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Abstract
The concept of functional foods is gaining more importance due to its role in maintaining a healthy status and preventing 
some metabolic diseases. The control of diabetes, in particular type-2 (T2DM), could be considered a big challenge since 
it involves other factors such as eating habits. From the pharmacological point of view, inhibiting digestive enzymes, such 
as α-amylase and α-glucosidase, is one of the mechanisms mainly used by synthetic drugs to control this disease; however, 
several side effects are described. For that reason, using bioactive compounds may appear as an alternative without presenting 
the complications synthetic drugs available on the market have. The winemaking industry generates tons of waste annually, 
and grape pomace (GP) is the most important. GP is recognized for its nutritional value and as a source of bioactive com-
pounds that are helpful for human health. This review highlights the importance of GP as a possible source of α-amylase 
and α-glucosidase inhibitors. Also, it is emphasized the components involved in this bioactivity and the possible interactions 
among them. Especially, some phenolic compounds and fiber of GP are the main ones responsible for interfering with the 
human digestive enzymes. Preliminary studies in vitro confirmed this bioactivity; however, further information is required to 
allow the specific use of GP as a functional ingredient inside the market of products recommended for people with diabetes.

Keywords  Grape pomace · α-Amylase and α-glucosidase inhibition · Functional ingredients · Phenolic compounds · Fiber · 
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Introduction

Functional foods contain biologically active compounds, 
which are responsible for providing health benefits beyond 
their nutritional capacities (Alongi & Anese, 2021), in 
particular antioxidant, anti-inflammatory, and antidiabetic 
activities assessed at in vitro level (Banwo et al., 2021). These 
capacities turn into health claims after their recognition 
and authorization, according to the region regulations. For 
example, according to the European law, it is included inside 
the Reg. (EU) n. 353/2008 (Alongi & Anese, 2021).

Diabetes is one of the health challenges of the twenty-first 
century and the number of adults affected by diabetes is more 
than tripled over the past 20 years. The 10th edition 2021 of 
the International Diabetes Federation (IDF) shows that 537 
million adults are currently living with this disease (International 
Diabetes Federation, 2021). IDF estimates that there will be 643 
million adults with diabetes by 2030 and 783 million by 2045. 
The inhibition of some digestive enzymes, such as α-amylase 
and α-glucosidase, is one of the options to control this disease by 
synthetic drugs. However, gastrointestinal discomfort and lactic 
acidosis are some adverse effects reported (Venkatakrishnan 
et al., 2019). Currently, there is evidence about the in vitro 
ability of several fruits, vegetables, and mushrooms to inhibit 
the activity of these human digestive enzymes (Lin et al., 2022; 
Papoutsis et al., 2021; Vadivel et al., 2012).

In this regard, Mediterranean diet could be a good option 
since it is based on local products, mainly of vegetal origin, 
scarcely processed, and stored for a short time (Sáez-Almendros 
et al., 2013). However, this food chain generates big amounts 
of by-products, being necessary to find environmental friendly 
strategies to revalorize them (Berry, 2019). In this frame, 
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several food industry by-products have been demonstrated 
to present α-amylase and α-glucosidase inhibition activities, 
fostering their valorization and the circular economy issue 
(Fernandes et al., 2020b; Khan et al., 2016; Mahindrakar & 
Rathod, 2021; Mwakalukwa et al., 2020). For example, the wine 
industry, which is related to the Mediterranean diet (Ditano-
Vázquez et al., 2019), generates more than 9 million tons of 
grape pomace (GP) per year (Ferri et al., 2017), representing 
an environmental challenge. An amount of 20–25 kg of GP 
is estimated to be obtained from 100 kg of grapes and big 
amounts of this by-product are produced, mainly seasonally 
(Lavelli, 2021; Muñoz-Bernal et al., 2021).

GP has been recognized to prevent insulin resistance and 
inflammation (Martínez-Maqueda et al., 2018; Rodriguez 
Lanzi et al., 2016). In addition, different compounds present 
in GP such as phenols and fiber were attributed to present 
antihyperglycemic effects, mainly through the inhibition of 
the enzymes α-amylase and α-glucosidase (de Paulo Farias 
et al., 2021; Saikia & Mahanta, 2016). Therefore, the aim of 
this review was to highlight the potential of GP in inhibiting 
α-amylase and α-glucosidase enzymes, serving as a possible 
tool in the diabetes control.

Methodology

Existing studies related to the GP ability to inhibit α-amylase 
and α-glucosidase enzymes were gathered to discuss the results 
currently available. The literature research was carried out in 
the Scopus database through the period 2002–2022, using 
initially the keyword “grape pomace.” The search revealed 
active research on this topic with 1642 articles, out of which 
1451, 67, 57, and 49 were research articles, reviews, conference 
papers, and book chapters, respectively. Most of them (1379) 
were published from 2012 to 2022, 2021 being the year with 
the highest number of publications (231).

Then, the research was restricted to scientific papers 
focused on the inhibition of α-amylase and α-glucosidase 
by GP, using the keywords “grape pomace + alpha amylase”  
and “grape pomace + alpha glucosidase.” The number 
of documents available was reduced to 15 and 20 for the 
first and second keyword, respectively. This topic has 
been studied from 2010 onwards, especially in 2020 and 
2021. The articles were categorized into the following 
scientific areas: agriculture and biological sciences (55%), 
biochemistry (30%), and chemistry (15%). Spain and Chile 
played the major role in researching this topic. The list of 
the publications was screened based on the title, authors, and 
year, and studies not related to the agricultural, biological, 
and chemistry fields were excluded. After identifying and 
screening, 10 research articles were selected to discuss 
the use of GP to inhibit the activity of α-amylase and 
α-glucosidase.

Diabetes

Diabetes mellitus (DM) is a chronic non-communicable disease 
(WHO, 2021) that occurs when the endocrine pancreas is not able 
to secrete suitable amount of insulin, or when the body does not 
respond to the insulin it produces. The disease is mainly classified 
into many types; however, the most common are type 1 (T1) 
and type 2 (T2) DM. The first one is mainly the consequence 
of an autoimmune T-cell-mediated reaction against the insulin-
producing β-cells of the pancreas. As a result, the body produces 
very little or no insulin. The second one is the most common 
type of diabetes, in which hyperglycemia is mainly due to insulin 
resistance and reduction of insulin production (Gharravi et al., 
2018; Mahindrakar & Rathod, 2021; Tan et al., 2019). The 
insulin resistance is described to be the result of intracellular 
lipid-induced inhibition of insulin-stimulated insulin-receptor 
substrate (IRS)-1 tyrosine phosphorylation that determines a 
reduced IRS-1-associated phosphatidyl inositol 3 kinase activity 
(Petersen & Shulman, 2006).

A reduced life expectancy is found in both DM types, 
even if it is shorter in the T1DM compared to T2DM, as a 
consequence of a higher incidence of cardiovascular diseases 
and acute metabolic disorders in the former (Wise, 2016). In all 
forms of diabetes, an early stage diagnosis and management are 
important to prevent or slow down the potential complications 
such as diabetic nephropathy, retinopathy, cardiovascular 
diseases, and diabetic foot ulcer (Khalil, 2017). The potential 
risk factors, especially for the T2DM, include obesity and 
unhealthy diets, mainly due to the excessive increase of 
carbohydrates and fat intake, as well as physical inactivity 
(Tan & Chang, 2017). Currently, the westernized diet increases 
the prevalence of specific forms of malnutrition (overweight, 
obesity, metabolic syndrome, among others), which is 
exacerbated by the present COVID-19 pandemic (FAO, 2020). 
Moreover, diabetes is an important risk factor for COVID-
19 complications (McGurnaghan et al., 2021; Nassar et al., 
2021). Under this point of view, the increasing prevalence of 
T2DM worldwide is a consequence of a complex interplay 
of socioeconomic, demographic, environmental, and genetic 
factors (Tan et al., 2019).

In order to control T2DM, it is encouraged to correct the 
lifestyle, to reduce the body mass index, and the use of oral 
antidiabetic drugs. For example, the most used in T2DM 
management are insulin secretagogues, drugs that reduce 
insulin resistance, and carbohydrate digestive enzyme 
inhibitors (AGIs) (Campbell, 2007; Fernandes et al., 2020b). 
The enzymes α-amylase and α-glucosidase are the main ones 
inhibited. Both are hydrolases, the activity of α-amylase being 
to catalyze the starch hydrolysis and it needs the presence of 
calcium as a metal co-factor. This enzyme is produced in 
the salivary glands and pancreas, and then it is secreted into 
the mouth and the small intestine, respectively (Papoutsis 
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et al., 2021). The di- and oligosaccharides obtained after the 
α-amylase activity undergo further hydrolysis to glucose, 
carried out by α-glucosidases, located in the brush border of 
the small intestine (Li et al., 2022).

These enzymes are recognized as targets for modulating 
the postprandial hyperglycemia (Yang & Kong, 2016), 
maintaining the overall body glucose levels (Gummidi et al., 
2021), and they are present in several plant species due to 
their bioactive compounds (de Sales et al., 2012).

Acarbose is an AGI, specifically a pseudo-tetrasaccharide 
that has a nitrogen between the first and second glucose 
molecules, possessing a particular high affinity for the 
α-glucosidase enzyme (Tuyen et al., 2021). Both enzymes are 
inhibited in a competitive way, reducing their affinity to the 
oligosaccharides from dietary starch as well as decreasing the 
monosaccharide formation rate (Rosak & Mertes, 2012).

Nevertheless, the carbohydrate digestive enzyme 
inhibitors are not free from side effects, such as flatulence 
and diarrhea, abdominal pain, and a reduced nutrient 
absorption (Wang et  al., 2020). In particular, acarbose 
often generates side effects as a consequence of its non-
specific inhibition of α-amylase. This results in an excessive 
accumulation of undigested carbohydrates in the large 
intestine (Cardullo et al., 2021).

Taking into account this consideration, the search for more 
specific and better tolerated α-glucosidase and α-amylase 
inhibitors with limited effects is an important issue. Therefore, 
the use of phytochemicals is encouraged, as a consequence 
of their effectiveness, availability, and low toxicity (de Paulo 
Farias et al., 2021; Kadouh et al., 2016; Lv et al., 2019). So far, 
some plant extracts have been reported to counteract T2DM by 
inhibiting digestive enzymes even stronger than the commercial 
drugs (Tan & Chang, 2017) or acting synergistically with 
them (Boath et al., 2012). Natural extracts, especially the ones 
rich in proanthocyanidins, have shown the ability to inhibit the 
intestinal α-amylase and α-glucosidase, potentially constituting 
an alternative to the synthetic AGIs (Yilmazer-Musa et al., 2012).

Grape Pomace

The wine production represents a huge part of the agriculture 
and beverage industries. Therefore, it generates a high 
amount of waste, GP being the most important one (Ilyas 
et al., 2021). In this regard, 1 kg of GP is produced from 
each 6 L of wine (García-Lomillo & González-SanJosé, 
2017). Among the current applications of this by-product, its 
uses as fertilizers (especially grape stems), heat producers, 
and cattle feed are the most highlighted (Antonić et al., 
2020; Maragkoudakis et al., 2013; Ribeiro et al., 2015). 
In addition, GP can be used to produce some value-added 
components such as edible acids (citric, tartaric, and malic 
acids) and dietary fiber, as well as ethanol (Ilyas et al., 2021). 

Moreover, GP is the starting point for preparing alcoholic 
spirits like Italian grappa (Cisneros-Yupanqui et al., 2021).

After the winemaking process, part of the bioactive 
compounds in grapes is transferred to the wine; however, 
a high concentration remains in the residues (Fontana 
et  al., 2013; Gonçalves et  al., 2017; José Jara-Palacios 
et al., 2014; Messina et al., 2019; Ribeiro et al., 2015). 
Therefore, the recognition of GP as a source of health-
promoting components has highly encouraged its use as 
a food ingredient within the industry (Carmona-Jiménez 
et al., 2018; Pérez-Jiménez et al., 2009; Rodríguez-Morgado 
et al., 2015). Among the components found in GP, phenolic 
compounds and dietary fibers are the most reported in the 
literature, whose proportion after the winemaking process 
is up to 85 and 70%, respectively (Rocchetti et al., 2021).

Grape Pomace Health‑promoting Components

Phenolic compounds are found in most plants and more than 
10,000 structures have been detected so far (Alqahtani et al., 
2013). Their great potentials as powerful bioactive compounds, 
health-promoting, and disease-preventing have increased the 
interest in these secondary metabolites in recent years (Ebrahimi 
& Lante, 2021; Tan & Chang, 2017). The content of phenolic 
compounds and their composition rely on the growth region, 
climate, and grape variety, among other factors related to the 
winemaking process (Muñoz-Bernal et al., 2021). The phenolic 
compounds in grape berries are distributed in the pulp, seeds, 
and skin, these two last ones being the main sources (Gonçalves 
et al., 2017), especially of procyanidins (Álvarez et al., 2012). 
Part of these bioactive compounds remain in the GP after the 
winemaking, along with important quantities of catechins, 
epicatechins, and flavan-3-ols, mainly due to the hydrogen bonds 
and their hydrophobicity (Barba et al., 2015; Cisneros-Yupanqui 
et al., 2020a; Muñoz-Bernal et al., 2021). In addition, the 
phenolic compounds present in GP have shown a good stability, 
especially as a powder, during the storage (Cisneros-Yupanqui 
et al., 2020b), showing its potential to be considered as a food 
ingredient. So far, the phenolic compounds present in GP have 
had different applications, as summarized in Table 1. In all the 
cases, the concentration of phenolic compounds and antioxidant 
activity has increased after the fortification with GP, regardless 
the food matrix (Fernández-Fernández et al., 2022; Lavelli et al., 
2016; Rainero et al., 2021) and the type of GP employed. In 
some cases, the addition of GP was useful to delay the lipid 
oxidation (Cisneros-Yupanqui et al., 2020a; García-Lomillo 
et al., 2017) not only the one derived from the winemaking 
process, but also the GP from the juice industry, when applying 
it in frozen salmon burgers at 2% (Cilli et al., 2019). Moreover, 
the addition of GP has increased the characteristics of a fortified 
wheat bread and pasta, presenting a better volume, firmness, 
taste intensity, and color (Šporin et al., 2018; Tolve et al., 2020). 
However, the firmness and consistency of a GP-fortified yogurt 
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did not change considerably when comparing to the control 
(Iriondo-DeHond et al., 2020).

On the other hand, fiber, especially the dietary one, has 
been studied to promote diverse beneficial effects such as 
improving the gastrointestinal function, reducing the low-
density lipoprotein (LDL) cholesterol, and moderating the 
response of the postprandial insulin response (Mildner-
Szkudlarz et al., 2013). In addition, fiber helps in reducing 
the risk of cardiovascular diseases and it is defined as an 
edible carbohydrate analogous, digestion and absorption 
resistant through small intestinal tract with a fermentation 
(partial or complete), in the large intestine (Solari-Godiño 
et al., 2017). Dietary fiber can be classified as soluble and 
insoluble, the former including β-glucans, hemicellulose, 
pectin, and oligosaccharides (Dong et al., 2022). The soluble 
dietary fiber is recognized for lowering glucose levels and 
controlling obesity in patients with T2DM (Xie et al., 2021), 
while insoluble fiber prevents constipation and hemorrhoids 
by going fast through the gastrointestinal tract, providing 
bulk to the feces (Ain et al., 2019).

GP has been reported to be a rich source of fiber (from 
44.2 to 62.6%), which allows its use into bakery and dairy 
products (Fernández-Fernández et al., 2019, 2022; Oladiran & 
Emmambux, 2018; Rainero et al., 2021). Furthermore, grape 
by-products contain mainly cellulose, hemicelluloses, glycans, 
and pectin (Fontana et al., 2013; Mildner-Szkudlarz et al., 
2013; Oladiran & Emmambux, 2018), and the insoluble dietary 
fraction, such as lignin, has been the most reported one in this 
type of residue, presenting good water and oil holding capacity 
as well as antioxidant activity (Mildner-Szkudlarz et al., 2013; 
Saikia & Mahanta, 2016). The term antioxidant dietary fiber 
has been introduced to define a products that present both 
natural antioxidants and the beneficial effects of dietary fiber 
(Sánchez-Alonso et al., 2007). For example, it could present 
antioxidant properties and inhibit lipid and protein oxidation 
(Garcia-Lomillo et al., 2016; Lavelli, 2021; Marchiani et al., 
2016; Sáyago-Ayerdi et al., 2009). The association and health 
effect of dietary fiber and phenolic compounds are appreciated 
at the large intestine level (Solari-Godiño et  al., 2017). 
Moreover, the ability of phenolic compounds to modify the gut 
microbiota, improving and inhibiting the growth of beneficial 
and pathogenic bacteria, respectively, was reported (Gowd 
et al., 2019).

Grape Pomace as α‑Amylase 
and α‑Glucosidase Inhibitors

Phenolic compounds have been recognized for presenting 
several bioactivities, including the antidiabetic one, which is 
mostly related to their capacity of decreasing the postprandial 
glycemic levels, especially through the inhibition of human 
digestive enzymes (Alqahtani et al., 2013; Martinez-Gonzalez 

et al., 2017; Tan & Chang, 2017), with a consequent reduced 
dietary starch digestion and absorption (Hogan et al., 2011). 
The inhibition of these enzymes by diverse type of phenolic 
compounds has been well studied in the literature (Oladiran 
& Emmambux, 2018; Rocha et al., 2020; Shobana et al., 
2009). Phenols are the most involved in these bioactivities 
(Kato-Schwartz et al., 2020) by binding to either the sites or 
the substrate of the digestive enzymes, making them inactive 
(Oladiran & Emmambux, 2018). Some characteristics of 
phenolic compounds such as the molecular weight, number, 
and position of substitution are suitable for their digestive 
enzyme inhibitory activity (Fernandes et  al., 2020b).  
In addition, flavonoids have been recognized to interfere 
with the α-amylase activity by forming covalent bonds 
with starch during cooking and in the stomach, decreasing 
its availability as a substrate for the enzyme (Takahama & 
Hirota, 2018). Procyanidins of grape seeds are responsible for 
presenting health-promoting effects such as antioxidant and 
antihyperglycemic by inhibiting α-amylase and α-glucosidase 
enzymes (Fernandes et  al., 2020a; Takahama & Hirota,  
2018; Yilmazer-Musa et al., 2012). These compounds are 
polymers of flavan-3-ols, which are formed exclusively by 
catechin and/or epicatechin units (Álvarez et  al., 2012). 
Procyanidins have more potential interaction sites than the 
monomeric phenolic compounds, so they could crosslink 
easily with different molecules, such as enzymes (Lavelli et al., 
2016). On the other hand, proanthocyanidins have been shown 
to inhibit these key enzymes, due to their high polymerization 
degree and numerous hydroxyl groups (Huamán-Castilla 
et al., 2021). In particular, the high degree of polymerization 
of these molecules present in ripe fruits showed more potent 
inhibition of α-amylase and α-glucosidase than the less-
polymerized ones, which are typically present in unripe fruits 
(Zhang et al., 2020).

In addition, proanthocyanidins and anthocyanins have 
been demonstrated to exert a major role in inhibiting 
α-amylase and α-glucosidase, respectively (Lavelli et al., 
2015), in comparison to acarbose (Yilmazer-Musa et al., 
2012). Regarding catechins, it was suggested that galloylated 
catechins and catechol-type catechins present a higher 
α-amylase inhibitory activity than non-galloylated and 
pyrogallol-type ones (Takahama & Hirota, 2018; Yilmazer-
Musa et al., 2012). Moreover, galloyl groups from catechins 
were related to inhibiting the α-amylase activity by binding 
other sites than the active one as well as presenting good 
affinity to human α-amylase (Miao et al., 2014). Catechins 
were also found to suppress and enhance the amylopectin and 
amylose digestion, respectively, by forming starch-catechins 
complexes without modifying the α-amylase activity (Liu 
et al., 2011). In addition, resveratrol could delay the activity of  
both enzymes (Fernandes et al., 2020a). However, phenolic 
compounds enhance or decrease the α-amylase activity when 
low and high concentrations are used, respectively (Yang 
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& Kong, 2016). In general, tannins have been reported to 
inhibit α-amylase, while α-glucosidase is inactivated by 
smaller phenolic compounds such as phenolic acids (Barrett 
et al., 2013; Oladiran & Emmambux, 2018). Besides the 
potential of phenolic compounds in this bioactivity, several 
factors such as the concentration in food, bioaccessibility, 
absorption, metabolism, and bioavailability can maximize the 
antidiabetic capacity of this compounds (Chen et al., 2019; 
de Paulo Farias et al., 2021). For example, factors such as 
pH and temperature may modify the interaction between the 
phenolic compounds and proteins (including the digestive 
enzymes), as reported by Martinez-Gonzales et al. (2017).

On the other hand, the molecular interactions mostly 
recognized between the enzymes and phenolic compounds are 
van der Waals, electrostatic forces, and hydrogen as well as 
hydrophobic binding (Martinez-Gonzalez et al., 2017), which 
have been related to inhibit the enzymes in a non-competitive 
way (Rocha et al., 2020; Yang & Kong, 2016). Therefore, the 
inhibitor can bind to either the free enzyme or the complex 
enzyme–substrate (Rocha et al., 2020). In addition, this kind 
of inhibition has been previously found in GP (Oladiran & 
Emmambux, 2018). Some phenolic compound inhibition has 
been observed to be in a competitive way, especially the one 
from quercetin and caffeoylquinic acid (Martinez-Gonzalez 
et al., 2017). However, non-covalent interactions are recognized 
to be the key of the enzymatic inhibition since they represent 
the basis of reversible inhibitions, which may be useful within 
some medical treatments (Martinez-Gonzalez et al., 2017). The 
number of galloyl ester groups and the polymerization degree 
are the main characteristics of phenolic compound structure 
that have an influence on their interactions with proteins 
(Lavelli et al., 2016).

Additionally, the α-amylase activity has been related to the 
insoluble fiber content and to the limited enzyme accessibility 
to the substrate, due to network of starch and enzyme by the 
fiber (Saikia & Mahanta, 2016). Moreover, insoluble dietary 
fiber has a higher inhibitory effect on α-glucosidase than on 
α-amylase, and this activity may be related to the inhibitors 
present on the surface of the fiber as well as the trapping 
capacity of the porous fiber network (Yang et al., 2019). 
However, the soluble dietary fiber is the most associated with 
the postprandial glucose response by reducing the glucose 
absorption (Oladiran & Emmambux, 2018).

GP has been identified as an α-glucosidase and α-amylase 
inhibitor (Table 2), showing, especially the red varieties, a 
possible potential in the management of diabetes (Fernandes 
et al., 2020a; Hogan et al., 2010; Kadouh et al., 2016; Kato-
Schwartz et al., 2020). Table 2 shows that yeast α-glucosidases 
are usually employed in research (Kong et al., 2019); however, 
the mammalian enzymes are more biologically relevant 
since they are more comparable to those acting in the human 
intestinal tract (Kadouh et al., 2016). In addition, GP has 
lowered the starch digestibility rate and the estimated glycemic Ta
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index (Oladiran & Emmambux, 2018; Rocchetti et al., 2021; 
Tolve et al., 2020). Moreover, GP was employed to fortify 
yogurt, showing a higher α-glucosidase inhibition activity 
(Fernández-Fernández et al., 2022; Iriondo-DeHond et al., 
2020). Seeds present in GP powder as well as their extract 
have been described to inhibit α-amylase and α-glucosidase, 
respectively, the efficiency being comparable and higher than 
acarbose (Yilmazer-Musa et al., 2012). This activity was even 
more potent than the one exerted by isolated catechins in the 
case of α-amylase, while epigallocatechin gallate (EGCG) has 
reached a more significant effect on α-glucosidase inhibition 
(Yilmazer-Musa et al., 2012). On the other hand, the inhibition 
of α-glucosidase has shown to reduce the postprandial 
hyperglycemia in diabetic mice when they were fed with grape 
skins (Hogan et al., 2011), while a recent study has showed GP 
does not have an effect on glucose absorption, but inhibiting the 
amylase activity (Kato-Schwartz et al., 2020).

Another factor to consider when assessing the GP 
inhibitory activity is the type of study. After the preliminary 
in vitro screening, it is necessary to carry out an in vivo 
model to understand some factors such as the bioavailability 
and the physiological response to the GP components 
(Alongi & Anese, 2021; Gerardi et al., 2020; Kato-Schwartz 
et al., 2020). However, human clinical trials are mandatory 
required (Reg. (EU) n. 353/2008) for obtaining a health 
claim (Alongi & Anese, 2021).

Conclusion

The present review has highlighted the importance of GP as a 
promising α-amylase and α-glucosidase inhibitor, due to the 
complexity of its components. Diverse phenolic compounds and 
fiber are the constituents more related to this bioactivity, beyond 
their traditional properties. In addition, the GP inhibition of 
α-amylase and α-glucosidase has been showed to remain also 
in the fortified food products with this ingredient. However, 
it is crucial to focus on the kind of study performed since the 
majority is preliminary at an in vitro level, clinical trials being 
necessary to reach stronger conclusions. Although the studies 
reported in this review were carried out in the GP extract, the 
use of the whole GP would be more convenient because it is 
easier to use and eco-friendly, and all the bioactive compounds 
involved in the α-amylase and α-glucosidase inhibition activity 
may remain. The GP capacity of inhibiting α-amylase and 
α-glucosidase along the time is another factor to take into 
consideration since several reactions between the internal GP 
components can take place during its storage, modifying its 
bioactivity. This review deals with the GP obtained after the 
winemaking process; however, scarce information is available 
regarding the utilization of the exhausted GP recovered after 
the production of distilled spirits, whose bioactivity was 
barely pointed out. The valorization of these by-products as 

functional ingredients within the food industry as α-amylase 
and α-glucosidase inhibitors could encourage the circular 
economy approach of a more sustainable production.
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