 0 also appears. This is not surprising as it closely
resemble the situation of figures 8 and 9. This time the agreement between the complete
and BPS action is roughly of O(ϵIR).

A last crucial check regards the compatibility of our solutions with the energy bounds
imposed by the dominant EFT string scale (3.29). In section 6.2 we showed how on the
homogeneous solution the condition L2M2

T ≥ 1 is always guaranteed if q ∈ CWH, and argued
that this should be the case also on more general solutions that deviate from the homogeneous
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(a) Scanned throat and asymptotic values of x =
ℓ1/ℓ2.

(b) Ratio between the complete and the BPS action
as a function of x∗.

Figure 10. Numerical scan obtained by integrating the equations of motion (5.16) with charge
vector q = (1, 1) in the F-theory model of section 4.1.2 without the dilaton and with random initial
conditions for the dual saxions. The left panel compares the allowed throat values of x∗ = ℓ1,∗/ℓ2,∗
to the asymptotic values xIR = ℓ1,IR/ℓ2,IR found by the scan, where acceptable solutions have been
identified as the ones in which the dual saxions degenerate at a distance greater than rIR = 10L from
the throat. The black star denotes the homogeneous solution and the red dots in its neighborhood
can be identified with the solutions predicted by the general perturbative argument, while the blue set
on the left represents the usual accidental solutions. We note that, as expected, a tiny x∗ interval of 1
is mapped to a much larger xIR interval. The second plot shows the ratio Shw/SBPS associated to
the acceptable solutions, where Shw is obtained by cutting off the integration up to rIR as outlined
in the main text and SBPS is given by (5.35) . Around the homogeneous solution the two actions
are compatible up to O(ϵ2IR) terms, with ϵIR ≡ Λ2

IRL
2, as predicted by (6.36), while in the accidental

region the deviation is slightly bigger (but still below O(ϵIR)).

one. We quantitatively verified this claim on a set of numerically obtained non-homogeneous
solutions with charges q = (1, 0, 1), q = (1, 1, 1) and q = (3, 1, 2). The results are reported
in figure 11, where we show the density histogram of L2M2

T normalized to the one of the
associated homogeneous solution. It is clearly visible how the ratio between the dominant
EFT string mass squared (M2

T ) and the wormhole scale squared (1/L2) does not deviate
much from one, corresponding of the homogeneous solutions, guaranteeing the stability of
these numerical solution and supporting our previous claim.

The model described in the appendix C.1 can be analyzed in the same way. In this case,
in addition to the dilaton (4.19), we have a three-dimensional vector ℓ = ℓ1D

1 + ℓ2D
2 + ℓ3D

3

that takes values in the Kähler cone. So, with focus on this sector, any q ∈ CEFT
I can be

identified with the generic nef divisor q = q1D
1 + q2D

2 + q3D
3, with q1, q2, q3 ≥ 0. Again,

the set CI of BPS instanton charges is larger, and is generated by the effective divisors
E1,2,3 defined in (C.1). In particular, if p, h > 0, the generators E1 and E3 identify BPS
instanton charges (q1, q2, q3) = (1,−p, 0) and (q1, q2, q3) = (−h, 0, 1), respectively, which do
not belong to CEFT

I . Including the dilaton as in the previous model, the set (6.1) includes
charge vectors with q̂, q3 > 0 and q1, q2 ≥ 0. Again, we expect that for any choice of charges in
CWH, there should exist a large family of wormhole solutions reaching all possible asymptotic

– 64 –



J
H
E
P
0
7
(
2
0
2
4
)
2
4
0

(a) (L2M2
T )hom = 4/

√
3. (b) (L2M2

T )hom = 4/
√
3. (c) (L2M2

T )hom = 8/
√
3.

Figure 11. Density histograms of L2M2
T evaluated at the throat of a set of non-homogeneous

numerical wormhole solutions for the F-theory model of section 4.1.2. The values of L2M2
T have

been normalized to the values of the associated homogeneous solution. The results clearly show how
the values do not deviate substantially from the ones of the homogeneous solutions, guaranteeing
L2M2

T ≳ 1 for all these solutions, as required by compatibility with the species scale.

(a) Scanned throat values x∗ ≡ x|r=L.
(b) Corresponding asymptotic values x∞ ≡
x|r=∞.

Figure 12. Numerical scan obtained by integrating the equations of motion (5.16) with charge vector
q = (1, 1, 1, 1) in the P1 over Fp F-theory model of appendix C.1, with p = h = 1 and random initial
conditions for the dual saxions. As in figure 8, the first plot contains the acceptable throat points x∗
identified by the scan. The shape of the domain of acceptable solutions is clearly visible and generates
a dense set around the homogeneous solution, indicated as a black ball connected by dashed gray lines
for clarity. The second plot shows the asymptotic values x∞ associated to the acceptable solutions,
which spreads all over R3

>0, in agreement with our general argument.

values (x1,∞, x2,∞, x3,∞) ∈ R3
>0. By numerically integrating (5.16) with initial conditions

(x1,∗, x2,∗, x3,∗) ∈ R3
>0 one gets another clear confirmation of our expectation, as evident

from the plots in figure 12.

6.5.2 Wormholes in heterotic models

EFT instantons and wormholes in the heterotic models of section 4.2 can be discussed in
a similar way. Hence we will be briefer, outlining only some relevant points.

The set of BPS instanton charges (q0,q) ∈ CI is realized by F1-strings wrapping effective
curves q = qaΣa and q0 NS5-branes wrapping the internal space — see [40] for more details.
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The subset of EFT instanton charges CEFT
I is obtained by imposing that the charges (q0,q)

satisfy the same constraints (4.49) that must be obeyed by (ℓ0, ℓ). Let us first set q0 = 0,
so that (4.49) reduce to q = qaΣa ∈ Phet

K . The BPS instanton tower or sublattice WGCs
of section 5.4 translate into geometrical statements on the existence of irreducible effective
curves that populate an infinite subset of CEFT

I — see [98] for the corresponding statements in
M-theory compactification to five dimensions. Such EFT instantons correspond to F1-strings
wrapping movable curves. As for the movable divisors encountered in section 6.5.1, this implies
that for some m ∈ Z≥1 the charge mq can be represented by a curve that can freely move
along the internal space. Hence, as already observed in F-theory models, EFT instantons
correspond to microscopic configurations which can probe the entire compactification space.
These EFT instanton charges do not belong to the set CWH associated with the complete
perturbative regime described by (ℓ0, ℓ), since they have vanishing pairing with EFT string
charges (e0,0), e0 > 0. Nevertheless, they characterize the restricted perturbative regime
obtained by removing the EFT string charge (1,0) from the generators of ∆, realizing an
example of the mechanism outlined in Footnote 24. In this regime, one can “ignore” the
saxionic combination ŝ0 ≡ sa − 1

2pas
s and the corresponding dual saxion ℓ0, and only the

second term of (4.46) remains relevant, whose homogeneity degree is n = 3. Hence, the
corresponding EFT instanton charges can be at best supported by marginally degenerate
wormholes of the type discussed in section 6.4. Since EFT strings are realized by NS5-branes
wrapping nef divisors [17, 40], the set (6.1) corresponding to this restricted theory identifies
movable curves q = qaΣa which have non-vanishing (positive) intersection with any nef
divisor. Our general arguments imply that marginally degenerate wormholes should exist
for any such curve. This certainly happens when q lies in the interior of Phet

K , and in these
cases at least the homogeneous wormholes certainly exist. Note that these homogeneous
wormholes coincide with the string theory wormholes first constructed and studied in [32, 33].
We emphasize that this reasoning is based on an EFT which, as discussed in section 4.2,
is fully reliable only if s0 ≫ pas

a. In this regime T∗ = M2
Pℓ0 determines a constant upper

bound on the species scale, so that (6.18) does not hold for such wormholes. This is expected,
since as observed above these charges do not belong to the set CWH associated with the full
perturbative regime, which includes ℓ0. In order to make these wormholes fully reliable, we
should go beyond the s0 ≫ pas

a regime, as in the toy model of Footnote 27, but unfortunately
this is presently out of our reach. On the other hand, the quasi-BPSness mentioned in
section 6.4, and further discussed in 7.4 below, strongly suggests that these wormholes should
survive away the s0 ≫ pas

a regime.

We can then turn on a charge q0 > 0, so that the EFT instanton uplifts to a configuration
involving Euclidean NS5-branes wrapping the entire internal space. For generic choices of
q = qaΣa in the interior of Phet

K , the entire Kähler and kinetic potentials (4.46) and (4.48) are
relevant, which have homogeneity n = 4. Hence there should exist corresponding homogeneous
as well as non-homogeneous solutions, which are fully non-degenerate. Finally, one could also
pick charges so that the relevant EFT has again n = 3. Explicit examples could be obtained
through heterotic/F-theory duality, which maps NS5 instantons to some D3-brane instantons
in F-theory — see for instance the detailed discussion of [102] and appendix B. As an example,
a D3-brane wrapping the divisor D2 in the F-theory model of section 4.1.2 corresponds to an
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NS5-brane instanton in the dual heterotic description. By duality the relevant EFT instanton
has homogeneity n = 3 and admits marginally degenerate wormholes. Other explicit examples
could be obtained from the heterotic/F-theory dictionary discussed in appendix B.

Finally we notice that we can adapt (part of) of the above discussion to wormholes
associated with the Kähler moduli sector of IIA compactifications, either with orientifolds or
not (and, in the latter case, with enhanced N = 2 supersymmetry), and with the complex
structure sector of IIB models by mirror symmetry. More general wormholes of type IIA
orientifold compactifications can be obtained by taking particular limits of the wormholes
discussed in the next section.

6.5.3 Wormholes in M-theory models

Finally, we would like to briefly discuss how our general considerations apply to M-theory
models compactified on G2 manifolds — see section 6.5 of [17] and section 8 of [40] for a
summary of the relevant ingredients in the present context. The effective theory of these
models does not generically admit an explicit description, basically because of the absence of
a complex and Kähler structure on the internal space. One can nevertheless say something
about the existence of corresponding wormholes.

The information on the G2-holonomy metric of the internal seven-dimensional space Y
is completely encoded in the associative three-form Φ ∈ H3(Y,R) [103]. The saxions are
then obtained by expanding Φ = siωi in an appropriate cohomology basis ωi ∈ H3(Y,Z).
Alternatively, the same information is encoded in the coassociative four-form ∗Y Φ, and its
rescaled counterpart:

Φ̂ ≡ 1
2VY

∗Y Φ , (6.40)

where VY is the volume of Y . The dual saxions ℓi are then obtained from the expansion

Φ̂ = ℓiω̂
i , (6.41)

where ω̂i ∈ H4(Y,Z) is the dual cohomology basis, such that
∫

Y ωi ∧ ω̂j = δj
i . Both Φ

and Φ̂ parametrize corresponding cones, which can be identified with the saxionic and the
dual saxionic cone, respectively. BPS instantons uplift to M2-branes wrapping internal
submanifolds Σq calibrated by Φ. The corresponding charge vectors can be identified
with the Poincaré dual four-forms q = [Σ] = qiω̂

i ∈ H4(Y,Z). Hence, according to our
general definition the cohomology class q identifies an EFT instanton if it admits, among
its representative closed four-forms, a coassociative four-form Φ̂q. Note that the existence
of calibrated submanifolds Σkq for any such q and some integer k ≥ 1 is not obvious at all,
and would be necessary in order to realize the BPS instanton tower or sublattice WGCs
of section 5.4.

The Kähler potential is given by the geometrical formula K = −3 log
∫

Y Φ ∧ ∗ΦΦ [104],
and then by (6.40) the kinetic potential for the dual saxions takes the form (2.18) with

P̃ (ℓ) =
(∫

Y
Φ̂ ∧ ∗Φ̂Φ̂

)3
. (6.42)
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In these geometric formulas the Hodge-operators ∗Φ and ∗Φ̂ are implicitly defined by Φ and
Φ̂, respectively. Even if it is generically hard to make explicit the dependence of (6.42)
on the dual saxions, it is easy to see that it is homogeneous of degree n = 7. Indeed, a
rescaling ℓi → λℓi corresponds to Φ̂ → λΦ̂. This induces a rescaling ds2

Y → λ−
2
3ds2

Y of the
corresponding metric, and hence ∗Φ̂Φ̂ → λ

4
3 ∗Φ̂ Φ̂.

From our general discussion we conclude that whenever we pick q inside the dual saxionic
cone P , we certainly have q ∈ CWH and there exists a corresponding homogeneous wormhole
with n = 7, as well as its non-homogeneous variations. We expect similar conclusions if q
belongs to some finite field distance boundary of P. Charges q on some infinite distance
boundary of P can still correspond to sensible wormholes in restricted perturbative regimes,
possibly with n < 7 — see the discussion at the end of section 6.1. Furthermore, by considering
G2 compactifications admitting a weakly coupled IIA description [105], one can immediately
adapt these conclusions to type IIA compactifications on Calabi-Yau spaces with O6-planes.

7 Low-energy implications

In this section we would like to discuss some of the physical implications of wormholes. We
mostly follow the standard literature [12, 29, 106], see also [13] for a review and a more
complete list of references.

Consider a full (two-sided) non-extremal wormhole solution of the type discussed in
the previous sections, illustrated in figure 13(a). One can view it as a conduit between
two distinct asymptotically flat universes. Yet, the same solution also provides an accurate
description of a short cut connecting two regions of the same background geometry separated
by a distance much larger than the wormhole “thickness” L, as shown in figure 13(b). In
either case, at energy scales much smaller than 1/L, wormholes can be “integrated out” and
their effect codified in the appearance of appropriate interactions in an EFT defined at a
new lower Wilsonian cutoff Λ ≪ 1/L. These interactions are intrinsically non-local, and the
leading order effects are captured by bi-local operators of the form [106, 107]∫

d4x
√
|g(x)|

∫
d4y

√
|g(y)| CIJ OI(x)OJ(y) , (7.1)

with OI local gauge-invariant operators and CIJ = CJI denoting a dimensionless non-
degenerate constant matrix. In our setting, some properties of the operators OI(x) can
be understood from general principles. Given a wormhole charge q ∈ CWH, one can pick
a basis in which OI(y) represents the insertion of the corresponding half-wormhole, while
OI(x) represents the insertion of the anti-half-wormhole of charge −q. Based on symmetry
considerations alone, each OI(x) should be proportional to e2πiqia

i(x) and each OI to e−2πiqia
i .

These phases precisely match the contribution of the boundary term (2.16) evaluated on
the asymptotic boundary of each half-wormhole. Moreover, the entire contribution in (7.1)
should be suppressed by e−Stot|w , where Stot|w denotes the real part of the complete double-
sided wormhole on-shell action (including possible higher-derivative terms). These two
effects combine into the following universal dependence of the effective operators on the
background fields

OI ∝ e−Stot|hwe2πiqia
i
, (7.2)
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(a) Wormhole connecting two different asymptotic
spaces.

L

(b) Wormhole connecting two regions of the same
asymptotic space.

Figure 13. Cartoons of a wormhole connecting two different asymptotic spaces (left panel) and two
regions of the same asymptotic space separated by a distance much greater than the wormhole neck
radius L (right panel).

where the action of half a wormhole Stot|hw ≡ 1
2Stot|w has made its appearance, as we

anticipated above (5.26).
The bi-local contributions (7.1) can be rewritten in a manifestly local form by introducing

the so-called Coleman’s α-parameters [29]. Explicitly, (7.1) is equivalent to the insertion
of the local terms

Seff =
∫

d4x
√
|g|αIOI(x) + c.c. , (7.3)

provided one includes the Gaussian integration∫
dα dᾱ e−αIC−1

IJ ᾱJ (7.4)

in the path integral. Corrections to (7.1), as well as a non-trivial integration over otherwise
disconnected geometries, affect the Gaussian weight but do not change the qualitative
conclusion [106, 107]: wormholes can be viewed at low-energies as insertions of local operators
provided an integration over seemingly innocuous “parameters” αI is performed.

Wormholes are equivalently understood as non-perturbative tunneling processes in which
“baby universes” are created or annihilated with amplitude ∼ e−Stot|hw . The terms in (7.3)
describe the creation and absorption of any number of baby universes by the perturbative
vacuum state |0⟩ we started from. The αI -parameters are expectation values of the creation-
annihilation operators α̂I of such baby universes. One can then go to the so-called α-vacua
|α⟩, in which α̂I |α⟩ = αI |α⟩. The α-vacua decohere and a given universe can be thought of
as being in a superselection sector labeled by a specific set of αI -parameters, which appear
in the low-energy effective term (7.3).

The presence of an Hilbert space of baby universes is one of the most striking, but also
subtle, outcomes of Coleman’s viewpoint on wormholes — see also [30] for an interesting
recent revisitation of this interpretation. The associated integration over αI -parameters
makes it impossible for the cluster decomposition principle to hold. This in general implies
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the non-factorization of correlation functions [80]. In the context of the present paper,
the fundamental quantum indeterminacy of the α-parameters also appears in tension with
experience from string theory, in which all couplings are dynamical and no free parameters
exist, as also expected for more general quantum gravity models [31].

There is yet another implication of the above logic that may appear puzzling — see also
the discussions in [108, 109]. It may seem to imply that no effective potential for our axions
can be induced. In fact, according to (7.1), complete wormholes subtract charge from x and
place it in another point y. An observer around x would thus experience a local violation
of charge conservation, signaled by an anomaly in the Noether current:

∇µJ
µ =

∑
IJ

qJC
IJ
[(∫

OI

)
OJ −OI

(∫
OJ

)]
. (7.5)

Yet, globally charge remains conserved.32 In this situation, no effective potential for the axion
can be generated. In order to induce such effect, the anomaly in (7.5) should have an overlap
with the vacuum and a state of axions at rest, and this does not seem to happen here because
the right-hand side of (7.5) is completely neutral. The only logical way to obtain an axion
potential is if for some mysterious reason part of the wormholes did not bring back the charge
to our Universe. In that case the symmetry between outgoing and incoming charge would
be broken, and the vacuum would spontaneously break the shift symmetry. In the language
of the αI -parameters, that peculiar condition is realized when some of the αI ’s acquire a
non-trivial vacuum expectation value, in conflict with what (7.4) seems to indicate.

More generally, a natural way to avoid all the problems mentioned above is the existence
of a huge gauge redundancy that identifies different α states, implying that the Hilbert
space of baby universes is in fact one-dimensional [30, 31]. In this case all α parameters
would have unique values, controlled by some moduli fields. They would hence reduce
to ordinary EFT couplings and no violation of factorization would take place. The Baby
Universe Hypothesis [31] proposes that this is indeed what happens in any consistent d > 3-
dimensional quantum gravity model. If correct, the Baby Universe Hypothesis would remove
any arbitrariness in the αI -parameters appearing in (7.3), allowing wormholes to break
axionic symmetries, at least in principle.

In the following we assume that this “natural selection” of the αI -parameters actually
takes place, but also provide arguments indicating that such selection must actually occur,
at least in the case of n = 3 non-extremal wormholes.

We begin with a discussion of the impact of the Gauss-Bonnet term on the low-energy
theory (section 7.1). Subsequently we analyze more explicitly the structure of the low-energy
EFT with Λ ≪ 1/L. Specifically, the underlying supersymmetry imposes important restric-
tions on the wormhole-induced effective action: the local operators OI(x) should organize
themselves in supersymmetric multiplets, and enter the low-energy effective action either
through D-terms or F-terms. The a priori infinite series appearing in (7.3) is expected to be
dominated by the lowest derivative terms. We see in section 7.2 that F-terms can be generated
by EFT instantons (extremal wormholes), whereas regular wormholes can only generate

32This continues to hold when corrections to the dilute instanton gas approximation, in the form of wormhole
and instanton interactions as described in [106], are included.
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D-term corrections to the Kähler potential at leading order (see section 7.3). As we will see in
section 7.4, the particular case of marginally degenerate wormholes (n = 3) is associated with
possible non-perturbatively generated superpotentials. Some phenomenological consequences
for axion physics are discussed in section 7.5.

7.1 Large N suppressions and Gauss-Bonnet

The two-derivative contribution to the half-wormhole action is bounded from below by (5.27),
which codifies the combined gravitational-axionic contribution of the wormhole neck. Com-
bining this observation with (5.28), which implies that any non-extremal wormhole solution
can make sense only if L−1 is smaller than the species scale evaluated at the wormhole’s neck,
and the consistency condition Msp ≤ MQG (see section 3.1 and (3.24)), we obtain

S|hw ≥ 3π3 M2
P

M2
sp(s∗)

≥ 3π
16Nsp (7.6)

where Nsp > N by construction. At the leading two-derivative level the low-energy oper-
ators (7.2) are therefore suppressed by

e−S|hw ≤ e−
3π
16 Nsp . (7.7)

Even before asking whether F-terms or D-terms are actually induced or not (for that we will
have to wait for sections 7.2, 7.3, 7.4), we therefore see that wormhole effects must be very
small. Clearly, the larger the number of degrees of freedom accessible to the QFT description,
the smaller the UV cutoff, and the less relevant wormholes are.

Strictly speaking, (7.7) is an accurate estimate of the size of wormholes insertions only
if a perturbative four-dimensional description can be extended all the way to the species
scale. Presumably, this holds when the tower scale Mt of section 3.4 corresponds to the string
mass scale. In that case, generic higher dimensional operators are not expected to affect
our estimate qualitatively because they are suppressed by powers of 1/(MspL) < 1. On the
other hand, if Mt denotes a KK mass, generically our four-dimensional description would be
accurate only for L > 1/MKK > 1/Msp. Hence the purely four-dimensional contribution to the
wormhole action would be S|hw ≥ 3π3M2

P/M
2
KK and the suppression of a wormhole insertion

much more significant than shown in (7.7). Of course, more interesting effects may potentially
arise integrating in the KK resonances. For L ≪ 1/MKK one may find higher-dimensional
uplifts of our wormholes — see [110] for explicit examples of uplifted wormholes in string
theory — that potentially have smaller actions than in a strict four-dimensional regime
with L ≳ 1/MKK. A careful investigation of d-dimensional uplift of our wormholes would be
necessary to confirm that, but this is beyond the scope of the present paper. In the following
we will thus proceed using only results that are under our control. In that view (7.7) provides
a conservative measure of the strength of non-perturbative gravitational effects in the axiverse.

While the previous discussion indicates that higher-derivative operators are generically
not expected to change our conclusions qualitatively, as we emphasized in section 2.2 this may
not be the case for (semi-)topological terms. Let us thus discuss them. When considering
wormhole physics, it turns out that the Pontryagin term is completely irrelevant. As
discussed below (5.7), the Pontryagin operator itself exactly vanishes by spherical symmetry
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on the wormhole solution (5.20). More generally, the topological structure of a general non-
spherically-symmetric wormhole configuration is such that the Pontryagin index (supplemented
with the appropriate boundary term) vanishes. We can therefore safely ignore this term
and focus on GB.

The potential relevance of the GB term for wormhole physics was emphasized in [12, 91].
We find that indeed GB gives a positive contribution to the on-shell action, at least if we are
allowed to treat it as a perturbation. In such a case, at leading non-trivial order its effect
on the equations of motion can be neglected when evaluating the on-shell action. Within
this approximation (S + SGB)|hw is simply obtained by plugging in the leading order solution.
Furthermore, in evaluating (5.2) on our solution we can practically ignore the asymptotic
boundary term, since the wormhole metric (5.20) quickly becomes flat and so Q → Q0 as
r → ∞. Hence, the on-shell action (5.2) for the wormhole reduces to the purely bulk term

SGB = −
∫
M

√
g γ(ℓ)EGB . (7.8)

Now, the GB density (2.6) of a wormhole metric (5.20) is negative definite since EGB|wh =
−3L8/(2π2r12). So, denoting by γmin the minimum value attained by γ(ℓ) along the dual
saxion flow, we conclude that the on-shell Gauss-Bonnet term (7.8) of a semi-wormhole
satisfies a lower bound

SGB|hw = −
∫

hw

√
g γ(ℓ)EGB ≥ −γmin

∫
hw

√
g EGB = γmin , (7.9)

where in the last step we used the fact that
∫

hw
√
g EGB = −1, which we obtained by dividing

by two the integral of EGB over the full wormholes of figure 13.33

The r.h.s. of (7.9) reproduces the topological contribution considered in [12], where a
constant γ was assumed. Restricting our considerations to the controllable domain ∆̂α and
combining (7.9) and (3.21), we get

SGB|hw ≥ γmin ≥ Nπ

6α , (7.10)

indicating that (7.2) contains, on top of (7.7), a further suppression of order

e−SGB|hw ≤ e−
Nπ
6α . (7.11)

The condition (3.27) is equivalent to S|hw ≳ SGB|hw, as required in a self-consistent derivative
expansion. Hence, (7.11) only provides a correction to the dominant effect shown in (7.7).34

In conclusion, it is not possible to precisely quantify the suppression of wormholes inser-
tions, as the dominant contribution (7.7) depends on unknown details of the UV completion.

33Recalling (5.3), for asymptotically flat spaces with no finite distance boundaries we have
∫
M

√
g EGB =

χ(M) − χ(M0), where M denotes a general wormhole configuration with S3 boundaries at asymptotically
flat infinities and M0 the corresponding (possibly reducible) flat space with the same asymptotic behavior,
since the corresponding boundary terms in (5.3) cancel each other. If M is as in figure 13(a), then χ(M) = 0
and χ(M0) = χ(E4 ∪ E4) = 2, which gives

∫
M

√
g EGB = −2. Consistently, repeating the calculation for M

as in figure 13(b) one gets the same result.
34It is interesting to observe that the large suppression of e−γ also guarantees the weak-coupling regime of a

possible third-quantization of the type proposed in [111].
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Yet, the relation S|hw ≳ SGB|hw reminds us that a rough lower bound may be provided by
the GB contribution alone. Interestingly, this itself is bounded from below by (7.10), via
a bound expressed solely in terms of quantities accessible to the low-energy observer. We
can thus confidently claim that wormholes are substantially suppressed in the N ≫ 1 limit.
Even for moderately small couplings α = π/6 ∼ 0.5 and just N = 100 axions — which is a
quite natural number in stringy axiverse models — the upper bound in (7.11) is of order
∼ 10−44. The actual suppression could be much stronger than (7.11), though, since (3.21) is
generically quite conservative, as remarked below that equation. For instance, in the F-theory
models of section 4.1 the argument in the exponential of (7.11) must be corrected at least
by a factor of six — see (4.15). Furthermore, in the heterotic models of section (4.2), the
lower bound on the GB coefficient is even stronger. The numerical investigation summarized
in figure 2 confirms our analytic expectations and also suggests that the GB coefficient
γ(s) can in fact scale with higher powers of N as soon as N > 100. Wormhole effects are
evidently very suppressed in the axiverse.

7.2 Extremal wormholes and F-terms

We now turn to a more explicit discussion of the leading low-energy terms that can be
induced by wormholes. We begin with the BPS extremal wormholes introduced in section 5.3.
Conceptually, those objects appear to be qualitatively different from non-extremal wormholes,
since they are more naturally interpreted as configurations sourced by localized EFT instantons
and do not entail the introduction of αI -parameters nor baby universes. Nevertheless, the
present discussion will serve as a reference for our subsequent investigation of non-extremal
wormholes.

Our main concern here is to understand whether extremal wormholes are described at low
energies via superpotential or Kähler terms. A necessary condition for a superpotential term
to be generated is that the extremal wormhole configuration admits exactly two fermionic
zero-modes. These would correspond to ’t Hooft vertices with two fermion insertions, which is
something that only a superpotential term can provide. As shown in appendix D.1, extremal
wormholes break two of the four supercharges preserved by the underlying flat spacetime.
The corresponding two Goldstino-like zero-modes (D.13) are contained in the chiralinos χ̄i α̇,
the partners of t̄i. One would therefore expect extremal wormholes to be able to induce an
effective superpotential at low energies. Let us elaborate on this possibility.

Because of the two zero-modes, a single extremal wormhole can only generate non-
vanishing contributions to correlation functions involving at most two χ̄i α̇ in excess over
χi

α. We thus focus on the two-point function ⟨χ̄iα̇(x)χ̄jβ̇(y)⟩. We estimate it in a UV
theory sourced by (5.35) ignoring for the moment possible subtleties related to the insertion
of the fundamental instanton (we will come back to this shortly). Explicitating only the
integration over the zero-modes — the massive modes can only affect the overall factor

— we schematically get

⟨χ̄i α̇(x)χ̄j β̇(y)⟩ ∝ e−SBPS+2πi⟨q,a∞⟩
∫

d4x0

∫
d2θ [χ̄i α

(0)(x− x0)]α̇θα [χ̄j β
(0)(y − x0)]β̇θβ

∼ e
1
2 K∞e2πi⟨q,t∞⟩Gim

∞ qmGjn
∞ qn

∫
d4x0 [SF(x− x0)]α̇α[SF(y − x0)]β̇βε

αβ
(7.12)
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with the complete complex BPS on-shell action (5.37) appearing as an overall factor. In
deriving (7.12) we replaced χ̄i α̇(x) = [χ̄i β

(0)(x − x0)]α̇θβ + · · · (the dots refer to non-zero-
modes), where the zero-mode content of the field is parametrized by the wavefunction defined
in (D.13), with x0 and θα denoting the associated bosonic and Grassmanian parameters.
In the final step we used the fact that in the limit |x − x0|, |y − x0| → ∞ the asymptotic
dependence of the Goldstino wavefunction is precisely the same as that of the Feynman’s
propagator SF, see (D.15), whereas the overall factor of eK∞/2 is due to its normalization.

It is now easy to show that the above correlator can be reproduced, at distances sufficiently
far from the singularity, by a supergravity F-term (we adopt the conventions of [41])∫

d2θ 2EWq (7.13)

where
Wq = Aq M

3
P e

2πi⟨q,t⟩ , (7.14)

and Aq includes the contribution of the non-zero-modes. The superpotential (7.14) induces
an effective fermionic vertex eK/2(∂i∂jWq)χi

αχ
j
βε

αβ, and observing that ⟨χi
α(x0)χ̄jα̇(x)⟩ ∝

Gij [SF(x−x0)]α̇α, we see that a single insertion of (7.14) would precisely reproduce the structure
in (7.12), provided t∞ is identified with the classical background in the effective field theory.
In analogy to [112] we can thus conclude that at low energies the BPS extremal wormhole
of charge q ∈ CEFT

I generates the superpotential (7.14). BPS extremal anti-wormholes of
charge −q ∈ CEFT

I would instead generate the complex conjugate of (7.13). See [95] for a
discussion along similar lines.

Before jumping to the conclusion that extremal wormholes can generate superpotentials
at low energies, we should however address the subtlety we alluded to earlier. Recall that
extremal wormholes are singular and that a localized UV-sensitive contribution (5.35) had
to be included in our argument. Additional contributions may be present, though. Indeed,
fundamental instantons generically carry additional internal degrees of freedom, which can
in principle contribute both zero and non-zero fermionic modes. The presence of additional
fermionic zero-modes may invalidate our calculation and for example reveal that fundamental
instantons actually induce multi-fermion and higher-derivative F-terms as in [27, 28], as
opposed to superpotential terms like those in (7.13). Whether or not this does indeed occur
can only be determined with some knowledge of the microscopic UV completion of the
four-dimensional model. Let us therefore consider some known examples in string theory.

In string theory models the fundamental instantons sourcing extremal wormholes uplift
to various types of branes wrapping internal cycles, which support various types of localized
world-volume degrees of freedom — see for instance [113–118] and [45] for a review. Extra
fermionic zero-modes are known to appear for example as Goldstinos of an “accidental”
enhanced supersymmetry felt by microscopic brane configurations that are “strongly” isolated,
in the sense that these brane configurations as well as any multiple thereof are isolated
and can probe only some local internal geometry. However, the string theory realizations
described in section 6.5 clearly indicate that such strongly isolated branes correspond to
non-EFT instanton charges, whereas an EFT instanton charge (or an appropriate multiple
thereof) corresponds to a non-isolated brane that can explore the entire compactification
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space and in principle “detect” its global minimally supersymmetric structure. Thus, our
EFT considerations should not be affected by additional Goldstino-like fermionic zero-modes
associated with a local enhanced supersymmetry.

More concretely, in the F-theory models described in sections 4.1.1, 4.1.2 and 6.5.1,
two simple upliftings of EFT instantons are provided by Euclidean D3-branes wrapping
the hyperplane divisor in P3 and the vertical divisor in a P1 fibration over P2. Even if
at first sight these branes contain extra fermionic (and bosonic) zero-modes, those are
actually lifted by the inclusion of world-volume fluxes [119] and/or the interaction with
background D3-branes [102]. As a result, in these explicit examples the localized contribution
associated to the EFT instanton is known not to bring extra fermionic zero-modes. By
F-theory/heterotic duality, the F-theory mechanism must have heterotic counterparts. As
discussed in section 6.5.2, in the large volume perturbative regime part of the EFT instantons
correspond to F1-strings wrapping movable curves, which are either non-isolated or admit
a non-isolated multiple. Our remarks then fit well with the early observation [114] that
non-isolated genus zero world-sheet instantons satisfy all necessary conditions to contribute
to the superpotential.

Note that non-EFT instantons may also generate superpotentials of the form (7.14). In
fact, many string theory examples of brane instanton superpotentials are generated by strongly
isolated branes — see e.g. the review [45]. However, according to the above observations
and to the discussion of section 5.4, these non-perturbative effects may be interpreted as
being non-gravitational in nature.

These considerations suggest that extremal wormholes generated by EFT instantons
should dominantly match onto effective superpotentials like (7.14) at low energies. More
precisely, because the cleanest examples of [102] correspond to extremal wormholes in
perturbative sectors of homogeneity degree n = 3, this conclusion should at least apply to
that subclass of extremal wormholes. This expectation fits well with the Supersymmetric
Genericity Conjecture of [102], which implies that in an N = 1 four-dimensional theory
of quantum gravity a superpotential term should vanish only if the theory is related to a
higher supersymmetric one. In our context, the n = 3 EFT instantons appear as the natural
responsible for the realization of this conjecture, at least for ti chiral sectors that cannot
get superpotential terms at tree level, as for instance induced by the three-form potentials
mentioned in Footnote 16. Note that the Supersymmetric Genericity Conjecture is quantum
gravitational in nature, which resonates well with the already emphasized gravitational nature
of the EFT instantons, and the fact that their existence can be guaranteed by invoking
the BPS instanton tower or sublattice WGCs of section 5.4. These speculations would also
imply that the low energy theory contains a sum

∑
q Wq of contributions like (7.13), for

all charges populated by EFT instantons with n = 3, and that according to BPS instanton
tower/sublattice WGCs this sum is infinite.

In subsection 7.4, we will see how these considerations can be generalized to, and further
supported by, the marginally degenerate wormholes discussed in section 6.4.
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7.3 Wormhole D-terms

Let us now consider the everywhere non-degenerate wormholes (i.e. those with n > 3). They
do not preserve any of the four supersymmetries of the asymptotic Minkowski vacuum,
and as such they are expected to have four corresponding Goldstino zero-modes. In the
case of homogeneous wormholes of section 6.1, such zero-modes are explicitly constructed
in appendix D.2. A computation like (7.12) now vanishes identically: no F-term can be
generated. Instead, one can check that it is correlators of the type ⟨χ̄χ̄χχ⟩ that can be
reproduced at large distances by a local four-fermion operator, since all zero-modes have
wavefunctions that asymptotically behave as the free Feynman propagator SF for any n > 3,
as one can check by expanding (D.36) for r ≫ L. The case n = 3, as usual, should be treated
separately, and will be considered in section 7.4.

The leading terms in the low-energy contributions (7.3) should then organize themselves
into a supergravity D-term providing a correction ∆Kq of the Kähler potential. Following the
same procedure used to derive (7.12), or equivalently adopting the arguments of [120], one
finds that ∆Kq should be given by the superfield extension of the operator (7.2). Specifying
to the homogeneous solution (6.7) we have

∆Kq = A′
q

(
e2πi⟨q,t⟩ + e−2πi⟨q,t⟩

)
e−2πf(Im t) , (7.15)

where A′
q is another unknown normalization constant containing also loop effects, ti = ai+ isi

should of course be considered as chiral superfields, and from the on-shell action (6.10) we read

2πf(Im t) ≡ S|hw − 2π⟨q, s⟩ =
[
sin
(
π

2

√
3
n

)
− 1

]
2π⟨q, Imt⟩ . (7.16)

This expression is reliable as long as q is large, n > 3, and si is aligned with F i(q). For smaller
charges and/or non-homogeneous saxionic wormholes f(Imt) may of course be different. Still,
according to the general estimates given at the beginning of this section, any non-perturbative
correction like (7.15) should be extremely tiny within the regime of validity of the EFT,
and certainly much smaller than the expected perturbative corrections to the leading Kähler
potential (2.5). However, even if tiny, (7.16) represents a breaking of the axionic shift
symmetries, which cannot be broken by perturbative corrections.

As already emphasized, the two derivative action (6.10), which is always accurate in the
large q limit, is lower than the BPS action of an EFT instanton, or of a multi BPS instanton
configuration carrying the same charge. We have argued in 5.5 that it is precisely because
of a finite size throat that this happens. We are thus tempted to interpret non-extremal
half-wormholes as non-BPS bound states of fundamental instantons describing throats that
open up around the EFT instantons themselves. In this view, the throat-opening would
effectively integrate out whatever localized internal degrees of freedom the EFT instantons
may have. Furthermore, being non-BPS bound states, non-extremal wormholes would induce
D-terms like (7.15), rather than F-terms as in section 7.2. Non-extremal wormholes are
thus qualitatively different than EFT instantons, but may simultaneously be intimately
connected. This view is consistent with the ten-dimensional uplifts of similar wormholes
recently constructed in [110], that were interpreted in terms of intersecting Euclidean branes.
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In the following subsection we will further elaborate on the connection between wormholes
and instantons.

7.4 Marginally degenerate wormholes and superpotentials

It is now time to discuss the physics associated with the marginally degenerate wormholes
(n = 3). In section 6.4 we have seen how, slightly away from the wormhole’s neck, such
configurations have approximately the same form as extremal BPS wormholes associated
with EFT instantons of the same charge. Moreover, after an appropriate IR regularization
their action (6.36) looks approximately like the instanton local term (5.35) that comple-
ments extremal wormholes. These observations strongly suggest a deep connection between
wormholes with n = 3 and fundamental EFT instantons. In this section we would like to
elaborate upon this connection. We first motivate the apparently ad hoc IR regularization
introduced in section 6.4 and subsequently discuss how, extending to our general framework
a mechanism proposed in [32, 33], marginally degenerate wormholes may be able to generate
superpotential terms as those discussed in section 7.2.

In order to unclutter the notation, here the IR-regularizing cutoff will be simply denoted
as Λ, rather than ΛIR as in section 6.4. This choice is also consistent with the fact that in this
section Λ plays the role of the Wilsonian cutoff of the IR effective theory that one obtains by
“integrating out” the wormhole contributions, as discussed at the beginning of this section.
One should then keep in mind that in this section Λ is much lower than, and should not be
confused with, the UV cutoff of the initial EFT in which the wormhole solutions are derived.

The regularization prescription adopted in section 6.4 may be interpreted as identifying
approximate wormhole solutions of the equations of motion, following [79]. One cuts a
ball of radius rΛ ≡ 1/Λ out of a flat Euclidean background and dual saxions with constant
background, and replaces it with the IR-regularized half-wormhole, smoothly gluing the fields
at the common boundary three-sphere (see the left of figure 14). In our case, the value of
the background dual saxions on the boundary three-sphere is given by ℓIR = ℓ(rΛ). This
cut-and-paste procedure gives a configuration that is an approximate saddle-point whose
action receives non-negligible contributions only from the region r ≤ rΛ. The result is
essentially the regularized action (6.36) with ΛIR → Λ, and the dependence of the associated
effective operators (7.2) on the background fields is thus also expected to be controlled by
the same “on-shell” action [79, 121].35

A natural interpretation of the IR regularization of section 6.4 is to formally view it as
a prescription to “integrate out” the wormhole down to energy scales Λ ≪ 1/L [79, 121].
Suppose we are interested in computing some correlation function at distances ≫ L. We can
take into account the effect of the wormhole in two equivalent ways. Either we compute the
full path integral for our initial EFT, including the wormhole and its fluctuations around it,
or we use a low-energy effective description defined below Λ where the geometry is essentially
flat and the wormhole is replaced by a set of effective local operators OIR like those in (7.2).

35In principle this regularization procedure may be applied to the everywhere non-degenerate n ≥ 4
wormholes as well. However, in those cases the background fields quickly reach their asymptotic value,
cf. (6.32), and one can hence identify ℓΛ with ℓ∞, as we implicitly did in our treatment of section 7.3 (see also
the comments at the end of section 5.2).
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Figure 14. Pictorial representation of a marginally degenerate half-wormhole surrounded by a radius
at the IR cutoff 1/Λ ≫ L (left panel). Sending L → 0 one formally obtains a fundamental BPS
instanton insertion (right panel).

We may call these the “UV” and “IR” descriptions of our theory. In a semi-classical expansion,
the first, “UV” theory gives a factor e−S|hw , where S|hw is precisely the wormhole action
we would compute in our initial EFT (2.3). The second gives OIRe

−S|IR
hw , where S|IRhw is the

on-shell action for the “IR” theory in the presence of the operator insertion. Because by
definition the low-energy degrees of freedom are precisely the same, the long-distance r > 1/Λ
contributions to the actions exactly match; they only differ at distances smaller and of order
the matching scale 1/Λ. Therefore, equating the results of the two descriptions, we learn the
effective operator must depend on the background fields as follows [121]

OIR ∝ e−(S|hw−S|IR
hw) = e−S|Λhw . (7.17)

The final exponential contains the expression (6.36). The effect of the marginally degenerate
wormhole, once renormalization-group evolved down to Λ ≪ 1/L, is thus captured by
effective local operators suppressed by the exponential of our IR-regularized action (6.36).
The agreement between (6.36) and (5.35) is not a mere coincidence, as one may have thought
by our analysis in section 6.4: up to corrections of order Λ4L4 the effect of a marginally
degenerate wormhole is exactly equivalent to that of a fundamental BPS instanton of the
same charge.

If what we are arguing is correct, then the results of section 7.2 would tell us that
marginally degenerate wormholes can induce superpotentials at low energies, as opposed to
their non-degenerate (n > 3) siblings. At the very least this conclusion should hold when
Λ4L4 → 0, where the solution formally coincides with that of a fundamental instanton.

The claim that wormholes can induce F-terms was first made in [32, 33]. At a first sight,
there is an apparent obstruction: for any L ̸= 0 the n = 3 wormholes break all supersymmetries
and therefore have additional Goldstino-like zero-modes in the chiral partners χi of ti, see
appendix D.3. This would naively suggest that such configurations should generate D-terms
like those of section 7.3, rather than superpotential terms. Interestingly, also this conclusion
is too rushed. Let us actually ask if our n = 3 wormhole describes four-fermion interactions
at low energies Λ ≪ 1/L. As mentioned in section 7.3, a procedure analogous to the one
carried out in (7.12) can be applied to evaluate four-point functions of the form ⟨χ̄χ̄χχ⟩. Yet,
here that result cannot be interpreted as the insertion of a local operator involving four free
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fermions, since the contribution of the wavefunctions of the extra zero-modes vanishes away
from the wormhole faster than a free Feynman propagator. The reason is that the additional
Goldstino-like zero-modes present in the marginally degenerate wormhole are localized around
the throat, where supersymmetry is completely broken. Indeed, we have seen in (6.35) that
the throat is the only region where the n = 3 configuration departs from the extremal solution
by corrections of order O(L4/r4), and as a consequence that must also be the only region
where the profiles of the zero-modes of the two backgrounds can differ. This is indeed the case.
In conclusion, the fact that for n = 3 the two extra zero-modes are localized at the throat
prevents us from obtaining a four-fermion operator at low energies. Still, their presence seems
to obstruct the generation of a superpotential as well. How can we reconcile this with our
earlier observation that marginally degenerate wormholes are BPS instantons in disguise?

Well, as emphasized around (6.37), n = 3 wormholes appear in an entire family of
solutions with arbitrary L. The extra zero-modes of such solutions would certainly be
relevant for any L within the calculable regime. But the profiles of the special wormholes
obtained in the formal limit L → 0 disappear behind the singularity. If we could ignore
curvature singularities, the extra zero-modes of such wormholes would in some sense become
invisible to our EFT path integral. The subclass of n = 3 wormholes with L→ 0 would then
have effectively two zero-modes like the BPS solution, and hence the ability to generate a
superpotential as in section 7.2, as proposed in [32, 33]. The limit L → 0 is visually seen
passing from the left to the right of figure 14.

The arguments we just presented are essentially a rephrasing, in our more general setting,
of those of [32, 33]. To see this, take our n = 3 solution and, instead of regularizing it with an
IR cutoff at rΛ, adopt a different regularization (see appendix D.3 for more details). Namely,
multiply the kinetic potential F(ℓ) by (1+ ε), where ε > 0 is a very small constant, effectively
replacing n = 3 with n = 3(1+ε) > 3. This produces an everywhere non-degenerate wormhole
profile, with a precise relation between its IR value ℓ̃∞ and its UV value ℓ̃∗ (see (6.32)).
Using (6.30), and at leading non-trivial order in ε, this reads

ℓ̃∞ = π

4 εℓ̃∗ =
ε

8M2
PL

2 . (7.18)

One finally picks ε so that ℓ∞ in the ε-regularized theory coincides with the ℓΛ of our
IR-regularized theory. This way we have found a different regularization of our profile
where, if needed, the limit r → ∞ may be taken. The papers [32, 33] suggest then that
the contribution of the n = 3 wormholes to the IR effective theory can be computed by
taking the limit ε→ 0 of the ε-regularized wormholes while keeping ℓ∞ fixed. From (7.18)
we see that this prescription is actually equivalent to the limit L→ 0 we alluded to earlier.
As in the case discussed above, also the ε-regularized wormholes have extra Goldstino-like
zero-modes δχi

α localized around their throat. Taking ε → 0, or equivalently L → 0, the
extra Goldstino-like zero-modes are effectively pushed beyond the EFT and, as such, they
are no more integration variables in the EFT path integral.

In conclusion, the reasoning of [33] applied to our context implies that marginally
degenerate wormholes generate a superpotential of the form (7.14). Assuming that the L→ 0
limit sensibly connects these wormholes to the corresponding fundamental instantons, from
this we can also infer that the n = 3 EFT instantons do not contain any extra fermionic
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zero-mode and hence do generate (7.14), as speculated in section 7.2. The correspondence
between n = 3 wormholes and EFT instantons has additional important implications. It says
that the wormhole α-parameters, whose presence has been for simplicity suppressed, must
be fully determined by an EFT instanton calculation in the UV complete theory, which has
no free parameters at the onset. This would represent a concrete manifestation of the Baby
Universe Hypothesis [31]. Moreover, a non-trivial wormhole-induced superpotential tells us
that the associated α-parameters are generically non-vanishing, realizing the Supersymmetric
Genericity Conjecture of [102]. (Note that, in some non-generic cases, the UV-complete
computation may still give vanishing α-parameters.)

Another interesting consequence of the wormhole argument is that a superpotential of
the form (7.14) should be generated for any charge q ∈ CWH corresponding to an n = 3 sector.
This conclusion may be extended to q ∈ CEFT

S − CWH by considering restricted perturbative
regimes, as described in Footnote 24 and for instance exemplified in section 6.5.2. The picture
that emerges is that fundamental EFT instantons carrying the same charges q, or at least a
multiple thereof (possibly selected by some stricter H3,i quantization rule), should exist as
well, consistently with the BPS instanton tower/sublattice WGCs of section 5.4.

Finally, as shown in (6.36) in the above L→ 0 limit the on-shell action reduces to the
BPS one, S|hw → SBPS = 2π⟨q, sIR⟩. Since q ∈ CWH, by definition it satisfies ⟨q, e⟩ ≥ 1 for
any e ∈ CEFT

S , see (6.1). We can now run the same argument used to go from (3.17) to (3.20)
and conclude that ⟨q, sIR⟩ ≥ N/α for ant sIR ∈ ∆̂α, and therefore:

e−SBPS ≤ e−
2π
α

N , (sIR ∈ ∆̂α & q ∈ CWH) . (7.19)

We see that also the contribution of the marginally degenerate wormholes is strongly suppressed
in perturbative regimes associated with N ≫ 1 (s)axions.

7.5 Implications for purely axionic models

The symmetry-breaking mediated by non-perturbative effects can potentially induce effective
axion potentials Veff(a) at low energies. Quantifying the impact of these effects is crucial
in models for inflation and for the QCD axion approach to the strong CP problem, where
even tiny corrections can have dramatic phenomenological consequences.

The physics of axionic wormholes has been largely studied in the literature from an EFT
perspective — see for instance the review papers [13, 122] and references therein. From an
agnostic low-energy point of view, the axions appearing in such bottom-up constructions can
either be a subgroup of our ai’s, whose saxionic partners have been stabilized and acquired a
mass, or can be completely independent degrees of freedom, say arising from the breaking
of accidental compact symmetries linearly realized in the EFT. We will refer to the former
as scenarios of “fundamental axions” and the latter as scenarios of “QFT axions”. In the
following we ask what lessons can be drawn about symmetry-breaking in such scenarios
from our results. Our key assumption is that any such low-energy axion model admits, at
sufficiently high energies, an intermediate N = 1 axiverse description as in sections 2 and 3
(plus the necessary additional degrees of freedom).

As a preliminary observation we recall that, in a supersymmetric setup like the one
considered in this paper, an O(e−S|hw) violation of axionic symmetries is encoded in the sum,

– 80 –



J
H
E
P
0
7
(
2
0
2
4
)
2
4
0

over all wormhole charges, of Kähler or superpotential corrections of the form (7.15) and (7.14).
In the supersymmetric regime, then, the effective axion potential at momenta ≪ 1/L is
controlled at least by a factor of order O(e−2S|hw). If, on the other hand, supersymmetry
is softly broken at a scale MSSB ≪Msp, then the effective axion potential may also receive
corrections of order (MSSB/Msp)pe−S|hw for some p > 0. Hence, the effective axion potential
is always more suppressed than just O(e−S|hw). Let us next estimate what S|hw can be in
scenarios with fundamental or QFT axions.

Consider first the case of fundamental axions. That is, assume the EFT contains a
number ≤ N of approximately massless fundamental axions, precisely like the ones discussed
in our paper, while the saxions are instead stabilized by a SUSY-breaking potential Vs.
The presence of Vs introduces a correction to (5.9) in the form of a new effective potential
for the (dual) saxions

Vq = −1
2∥q∥2 − π2r6M2

PVs. (7.20)

The saxion potential Vs generates an IR threshold mass MIR, as anticipated around (3.30).
Approximate, purely axionic (non-extremal) wormholes may be constructed at distances
r ≫ 1/MIR, where the saxions are fixed at their asymptotic values and the only relevant
dynamical degrees of freedom are the axions — see [123, 124] for discussions on multi-axion
generalizations of the axionic wormhole of [12]. Their action S|hw = 3π3M2

PL
2 is characterized

by curvature lengths L ≥ 1/MIR, and according to (7.7) the associated wormholes would be
very inefficient sources of symmetry breaking in the controllable regime MIR ≪Msp because
S|hw ≫ Nsp. In the more interesting regime L ≤ 1/MIR, wormholes inevitably excite the
saxionic degrees of freedom via (7.20) — see [92, 93] for explicit examples in simple dilatonic
models — and the results of our paper directly apply. Hence, in the more interesting cases
the effect is estimated as discussed in section 7.1.

Axions may also originate as approximate Nambu-Goldstone bosons of some linearly
realized accidental compact symmetry. In that case one can build wormholes with those
“QFT axions”, the associated saxionic radial modes, and possibly other degrees of freedom
as well, whereas the fundamental saxions and axions we have been considering here remain
mere silent spectators. One can now envision QFT models in which the radial modes shrink
as one approaches the wormhole throat, resulting in small on-shell actions (see e.g. [91]).
But small actions are a clear indication of sizable quantum effects, and that may signal we
are outside the perturbative domain. Fortunately, irrespective of that we can confidently
claim that wormhole effects cannot get larger than indicated in (7.11). Our bound on the
GB coefficient is indeed largely insensitive to the details of the wormhole configuration and
impervious to those violations of perturbativity. Barring unnatural cancellations due to other
higher derivative terms, then, the suppression (7.11) should apply to QFT wormholes as well,
of course provided the UV completion is ultimately well described by an N = 1 axiverse.

8 Conclusions

In this paper we explored various aspects of N = 1 axiverse models containing an arbitrary
number N of fundamental axions, adopting the general framework developed in [16–18] and
taking into account various quantum gravity constraints.
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We proposed the upper bound (3.28) on the ultimate (moduli-dependent) UV cutoff of
any EFT description of gravity, the so-called species scale. Our upper limit is set by the
dominant EFT string scale (3.29), which is a perturbatively exact quantity depending on
four-dimensional data already available at the two-derivative level. Our proposal (3.28) has
been checked in a number of string theory models and compared to another upper bound
on the species scale suggested in [56, 60], finding very good agreement.

The approximate axionic shift symmetries that characterize our EFTs are explicitly
broken by two classes of non-perturbative effects. The first class consists in short distance
effects due to fundamental instantons. The second class is associated to non-perturbative
effects within the EFT, part of which are of gravitational nature and potentially due to
axionic wormholes. A significant portion of our paper was dedicated to the study of axionic
wormholes in N = 1 axiverse models, and of their relation with fundamental instantons.

Our axiverse models support a large class of extremal and non-extremal wormhole
solutions, which carry specific sets of axionic charges. The extremal ones are BPS and
singular, but their singularity has a clear interpretation as due to the insertion of fundamental
BPS instantons. Among the fundamental BPS instantons, a special role is played by the EFT
instantons [17]. We argued, both within the macroscopic EFT description and by discussing
microscopic string theory realizations, that EFT instantons are intrinsically gravitational in
nature. The analogy with five-dimensional back holes suggests that EFT instantons satisfy
an axion version of the BPS tower or sublattice WGC proposed in [98].

Interestingly, a slightly restricted subset of EFT instanton charges always support
homogeneous non-extremal wormhole solutions as well, which describe N saxions moving along
a specific direction in the saxionic space. For the same set of charges, more general solutions
can also be constructed, both perturbatively, as small deformations of the homogeneous
configurations, and numerically. Crucial to the existence of our homogeneous wormhole
solutions is the homogeneity degree n of the function P (s) characterizing the saxion Kähler
potential (2.5). With n > 3 the solutions are regular everywhere and in principle capable of
inducing at low energy exponentially suppressed symmetry-breaking corrections to the Kähler
potential. These wormholes may be interpreted as non-BPS bound states of EFT instantons
and may capture, in the low-energy theory, some of their physical effects. Wormholes with
n < 3, instead, degenerate at a small distance from their throat and no relevant semi-classical
effects can be associated to them.

The non-extremal configurations with n = 3 are degenerate only asymptotically and
deserved a separate discussion. We revisited and extended a proposal of [33], which implies
that these marginally degenerate wormholes should generate effective symmetry-breaking
superpotentials. Moreover, we argued that these configurations can be more directly in-
terpreted as a low-energy manifestation of EFT instantons, thus identifying a clearer link
between two a priori independent classes of non-perturbative effects. The combination of
these considerations has far-reaching consequences. On the one hand, it implies that EFT
instantons corresponding to n = 3 sectors are generically expected to generate superpotential
terms, compatibly with the Supersymmetric Genericity Conjecture [102]. On the other
hand, it indicates that Coleman’s α-parameters of the n = 3 wormholes should be somehow
fixed by the UV complete description of the corresponding EFT instantons, providing a
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concrete realization of the Baby Universe Hypothesis [31]. Actually, according to the Baby
Universe Hypothesis the same “natural selection” of the α-parameters should also take place
for the n > 3 regular wormholes and the corresponding D-terms. We leave a more in depth
exploration of these interesting speculations for the future.

We showed that the effect of non-extremal wormholes associated to N = 1 axiverses is
always very suppressed. For non-degenerate wormholes, the basic reason is that the species
scale is expected to decrease parametrically with increasing N , hence there is a maximal
curvature mass scale below which the EFT predictions are reliable, and this suggests that the
wormhole on-shell action should be at least of order N . One way to quantify this suppression
is by taking advantage of a lower bound we established on the coefficient of the Gauss-Bonnet
operator: in the EFT domain of validity, its value is always positive and growing with at
least a power of N . For n = 3 marginally degenerate wormholes one can equally show that
the on-shell action is enhanced by N . As a result, we can robustly conclude that in the
axiverse the effect of non-extremal wormholes is suppressed by powers of e−N . Despite their
tiny impact on the axiverse dynamics, non-extremal wormholes remain very interesting and
concrete laboratories for the study of quantum gravity and of its low-energy consequences.
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A Naive dimensional analysis

In this appendix we review the concept of Naive Dimensional Analysis (NDA) to explain
the structure of the derivative expansion in our EFT, justify the definitions (4.5) of the
strong coupling scales in string and M-theory, and derive (3.24) and (3.25). In the process
we will clarify the origin of the “geometric” 2π-factors that appear throughout the paper;
all other factors of order unity cannot be detected by NDA arguments and will be ignored.
NDA was first used in the context of QCD by S. Weinberg in [125] and later formalized
by [126] (see also [127] and references therein and, e.g. [128] for a d-dimensional analysis).
Its application to string theory models is not as popular.

– 83 –



J
H
E
P
0
7
(
2
0
2
4
)
2
4
0

For clarity we anticipate here the proxy for the strong coupling scale of a d-dimensional
gravitational theory that we found to apply to all scenarios of interest to us:

M̂d−2
(d) ≡ (2π)⌊

d
2 ⌋Md−2

(d) . (A.1)

Here M(d) denotes the d-dimensional Planck scale which, to avoid unnecessary 1/2 factors,
in this appendix is defined via36

L(d) ⊃
√
−g(d)M

d−2
(d) R(d). (A.2)

The quantity M̂(d) identifies the highest possible scale at which a d-dimensional gravitational
EFT can be extrapolated. If a parametrically large number N(d) of d-dimensional degrees
of freedom is present, (A.1) must be further reduced by a factor of 1/N(d), so (A.1) is to be
interpreted as an upper bound. Eq. (4.5) shows the ten- and eleven-dimensional incarnations
of (A.1), respectively.

The strong coupling scale. Imagine we match a d-dimensional EFT to its UV completion
at the lowest energy threshold M(d) of the UV theory. Using the terminology of section (3.4),
M(d) denotes the d-dimensional version of the species scale. A simple ℏ power counting reveals
that the matching procedure must result in the following effective Lagrangian (we focus on
gravity, but our arguments are completely general)

L(d) =
Md

(d)
g2

(d)

√
−g(d)

{
R(d)
M2

(d)
+ c2

R2
(d)

M4
(d)

+ c3
R3

(d)
M6

(d)
+ · · ·

}
(A.3)

where c2,3,··· are pure numbers at most of order unity that depend on ratios of mass scales
and/or ratios of couplings. The strength of the Einstein-Hilbert term at momenta p ∼ M(d)
is measured by the EFT coupling g(d), which has units of [g(d)] = [1/

√
ℏ]. Denoting by

N(d) the number of d-dimensional degrees of freedom below M(d), a typical loop integral with
momenta p ∼ M(d) is estimated to be of order

g2
(d)N(d)

∫ dΩd

(2π)d
=

2 g2
(d)N(d)

(4π)
d
2 Γ (d/2)

∼
g2

(d)

(2π)⌊
d+1

2 ⌋
(A.4)

with ⌊· · · ⌋ the floor function. In the last step of (A.4) we kept track of the powers of 2π
but neglected a factor N(d)/(d − 2)!! for d = even or 2N(d)/(d − 2)!! for d = odd. It turns
out that in the higher-dimensional scenarios we consider such factors are of order one. They
will hence be neglected along with all other factors of order unity because NDA cannot
keep track of them. The symbol ∼ will be used when our NDA prescription of ignoring
numbers of order unity is employed.

Conventionally, a coupling is called maximally strong when loop effects are of order
unity [127, 128]. According to (A.4), in our scenarios this occurs when g2

(d) ∼ g2
(d)|max ≡

(2π)⌊
d+1

2 ⌋. Now, from (A.3) it follows that the d-dimensional Planck scale can be expressed
in terms of the matching scale and the EFT coupling. Recalling our convention (A.2) we

36M(4) is thus related to the MP used in the rest of the paper via M2
P = 2M2

(4).
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have Md−2
(d) = Md−2

(d) /g
2
(d). This says that, for fixed M(d), the higher the matching scale the

stronger the coupling. The maximally allowed value M2
(d)|max is obtained with the maximally

strong coupling g2
(d)|max identified above:

Md−2
(d)

∣∣∣
max

≡ (2π)⌊
d+1

2 ⌋Md−2
(d) . (A.5)

This expression coincides with (A.1) for any even dimensionality, but is slightly larger when
d is odd. We will see that (A.5) does indeed represent a good proxy for strong coupling in
ten-dimensional string theories, but can be slightly refined for eleven-dimensional M-theory.
A perturbative d-dimensional theory must always satisfy g2

(d) ≪ g2
(d)|max so as to ensure that

the description remains perturbative all the way up to the matching scale. For the particular
case d = 4 this logic explains the 2π’s in section 3. In general the ratio Md−2

(d) /M
d−2
(d) |max

parametrizes the expansion parameter on which the coefficients c2,4,··· depend.
To check the consistency of these considerations let us first consider type IIA string

theory at not-too-large dilaton. At weak string coupling the matching scale M(10) in (A.3)
corresponds to the string mass scale in the Einstein frame:

M2
(10) = 2πTF1 = (2π)2

l2(10)
eϕ/2. (A.6)

As the string coupling gs = eϕ increases, M(10) grows and eventually is expected to reach the
value M(10)|max at which both the UV theory and the EFT are strongly coupled. Recalling (4.1)
we have M8

(10) = 2π/l8(10), which combined with (A.5) gives

M2
(10)|max =(2π)

5
4M2

(10) =
(2π)

3
2

l2(10)
. (A.7)

To verify that M(10)|max gives also a good measure of the scale at which the string coupling
gets strong we inspect the coefficients of the R4

(10) operators in the EFT. The latter can be
arranged as shown in (A.3) with coefficients (see for instance [129], and references therein)

c4|Type IIA = ζ(3)T1 +
π2e2ϕ

3 T2 = ζ(3)T1 +
1
12

M8
(10)

M8
(10)|max

T2, (A.8)

where T1 and T2 are appropriate tensor structures contracting the indices of the Riemann
tensors. Consistently with our expectation, the loop corrections become of the same order
as the tree-level terms when (2πeϕ)2 = M8

(10)/M
8
(10)|max gets of order one. We can therefore

conclude that M(10)|max is a physically reasonable estimate of the strong coupling scale in Type
IIA string theory, at least for 2πeϕ = M4

(10)/M
4
(10)|max < 1, and that 2πeϕ is an appropriate

expansion parameter. For ten-dimensional string theory the strong coupling scale introduced
in section 3.4 can thus be taken to be M̂(10) = M(10)|max, as anticipated in (4.5).

In the eleven-dimensional description of M-theory the approximation in (A.4) is again
justified. The matching scale (or, equivalently, spieces scale) M(11) should correspond to a
strong coupling scale, but the story here is a little more subtle than before because of the
presence of branes. We will argue that it is more appropriate to identify the strong coupling
scale of M-theory with (A.1) rather than (A.5). While in Type IIA the strongest coupling at
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the matching scale is set by gravity, from which (A.5) follows, in M-theory it is not a priori
evident which coupling is the strongest. Its action contains the standard Einstein-Hilbert
term as well as M2-branes and M5-branes. The coefficients of these terms are completely fixed
by a number of independent arguments. The purely gravitational contributions are given by

2π
l9(11)

∫
R(11) +

2π
l3(11)

∫
M2

volM2 +
2π
l6(11)

∫
M5

volM5 . (A.9)

Let us estimate the maximal strong coupling scale for each term in turn. The one for the
Einstein-Hilbert interaction can be obtained via the logic leading to (A.5). Combining with
our definition (4.2) one gets M9

(11)|max,EH = (2π)7/l9(11). The world-volume theory supported
by a p-brane of tension Tp is effectively described by a p+1-dimensional action with coupling
g2

(p+1) = Mp+1
(11)|Mp/Tp. The corresponding maximal coupling scale can be determined in a

way completely analogous to what done for the bulk gravitational theory in (A.4), though
now the dimensionality is not that of spacetime. Ignoring again factors of order one coming
from the number of degrees of freedom living on the branes, for the M5 brane that logic
gives M6

(11)|max,M5 = (2π)4/l6(11) and for the M2 brane we have M3
(11)|max,M2 = (2π)3/l3(11). The

actual regime of strong coupling of M-theory is presumably controlled by the smallest of
these scales. According to our NDA estimate, that is the one associated to the M5 brane.
It is hence natural to take

M(11) = M̂(11) =
(2π)2/3

l(11)
. (A.10)

This is smaller than M(11)|max given in (A.5) by just a factor (2π)1/9. While such difference is
very small, we are tempted to take our estimate seriously because NDA can only identify the
geometric powers of 2π, and according to a 2π counting (A.10) should be our candidate scale.

Our choice (A.10) can also be justified by an alternative criterion, which is essentially
semiclassical and may be formulated as follows: a d-dimensional theory is said to be maximally
strong at p ∼ M(d) if its action is one (in ℏ = 1 units) when evaluated on spherically symmetric
configurations controlled by distance and curvature scales ∼ 1/M(d). With this new prescription
the matching scale of a strongly-coupled theory would always be set by (A.1) rather than (A.5),
so the new criterion would agree with the one discussed earlier only for even dimensionalities.
Interestingly, when we apply the new criterion to M-theory one finds that all three terms
in (A.9) become strong at the very same scale (A.10). This coincidence seems to support
our identification.

An empirical non-trivial check that the powers of 2π suggested by (A.10) have some
truth in them is obtained noting that according to (A.3) we should expect the coefficients
of the R4

(11) terms in M-theory to be proportional to

M9
(11)

M̂6
(11)

=
M3

(11)

(2π)10/3 (A.11)

up to a pure number. Amusingly, the powers of 2π obtained from that relation match exactly
those obtained in explicit calculations, as for instance collected in [129] and [60].
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The four-dimensional theory. Finally, we would like to see how the Lagrangian (A.3)
appears to a four-dimensional observer at energy scales < MKK below the Kaluza-Klein
mass scale. We look for gravitational solutions with line element as in (4.4) and proceed as
follows. We first derive the dimensionally reduced four-dimensional version of (A.3) with
all the KK resonances integrated in. Subsequently we integrate out the KK resonances to
obtain an EFT at the scale MKK.

The dimensionally-reduced four-dimensional EFT for the graviton zero-mode and KK
resonances is, taking care of the appropriate factors of e2A, a Lagrangian completely analogous
to (A.3):

L|Λ<Msp
=
M4

sp
g2

√
−g

{
R

M2
sp

+ c2
R2

M4
sp

+ c3
R3

M6
sp

+ · · ·+ KK-resonances
}

(A.12)

where

M2
sp = e2AM2

(d), g2 =
g2

(d)
V(d−4)

, (A.13)

and V(d−4) = Md−4
(d)

∫
dd−4y

√
g(d−4). The matching scale, converted to the four-dimensional

Einstein frame, is what we called species scale in section 3.4. The quantity V(d−4) is the
volume normalized in units of the fundamental scale M−1

(d) in d-dimensions. It is related to
the number of four-dimensional KK degrees of freedom below M(d) by Weyl’s asymptotic
formula (see for instance [130])

NKK ≃
N(d)Ω(d−4)Vd−4

(d− 4)(2π)d−4 =
(d− 2)N(d)Vd−4

2(4π)
d
2−2Γ (d/2)

. (A.14)

If we identify NKK with the number of four-dimensional degrees of freedom, then the ’t Hooft
expansion parameter in the reduced four-dimensional theory is

g2NKK

(2π)2 ≃ (d− 2)
2 g2

(d)N(d)

(4π)
d
2 Γ (d/2)

. (A.15)

Up to the (d− 2) factor, this is precisely the d-dimensional loop estimate appearing in (A.4).
This simply reminds us that a weakly-coupled d-dimensional description necessarily leads to
a weakly-coupled four-dimensional reduction. Now, following the convention in (A.2), (A.12)
leads to the identification Msp = gM(4) which, combined with (A.15) and adopting the same
approximation as in (A.4), reads

M2
sp ∼

g2
(d)

(2π)⌊
d+1

2 ⌋

(2πM(4))2

NKK
. (A.16)

This relation says that the species scale seen by the four-dimensional observer satisfies
an upper bound Msp ≲ 2πM(4)/

√
NKK ∼ 2πMP/

√
NKK, which we recognize to be (3.24)

whenever the large number of species can be identified with the number of KK modes. This
is just the statement that the species scale and the maximally strong coupling scale (A.5)
coincide only when the expansion parameter appearing on the r.h.s. of (A.4) is one.

The next step consists in integrating out the KK modes to obtain a four-dimensional EFT
at scales ≲MKK. In carrying out this final step we note that the tree-level exchange of a KK
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resonance Φ can only be relevant when linear couplings of the form ΦJ are present in (A.12).
According to the discussion in section 3.4, neither Einstein-Hilbert nor Gauss-Bonnet are
corrected by tree-level KK exchange in string theory compactifications. Moreover, loops
cannot introduce additional powers of M2

sp/M
2
KK because controlled by irrelevant couplings.

Hence we deduce that neither the Einstein-Hilbert term nor the Gauss-Bonnet term are
qualitatively affected by KK exchange.37 Ignoring numbers of order unity we thus conclude
that below the KK scale our four-dimensional EFT formally reads

L|Λ<MKK
=M2

(4)M
2
sp
√
−g

{
R

M2
sp

+ c′2
R2

M4
sp

+ c′3
R3

M6
sp

+ · · ·
}
. (A.17)

Let us consider the Riemann squared operator, which is particularly relevant to us because
related to the GB term. Exploiting its symmetry properties we observe that RabcdR

abcd =
4
∑

a<b,c<d RabcdR
abcd. Therefore it is reasonable to expect a combinatorial factor of 1/4 in

front of the Wilson coefficient. We thus take the c2 associated to the Riemann squared operator
in (A.3) to be c2 = cGB/4 with cGB of order one. In addition, we just argued that c′GB ∼ cGB
(whereas, typically, c′R2 ∼ cR2M2

sp/M
2
KK). Using now our conventions in (2.6) and (2.8), the

coefficient of the four-dimensional Gauss-Bonnet term in (A.17) reads as shown in (3.25).

B Matching in heterotic/F-theory dual models

In this section we more explicitly show how the Kähler/kinetic potentials (4.46) and (4.18)
of heterotic/F-theory dual models match in an appropriate limit. F-theory compactifications
on a P1 fibered space X is dual to a heterotic compactification on an elliptically fibered
Calabi-Yau three-fold X̂ over the same base two-fold B. We assume B to be weak-Fano,
and then to support smooth elliptic fibrations [131]. By definition, such a base has a nef
and big anti-canonical divisor KB. Let us denote it as

cB ≡ KB ∈ Nef1(B) . (B.1)

The bigness condition is equivalent to the self-intersection positivity cB · cB > 0. Let us also
introduce two dual bases of 2-cycles cα, c̃

α ∈ H2(B,Z), such that ca · c̃β = δβ
α.

B.1 F-theory side

The space X can be described as a projectivized bundle [132]

XF = P(OB ⊕ L) , (B.2)

where the line bundle L on the base B determines the twist of the P1-fibration. We denote
by π : X → P the corresponding projection map. Introducing fibral projective coordinate
[x : y], we can identify the global section σ : B → X, defined by x = 0, and a corresponding
effective divisor S = σ∗B ⊂ X. The cone of effective divisors Eff1(X) ≃ CI is generated by

37On the other hand, Ricci squared interactions (as well as higher powers of the curvature) may receive
corrections already at tree-level.
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S and the divisors of the form E = π∗(e), where e ∈ Eff1(B), i.e. e is an effective curve in
B. We will also assume that the line bundle L is positive, that is

cL ≡ c1(L) ≡ pαc̃
α ∈ Eff1(B) , (B.3)

where again Poincaré duality is implicit. The cone Nef1(X) of nef divisors is generated
by the divisor

H = S + π∗cL (B.4)

and the divisors of the form π∗c, where c ∈ Nef1(B) ≃ Mov1(B).
We can expand the dual saxion vector ℓ in the basis of four-cycles provided by H and

the four-cycles π∗c̃α:

ℓ = ℓ0H + ℓαπ
∗c̃α . (B.5)

Then, according to our general discussion of section 4.1, the dual saxionic domain is defined
by ℓ0 ≥ 0 and ℓαc̃α ∈ Nef1(B)R. A simple example is provided by the model of section 4.1.2,
which corresponds to B = P2, (D1, H) = (D1, D2) and the redefinition (ℓ1, ℓ0) → (ℓ1, ℓ2).

The basis (H,π∗c̃α) ∈ H4(X,Z) is dual to the basis (CF, Cα), where CF is the P1-fiber
CF and Cα ≡ σ∗cα. The saxions si = (s0, sα) can be obtained by expanding s ∈ Mov1(X)
in this basis:

s = s0CF + sαCα = (s0 − pαs
α)CF + sαH · π∗cα , (B.6)

where we have used Cα = S · π∗cα = H · π∗cα − pαCF. The cone of movable curves is
generated by CF and curves of the form H · π∗(c), with c ∈ Nef1(B). Hence, the saxionic
cone is defined by the conditions

s0 ≥ pαs
α, sαcα ∈ Nef1(B) . (B.7)

The kinetic potential (4.18) takes the form

F = log κ(ℓ, ℓ, ℓ) = log
[
Iαβpαpβℓ

3
0 + 3Iαβpαℓβℓ

2
0 + 3Iαβℓαℓβℓ0

]
, (B.8)

where Iαβ ≡ c̃α · c̃β. Applying (2.15), we get

s0 = 3(Iαβpαpβ ℓ
2
0 + 2Iαβpαℓβℓ0 + Iαβℓαℓβ)

2κ(ℓ, ℓ, ℓ) , sα = 3(Iαβpβℓ
2
0 + 2Iαβℓβℓ0)

2κ(ℓ, ℓ, ℓ) . (B.9)

We now take the limit ℓ0 ≪ |ℓα| limit, in which

F ≃ log ℓ0 + log
[
Iαβ(ℓα + 1

2pαℓ0)(ℓβ + 1
2pβℓ0)

]
, (B.10)

up to a term of order O(ℓ20/|ℓα|2), and an irrelevant additive constant. In this limit we have

s0 − 1
2pαs

α ≃ 1
2ℓ0

≫ 1, sα ≃
Iαβ(ℓβ + 1

2pβℓ0)
Iγδ(ℓγ + 1

2pγℓ0)(ℓδ + 1
2pδℓ0)

. (B.11)

and the Kähler potential is then given by

K ≃ − log
(
s0 − 1

2pαs
α
)
− log

(
Iαβs

αsβ
)
, (B.12)

where Iαβ = cα · cβ is the inverse of Iαβ.
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B.2 Heterotic side

The elliptically fibered Calabi-Yau π̂ : X̂ → B admits the global section σ̂ : B → X̂. One
can then identify the nef divisor Ĥ = σ∗B + π∗cB. The Kähler saxionic vector s appearing
in (4.45) can then be expanded as follows

s = ŝĤ + sαπ∗cα , (B.13)

so that the saxionic cone condition s ∈ K(X̂) reads ŝ ≥ 0 and sαcα ∈ Nef1(B). The
corresponding contribution to the Kähler potential (4.46) is

− log κ(s, s, s) = − log
[
(cB · cB)ŝ3 + 3(cB · cα)sαŝ2 + 3(cα · cβ)sαsβ ŝ

]
(B.14)

The saxion ŝ measures the volume of the elliptic fiber. Let us apply these results to the
models of section 4.2, taking the limit in which the fiber is of stringy size, and hence much
smaller than the base. This describes a restricted perturbative regime parametrized only
by the saxion s0 and the base Kähler saxions sα. In this limit pas

a = p̂ŝ + pαs
α ≃ pαs

α,
and the Kähler potential (4.46) becomes

− log
(
s0 − 1

2pas
a
)
− log κ(s, s, s) ≃ − log

(
s0 − 1

2pαs
α
)
− log

(
Iαβs

αsβ
)
+ . . . , (B.15)

which indeed matches (B.12), provided we identify the constants pα appearing in these two
different settings. This identification was already proposed in [40], and is also consistent with
the identification of the saxionic cone conditions (B.7) and (4.45).

C Other tests of the species scale bound

In this appendix we discuss other non-trivial examples in string theory compactifications where
we can test explicitly our proposal on the relevant energy scales formulated in section 3.4.
The reader can see this as a natural addition to section 4. In particular, we are going to
explore the case of a P1 fibration over a Hirzebruch surface Fp in F-theory, and delve a bit
deeper in the various Kähler moduli limits of heterotic/IIA models.

C.1 Another F-theory model: P1 fibration over Fp

Another class of simple F-theory models where we can check our proposal is obtained by
choosing X to be a P1 fibration over the Hirzebruch surface Fp, which in turn can be described
as a P1 fibration over P1, specified by the integer p ≥ 0. This model has been recently discussed
in a closely related framework by [64], to which we refer for more details. For our purposes it is
sufficient to restrict to a P1 fibration over Fp specified a single non-negative integers h ∈ Z≥0,38

and to identify the relevant cones of divisors and curves and their intersection numbers.
The cone of effective divisors is simplicial and is generated by three effective divisors

Ea, a = 1, 2, 3. These three effective divisors can be roughly regarded as twisted products
38 Following [132], the P1 fibration could be defined in terms of a line bundle L = hd1 + td2, where d1, d2

are elementary nef divisors over Fp. In particular, their intersection numbers are given by the coefficients of
I(Fp) = pd2

1 + d1d2. In the notation of [64], our integers (h, t) correspond to (s, t). Here we are restricting to
fibrations with t = 0.
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of the possible pairs of the three P1’s involved in the geometry. We can also introduce a
basis of nef divisors Da, with respect to which

E1 = D1 − pD2 , E2 = D2 , E3 = D3 − hD1 . (C.1)

The divisors Da generate all the other nef divisors, as well as the Kähler cone. Hence, by
using these divisors in the expansion (4.6) the Kähler cone corresponds to v1, v2, v3 > 0. The
triple intersections are given by the coefficients of the formal object

I(X) = D1D2D3 + p(D1)2D3 + hpD1(D3)2 + hD2(D3)2 + h2p(D3)3 . (C.2)

By using the expansion ℓ = ℓaD
a, the kinetic potential (4.18) becomes

FK = log κ(ℓ, ℓ, ℓ) = log
(
6ℓ1ℓ2ℓ3 + 3pℓ21ℓ3 + 3hpℓ1ℓ23 + 3hℓ2ℓ23 + h2pℓ33

)
. (C.3)

The condition that J belongs to the Kähler cone is equivalent to ℓa > 0. In order to
understand the complete (dual) saxionic domain, we have to consider the saxions sa = 3κabcℓbℓc

2κ(ℓ,ℓ,ℓ) ,
which identify the R-effective curves:

s = saΣa = 3 ℓ · ℓ

2κ(ℓ, ℓ, ℓ) , (C.4)

where Σa are effective curves

Σ1 = E2 · E3, Σ2 = E1 · E3, Σ3 = E1 · E2 , (C.5)

which generate the whole cone of effective curves Eff1(X) and are dual to the nef divisors
D1: Da · Σb = δa

b . On the other hand, the saxionic cone can be identified with the cone of
movable curves — see (4.8) — which is generated by the (effective) movable curves

Σ̂1 = D2 ·D3 = Σ1 +hΣ3 , Σ̂2 = D1 ·D3 = pΣ1 +Σ2 +hpΣ3 , Σ̂3 = D1 ·D2 = Σ3 , (C.6)

which are dual to the effective divisors Ea: Σ̂a · Eb = δb
a. Hence, if we use the expansion

s = ŝaΣ̂a, the saxionic cone is defined by the positivity conditions ŝa > 0. By using (C.1)
and (C.4) we can compute the components ŝa = Ea · s = 3Ea·ℓ·ℓ

2κ(ℓ,ℓ,ℓ) , getting

ŝ1 = 6ℓ2ℓ3
2κ(ℓ, ℓ, ℓ) , ŝ2 = 3(2ℓ1ℓ3 + h ℓ23)

2κ(ℓ, ℓ, ℓ) , ŝ3 = 3(2ℓ1ℓ2 + p ℓ21)
2κ(ℓ, ℓ, ℓ) . (C.7)

The saxionic cone condition ŝa > 0 is clearly satisfied if ℓa > 0.39

The PK boundaries can again be characterized in terms of tensionless string limits. The
set CEFT

S of EFT string charges is generated by the movable curves (C.6) and hence, in the
basis Σa, we identify the following corresponding tensions:

TΣ̂1
=M2

P(ℓ1 + hℓ3) , TΣ̂2
=M2

P(ℓ2 + pℓ1 + hpℓ3) , TΣ̂3
=M2

Pℓ3 . (C.8)

39Note that, if we consider fibrations of the kind described in footnote 38 with t > 0, in general the image of
the cone {ℓa > 0} under the map (C.7) does not cover the entire saxionic cone ∆ — see [64] — as discussed in
general in section 4.1. This issue is absent if we set t = 0.
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Figure 15. Dual saxionic convex hull P̂α for the F-theory model P1 over Fp. The plot has been
drawn with the reference value α = 1/10. P̂α corresponds to the red region.

We then see that, assuming p, h > 0, TΣ̂3
= 0 on the two-dimensional boundary component

{ℓ3 = 0}, TΣ̂1
= 0 on the one dimensional boundary component {ℓ1 = ℓ3 = 0}, while TΣ̂2

= 0
at the tip {ℓ1 = ℓ2 = ℓ3 = 0}. These boundary components are at infinite field distance. On
the other hand, the BPS but non-EFT strings of charges Σ1 and Σ2 have tensions TΣ1 =M2

Pℓ1
and TΣ2 =M2

Pℓ2, which vanish on the boundaries ℓ1 = 0 and ℓ2 = 0, respectively, which are
at finite field distance (if ℓ3 > 0). More precisely, they correspond to the finite distance ∆
boundaries ŝ3 = 0 and ŝ1 = 0, respectively, while ℓ3 → 0 corresponds to the infinite distance
limit ŝ3 → ∞. Viceversa, a limit ŝ2 → 0 (with fixed ŝ1, ŝ3) corresponds to a limit ℓ2 → ∞.
So, as in subsection 4.1.2, while the saxionic convex hull is simply given by ∆̂α = {ŝa ≥ 1

α},
its dual saxionic counterpart P̂α is more complicated — see figure 15.

The anti-canonical divisor is

KX = 2E3 + (2 + h)E1 + (2 + p+ ph)E2

= 2D3 + (2− h)D1 + (2− p)D2 ,
(C.9)

which, combined with (2.9) and (4.10), gives

γ(s) = π
[
2ŝ3 + (2 + h)ŝ1 + (2 + p+ ph)ŝ2

]
. (C.10)

Hence
γ(s)|∆̂α

≥ π(6 + p+ h+ ph)
α

, (C.11)
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which is again stronger than (3.21) with N = 3. If for instance p, h ≥ 1 and α ≤ 1
10 , we

get the lower bound γ(s)|∆̂α
> 282.

C.2 Energy scales in the P1 over Fp model

The tensions (C.8) are associated to the generators of the cone of EFT string charges.
From (C.8), and recalling that ℓa > 0, is clear that TΣ̂3

is always the lowest of the three when
p, h > 0, and can thus be identified with the dominant EFT string scale (3.29)

M2
T = 2πTΣ̂3

= 2πM2
Pℓ3 . (C.12)

Noticing that

TΣ̂3
≤ TΣ̂1

≤ TΣ̂2
, (C.13)

the limit TΣ̂3
≪ TΣ̂1

, or equivalently ℓ3 ≪ ℓ1, corresponds to the weak string coupling limit
of a dual heterotic model, and TΣ̂3

represents the corresponding critical string tension. In
this regime (2πTΣ̂3

)1/2 can be identified with the species scale, and (3.28) is saturated.
If instead TΣ̂3

≃ TΣ̂1
the species scale may be given by the quantum gravity scale (4.22),

which for the present model reads

M2
QG =

√
2π
(
2ℓ1ℓ2ℓ3 + p ℓ21ℓ3 + hpℓ1ℓ23 + hℓ2ℓ23 +

1
3h

2pℓ33

)
M2

P

=
√

1
2π

[
ℓ1
ℓ3

(p ℓ1 + 2ℓ2) + h

(
pℓ1 + ℓ2 +

1
3hpℓ3

)]
M2

T .

(C.14)

Imposing the constraint (3.10) on TΣ̂2
gives pℓ1 + ℓ2 + hpℓ3 < 2π, which in turn implies

pℓ1 + ℓ2 < 2π. Applying these two inequalities we find

M2
QG <

√
ℓ1
ℓ3

(
2− p

ℓ1
2π

)
+ h

(
1− hp

ℓ3
3π

)
M2

T . (C.15)

Since
TΣ̂1

TΣ̂3

= ℓ1
ℓ3

+ h > h , (C.16)

the assumption TΣ̂3
≃ TΣ̂1

requires that h ∼ O(1) and ℓ1/ℓ3 ≲ 1. Hence (C.15) implies that
M2

QG ≲M2
T , up to a factor of order one, compatibly with (3.28). The precise order-one factor

depends on the dual saxions, and may be both smaller as well as (slightly) greater than one.
One may then reverse the logic, and use (3.28) as concrete criterion to more precisely identify
the species scale, as the smallest one between (C.12) and (C.14).

We can also compare (C.12) to (3.27). By (C.10), in the present model we have

M2
γ = 4πM2

P

2ŝ3 + (2 + h)ŝ1 + (2 + p+ ph)ŝ2 . (C.17)

Recalling (C.7) we then obtain

M2
T

M2
γ

= 1
4

[
2 + 12ℓ2ℓ3 + 6(2 + p)ℓ1ℓ3 + (6h+ 3ph+ ph2)ℓ23

6ℓ1ℓ2 + 3pℓ21 + 3hpℓ1ℓ3 + 3hℓ2ℓ3 + ph2ℓ23

]
. (C.18)
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We can see this ratio is bounded from below and from above such that it is always an
O(1) quantity

1
2 ≤ M2

T
M2

γ

≤ 1
2 + max

{1
h
,
1
4 + 3(2 + p)

4ph

}
≤ 3

4 + 3(2 + p)
4ph ≤ 3 . (C.19)

This confirms that these two upper bounds on the species scale are of the same order.

C.3 Asymptotic tests of our species scale bound

In this appendix we would like to provide further evidence for the validity of the bound (3.28).
We will study the heterotic models discussed in section 4.2 in various EFT string limits,
assuming that all EFT string charges satisfy eapa ≥ 0 as in section 4.2. Notice that the
results in the case pa = 0 apply also to N = 2 models obtained from type IIA Calabi-Yau
compactifications, or from the mirror type IIB models.

The infinite distance limit associated with an EFT string charge vector (e0, e) is given
by the σ → ∞ limit of the saxionic flow

s0 = s0
0 + e0 σ, s(σ) = s0 + eσ . (C.20)

Let us assume that e is an elementary charge, and that e0 is the minimal one compatible
with the saxionic cone (4.45): e0 = pae

a. According to the discussion of section 3.4, along the
limit (C.20) the species scale is either given by

√
2πTe, if we = 1, or by MQG, if we ≥ 2. Some

of these limits will exit the M-theory/heterotic (or IIA) geometric regime and would require a
dualization to an alternative description. While (3.28) is automatically satisfied and saturated
if we = 1, in the we ≥ 2 case the identification of the appropriate decompactification frame,
and of the corresponding MQG, may not be obvious. In such cases, we will rather apply (3.24)
as a short-cut to estimate MQG, and verify (3.28). We will hence need to identify the relevant
light masses that can appear in these limits.

Consider first the KK scale along the M-theory interval/circle. Taking into account the
ansatz (4.3) and Einstein frame rescaling (4.58), the corresponding KK mass is given by

M2
KK = (2π)2e2A

l2(11)e
4
3 ϕ

= 6πM2
P

κ(s, s, s) . (C.21)

We will also encounter towers of light states corresponding to M2-branes multiply wrapped
around curves C. Using again (4.58), and the relation ds2

M(X) = e−
2
3 ϕds2

st(X) between the
M-theory and the string frame Calabi-Yau metric, their minimal mass is given by:

M2
M2 =

(2π)2e2AV (C)2

l2(11)
= 6πM2

PVst(C)2

κ(s, s, s) , (C.22)

where Vst(C) = s · C = saDa · C is the string frame volume of C. As we will see, there will also
appear additional light towers of KK-states associated to the internal Calabi-Yau.

Which towers of states should be considered in computing the quantum gravity scale along
these EFT string limits depends on whether pae

a = 0 or pae
a > 0, and on the intersection

properties of the nef divisor e = eaDa. As remarked in [17] and [40], following [51], the
latter can grouped into three cases. We will then separately discuss these three possibilities,
for both pae

a = 0 and pae
a > 0, in turn.
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C.3.1 EFT string limits with paea = 0

Let us first assume that e0 = pae
a = 0. The saxion s0, the average M-theory Calabi-Yau

volume V (X) = s0 − 1
2pas

a, and the tension T∗ defined in (4.53a) remain constant along the
flow (C.20). On the other hand, (4.38) implies that

e2ϕ = κ(s, s, s)
6(s0 − 1

2pasa)
, (C.23)

which, as we will see, diverges as some positive power of σ. Furthermore (4.53b) reduces
to the first contribution appearing on its r.h.s. and determines, in the limit σ → ∞, the
dominant EFT string scale MT defined in (3.29):

M2
T = 3πκ(e, s, s)

κ(s, s, s) M2
P . (C.24)

Following [17], we can then distinguish three cases. Note that, while it is not a priori obvious
how to concretely realize the condition pae

a = 0 in heterotic compactifications, if we set
pa ≡ 0 the following results apply anyway to N = 2 type IIA compactifications over X.

Case 1: κ(e, e, e) > 0
In this case, evaluating (C.21) and (C.24) along (C.20) and taking the limit σ → ∞, one gets
M2

T ≃ 3πM2
P

σ and M2
KK ≃ 6πM2

P
κ(e,e,e)σ3 . Moreover, from (C.23) we see that e2ϕ diverges as σ3,

and then the M-theory description is more appropriate. This is a w = 3 EFT string limit [17].
The Calabi-Yau KK mass-squared scales as σ−1 and is parametrically higher than MKK. This
limit corresponds to a partial M-theory decompactification, and the species scale should then
be given by the quantum gravity scale (4.59), which asymptotically behaves as

M2
QG ≃

[
12π

(s0
0 − 1

2pasa
0)2κ(e, e, e)

] 1
3 M2

P

2σ ≃ M2
T[

18π2(s0
0 − 1

2pasa
0)2κ(e, e, e)

] 1
3
. (C.25)

Our saxionic convex hull conditions (4.50) requires s0
0 ≥ 1

α + pas
a
0, with α ≤ 2π. Hence (C.25)

implies that MQG and MT scale asymptotically in the same way, but with MQG < MT , hence
realizing (3.28) with Msp = MQG.

Case 2: κ(e, e, e) = 0 but κ(e, e, e′) > 0 for some e′ ∈ NefZ(X)
In this limit, the Calabi-Yau base X can be seen as a T 2 fibration over a base two-fold B,
with the non-trivial curve C = e · e being a multiple of the T 2 fiber. From (C.24) and (C.21)
get M2

T ≃ 2πM2
P/σ and M2

KK ≃ 2πM2
P/[κ(e, e, s0)σ2], realizing a w = 2 EFT string limit.

The M-theory volume V (C) = e−2ϕ/3Vst(C) = e−2ϕ/3κ(e, e, s) of C vanishes as σ−2/3, while
the M-theory volume of base two-fold B grows as σ2/3. Hence the base KK mass-squared
scales as 1/σ, and is again much heavier than MKK. On the other hand, since we can identify
C with an integral k-multiple of the T 2 fiber, the mass (C.22) of an M2-brane on the T 2 fiber
is asymptotically given by M2

M2 ≃ 2πM2
Pκ(e, e, s0)/(k2σ2), and hence scales with the same

rate of M2
KK. According to the ESC [51], there should exist some dual description in which

this limit corresponds to a decompactification limit, which then realizes the species scale
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as a corresponding quantum gravity scale. Indeed, as in the F-theory limit of elliptically
fibered M-theory compactifications, while one looses the two directions of the shrinking T 2

fiber, the above light M2 states should correspond to KK modes of a new emergent compact
direction. Therefore, the dual compactification space should roughly be given by a (possibly
twisted) product of the M-theory interval/circle, the new emergent circle, and the base B.
The corresponding KK species can then be approximately considered as multiplicative —
see for instance [133] for a discussion on multiplicative species. More precisely, we estimate
the species scale by applying (3.24) with40

Nsp ≃ 2πNKKNM2NBN(10) =
2πM2

sp
MKKMM2

NBN(10) (C.26)

where NKK, NM2, NB denote the numbers of KK modes with mass below the species scale,
corresponding to each geometric (local) factor, and N(10) denotes the number of light degrees
of freedom in the dual ten-dimensional theory. Using (C.26) in (3.24), with the above
asymptotic values of MKK and MM2, we get

M2
sp ≃ 1

k
√
NBN(10)

2πM2
P

σ
≃ M2

T

k
√
NBN(10)

. (C.27)

Since in the limit the base volume grows, we expect NB ≫ 1. Moreover, in string theory
N(10) is significantly larger than one too. Hence M2

sp < M2
T , in agreement with (3.28).

Case 3: κ(e, e, e′) = 0 for any e′ ∈ NefZ(X)
In this case we have e · e = 0 and in this limit the Calabi-Yau X can be seen as a K3 or
T 4 fibration over a P1, where the fiber can be identified with the divisor e = eaDa. Along
this EFT string limit, which has scaling weight w = 1, the M-theory volume of the base P1

grows as σ
2
3 , while the M-theory volume of K3 or T 4 decreases as σ−

2
3 . By the ESC [51]

there should exist a dual description in which this EFT string limit is a tensionless critical
string limit. Hence in this limit Msp = MT and (3.28) is satisfied and saturated.

C.3.2 EFT string limits with paea ≥ 1

Looking at the asymptotic behavior of (4.53) along (C.20), it is clear that if pae
a ≥ 1 the

dominant EFT string scale is always given by the EFT string tension (4.53a):

M2
T = 2πT∗ =

πM2
P

(s0 − 1
2pasa)

≃ 2πM2
P

paea

1
σ
. (C.28)

Differently from what happened in section C.3.1, now the average M-theory Calabi-Yau
volume diverges, V (X) = s0 − 1

2pas
a ≃ 1

2pae
aσ, and this also affects the asymptotic behavior

of the dilaton (C.23).
We can then proceed discussing in turn the three cases already considered as in sec-

tion C.3.1, following [40].
40According to Weyl’s rule, which can be extracted from eq. (A.14), the number of KK resonances associated

with an n-dimensional space with mass below the species scale is well approximated by the formula N(n) ∼
Vn/(2π)⌊(n+1)/2⌋, up to numerical factors which will not alter our main conclusion. On the other hand,
in the present setting, we have V6 ≃ V1,KKV1,M2V4,B and Nsp ≃ N6N(10). Combining these estimates we
obtain (C.26).
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Case 1: κ(e, e, e) > 0
In this case both the M-theory interval and the Calabi-Yau volume diverge. Hence the species
scale Msp is given by (4.59). Evaluating (4.60) along the flow (C.20), in the limit σ → ∞
we get M2

T /M
2
QG ∝ σ2/3, and then (3.28) is certainly satisfied.

Case 2: κ(e, e, e) = 0 but κ(e, e, e′) > 0 for some e′ ∈ NefZ(X)
This limit has scaling weight w = 2 [40]. As already discussed in section C.3.1, the Calabi-Yau
X can be regarded as a T 2 fibration over a base two-fold B. In M-theory, the T 2 fiber has
volume V (T 2) = V (C)/k = 1

ke
−2ϕ/3κ(e, e, s) ∝ σ−1/3, where k ≥ 1 is the number of T 2 fibers

contained in C, and hence the base B volume grows as σ4/3. From (C.21) and (C.22) we get
the same asymptotic behaviors found in the pae

a = 0 case: M2
KK ≃ 2πM2

P/[κ(e, e, s0)σ2] and
M2

M2 ≃ 2πM2
Pκ(e, e, s0)/(k2σ2). Now we cannot use (4.59) and (4.60), but we can proceed

as in the discussion of Case 2 in section C.3.1, and use (3.24) as estimate of the species
scale, with Nsp as in (C.26). The first estimate in (C.27) still holds. Recalling (C.28), it
can be rewritten as

M2
sp = pae

a

k
√
NBN(10)

M2
T . (C.29)

Recalling that the base B decompactifies faster than in the pae
a = 0 case, we expect an even

larger NB ≫ 1, implying that (3.28) is again satisfied.

Case 3: κ(e, e, e′) = 0 for any e′ ∈ NefZ(X)
This is a w = 2 limit [40]. As discussed in section C.3.1, X is a K3/T 4 fibration over P1, and
we can identify the fiber with the nef divisor e = eaDa. Eq. (C.23) implies that the dilaton
tends to the constant value e2ϕ ≃ κ(e, s0, s0)/(pae

a). Similarly, the M-theory volume of the
K3/T 4 fiber is asymptotically constant too: Ve = 1

2e
− 4

3 ϕκ(e, s, s) ≃ 1
2(pae

a)
2
3κ(e, s0, s0)

1
3 .

Hence the P1 base diverges as σ, the heterotic/M-theory EFT description remains valid, and
the discussion of section 4.2.1 applies. In particular, if the asymptotic value of 2πeϕ is smaller
than one, then Msp asymptotically coincides with (C.28), and saturates the bound (3.28).
If instead it is larger than one, then Msp is given by (4.59) and (4.60) implies that the
bound (3.28) is satisfied.

D Wormholes and supersymmetry

In this paper we have focused on asymptotically flat wormholes, regarded as quantum
excitations of a supersymmetric Minkowski vacuum preserving N = 1 supersymmetry. In
general a wormhole breaks, at least partially, the corresponding four supercharges. In
this appendix we discuss at a more quantitative level this breaking and the presence of
corresponding Goldstino-like fermionic zero-modes.

We will use the four- and two-component spinor notations. In four-component notation
the Majorana supersymmetry generators split into ϵ = ϵL+ϵR, with γ5ϵL = ϵL and γ5ϵR = −ϵR.
The relation with the two-component notation [41] is given by

γa = i
(

0 σa

σ̄a 0

)
, γ5 = −iγ0123 =

(
−1 0
0 1

)
, ϵ =

(
ϵR

ϵL

)
=
(
ϵα
ϵ̄α̇

)
. (D.1)
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where (σa)αβ̇ = (−1, σ⃗) and (σ̄a)α̇β = (−1,−σ⃗). We use Latin letters from the middle of the
alphabet (m,n, . . .) to denote curved indices, and from the beginning of the alphabet (a, b, . . .)
to denote flat indices. If necessary, to avoid further ambiguities, we underline flat indices. In
two-component notation the Majorana condition relates left- and right-moving components:

ϵ̄α̇ ≡ εα̇β̇ ϵ̄
β̇ = (ϵα)∗ . (D.2)

In four-component notation the supersymmetry transformations of gravitino and chiralinos
(the supersymmetric partners of ti) are [41]

δψm =
[
∇m − i

2Im
(
∂mt

i∂iK
)
γ5

]
ϵ , (D.3a)

δχi
R =

√
2 ∂mt

iγmϵL , δχi
L =

√
2 ∂mt̄

iγmϵR . (D.3b)

In this paper we restrict to Kähler potential that depend on ti = ai + isi only through the
saxions si = Imti. Recalling (2.11), (D.3a) can be rewritten as

δψm =
(
∇m − i

2 ℓi∂ma
i γ5
)
ϵ . (D.4)

In the Wick-rotated Euclidean formulation γ4 = γ4 = iγ0 and, correspondingly, σ4 =
σ4 = iσ0 = −i1 and σ̄4 = σ̄4 = iσ̄0 = −i1 whereas σ⃗ remain unchanged, so that the
representation (D.1) formally still holds. Moreover, the left- and right-moving components of
the Majorana spinors become independent fields and are not related by complex conjugation
anymore, but must be regarded as analytic continuation of the Lorentzian ones. In particular,
the Majorana condition (D.2) must be relaxed.

D.1 Extremal BPS wormholes

We first focus on the extremal wormholes of section 5.3. These are characterized by the
following BPS-like equations [17]:

H3,i = −M2
P ∗ dℓi . (D.5)

The metric is flat and, in the case of the extremal wormhole sourced by a fundamental
instanton centered at x0, the Bianchi identity (2.17) must be corrected by a localized term:
dH3,i = 2πδ4(x0). Hence, the dual saxions profiles must satisfy d ∗ dℓi = −2πM−2

P δ4(x0),
which is solved by

ℓi = ℓ∞i + qi

2πM2
P |x− x0|2

, (D.6)

where |x|2 ≡ δmnx
mxn. The solution (D.6) can be immediately generalized to multi-centered

ones, sourced by multiple fundamental instantons. Given the Euclidean axion/two-form
duality relation

dai = i
M2

P
Gij ∗ H3,j , (D.7)
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in terms of the axions ai the BPS conditions (D.5) reads41

dai = iGijdℓj = −idsi . (D.8)

By using this and (2.11), and the fact that the metric is flat, the gravitino transformation (D.4)
on the multicenter extremal wormhole solution becomes

δψm = (∂m + 1
4∂mKγ5)ϵ = e−

1
4 Kγ5∂m

(
e

1
4 Kγ5ϵ

)
. (D.9)

We then see that the gravitino remains invariant, δψm = 0, under the supersymmetry
transformations

ϵ = e−
1
4 (K−K∞)γ5η ⇔ ϵα = e

1
4 (K−K∞)ηα, ϵ̄α̇ = e−

1
4 (K−K∞)η̄α̇ , (D.10)

with ηα and η̄α̇ independent constant anticommuting spinors. We have chosen the integration
constant e

1
4 K∞γ5 , where K∞ ≡ K(s∞), so that ϵ → η at infinite spatial distance. The

four constant components (ηα, η̄
α̇) parametrize four independent global supersymmetry

transformations which leave the gravitino invariant — see also [134].
Let us now turn to the chiralino transformations (D.3b). We first notice that the BPS

condition (D.8) is equivalent to dti = 0, while dt̄i = −2idsi. This implies that

δχi
α = 0 , δχ̄α̇ i = 2

√
2e

1
4 (K−K∞)∂ms

i(σ̄m)α̇βηβ , (D.11)

under the transformations generated by (D.10). We see that the extremal wormhole solutions
preserve the two supersymmetries generated by η̄α̇, while break the ones generated by ηα. In
particular, because ηα acts non-trivially on the background, the configuration

χ̄α̇ i(x) ≡ [χ̄i β
(0)(x− x0)]α̇ηβ , (D.12)

with (β = 1, 2)

[χ̄i β
(0)(x− x0)]α̇ = N e

1
4 (K−K∞)(σ̄m)α̇β∂ms

i , (D.13)

corresponds to zero-modes of the linearized equations of motion around the background. Note
that the location of the fundamental instanton x0 is a free parameter. The normalization
constant N is fixed by

δββ′ =
∫

d4xGij

{
[χ̄i β

(0)]
α̇
}†

[χ̄j β′

(0) ]
α̇. (D.14)

Since the integral should be restricted to the controllable regime |x − x0|2 ≥ Λ−2, the
normalization constant N in general satisfies N ∝ Λ eK∞/4 up to a dimensionless function
of M2

P/Λ2. Furthermore, as ∂ms
i ∼ M−2

P Gij
∞qj ∂m|x − x0|−2 for large |x − x0|2, the zero-

modes (D.12) behave as the components of Feynman’s fermionic propagator in the asymptotic
vacuum:

[χ̄i β
(0)]

α̇ ∝ N e
1
4 (K−K∞) Gijqj

2πM2
P
(σ̄m)α̇β∂m

1
|x− x0|2

∝ εβαqjGij [SF(x− x0)]α̇α . (D.15)
41Recall that in Euclidean space the axions dual to a 2-form become purely imaginary fields.
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D.2 Non-extremal wormholes

In order to study the fermionic zero-modes of regular non-extremal wormholes it is convenient,
following [120], to introduce a new dimensionless radial coordinate

y ≡ 2πM2
PL

2τ ⇔ cos y = L2

r2 . (D.16)

Note that y ∈ (−π
2 ,

π
2 ). We recall that τ is related to the three-sphere radius r by (5.22).

Then e−2A = sin2 y and the metric (5.20) becomes

ds2 = L2
(

dy2

4 cos3 y
+ dΩ2

cos y

)
. (D.17)

Let us pick the vielbein ea = (e4, ei), with

e4 = L

2(cos y)
3
2
dy, ei = L

√cos y ê
i , (D.18)

where ei is a vielbein for a three-sphere of radius r = 1. The components of the spin
connection ωa

b = ωa
bmdym are

ωi
j = ω̂i

j , ωi
4 = sin y ei . (D.19)

By combing (D.7) and (5.7) we have

dai = − iGijqj

2πM2
PL

2dy . (D.20)

Plugging (D.20) inside (D.4) we get

δψm =
(
∇m − ⟨q, s⟩

4πM2
PL

2 δ
y
mγ5

)
ϵ . (D.21)

Let us now gauge-fix the local supersymmetry by imposing the transverse gravitino gauge

γmψm = 0 , (D.22)

where γm = ea
mγa. Imposing that (D.22) is preserved under (D.21) and using (D.19), we

get the following condition on ϵ:

2 cos y ∂yϵ+ γ4γ̂i∇̂iϵ+
3
2 sin y ϵ = ⟨q, s⟩

2πM2
PL

2 cos y γ5ϵ . (D.23)

We would like to determine the form of ϵ imposing that it becomes asymptotically covariantly
constant on one of the two sides of the wormhole: ∇mϵ|y=±π

2
= 0. Since

∇iϵ = ∇̂iϵ+
1
2 sin y γ̂iγ4ϵ , (D.24)

we get the asymptotic conditions

∇̂iϵ|±π
2
= ∓1

2 γ̂iγ4ϵ|y=±π
2
. (D.25)

– 100 –



J
H
E
P
0
7
(
2
0
2
4
)
2
4
0

Given the O(4) symmetry, these conditions should in fact be satisfied by ϵ at any y ∈ (−π
2 ,

π
2 ).

We must then consider two possibilities

∇̂iϵ± = ∓1
2 γ̂iγ4ϵ± . (D.26)

So ϵ+ can asymptotically tend to a non-vanishing covariantly constant spinor on the first
half-wormhole, y ∈ [0, π

2 ), while it should quickly vanish in the second half, for y → −π
2 .

Viceversa, ϵ− tends to a covariantly constant spinor on the second half-wormhole, y ∈ (−π
2 , 0]

and must be quickly vanishing for y → π
2 . In the following we will focus on ϵ+, omitting

the subscript for simplicity. (The corresponding results for ϵ− can be immediately obtained
by inverting the role of the two half-wormholes.)

So, taking into account (D.26), (D.23) becomes

2 cos y ∂yϵ+
3
2(sin y − 1) ϵ = ⟨q, s⟩

2πM2
PL

2 cos y γ5ϵ . (D.27)

The solution to this equation can be written in the form

ϵ = M(y) η with M(y) =M1(y) +M2(y)γ5 , (D.28)

where η is an y-independent spinor satisfying the same equation (D.26) of ϵ+: ∇̂iη = −1
2 γ̂iγ4η.

We will impose that M(y = π
2 ) = 1, so that η represents the asymptotic covariantly constant

spinor. The condition (D.27) translates into the following equation for the matrix M(y):

∂y logM = −3
4 tan

(
y

2 − π

4

)
+ ⟨q, s⟩

4πM2
PL

2 γ5 . (D.29)

This can be integrated into

M(y) =
[
cos

(
y

2 − π

4

)] 3
2
exp

[
− γ5
4πM2

PL
2

∫ π
2

y
dỹ ⟨q, s(ỹ)⟩

]
, (D.30)

where we have fixed the integration constants by imposing M(y)|y= π
2
= 1. The right- and

left-handed components (ϵα, ϵ̄α̇) are then given by

ϵα = ηα

[
cos

(
y

2 − π

4

)] 3
2
ef(y) , ϵ̄α̇ = η̄α̇

[
cos

(
y

2 − π

4

)] 3
2
e−f(y) , (D.31)

with
f(y) ≡ 1

4πM2
PL

2

∫ π
2

y
dỹ ⟨q, s(ỹ)⟩ . (D.32)

The common cosine factor implies that all components of ϵ quickly vanish as one approaches
y = −π

2 , as expected. The exponential factors instead give an enhancement for ϵα and a
further suppression for ϵ̄α̇. One can get an idea of the possible form of ef(y) by restricting to
the homogeneous wormholes of section 6.1. In terms of the y radial coordinate, (6.7) becomes

ℓ̃(y) = 1
2πM2

PL
2

√
n

3 cos
(√

3
n
y

)
. (D.33)
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From (6.13), (6.8) and (6.6), we get

ef(y) =

tan
(

π
4 − 1

2

√
3
n y
)

tan
(

π
4 − π

4

√
3
n

)


n
4

. (D.34)

Using (D.31) inside (D.3) one gets the corresponding (unnormalized) Goldstino zero-
modes,

δχi
R = 2

√
2

L
∂yt

i (cos y)3/2 σ4ϵL ,

δχi
L = 2

√
2

L
∂y t̄

i (cos y)3/2 σ̄4ϵR .

(D.35)

These explicitly show that, in general, no supersymmetry is preserved by non-extremal
wormhole configurations. We can further verify this by inserting the profile of ti on the
homogeneous solution into (D.35), obtaining

δχi
R = −i6

√
2πM2

PL

n

[
1− sin

(√
3
n
y

)] [
cos y cos

(y
2 − π

4
)]3/2[

cos
(√

3
ny
)]2 e−f(y) σ4ηL ,

δχi
L = −i6

√
2πM2

PL

n

[
1 + sin

(√
3
n
y

)] [
cos y cos

(y
2 − π

4
)]3/2[

cos
(√

3
ny
)]2 e+f(y) σ̄4ηR ,

(D.36)

with ef(y) as in (D.34). For n > 3 these expressions are regular and behave as ∼ r−3 as we
approach the asymptotic flat space, like a free Feynman propagator analogously to (D.15).
The case n = 3 corresponds to the marginally degenerated case and will be discussed below.

D.3 Marginally degenerate wormholes

In section (6.4) we have regularized the n = 3 marginally degenerate wormholes by introducing
an IR cutoff rIR. As discussed in section 7.4, this prescription receives a natural justification
if one aims at finding the effective operator encoding the wormhole effects at distances
larger than Λ−1

IR ≫ L. In Section 6.4 we have also observed how the marginally degenerate
wormholes look very similar to extremal BPS wormholes carrying the same charge. The
deviation from the extremal case is concentrated around the wormhole’s neck. It is then clear
that, at radii slightly larger than L, the marginally degenerate wormhole should admit, to
very good approximation, two Killing spinors ϵ̄α̇ of the form (D.10). This approximation of
course breaks down as we approach the throat. However, the corresponding zero-modes δχi

R

are necessarily localized around the wormhole throat and quickly vanish as we approach rIR.
In order to more explicitly check this qualitative expectation, it is convenient to use

the alternative (smooth) regularization F = log P̃ → (1 + ε) log P̃ , with ε ≪ 1, which
amounts to setting

n = 3 (1 + ε) . (D.37)

In order to illustrate the form of the zero-modes, let us focus for simplicity on the homogeneous
case. The regularization implies a finite

ℓ̃∞ = π

4 εℓ̃∗ . (D.38)
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Recalling the discussion in section 6.4 we may pick ε = 4
π ϵΛ = 4

πΛ
2
IRL

2 so that we can identify
ℓ̃∞ with ℓ̃Λ, formally identifying a correspondence between the ΛIR and ε regularization
procedures. In this way, eq. (D.34) becomes

e−f(y,ε) ≃
[
πε

8 tan
(
π

4 + y

2
√
1 + ε

)
+O(ε2)

] 3
4
. (D.39)

so that δχR, δχL of (D.36) are now well defined in the whole domain of y. The quantitative
expectation that the modes associated to δχR become unobservable far from the wormhole
throat can then be verified by inspecting the functional dependence on y of the regularized
wavefunctions associated to the zero-modes. In particular, their ratio is given by1− sin

(
y√
1+ε

)
1 + sin

(
y√
1+ε

)
 e−2f(y,ε). (D.40)

Taking y = π/2, the above expression becomes1− sin
(

π
2
√

1+ε

)
1 + sin

(
π

2
√

1+ε

)
 e−2f(π/2,ε) ≈ π2ε2

64 = Λ4
IRL

4

4 , (D.41)

where in the last step we exploited the correspondence between the two regularization
procedures. Already at distances 1/ΛIR = 5L this gives a relative O(10−4) relative suppression.
Hence from a IR viewpoint only the zero-mode δχL is observable. At y = −π/2 the situation
is reversed, with the zero-mode δχL being suppressed in the IR. This is consistent with
the identification of the y = −π/2 side as an anti-extremal BPS wormhole conserving the
opposite supercharges.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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