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A B S T R A C T

Laser powder bed fusion of metals is increasingly used for fabricating complex parts requiring good mechanical 
properties. Simultaneously, researchers in the field are intensifying the efforts to reduce defects, such as internal 
porosities, which hinder a wider industrial adoption of this technology, urging process monitoring to a pivotal 
role in defect identification and mitigation. Therefore, understanding the correlation between in-process 
monitoring signals and post-process actual defects is fundamental to taking informed decisions and potential 
corrective actions during the process. This work focuses on developing models to predict spatter-related defects 
from specific process signatures detected through off-axis long-exposure imaging. Layer-wise images were 
properly aligned with corresponding cross-sections from tomographic reconstructions to investigate the rela
tionship between spatter-related signatures and actual defects measured by X-ray computed tomography. This 
relationship was used as a knowledge basis to develop an analytical image-processing approach and a machine 
learning-based methodology, which were then compared in terms of their correlation performances. The ad
vantages and limitations of both methods are discussed in the paper. Both approaches led to promising results in 
the prediction of lack-of-fusion defects caused by spatters, with the machine learning approach showing a pre
diction accuracy in the order of 90 % for defects with equivalent diameter above 90 µm, while the analytical 
model needed equivalent diameters larger than 130 µm to reach a prediction accuracy in the order of 80 %. 
Furthermore, the machine learning method led to strong results regarding early defect detection, with most of 
the investigated defects properly predicted by analysing two consecutive layers after the signature detection.

1. Introduction

Additive manufacturing (AM) technologies have emerged as inno
vative solutions for fabricating components with complex geometries for 
several applications, spanning industries such as biomedical, aerospace, 
automotive, tooling, and consumer goods [1]. In particular, laser-based 
powder bed fusion of metals (PBF-LB/M) offers unprecedented advan
tages in terms of design freedom, material buy-to-fly ratio, weight 
reduction, and mechanical performances. However, ensuring the strin
gent quality standards required across various applications remains a 
significant challenge, for example, due to the susceptibility of the 
fabricated parts to flaws, including internal porosities, which poses a 
considerable barrier to achieving consistent and reliable mechanical 
properties [2]. Despite significant efforts to optimize process parame
ters, the intrinsic variability in mechanical properties persists due to the 

difficult-to-predict nature of defects formed during PBF-LB/M fabrica
tion [3]. Notably, lack-of-fusion voids – distinguishable by their char
acteristic irregular shapes and the presence of partially melted 
entrapped powder particles – significantly impact part resistance and 
often lead to fatigue failures at the material-pore interface [4]. The quest 
for a comprehensive understanding of the specific causes behind these 
defects has prompted several investigations into the complex relation
ship between PBF-LB/M process anomalies and the resulting part de
fects. Pioneering studies reported in the literature highlighted the 
importance of leveraging reliable measurements to harness the exten
sive in-process data generated by sensors with varying operating prin
ciples integrated into additive manufacturing systems [5,6]. Indeed, the 
iterative layer-wise nature of AM processes provides an ideal framework 
for sensors integration, offering valuable insights into defect formation 
at early stages and paving the way for closed-loop control systems [7].
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In recent years, in-process monitoring solutions have witnessed sig
nificant exploration in the realm of PBF-LB/M, employing various sen
sors and data types [8]. In particular, some approaches rely on the 
acquisition of high-resolution images in visible wavelengths, showing 
promising results for the identification of surface-visible anomalies in 
the powder bed after the recoating operation [9], as well as in the ge
ometry of the printed slices after the laser action [10]. However, the 
visible wavelength range highly depends on lighting conditions, thus 
motivating the use of different wavelengths for in-process monitoring. 
For instance, near-infrared cameras were investigated for the identifi
cation of process signatures related to large lack-of-fusion defects [11]. 
Near-infrared in-process monitoring has also been used to detect spatter 
particles [12], which are ejected from the melt pool and often drop onto 
other regions of the powder bed, acting as potential seeds for 
lack-of-fusion porosities [13].

In image-based in-process monitoring approaches, one or a few im
ages are typically gathered per layer. Other solutions focus on acquiring 
in-situ data closer to the local PBF-LB/M process dynamics, resulting in 
significantly more data per layer. High-temporal resolution infrared 
cameras capture temperature evolution over time, identifying anomalies 
from improper cooling gradients [14], while photodiodes are used in 
melt pool monitoring and show potential for identifying signals leading 
to keyhole porosities [15].

The above-mentioned studies contributed to the unravelling of 
interesting insights from in-process signals, while the large amount of 
data generated from each build and the various nature of the acquired 
signals motivate the recent attempts to integrate artificial intelligence 
(AI) algorithms in the analysis of PBF-LB/M monitoring data. Despite 
challenges regarding their physical interpretability and actual reliability 
[16], AI-based approaches, leveraging machine learning (ML) or deep 
learning (DL) models, can facilitate real-time feature extraction and 
anomaly classification [17–19]. These methods can potentially enable 
the detection of defects at their early onset stages, as well as the pro
active intervention during fabrication for real-time defects healing [20].

The present study aims at developing and evaluating prediction 
models for defect formation, to be applied during the PBF-LB/M fabri
cation. Particular attention is given to the feasibility of real-time 
implementation of the models to enable feedback control actions on 
the process. The prediction specifically targets the formation of spatter- 
related porosities, which can drastically affect the mechanical properties 
of industrial components and whose potential real-time detection has 
not been thoroughly investigated so far. A fundamental aspect to 
consider when modelling relations involving in-process monitoring data 
is the accuracy in the alignment with post-process data, serving as a 
reference on the actual defect formation. In fact, validating monitoring 
solutions and advancing the understanding of PBF-LB/M processes lies 
heavily on determining reliable reference data linking in-process 
anomalies to actual defects. In this context, X-ray computed tomogra
phy (CT) emerges as a powerful defect analysis and measurement tool, 
providing holistic evaluations of external and internal geometry and 
defects [21]. Post-process CT measurements of laser powder bed fusion 
metal parts can provide reference data crucial for the validation of 
in-process monitoring solutions, provided that the alignment between 
compared datasets is accurate. However, the alignment between 
in-process and post-process datasets is not trivial, since parts are 
commonly affected by deformations occurring between in-situ data 
gathering and CT analyses. A new alignment solution was recently 
proposed to improve the comparison between in-process monitoring 
data and post-process CT data, accounting for both shrinkage and local 
distortions [22]. This approach specifically enables the correlation of 
porosities with an equivalent diameter greater than 50 µm to corre
sponding regions in the in-process data, with a probability of over 90 %.

The capabilities of in-process long-exposure imaging combined with 
advanced algorithms to detect lack-of-fusion pores caused by undesired 
spatter particles are therefore investigated in this work, by correlation of 
process events and CT reference data of actual defects leveraging the 

above-mentioned alignment approach. In particular, two different cor
relation approaches are described and implemented, one based on 
analytical methods applied through sequential image processing oper
ations, and the other based on image convolution and machine learning. 
Results are focused on evaluating the model performances and 
comparing the two approaches, deriving insights for their respective 
fields of application. Specifically, the correlation performance of the two 
approaches is examined with reference to the number of consecutive 
layers needed to take a decision, thereby providing relevant information 
for real-time accurate and early defect detection. The developed meth
odologies also demonstrate the effective use of low-cost and machine- 
agnostic hardware solutions, such as long-exposure optical cameras, 
for predicting lack-of-fusions caused by spatter particles.

The paper presents material and methods in Section 2, which deals 
with the fabrication of the samples, the in-process monitoring setup and 
acquisition technique, and the post-process CT analyses with the related 
alignment methodology. Section 3 describes the developed analytical 
approach based on image processing and the machine-learning-based 
approach proposed for classifying each signature detected during the 
process. Results of both approaches are presented in Section 4, focusing 
specifically on the dimensions of the detectable defects and the model 
earliness.

2. Material and methods

This section covers the fabrication of the samples by PBF-LB/M, 
describing particularly the used materials and process parameters 
(Section 2.1), as well as the in-process monitoring system (Section 2.2), 
metrological X-ray CT-based method for obtaining the reference data 
(Section 2.3), and the methodology implemented for the data alignment 
(Section 2.4).

2.1. PBF-LB/M samples fabrication

The design presented in a previous work [23], specifically conceived 
to enhance the accuracy of the alignment between in-process monitoring 
data and post-process CT data, was exploited in this work to produce 
parts made of Ti6Al4V and H13 tool steel using the PBF-LB/M machine 
Sisma MYSINT 100 (Sisma SpA, Italy). Working with data from two 
different materials was done with the aim of improving the general
ization capabilities of the developed defect prediction methods.

The main process parameters adopted for each material are listed in 
Table 1.

A meander scanning strategy with 67 degrees of rotation between 
following layers was chosen for both materials. To aid consequent CT 
scans and post-process analyses, the samples were directly printed 
without supports on removable inserts produced by high-precision 
machining, belonging to a new building platform shown in Fig. 1a. 
Building platforms made of Ti6Al4V and H13 tool steel were used in the 
experiments, corresponding to the material being analysed. Both plat
forms share the same geometry, consisting of a main disk with a nominal 
diameter of 99 mm and a height of 15 mm. The platforms were manu
factured with fine tolerances, using the hole-basis fit system H7/g6 for 
assembling the inserts [24]. The representation of one insert extracted 
from the platform with a part produced on top is depicted in Fig. 1b, 

Table 1 
Process parameters for samples fabricated in Ti6Al4V and H13. P is the laser 
power, v the scanning speed, h the hatch spacing between adjacent laser tracks, 
and t the layer thickness.

Ti6Al4V H13

P [W] 155 120
v [mm/s] 1200 600
h [mm] 0.110 0.090
t [mm] 0.020 0.020
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while Fig. 1c shows the CT reconstructed volume as described in Section 
2.3. Further details regarding the design and manufacturing of the 
platform and inserts are documented elsewhere [25].

With the aim to reduce the dross formation on flat down-skin hori
zontal surfaces [26], the laser power was reduced by 50 % for three 
consecutive layers before switching back to the nominal value reported 
in Table 1.

Samples were fabricated as represented in Fig. 1a for both materials, 
resulting in a total of eight samples analysed. Additional cylindrical 
samples (hereafter named spatter generators) were interposed between 
the gas flow outlet and the samples of interest, with the purpose of 
stimulating the deposition of spatter particles on specific regions.

In particular, the laser scanning order was set to follow the gas flow 
direction, so that some spatters originating from the cylindrical spatter 
generators, which are scanned first, drop on regions where the samples 
of interest are going to be fabricated. A meander scanning with a fixed 
orientation of scan tracks, parallel to the gas flow direction (shown in 
Fig. 1a), was chosen to fabricate the spatter generators, which helps 
conveying the spatter particles in the direction of the monitored samples 
[27]. Furthermore, the gas flow speed was decreased by 50 % with 
respect to the commonly used value to decrease the spatters removal 
rate. It is worth highlighting that, although this strategy may appear 
unconventional, the overall aim is to increase the number of 
lack-of-fusion defects caused by spatters (often observed also in case of 
good job preparation) to improve the statistical significance of the study.

2.2. Off-axis long-exposure monitoring system

The in-process monitoring system used in this work is constituted by 
an 18 megapixel digital single-lens reflex (DSLR) camera installed 
outside the PBF-LB/M machine with an off-axis positioning, meaning 
that the camera sensor is tilted with respect to the building platform. 
Images are gathered during the fabrication through a long-exposure 
technique. With this technique, the camera integrates the radiations 
emitted while the powders are molten, resulting in one image per layer 
which is representative of the whole scanning path. Specifically, the 
acquisition time was set so that the whole layer processing is registered, 
while camera settings (aperture, shutter speed, ISO sensitivity) were 
tuned to avoid signal saturation in data acquisition. The amount of data 
to be managed is therefore reduced by the signal integration over time. 
Moreover, this image acquisition method does not require any lighting 
source, as opposed to the acquisition of powder bed or printed slice 
images, where the lighting conditions play a fundamental role in the 
defects’ detection capability [28].

Given the off-axis camera positioning, perspective distortions need to 
be corrected before analysing the acquired images. The novel building 
platform illustrated in Fig. 1a was employed to address this step. In fact, 
the platform comprises several reference holes that provide the actual 

coordinates in the physical coordinate space. As can be seen from 
Fig. 1a, the holes cover different areas of the building platform, which 
allows both a global perspective correction of the entire building plat
form carried out using the coordinates of all the holes, as well as a local 
correction limited to a few samples of interest, which can be particularly 
useful in case of cameras with high spatial resolution and limited field of 
view. In this work, the reference holes placed close to the monitored 
samples were exploited to determine a perspective transformation 
function that is consequently applied to all the images acquired layer-by- 
layer. The resulting pixel size was equal to 15 µm. Fig. 2a shows an 
example of a gathered image of one layer, while Fig. 2b shows the same 
image after the perspective correction. The details about the above- 
mentioned perspective correction procedure can be found in the work 
conducted by Zanini et al. [25].

2.3. Post-process X-ray computed tomography

After fabrication, the samples were scanned using a metrological X- 
ray computed tomography system (MCT225, Nikon Metrology, UK). The 
system is characterized by a 225 kV micro focus X-ray source with a 
minimum focal spot size equal to 3 μm, a 2000 × 2000 pixels 16-bit flat- 
panel detector and a shielding cabinet with temperature control at 
20 ± 0.5 ◦C. Table 2 lists the CT scanning parameters used for the two 
materials.

The samples were printed on removable inserts as represented in 
Fig. 1b, to improve their positioning and scanning, reaching a voxel size 
equal to 7.7 µm after volume reconstruction. An example of volume 
reconstruction of one of the fabricated samples is shown in Fig. 1c.

A further benefit of fabricating the samples on the platform’s inserts 
relies on the presence of a flat horizontal plane and a notch (see surfaces 
colour-coded in blue and light blue, respectively, in Fig. 1b). These 
features enable the establishment of an accurate reference system for the 
samples in the CT three-dimensional coordinate space, defining the basis 
for applying the data alignment methodology discussed in Section 2.4.

Fig. 1. Positioning of the samples on the building platform for both materials (a), sample-holder with printed sample on its top surface (b) and CT scanned volume of 
one of the samples fabricated in H13 tool steel (c).

Fig. 2. Acquisition of a long-exposure image of one of the fabricated samples 
(a) and outcome from the same image after performing the perspective 
correction (b).
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The reconstructed volumes were then analysed by using the software 
VG Studio MAX (Volume Graphics GmbH), where a local-adaptive sur
face determination was performed to discriminate the material from the 
background. Then, a porosity analysis was also conducted, in order to 
obtain CT data regarding actual defects present in each sample after the 
fabrication.

Results of the porosity analysis revealed a significant presence of 
defects within the bulk of the layer, while limited porosity was found 
near the surface of the samples. Thousands of pores were analysed 
throughout the research, with size distribution ranging from 40 to 
300 µm in equivalent diameter.

2.4. Data alignment methodology

The context of PBF-LB/M monitoring requires reliable reference data 
to be successful in determining potential defects through analysing the 
process-related data. Hence, the accurate alignment between in-process 
and post-process CT data is fundamental for the establishment of robust 
correlations and models. However, the data alignment is often hindered 
by typical part deformations occurring during and/or after the fabrica
tion. These deformations commonly lead to misalignments between the 
in-process monitoring dataset, consisting of layer-by-layer acquisitions 
along the building direction, and the post-process CT volume, repre
sentative of the after-build condition, which typically deviates from the 
nominal part geometry.

Therefore, the deformations modelling methodology already pre
sented in [22], which enables the effective alignment and comparison 
between in-process monitoring data and CT post-process measurements, 
was applied to the fabricated samples.

By following this approach, local deformations and shrinkages can be 
properly grasped and considered in the alignment procedure, as the 
method allows the extraction of aligned CT cross-sections that can be 
compared to the corresponding layer-wise image gathered during 
manufacturing. As a result, the probability of accurately correlating 
porosities with an equivalent diameter above 50 µm to corresponding 
regions in the in-process data is over 90 %. More details on the de
formations modelling methodology, as well as on its experimental 
application, are reported in [22].

3. Prediction of spatter-related defects by long-exposure in- 
process monitoring

This section presents two different approaches (analytical and ML- 
based approach) for analysing the in-process data gathered using the 
long-exposure technique to predict the presence of actual defects caused 
by the undesired presence of spatter particles in the fabricated parts. In 
particular, Section 3.1 presents the analytical approach, while Section 
3.2 describes the approach based on machine learning.

3.1. Analytical approach

Upon the data alignment has been performed as described in Section 
2.4, the two datasets (long-exposure monitoring data and post-process 
CT data) are compared to investigate the chance of building models 

for correlating the outlier events detected through the long-exposure 
images and the corresponding defects resulting from CT porosity ana
lyses. Specifically, the defects under investigation consist of porosities 
that appear to partially circumscribe large solid round particles, as 
illustrated in Fig. 3. In long-exposure images, for both materials, orange 
spots were frequently observed in regions where an internal porosity 
was detected in the CT reconstruction, as shown in Fig. 4(a-d).

The solid particles shown in Fig. 3 originate from spatter formations 
that drop onto specific locations of the powder bed, preventing effective 
powder melting in subsequent layers and increasing the risk of lack-of- 
fusion pores. An orange spot in the in-process image as that of Fig. 4a 
can be associated with a heat accumulation in the same location, as the 
heat carried by the glowing spatter dissipates slowly.

However, some of the detected orange spots were not observed to be 
linked to actual lack-of-fusion defects, nor to other kinds of flaws. The 
long-exposure images acquired on the layers produced after the orange 
spot observations revealed that, for those spots determined correlated to 
actual lack-of-fusion pores, the scan tracks are frequently curved, and 
not straight as expected in normal processing conditions. The cause of 
curved tracks was identified in the out-of-plane deviation of the laser 
occurring when encountering a spatter particle on its path, considering 
that spatter particles are frequently larger than 100 µm in size [12], 
hence at least 5 times the nominal layer thickness of 20 µm. Curved 
tracks are visible in the example reported in Fig. 4(a-c). Fig. 4d shows 
another example of a relatively large orange spot that can be in principle 
categorized as an outlier event. Despite this clear signal, the scan tracks 
do not show any relevant curvature in the following layers (see for 
example Fig. 4e), and the extracted CT cross-section of the corre
sponding region does not show any defect, as can be noticed in Fig. 4f.

These observations constitute the basis for the development of an 
analytical model based on image processing, aiming at classifying the 
candidate long-exposure outliers into events leading or not leading to 
defects. The approach explained in the following is implemented to 
quantitatively evaluate the performances of the algorithm by intro
ducing metrics related to false positives, i.e., signals not leading to po
rosities, as well as to true positives, i.e., signals leading to actual defects 
within the part.

The analytical image processing method, implemented in MATLAB, 
consists of a first identification of orange spots as process signatures 
within the layer-wise long-exposure images, i.e., potential sites for de
fects onset.

In order to detect these spots, the acquired images are converted 
from the RGB (Red-Green-Blue) domain to the HSV (Hue-Saturation- 
Value) domain, where the H-channel represents the hue colour space, the 
S-channel is related to the pixel saturation and the V-channel to the pixel 
intensity value. A histogram in the HSV domain of a region of interest 

Table 2 
CT scanning parameters for Ti6Al4V and H13 manufactured samples.

Ti6Al4V H13

Voltage [kV] 200 210
Current [µA] 35 33
Power [W] 7.0 6.9
Exposure time [ms] 1420 2000
Frames per projection 1 1
Nr. of projections 2000 2000
Physical filter material Cu Cu
Physical filter thickness [mm] 0.1 mm 0.25 mm

Fig. 3. Examples of transversal CT cross-sections of the fabricated samples, 
showing typical lack-of-fusion porosities surrounding solid round particles (i. 
e., spatters).
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(ROI) including an orange spot is reported in Fig. 5, while the main steps 
of the algorithm are shown in the workflow of Fig. 6.

After a first rough segmentation for separating the sample layer from 
the background, the process signatures have to be identified. As can be 
seen in Fig. 4a and d, these process signatures are often characterized by 
an outer orange crown circumscribing an inner white core, which is 
related to an increased pixel saturation due to high-intensity values. 
Furthermore, these signatures are often surrounded by a darker low- 
brightness area. Hence, this recurrent pattern is exploited by 
leveraging the capabilities offered by working in the HSV colour space, 
with the H-channel used to segment the orange crown and the S-channel 
to segment the core of the signatures and the surrounding darker region. 
An example of the outcome obtained by implementing the segmentation 
procedure is shown in Fig. 6b.

Starting from this preliminary segmentation of the spatter-related 
process signatures, a region of interest including the potential defect 
site is created and applied as a mask to the corresponding location in the 
long-exposure images of subsequent layers (see Fig. 6c).

Fig. 6c also shows that the scan tracks within the ROIs are 

characterized by high brightness values, which allows exploiting the V- 
channel to segment the tracks (see Fig. 6e) after a pre-processing contrast 
enhancement (see Fig. 6d). Once the scan tracks corresponding to a 
specific process signature have been segmented, a skeletonization is 
performed by morphological erosion using the bwskel built-in MATLAB 
function, see Fig. 6f. This step allows collapsing each scan track into a 
single line of pixels, whose spatial coordinates can be retrieved and 
stored. Therefore, the x-y coordinates of each scan track were used as 
input data to carry out both a linear and a second-degree polynomial 
regression, with the related calculation of the coefficient of determina
tion (r2) for both cases. Fig. 7 shows the comparison of the linear and the 
second-degree polynomial fitting performed on a straight and a curved 
scan track, respectively.

As can be seen, the difference between the linear and the polynomial 
r2 coefficients is much higher in the case of the curved scan track. 
Therefore, based on Eq. (1), the difference between the two coefficients 
of determination can be calculated: 

Δr2 = r2
polynomial − r2

linear (1) 

Starting from Eq. (1), the following combined condition was imposed 
to categorize a scan track as potentially defective. 
{

Δr2 > th1

r2
polynomial > th2

(2) 

The specific threshold values, th1 and th2, were determined within an 
optimization framework. Initial values were set based on observed 
experimental cases that were potentially related to actual defects, and 
then refined by monitoring the model’s performance. The optimized 
values for th1 and th2 converged around 0.1 and 0.9, respectively. Spe
cifically, the first threshold helps distinguish linear from curved scan 
tracks, while the second ensures that the fitted track is truly curved, 
filtering out cases where scan tracks segmentation led to entangled 
tracks.

As for the number of consecutive layers considered, some tracks 
significantly deviating from straightness were observed up to 7 layers 
above the process signature detected in the first place (i.e., at ‘layer 0’), 
which is coherent with previous considerations regarding spatters’ di
mensions [12]. Consequently, the performance of the analytical model 
was evaluated based on the number of subsequent layers (k), with a 
maximum of 8 layers considered. Finally, the bunches of following 
layers analysed in sequence were considered to be leading to 
lack-of-fusion defects if critical scan tracks were found – i.e., scan tracks 
satisfying the combined expression of Eq. (2).

3.2. Machine learning-based approach

This section presents a machine learning model developed for the 
classification of the in-process long-exposure images with CT reference 
data.

In the context of in-process PBF-LB/M monitoring, AI-based methods 
are considered to learn complex relations between process dynamics, 
process parameters and defects. In fact, the vast amount of data gener
ated by in-situ monitoring and X-ray CT can be exploited for model 
training [29].

To this end, an ML workflow was tailored to the acquired long- 
exposure data. Specifically, the recognition of in-process signals crit
ical for porosity formation was investigated, and the advantages and 
limitations compared to the analytical approach are presented in Section 
3.1.

The ML workflow starts by storing the information provided by the 
porosity analysis performed on post-process CT data. In particular, the 
alignment method described in Section 2.4 is implemented to enable the 
registration of the in-process image of any layer to the corresponding CT 
cross-section. By following this approach, the original CT volume space 
is transformed into an aligned volume space that can be directly 

Fig. 4. Comparison between in-process long-exposure events and the corre
sponding region of the post-process CT volume. From left to right: orange spot, 
scan tracks and aligned CT cross-section for an outlier event leading to a lack- 
of-fusion defect (a-c) and for an outlier event not leading to any internal defect 
(d-f). Orange spots might be slightly shifted in the x-y plane, due to perspective 
correction of deposited spatter particles protruding from the powder bed.

Fig. 5. Histogram of a normalized region of interest including an orange spot, 
after converting the image to the HSV domain. The orange spot ROI is shown in 
the RGB domain for visualization purposes.
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compared to the in-process monitoring domain [22]. After the align
ment, the centroid coordinates of each lack-of-fusion defect within the 
CT volume were stored in the form of (x, y, n), where n represents the 
layer number and (x, y) the in-plane centroid position within the CT 
cross-section aligned to layer n. A region of interest centred on the co
ordinates stored for each defect was therefore used to include the defect 
itself in the CT-aligned volume space, as well as potential process sig
natures in the in-process monitoring domain. A number of material re
gions equal to the number of stored porous regions were also sparsely 
identified within the CT volume. This allows creating a balanced dataset 
between the two classes of interest (i.e., pore and material), reducing the 
risk of training biased models. At this point, the regions of interest 
identified in long-exposure images can be related to the corresponding 
labels generated from reference CT data, which result in either defective 
or non-defective regions, thus leading to a binary classification problem.

Although the PBF-LB/M process is inherently affected by internal 
defects, the number of occurrences is often not sufficient for adequately 
training complex models based on deep convolutional neural networks. 
On the contrary, simpler machine learning classifiers can perform well 
even with smaller datasets. A hybrid approach inspired by Liu et al. [30]
was implemented in this work. Specifically, convolutional layers are 
leveraged for the extraction of relevant features from the long-exposure 
images acquired in-process, while a machine learning classifier was 

deployed starting from the identified features for the final process 
signature classification. The overall architecture of the applied model, 
implemented in Python 3.10 using the TensorFlow framework, is out
lined in Fig. 8. The structure of the feature extraction module is detailed 
in Appendix A.

As can be seen in Fig. 8, the input data consists of regions of interest 
in the long-exposure images. Each bunch of input ROIs is associated with 
its corresponding label, obtained from CT reference data as described 
previously, and therefore essential for training the model following a 
supervised machine learning approach. In particular, the first ROI re
lates to the first layer (layer n in Fig. 8) showing a process signature (i.e., 
an orange spot), while the other ROIs are extracted with the same (x, y) 
position across the following layers. The feature extraction module, 
mainly consisting of convolutional and max pooling layers, is applied to 
the ROIs to perform the feature extraction, which defines the input data 
for the classification model. Examples of extracted features are shown in 
Fig. 9 for two ROIs obtained from following layers.

A preliminary investigation on the data correlation, performed using 
a logistic regression classifier, is documented in [31]. However, the 
model architecture was subsequently developed by testing other clas
sification algorithms, with the random forest model achieving better 
performances in terms of prediction accuracy. Hence, Fig. 8 illustrates 
the structure of the random forest, implemented using the scikit-learn 

Fig. 6. Main steps of the analytical image processing workflow implemented for extracting the features of interest for the classification of outlier events.

Fig. 7. Linear and polynomial fitting performed on a straight (a) and on a curved (b) scan track.

N. Bonato et al.                                                                                                                                                                                                                                 Additive Manufacturing 94 (2024) 104504 

6 



library, applied to the binary classification problem based on features 
extracted from the in-process data.

As reported in Fig. 8, squares with a 32-pixels edge length were 
selected as ROIs, which corresponds to a length of 480 µm considering 
the 15 µm pixel size. Therefore, a wide dimensional range of process 
signatures is captured within the ROIs.

Eighty percent of the dataset, which included all fabricated samples, 
was used for training and validation, following a 10-fold cross- 
validation approach. Specifically, this dataset was constructed by 
selecting 80 % of both defect-related and non-defect-related regions of 
interest, ensuring a balanced set. This strategy ensures that the model 
learns features from both classes equally, improving its ability to detect 
defects effectively. The remaining 20 % constituted the testing set, 
which, due to the large number of induced spatter-related lack-of-fusion 
defects, also maintained the same balance between classes. In cases 
where the number of defects is lower and the dataset imbalanced, the 
same model can still be applied by tuning its classification threshold to 
minimize false positives, as discussed in Section 4.2.

Furthermore, the data split among training, validation and testing set 
was carried out to achieve similar distributions in terms of defect 
dimension, with each subset being representative of the entire defect 
population. A grid search approach was implemented to determine the 
optimal hyperparameter values, with cross-validation used to evaluate 
the performance of each configuration. The grid search optimized the 
number of decision trees and the maximum depth of each tree. Based on 
the cross-validation results, the optimal number of trees was found to be 
160, and the maximum depth of the trees was set to 15. Additionally, the 
minimum number of samples required to split an internal node was 
tuned, with a value of 5 yielding the best performance across the 10 
cross-validation folds. After optimizing the hyperparameters, the model 
was trained from scratch on the training set and subsequently evaluated 
for its prediction performance on the testing set.

The impact of considering different values for the parameter k, which 

represents the number of layers following the first appearance of the 
process signature considered by the model, was evaluated by tracking 
four main classification metrics: prediction accuracy, precision, recall 
and F1-score. Prediction accuracy is the most frequently adopted metric, 
but it consists of a global value that might not be fully representative of 
the actual performances [32]. Additional information is hence obtained 
by computing precision and recall, as high precision values are related to 
low false positive rates, while high recall values can be linked to low 
false negative rates. The F1-score is a summary metric of precision and 
recall, balancing both aspects of the model performances. In an ideal 
case, it should be equal to 1.

4. Experimental results

The present section documents the performance obtained for defects 
classification in the two different scenarios of the analytical approach 
based on image processing and of the ML-based workflow, respectively 
in Sections 4.1 and 4.2. Advantages and limitations of the two ap
proaches are discussed in Section 4.3.

4.1. Performances of the analytical approach for defects classification

The performances achieved for defects classification by the analyt
ical image processing approach, based on the scan tracks curvature 
identification described in Section 3.1, were evaluated by tracking the 
same metrics used for the machine learning workflow (accuracy, pre
cision, recall and F1-score), which include insights on both false posi
tives and false negatives as described in Section 3.2.

Fig. 10a represents how the model performances vary when 
considering different numbers of layers after the process signature 
identification, for defects with a diameter down to 90 µm. As previously 
stated in Section 3.1, curved tracks were identified up to 7 layers above 
the detected signature for the cases investigated in this work. In support 
of this observation, the model performances improve for an increasing 
number of analysed layers, with better metrics (accuracy, recall, and F1- 
score) achieved when analysing 7 subsequent layers. The precision 
value, instead, stays above 80 % in each of the analysed cases, which 
comes at the expense of lower recall rates. A higher precision means that 
the false positive rate is lower, which can be interpreted as a low ten
dency of the model to wrongly classify as porosity a process signature 
not actually linked to any defect. On the other hand, a low recall implies 
that the model is affected by high false negative rates, which leads to a 
significant probability of missing the identification of critical process 
signatures. This can be due to the following reasons: (i) the criteria 
defined in Eq. (2), to identify curved tracks of interest and corresponding 
critical process signatures can be too severe for some defective regions; 
(ii) some local regions in the layer-wise images were observed to be 
characterized by slightly different light reflections, which can influence 
the scan track detection; (iii) some regions of layers above a process 
signature do not show any curvature in the scan tracks, despite resulting 
in actual defects.

Fig. 8. Schematic representation of the applied machine learning workflow.

Fig. 9. Example of feature maps obtained after applying the first two con
volutional layers on two consecutive ROIs (related to layers n and n+1 and 
shown in the first and second row, respectively).
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Fig. 10b shows how the model performances vary for different 
minimum defect equivalent diameters, when considering 7 layers for the 
prediction. The recall value becomes acceptable (i.e., above 70 %) for a 
minimum equivalent diameter of 90 µm. The overall model perfor
mances quickly decrease for smaller minimum defect diameters. This 
suggests that small defects are caused by smaller spatter particles, with 
less probability of altering the powder bed and provoking significant 
straightness deviations of the scan tracks. As a further confirmation of 
this finding, the metrics range between 80 % and 90 % registered for 
defects above 180 µm in diameter.

4.2. Performances of the machine learning approach for defects 
classification

The performances achieved by means of the developed machine 
learning architecture are presented in Fig. 11. Fig. 11a compares the ML 
model performances for a given minimum defect diameter of 90 µm by 
considering different values for the parameter k defined in Fig. 8. As can 
be seen, an accuracy of about 70 % and a recall of around 48 % are 
obtained by analysing only the layer where the process signature is 
detected. The very small recall value implies that the model has a high 
false negative prediction rate, which means it tends to fail the identifi
cation of process signatures leading to the generation of actual pores. It 
is important to note that the reference CT data becomes fundamental 
when only one layer from the in-process domain is considered. However, 
considering the metrological approach for achieving accurate high- 
resolution CT scans and the related data alignment methodology, the 
probability of accurately correlating defects larger than 50 µm with 
corresponding regions in the CT domain has been shown to be over 90 % 
[22].

The model performances significantly improve for increasing k 
values, showing a peak for k equal to 2 and 3. In particular, in the case of 

k = 2, the model accuracy is slightly below 90 % and the F1-score ex
ceeds 85 %. Precision and recall are both between 80 % and 90 %, 
confirming that both false positive and negative rates are reduced. 
Furthermore, Fig. 11a also shows that, for defects with a minimum 
equivalent diameter of around 90 µm, including more than 4 layers in 
the analysis leads to slightly worsened overall performances. This might 
be caused by the increased number of extracted features feeding the 
random forest classifier, which implies an increased complexity of the 
input data that have to be processed by the model.

Fig. 11b represents the performance of the proposed model archi
tecture considering the information of two following layers when 
dealing with lack-of-fusion defects characterized by different minimum 
diameters. As can be seen, there is an increasing trend of the perfor
mances for increasing minimum defect diameters, indicating that the 
prediction accuracy is higher for larger defects. In particular, the eval
uated metrics show values around 65 % for defects below 50 µm, and 
significantly higher values for defects above 70 µm in equivalent 
diameter.

To evaluate the performance of the machine learning model across 
various classification thresholds, the receiver operating characteristic 
(ROC) curves and the corresponding area under the ROC curve (AUC) 
values were computed. The ROC curves provide a comprehensive view 
of the model’s ability to distinguish between defective and non-defective 
regions by plotting the true positive rate against the false positive rate 
for different threshold values.

Fig. 11 shows results obtained using the default threshold value of 
0.5 for the random forest classifier. The AUC, on the other hand, pro
vides a threshold-independent measure of the model’s overall perfor
mance, with higher AUC values indicating better model ability to 
separate between the two classes.

As can be seen in Fig. 12a for the case of minimum defect equivalent 
diameter of 90 µm, the ROC curves obtained for increasing k values from 

Fig. 10. Performance of the image processing algorithm based on the scan 
tracks curvature. Metrics values against the number of following layers 
considered (a) and against the minimum defect equivalent diameter (b). Error 
bars represent ±1 standard deviation.

Fig. 11. Performance of the machine learning model evaluated by varying the 
number of following layers for feature extraction (a) and by considering 
different minimum defect equivalent diameters (b). Error bars represent ±1 
standard deviation.
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0 to 2 lead to larger AUC values. This aspect confirms the positive impact 
of analysing also the subsequent layers for the discrimination of false 
positives. Specifically, the best AUC of 0.89 is obtained for k equal to 2, 
with a 30 % improvement with respect to k equal to 0 and 10 % with 
respect to k equal to 1.

As already mentioned in Section 3.2, the model might potentially be 
applied in scenarios where defects are much rarer than in experimental 
cases investigated in this work. High AUC values, such as those achieved 
by considering following layers, imply the feasibility of adapting the 
model to cases with lower defect densities, without requiring re- 
training.

Fig. 12b shows the ROC curves and AUC values computed for k equal 
to 2 and for defects of different diameters. In this case, it is clear how the 
model is better at correctly classifying large defects, since higher false 
positive rates resulted while considering smaller defects. In fact, for a 
false positive rate equal to 0.2, more than 80 % of regions leading to 
lack-of-fusion defects are correctly classified in case of defects with a 
minimum equivalent diameter equal to or above 90 µm. On the contrary, 
this true positive rate decreases to 70 and 60 % for defects with mini
mum diameters equal to or above 70 µm and 50 µm. While high AUC 
values achieved in the prediction of larger defects show promise with 
reference to model adaptation to different defect density scenarios, 
lower values obtained on smaller defects, such as those below 70 µm in 
equivalent diameter, also imply a reduced model adaptability.

4.3. Discussion on the comparison between the two approaches

As it can be seen by comparing the classification metrics shown in 
Figs. 10 and 11, the machine learning approach appears to perform 

better than the analytical image processing approach, both in terms of 
minimum dimension of defects classified with an adequate level of 
confidence, and in terms of number of layers to be analysed to take the 
classification decision. The latter aspect is fundamental to reducing the 
time needed to apply corrective actions in real-time.

Fig. 13 shows a three-dimensional representation of a number of 
defects contained in the testing dataset. More specifically, Fig. 13a 
shows the positioning of these defects within a CT volume for visuali
zation purposes, while Fig. 13b reports the prediction performances of 
each model in the in-process regions corresponding to the considered 
defects. As can be seen, the majority of smaller defects are correctly 
predicted by the machine learning model, but not by the analytical 
method as shown in the histogram of Fig. 10. Regarding larger defects, 
both models show a good prediction rate. However, it is worth noting 
that in the subset of the testing dataset represented in Fig. 13, a large 
lack-of-fusion defect (represented in dark orange colour in the inset of 
Fig. 13a), was not predicted by the machine learning model, but prop
erly predicted by the analytical approach. This particular defect can be 
linked to the presence of a spatter particle, as confirmed by its peculiar 
shape, as well as by the orange spot visible in the inset (orange box) of 
Fig. 13b.

Therefore, the two approaches are not mutually exclusive, and a 
higher confidence level could be achieved by combining them in the 
prediction of lack-of-fusion defects caused by spatters. A significant 
number of defects can be predicted in a short time (i.e., within two 
layers) exploiting the machine learning approach, while some of the 
defects not identified could be predicted in a longer time (e.g., within 
seven layers) by the analytical approach, further improving the proba
bility of a proper defect classification. Contradictory prediction results 
between the two methods can be addressed by assigning more weight to 
the ML-based predictions for smaller defects, while doing the opposite 
for larger defects where scan tracks are properly detected by the 
analytical approach.

As a further remark, the analytical method has proven effective in 
layers produced with a meander strategy, but separate tests on chess
board scan strategies revealed limitations in areas where adjacent chess 
patterns intersect. Defect formation predictions in such regions can 
however be tackled with the ML-based methodology, further empha
sizing the potential of combined approaches.

The study of combined implementations of the two proposed ap
proaches is planned for investigation in future developments of this 
research.

5. Conclusions

This work presented two different approaches – analytical and ML- 
based – for analysing in-process laser powder bed fusion monitoring 
data acquired using the off-axis long-exposure imaging technique, which 
is a cost-effective and machine-agnostic monitoring solution. In partic
ular, the proposed methods were focused on assessing the chance of 
predicting the occurrence of lack-of-fusion defects caused by spatter 
particles from data gathered in-process. Results demonstrated the need 
to consider multiple layers of data for accurately predicting the forma
tion of spatter-related internal defects. Good prediction capabilities 
were observed when using long-exposure monitoring, depending on the 
defect size. This paves the way for effective machine integration of this 
monitoring solution and the related algorithms.

As outcomes of the work, the following main conclusions can be 
drawn for the analytical approach, which is based on the detection and 
measurement of scan track curvature induced by spatter particles: 

• Good prediction accuracies were achieved for defects above 130 µm, 
when analysing seven layers following the process signature 
identification.

• The criteria based on the in-process measurement of scan track 
curvatures has proved to be a viable option for the discrimination 

Fig. 12. Performances of the machine learning model through the computation 
of the ROC curves and AUC values by considering different values of k (a) and 
by varying the minimum defect equivalent diameter (b).
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between false and true positives in images acquired using the off-axis 
long-exposure monitoring technique.

• Data acquired using a single camera, as in the present work, led to 
challenges in the scan track curvature identification due to different 
reflections generated by tracks with diverse relative orientations 
with respect to the direction of sight. Future work will explore the 
use of multiple cameras to enhance the scan track assessment, since 
multiple viewpoints are expected to provide a clearer view of the 
scan tracks, regardless of their orientation within the layer.

Similarly, the following main outcomes results from application of 
the developed machine learning modelling approach: 

• The methodology, based on combining image convolutions with ML 
classifiers, has proved to be effective in learning significant patterns 
from long-exposure images acquired during the PBF-LB/M process.

• Studying the correlation of in-process gathered data of single layers 
to CT porosity reference data was found not sufficient to predict 
spatter-related defects, despite performing an accurate data align
ment. This was confirmed by prediction accuracy and F1-score 
values around 70 % and below 60 %, respectively, for defects with 
an equivalent diameter equal to or greater than 90 µm.

• On the other hand, considering data from multiple and consecutive 
in-process layers resulted fundamental for performing accurate 
porosity predictions. Indeed, performance metrics improved signifi
cantly with two or three subsequent layers, achieving values of 
prediction accuracy and F1-score between 80 % and 90 % for defects 
with equivalent diameter above 80 µm.

• The model’s ability to categorize potentially defective regions within 
two subsequent layers demonstrates good earliness, allowing for 
quick actions under feedback control. However, AI solutions can lack 
interpretability compared to analytical approaches, with slightly 
different in-process patterns possibly leading to incorrect pre
dictions. Planned research activity aims at combining ML and 

analytical approaches to enhance prediction confidence, thus 
reducing the risk of missing dangerous defects.

Future works will focus on improving the detection and prediction of 
smaller defects by addressing the resolution limits of off-axis solutions. 
This will involve investigating the benefits of multi-sensor data fusion, 
combining off-axis long-exposure imaging with co-axial cameras or 
photo-diodes to cover a wider range of defect sizes. Additionally, the 
range of classification methods will be extended, exploring the use of 
neural networks for potential improvements when trained on large 
datasets. The developed approaches will also be tested on industrial 
components and various materials to assess their effectiveness in 
different contexts.
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Appendix A. Feature extractor module

Layer Number of filters Kernel size Activation Output shape

Conv2d 32 (3, 3) sigmoid (32, 32, 32)
BatchNorm2d / / / (32, 32, 32)
Conv2d 32 (3, 3) sigmoid (32, 32, 32)
BatchNorm2d / / / (32, 32, 32)
MaxPooling2d / 2×2 / (32, 16, 16)
Conv2d 64 (3, 3) sigmoid (64, 16, 16)
BatchNorm2d / / / (64, 16, 16)
Conv2d 64 (3, 3) sigmoid (64, 16, 16)
BatchNorm2d / / / (64, 16, 16)
MaxPooling2d / 2×2 / (64, 8, 8)
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Data will be made available on request. 
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