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ABSTRACT
Given a textual phrase and an image, the visual grounding prob-
lem is the task of locating the content of the image referenced by
the sentence. It is a challenging task that has several real-world
applications in human-computer interaction, image-text reference
resolution, and video-text reference resolution. In the last years,
several works have addressed this problem by proposing more and
more large and complex models that try to capture visual-textual
dependencies better than before. These models are typically consti-
tuted by two main components that focus on how to learn useful
multi-modal features for grounding and how to improve the pre-
dicted bounding box of the visual mention, respectively. Finding
the right learning balance between these two sub-tasks is not easy,
and the current models are not necessarily optimal with respect
to this issue. In this work, we propose a loss function based on
bounding boxes classes probabilities that: (i) improves the bound-
ing boxes selection; (ii) improves the bounding boxes coordinates
prediction. Our model, although using a simple multi-modal fea-
ture fusion component, is able to achieve a higher accuracy than
state-of-the-art models on two widely adopted datasets, reaching
a better learning balance between the two sub-tasks mentioned
above.
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• Computing methodologies → Object recognition; Object
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1 INTRODUCTION
In the last years, the scientific community has devoted much effort
in developing deep learning models for computer vision and nat-
ural language processing, thanks to the increasing computational
resources and the availability of new data.While deep learningmod-
els for computer vision aim to interpret and understand the visual
world made by images and videos, deep learning models for natural
language processing aim to interpret and understand the human
natural language. In the last decade, these two research areas have
made outstanding advancements that have lead to the formulation
of more complex problems in which both vision an textual infor-
mation are required, such as visual-question answering [2, 38, 54],
image retrieval [13, 20, 21, 28], and visual grounding [4, 15, 36, 50].
Among these, of particular interest is the visual grounding problem,
defined as the task of locating the content of the image referenced
by a given sentence, a building block for many other real-world
applications and more complex tasks. It is a challenging task, which
requires the semantic understanding of the image content and its
textual description, requiring the ability to predict the parts of the
image content referred by a specific descriptive sentence. It can be
formulated as an object detection task followed by a classification
task in which, given an input image and sentence, the goal is to
return only the detected object(s) in the image that represent(s)
the best semantic match with the sentence. In the initial phase of
research on this problem, many works have followed this formula-
tion, developing the so called two-stage approach models [36, 49],
while more recent works have chosen to address the problem by a
one-stage approach model, in which the object detection and the
classification problem are solved jointly [37, 46].

In the two-stage approach, the visual grounding model receives
in input a set of proposal bounding boxes previously extracted by
an object proposals extractor, such as Edge Boxes [55] and Selective
Search [39], or by an object detector, such as Faster R-CNN [35],
Single Shot multibox Detector (SSD) [24], or YOLO [33, 34]. These
proposals, jointly with the given input textual sentence describing
the content of the image, constitute the visual grounding model
input. Usually, the model embeds the sentence in an embedding
representation that tries to capture its semantic content. Then,
the model predicts, for each proposal bounding box, a score that
represents how much the content of the bounding box is likely to
be referred by the sentence. Often, the two-stage approach models
predict new coordinates for the best predicted proposal, in order to
adjust the coordinates to better fit the visual content according to
the sentence semantic information.

In the one-stage approach, the visual grounding model receives
in input only an image and a textual sentence. Then the model
learns how to extract and fuse all the visual and textual information
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in order to predict the best bounding box in output, according to the
input sentence. Even if this seems to be the best approach in order
to reach the best results, due to the small number of assumptions
made by the model, it raises some major issues: (i) not all the visual
grounding datasets are suitable for training an object detector, due
to lack of images and/or because they are not densely annotated;
(ii) the model requires an high number of parameters, and because
of that (iii) the training requires significant computing resources.

In the literature, there are many works adopting increasingly
improved object proposals, and increasingly complex architectures
than before in order to capture the visual and textual information.
These models are typically constituted by two main components
that focus on how to learn useful multi-modal features for ground-
ing, and how to improve the predicted bounding box of the visual
mention, respectively. Finding the right learning balance between
these two sub-tasks is not easy, and the current models are not nec-
essarily optimal with respect to this issue. In this work, we propose
a model that, although using a simple multi-modal feature fusion
component, is able to reach a higher accuracy than state-of-the-art
models thanks to the adoption of a more effective loss function
that reaches a better learning balance between the two sub-tasks
mentioned above.

Our main contributions can be summarized as: (i) we present
a new loss for visual proposals which considers also the object
proposals semantic information, differently from the works in the
literature which just consider their shapes and spatial positions in
the image; (ii) we are the first to adopt the Complete Intersection
over Union [52] loss for the visual grounding task; (iii) we introduce
a new regression loss on the proposal bounding boxes coordinates
which is applied to a subset of all the proposals, selected by consid-
ering the object proposals semantic information. This loss differs
from the one used by the approaches in the literature, which only
considers the proposal with the largest overlap with the ground
truth. (iv) we experimentally show that the proposed losses improve
the performance of state-of-the-art models.

2 RELATEDWORKS
In this section, we report the important related works developed
within three areas, namely, Referring Expression Grounding, Visual-
Textual-Knowledge Entity Linking (VTKEL), and Image Retrieval.

Referring Expression Grounding. It is also known as phrase local-
ization or visual grounding. It aims to localize the corresponding
objects described by a human natural language phrase in an image.
It is common to extract visual and language features independently
and fuse them before the prediction. Some works apply a multi
layer perceptron (MLP) [4, 5], cosine similarity [12] and element-
wise multiplication. Other works apply more complex strategies
such as Canonical Correlation Analysis (CCA) [31, 32], Multimodal
Compact Bilinear (MCB) [14], graph structures [3] and attention
methods [29]. Instead of focusing on the fusion component, [49]
proposes a visual grounding model with diverse and discriminative
proposals that can achieve good performance without using a com-
plex multi-modal fusion operator. The approach presented in [1]
predicts the image content location referred by the input phrase
using an heatmap, applying a multi-level multi-modal attention
mechanism, instead of relying on the standard bounding box. Some

works focus on the weakly supervised referring expression ground-
ing setting, in which it is available only the information about the
image contents and there is no mapping among the input textual
sentences and these visual locations. Given a set of bounding boxes
proposals and a textual sentence in input, [36] introduces a model
which learns to ground by reconstructing the given textual sentence
adopting a soft attention mechanism. This approach is extended
in [4] by the introduction of a novel Knowledge Aided Consistency
Network (KAC Net) which is optimized by reconstructing the input
query and proposal’s information. A different approach is devel-
oped in [45], where an end-to-end model learns to localize arbitrary
linguistic phrases in the form of spatial attention masks, using two
types of carefully designed loss functions. A Variational Context
model, based on the variational Bayesian method, is adopted by
[50] to exploit the reciprocal relation between the referent and con-
text. The Multi-scale Anchored Transformer Network (MATN) [51]
hinges on the concept of anchors, i.e. it uses region proposals as
localization anchors, learning a multi-scale correspondence net-
work to continuously search for sentences referring to the anchors.
The work presented in [15] shows that textual sentence grounding
can be learned by optimizing word-region attention to maximize a
lower bound on mutual information between images and caption
words. [25] uses a cross-modal attention-guided erasing approach,
where it discards themost dominant information from either textual
or visual domains to generate difficult training samples online in
order to drive the model to discover complementary textual-visual
correspondences. [7] provides an accumulated attention (A-ATT)
mechanism to ground the natural language query into the image
using a query attention, an image attention and an objects attention.

Visual-Textual-Knowledge Entity Linking. The VTKEL task [9–
11] introduces a more complex task than the referring expression
task, in which an artificial agent needs to jointly recognize the
entities shown in the image and mentioned in the text, and to
link them to its prior background knowledge. The solution to the
VTKEL problem could lead to major scientific advancement towards
a better understanding of semantic information contained in the
image and textual sentence, respectively. In fact, the knowledge
graph allows to introduce semantic reasoning on the information
contained in both the image and the textual sentence, which could
lead to innovative solutions for the weakly supervised referring
expression problem and for the partially annotated dataset problem.

Image Retrieval. The standard text-base image retrieval systems,
given a textual sentence in input, from a set of images select the
one that best matches the textual input. In particular, the best
images are returned according to some metric learned through a
recurrent neural network [28], correlation analysis [21] and other
methods [13, 20].

3 BACKGROUND
In order to explain our work, we use the following notation: lower
case symbols for scalars and indexes, e.g. 𝑛; italics upper case sym-
bols for sets, e.g.𝐴; upper case symbols for textual sentences, e.g. S;
bold lower case symbols for vectors, e.g. 𝒂; bold upper case symbols
for matrices and tensors, e.g. 𝑨; the position within a tensor or

50



A Better Loss for Visual-Textual Grounding SAC ’22, April 25–29, 2022, Virtual Event,

vector is indicated with numeric subscripts, e.g. 𝑨𝑖 𝑗 with 𝑖, 𝑗 ∈ N+;
calligraphic symbols for domains, e.g. Q.

In our work we adopt the Complete IoU (CIoU) [52] loss to per-
form the bounding boxes coordinates regression, that is based on
the Intersection over Union (IoU) metric. Given a pair of bounding
box coordinates (𝒃𝑖 , 𝒃 𝑗 ), the Intersection over Union, also known as
Jaccard index, is an evaluation metric used mainly in object detec-
tion tasks, which aims to evaluate how much the two bounding
boxes refer to the same content in the image. It is defined as:

𝐼𝑜𝑈 (𝒃𝑖 , 𝒃 𝑗 ) =
|𝒃𝑖 ∩ 𝒃 𝑗 |
|𝒃𝑖 ∪ 𝒃 𝑗 |

, (1)

where |𝒃𝑖 ∩ 𝒃 𝑗 | is the area of the box obtained by the intersection
of boxes 𝒃𝑖 and 𝒃 𝑗 , while |𝒃𝑖 ∪ 𝒃 𝑗 | is the area of the box obtained
by the union of boxes 𝒃𝑖 and 𝒃 𝑗 . It is invariant to the bounding
boxes sizes, and it returns values that are strictly contained in the
interval [0, 1] ⊂ R, where 1 means that the two bounding boxes
refer to the same image area, while a score of 0 means that the two
bounding boxes do not overlap at all. The fact that two bounding
boxes that do not overlap have IoU score equal to 0, is the major
issue of this metric: the zero value does not represent how much
the two bounding boxes are far from each other. For this reason,
in its standard definition, the IoU function is mainly used as an
evaluation metric rather than as a component of a loss function for
learning.

In order to solve the issue of IoU when considering it as a loss
function, [52] proposed the Complete IoU loss that is defined as:

L𝐶𝐼𝑜𝑈 (𝒃𝑖 , 𝒃 𝑗 ) = 𝑆
(
𝒃𝑖 , 𝒃 𝑗

)
+ 𝐷

(
𝒃𝑖 , 𝒃 𝑗

)
+𝑉

(
𝒃𝑖 , 𝒃 𝑗

)
(2)

𝑆
(
𝒃𝑖 , 𝒃 𝑗

)
= 1 − 𝐼𝑜𝑈 (𝒃𝑖 , 𝒃 𝑗 ); (3)

𝐷
(
𝒃𝑖 , 𝒃 𝑗

)
=
𝜌
(
𝒑𝒊,𝒑 𝑗

)2
𝑐2

; (4)

𝑉
(
𝒃𝑖 , 𝒃 𝑗

)
= 𝛼

4
𝜋2

(
arctan

𝑤𝑡 𝑗

ℎ𝑡 𝑗
− arctan

𝑤𝑡𝑖

ℎ𝑡𝑖

)
(5)

where 𝒃𝑖 and 𝒃 𝑗 are two bounding boxes, 𝒑𝒊 and 𝒑 𝑗 are their central
points, 𝐼𝑜𝑈 (𝒃𝑖 , 𝒃 𝑗 ) is the standard IoU, 𝜌 is the euclidean distance
between the given points, 𝑐 is the diagonal length of the convex hull
of the two bounding boxes, 𝛼 is a trade-off parameter,𝑤𝑡𝑖 and ℎ𝑡𝑖
are the width and the height of the bounding box 𝒃𝑖 , respectively.
Differently from the standard IoU, the Complete IoU is formulated
in such a way to return meaningful values, leveraging the bounding
boxes geometric shapes, even when two bounding boxes are not
overlapped.

4 PROBLEM DEFINITION
Visual grounding is the general task of locating the components
of a structured description in an image. In order to solve this task,
first, it is necessary to recognize all the objects in the image and
the components in the text, while after, the model needs to find the
correct alignment among the nouns and the objects. Each detected
object in the image is usually represented by a rectangle called
bounding box, while each noun phrase detected in the text is usually
called query. The bounding box is determined by its position in the
image and by its dimension, while the query is determined by the
position of the first character and the position of the last character
in the input text.

Formally, given in input an image 𝑰 and a sentence S describing
some of the objects represented in 𝑰 , the task consists in learning
a map 𝛾 from the set 𝑄 of noun phrases contained in S to a set of
bounding boxes 𝐵 defined on 𝑰 , i.e. 𝛾 : I × S → 2Q×B , where I
is the domain of images, S is the domain of sentences, Q is the
noun phrases domain, B is the domain of bounding boxes which
can be defined on I, and 2Q×B is the power set of the Cartesian
product betweenQ andB. So, given an image 𝑰 containing 𝑒 objects
identified via the set of bounding boxes 𝐵𝑰 = {𝒃𝑖 }𝑒𝑖=1, where 𝒃𝑖 ∈
R4 is the vector of coordinates identifying a bounding box in 𝑰 ,
and a sentence S containing𝑚 noun phrases gathered in the set
𝑄S = {𝒒 𝑗 }𝑚𝑗=1, where 𝒒 𝑗 ∈ N

2 is a vector containing the initial and
final character positions in the sentence S, 𝛾 (𝑰 , S) returns a subset
Γ ⊆ 𝑄𝑆 × 𝐵𝑰 where each couple (𝒒, 𝒃) ∈ Γ associates the noun
phrase 𝒒 to the bounding box 𝒃 . Please, notice that the same noun
phrase can be associated to several different bounding boxes, as
well as the same bounding box can be associated to many different
noun phrases. Following the current literature, in this paper we
assume that each noun phrase is associated to one and only one
bounding box. A bounding box, however, can identify more objects,
e.g. several persons in the case the noun phrase is “people”. A
training set of 𝑛 examples is defined as 𝐷 = {(𝑰𝑖 , S𝑖 , Γ𝑔𝑡𝑖 )}𝑛

𝑖=1, where
Γ
𝑔𝑡

𝑖
is the set of ground truth associations for example 𝑖 .

5 OUR PROPOSAL
In this section, we first describe the structure of our model, and then
we describe the training procedure, which exploits the original part
of our proposal, e.g. a loss function composed of novel sub-losses.

5.0.1 Model. Our model, outlined in Figure 1, follows a typical
basic architecture for visual-textual grounding tasks. It is based
on a two-stage approach in which, initially, a pre-trained object
detector is used to extract, from a given image 𝑰 , a set of 𝑘 bound-
ing box proposals P𝑰 , jointly with visual features 𝐻 𝑣 . The features
represent the internal object detector activation values before the
classification layers and regression layer for bounding boxes. More-
over, our model extracts the spatial features 𝐻𝑠 from the proposals.
We also assume that the object detector returns, for each bounding
box proposal 𝒑𝑖 ∈ P𝑰 , a probability distribution 𝑃𝑟𝐶𝑙𝑠 (𝒑𝑖 ) over
a set 𝐶𝑙𝑠 of predefined classes, i.e. the probability for each class
𝜉 ∈ 𝐶𝑙𝑠 that the content of the bounding box proposal 𝒑𝑖 belongs
to 𝜉 . This information is typically returned by most of the object
detectors, and it will be used to define our novel loss terms.

Regarding the textual features extraction, given a noun phrase
𝒒 𝑗 , initially all its words𝑊 𝒒 𝑗 are embedded in a set of vectors 𝐸𝒒 𝑗 .
Then, our model applies a LSTM [16] neural network to generate
from the sequence of word embeddings only one new embedding
𝒉★
𝑗
for each phrase 𝒒 𝑗 . Once vector 𝒉★𝑗 has been generated from

the noun phrase 𝒒 𝑗 , the model performs a multi-modal feature
fusion operation in order to combine the information contained
in 𝒉★

𝑗
with each of the proposal bounding boxes 𝒉𝑣𝑧 ∈ 𝐻 𝑣 . For this

operation, we have decided to use a simple function that merges
the multi-modal features together rather than relying on a more
complex operator, such as bilinear-pooling or deep neural network
architectures. We leave the use of a more complex fusion operator,
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𝑃𝑟𝐶𝑙𝑠 (P𝑰 )
P𝑰

P𝑰 , 𝐻
𝑣

𝐻𝑠

𝑊 𝒒

𝐸𝒒

𝐻★

𝐻 | |

L𝑔

L𝑐

Figure 1: Our two-stage model architecture overview. (1) Initially, the image is processed by a pre-trained Faster R-CNN object
detector in order to extract all the proposals bounding boxes from which (2) the spatial features are generated. Then, the
model (3) generates the textual features from the input noun phrase using the Textual Features Generator module, by first
retrieving each word embedding and then using an LSTM network. Finally, the model (4) fuses together all the visual, spatial,
and textual features by the Fusion Operator, obtaining new features that are then used in the (5) Grounding and (6) Bounding
Box Offsetsmodules, respectively. Our defined losses L𝑔 (7) and L𝑐 (8) are used in order to train the network end-to-end on the
components included in the light blue background.

that will lead to further improvements, for future work. The multi-
modal fusion componentwe adopted returns the set of new vectorial
representations 𝐻 | | .

Finally, the model predicts the probability 𝑷 𝑗𝑧 that a given noun
phrase 𝒒 𝑗 is referred to a proposal bounding box 𝒑𝑧 . Indeed, the
representations of the proposals bounding box features conditioned
with the textual features can also be used to refine the proposal
bounding box coordinates, that are generated by the object detector
independently by the textual features. Specifically, our model does
not predicts new bounding box coordinates, but offsets for the
coordinates.

Technical details regarding the model are reported in the Sup-
plementary Material.

5.0.2 Training. In this section, we present the main novel contri-
bution of the paper, i.e. a loss function composed of novel terms.
The basic idea is to exploit the semantic information associated
with bounding box proposals, i.e. the probability distribution over
classes of the content of a bounding box returned by the object de-
tector, in both the loss term concerning the grounding and the loss
term concerning the refinement of the bounding box coordinates.
In fact, differently from most of the previous works that use the
cross-entropy (CE) loss or the standard Kullback–Leibler(KL) diver-
gence loss for grounding, our model implements a KL divergence
loss in which the ground truth probability is built also considering

𝑃𝑟𝐶𝑙𝑠 (𝒑𝑖 ) with 𝒑𝑖 ∈ P𝑰 . Moreover, regarding the bounding boxes
coordinates refinement, differently from previous works that use
the SmoothL1 loss, our model adopts the CIoU loss [52]. To the best
of our knowledge, this is the first work adopting the CIoU loss
in order to refine the final bounding boxes coordinates. Another
difference with respect to all the refinement losses proposed in the
literature is that we do not restrict the coordinates refinement only
to the best proposal coordinates, but we extend the refinement to
the subset of proposals that significantly overlap (according to an
hyper-parameter) the ground truth, modulating the refinement by
the agreement between the class probability of the best proposal
and the class probability of the considered proposal. For the sake of
presentation, we formally define the new loss terms in the following
referring to a single example. The total loss is then obtained by
summing up the contributions of all examples in the training set.

Given a training example (𝑰 , S, Γ𝑔𝑡 ), and the bounding box pro-
posals set P𝑰 , we define the loss function L (for a single example)
as:

L = L𝑔 (𝑷 ,P𝑰 , Γ
𝑔𝑡 ) + 𝜆L𝑐 (P𝑰 , Γ

𝑔𝑡 ),

where L𝑔 is the loss used to “shape” the grounding distribution of
proposals for each specific query in input, i.e. the probability that a
given proposal is associated to a given query, L𝑐 is the loss related
to the refinement of the bounding boxes coordinates, and 𝜆 is a
trade-off parameter.
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Specifically, given 𝑚 the number of noun phrases and 𝑘 the
number of bounding box proposals, we define the entries ( 𝑗 ∈
[1, . . . ,𝑚], 𝑧 ∈ [1, . . . , 𝑘]) of matrix 𝑼 as 𝑼 𝑗𝑧 = 𝐼𝑜𝑈 (𝒃𝑔𝑡

𝑗
,𝒑𝑧) where

(𝒒𝑔𝑡
𝑗
, 𝒃

𝑔𝑡

𝑗
) ∈ Γ𝑔𝑡 , the best proposal bounding box as 𝒑 𝑗∗ where 𝑗∗ =

𝑎𝑟𝑔𝑚𝑎𝑥𝑧∈[1,...,𝑘 ] 𝑼 𝑗𝑧 , and the entries ( 𝑗 ∈ [1, . . . ,𝑚], 𝑧 ∈ [1, . . . , 𝑘])
of matrix 𝑪 containing the cosine similarity scores among the
predicted class probabilities of the bounding box proposals as
𝑪 𝑗𝑧 = 𝑆𝑖𝑚

(
𝑃𝑟𝐶𝑙𝑠 (𝒑 𝑗∗), 𝑃𝑟𝐶𝑙𝑠 (𝒑𝑧)

)
, where 𝑆𝑖𝑚 is the cosine sim-

ilarity function. Given these definitions, we can define the entries
of the target probability 𝑷𝑡𝑎𝑟𝑔𝑒𝑡 as:

𝑷
𝑡𝑎𝑟𝑔𝑒𝑡

𝑗𝑧
=

𝑼 ∗
𝑗𝑧∑𝑘

𝑖=1 𝑼
∗
𝑗𝑖

, where

𝑼 ∗
𝑗𝑧 =

{
𝑼 𝑗𝑧𝑪 𝑗𝑧 , 𝑖 𝑓 𝑼 𝑗𝑧 ≥ 𝜂
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

and 𝜂 is a predefined threshold, i.e. an hyper-parameter.
On the basis of the above definitions, we define the grounding

loss as:

L𝑔 (𝑷 ,P𝑰 , Γ
𝑔𝑡 ) = 1

𝑚

𝑚∑
𝑗=1

𝐾𝐿𝑑𝑖𝑣 (𝑷 𝑗 | |𝑷
𝑡𝑎𝑟𝑔𝑒𝑡

𝑗
),

=
1
𝑚

𝑚∑
𝑗=1

𝑘∑
𝑧=1

𝑷 𝑗𝑧 log
©­«

𝑷 𝑗𝑧

𝑷
𝑡𝑎𝑟𝑔𝑒𝑡

𝑗𝑧

ª®¬ ,
where 𝐾𝐿𝑑𝑖𝑣 is the KL divergence function, 𝑷 𝑗 (𝑷

𝑡𝑎𝑟𝑔𝑒𝑡

𝑗
) is the 𝑗-th

row of 𝑷 (𝑷𝑡𝑎𝑟𝑔𝑒𝑡 ), and 𝑷 𝑗𝑧 is the model predicted probability that
the noun phrase 𝒒 𝑗 ∈ 𝑄 refers to the image content localized by
𝒑𝑧 ∈ P𝑰 .

Indeed, the grounding loss captures both the bounding box spa-
tial information and the semantic information determined by the
bounding box classes. Whenever a bounding box is located near the
ground truth bounding box and its class probability distribution is
similar to the one of the best proposal 𝒑 𝑗∗, then the loss favours the
prediction of the bounding box, otherwise the loss penalizes the
bounding boxes according to their different probability distribution
and spatial location. Previous works exploiting the KL divergence
aims to maximize the probability of a proposal bounding box just
considering their spatial location.

We now define the novel refinement loss. In order to do that,
given a query 𝒒 𝑗 , we need to define the following subset S𝑗 ⊆ P𝑰
of proposals:

S𝑗 = {𝒑𝑧 | 𝒑𝑧 ∈ P𝑰 ∧ 𝑼 ∗
𝑗𝑧 ≥ 0},

which allows us to define our loss L𝑐 as:

L𝑐 (P𝑰 , Γ
𝑔𝑡 ) = 1

𝑚

𝑚∑
𝑗=1

∑
𝒑𝑧 ∈S𝑗

𝑼̂ 𝑗𝑧L𝐶𝐼𝑜𝑈 (𝒑𝑧 , 𝒃𝑔𝑡𝑗 ),

where (𝒒𝑔𝑡
𝑗
, 𝒃

𝑔𝑡

𝑗
) ∈ Γ𝑔𝑡 , and

𝑼̂ 𝑗𝑧 =
𝑼 ∗
𝑗𝑧

𝑚𝑎𝑥𝑧∈[1,𝑘 ]𝑼
∗
𝑗𝑧
+ 𝜖 ,

in which 𝜖 is a small value added to avoid division by 0, and
𝑚𝑎𝑥𝑧∈[1,𝑘 ] is the maximum function applied along the indexes

𝑧 ∈ [1, 𝑘]. Intuitively, for each bounding box proposal which over-
laps with the ground truth (according to the parameter 𝜂), this
loss refines the coordinates proportionally to the “semantic” of the
bounding box. Note that adopting the normalized scores 𝑼̂ 𝑗𝑧 , the
model does not penalize the loss on the best proposal bounding box
𝑗∗.

We would like to highlight that our work is the first proposing
the exploitation of the probabilities distributions over the object
detector classes to address the supervised visual grounding task.
However, in weakly-supervised visual-textual grounding (not our
task) some works (e.g. [40]) leverage the information of the bound-
ing box class with the highest probability.

6 EXPERIMENTAL ASSESSMENT
Wehave compared ourmodel results on twowidely adopted datasets
(i.e., Flickr30k Entities and ReferIt) considering several competing
approaches in the literature, including state-of-the-art models. In
addition to that, in order to prove the usefulness of our losses in-
dependently by our model architecture, we have also adopted our
losses on the DDPN model. The choice of this model was due to:
(i) publicly available code1; (ii) published results on both Flickr30k
Entities and ReferIt datasets, with state-of-the-art results on ReferIt;
(iii) and exploitation of the same object detector used in our work.

6.1 Datasets and Evaluation Metric
Flickr30k Entities and ReferIt constitute the two most common
datasets used in the literature, although other datasets have been
used (e.g., [6, 18, 27, 53]). The Flickr30k Entities dataset [32, 48]
contains 32K images, 275K bounding boxes, 159K sentences, and
360K noun phrases. The ReferIt [19] dataset contains 20K images,
99K bounding boxes, and 130K noun phrases. This dataset differs
from Flickr30k Entities since it does not contain sentences, which
means that the noun phrases are mutually independent. We refer
the reader to the Datasets Details section of the Supplementary
Material for more details.

Aligned with the works in the literature, we adopted the standard
Accuracy metric. Given a noun phrase, it considers a bounding box
prediction to be correct if and only if the intersection over union
value between the predicted bounding box and the ground truth
bounding box is at least 0.5.

6.2 Model Selection and Implementation
Details

To evaluate our model on the test set of Flickr30k Entities and
ReferIt datasets, we have chosen the epoch in which the model
achieved the best Accuracy metric on the validation set. We have
performed a grid search for the best hyper-parameters mainly for
the Flickr30k Entities dataset, ad exception of the losses hyper-
parameters visible in Section 6.3.2. For the ReferIt dataset, we have
used the other hyper-parameters values selected on the Flickr30k
Entities dataset.We have used the Adam optimizer with exponential
learning rate scheduler set to 0.9, and the following values for the
learning rate: {0.05, 0.03, 0.01, 0.005, 0.001}, 𝑐 : {2048, 2053, 2060},
and 𝜂 : {0.1, 0.3, 0.4, 0.45, 0.5, 0.55}. Other hyper-parameters are

1We have adapted the official code: https://github.com/XiangChenchao/DDPN.
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Table 1: Results obtained on Flickr30k test set. Accuracy in-
dicates in percentage the standard accuracy metric. All val-
ues are copied from the original articles. "*" indicates that
the reported model accuracy is referring to the version of
the model in their ablation study, since the complete model
uses query dependency information that we do not exploit.

Model Accuracy (%)
SCRC [17] 27.80
SMPL [43] 42.08

NonlinearSP [42] 43.89
GroundeR [36] 47.81

MCB [14] 48.69
RtP [32] 50.89

Similarity Network [41] 51.05
IGOP [47] 53.97

SPC+PPC [31] 55.49
SS+QRN [5] 55.99

SeqGROUND [8] 61.60
CITE [30] 61.89
QRC net [5] 65.14
YOLO [46] 68.69
DDPN [49] 73.30
CMGN [26]* 73.46
SL-CCRF [23] 74.69

Ours 75.55
DDPN [49] using our losses 74.33

fixed to single values. For the textual features: 𝑤 = 300, 𝑡 = 500,
and the LSTM network uses only one hidden layer of dimension 𝑡 .
For the image features, we have extracted a fixed number 𝑘 = 100
of proposals for each image, 𝑣 = 2048 from the ResNet-101’s layer
pool5_flat, and 𝑠 = 5. In both datasets, we have found that the best
model Accuracy is achieved at epoch 9 of training with learning
rate set to 0.001 and 𝑐 = 2053. For Flickr30k Entities we have set
𝜂 = 0.3 and 𝜆 = 1, while for ReferIt we have set 𝜂 = 0.5 and 𝜆 = 1.4.
The code is publicly available on GitHub 2. We refer the reader to
the Implementation Details section of the Supplementary Material
for more details.

6.3 Results
Table 1 reports the results obtained on the Flickr30k Entities dataset
by our approach and many other approaches presented in the liter-
ature, including the most recent state-of-the-art models reported at
the bottom part of the table. Concerning the model CMGN devel-
oped in [26], for the sake of a fair comparison, we have reported the
performance obtained using the same setting of our model. In fact,
the complete version of the CMGN model achieves an Accuracy of
76.74%, but exploiting query dependency information that we could
exploit as well. The integration of this information in our model is
left for future work. It can be noted that our approach significantly
improves over competing approaches. Moreover, the DDPN model
where our losses are used (last row of the table) shows a significant
improvement in performance (1.03%) with respect to the original
version.

2https://github.com/drigoni/Loss_VT_Grounding

Table 2: Results obtained on ReferIt test set. Accuracy indi-
cates in percentage the standard accuracy metric. All values
are reported from the original articles.

Model Accuracy (%)
SCRC [17] 17.93

GroundeR [36] 26.93
MCB [14] 28.91
CITE [30] 34.13
IGOP [47] 34.70

[44] 36.18
QRC net [5] 44.10

[22] 44.20
[46] 59.30

DDPN [49] 63.00
Ours 66.02

DDPN [49] using our losses 66.66

Table 2 reports the results obtained on the ReferIt dataset by
our approach and the subset of the competing approaches reported
in Table 1 that can be applied to this dataset, plus additional ap-
proaches that have been assessed on this dataset3. Our model im-
proves the Accuracy value by 3.02% when compared to the state-
of-the-art model (i.e., DDPN) for this dataset, representing a more
significant gain than the one obtained on Flickr30k Entities. On the
other hand, adopting our losses in DDPN leads to the best perfor-
mance, with an improvement over the original version of 3.66%.
In the ReferIt dataset, each sentence corresponds to a single query
independently from the others. In contrast, in Flickr30k Entities, a
sentence could contain more queries that are semantically related
among them. For this reason, models that apply complex multi-
modal feature fusion components that aim to capture information
among the queries extracted by the sentence in input sometimes do
not consider the ReferIt dataset. Thus, the set of the models used
as comparison in the ReferIt dataset is not the same as in Flickr30k
Entities and these reasons could explain the higher gain in Accuracy
obtained in ReferIt than Flickr30k Entities.

We have also calculated the Point Game Accuracy which is re-
cently used for a few models addressing the weakly-supervised
task. It considers a prediction to be correct if and only if the center
of the predicted bounding box is contained in the ground truth
bounding box. In particular, our model obtains 87.96% and 78.0%
on Flickr30k Entities and ReferIt, respectively. These values are far
better than the ones reported in the literature, and they suggest that
a significant subset of predictions that are considered to be wrong
according to the Accuracy metric, still refer to bounding boxes that
have a significant overlap with the ground truth.

6.3.1 Qualitative Results. Figures 2,3, and 4 show qualitative ex-
amples predicted by our model on the test set of both Flickr30k
Entities and ReferIt datasets. In our model predictions, we have
noticed that when the query refers to a small object in the image,
most of the time our model predicts a very close bounding box, but
not enough to have the IoU score over the 0.5 value. This is the
case for the query “a tennis ball” in the figure 2. More examples are

3Some of them do not define an acronym, so we just use the reference to the paper.
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Figure 2: This picture reports a qualitative example of our
model on the Flickr30k test image id: 23016347. The ground
truth bounding boxes associated with each query are re-
ported in red.The prediction for the query “a tennis ball” is
evaluated as wrong, even if the bounding box is very close
to the ground truth.

reported on the Qualitative Results section of the Supplementary
Material.

6.3.2 Ablation Study. Our loss is composed by two main compo-
nents and by two hyper-parameters. Here, we report the contri-
bution of each part of the loss using different hyper-parameters
values. We have performed a set of experiments where the ground-
ing component is alternatively the cross-entropy, the KL divergence
or the proposed semantic KL divergence, and the regression compo-
nent is alternatively the Smooth L1 or the proposed semantic CIoU.
Moreover, different values for the hyper-parameters are considered.
The obtained results (Table 3) show that the major contribution to
the improvement is given by the Complete IoU loss with semantic
information, which improves the model Accuracy by ∼ 2.6% and
∼ 3.9% on Flickr30K Entities and ReferIt datasets, respectively. Sig-
nificant improvements are also obtained by using the semantic KL
divergence in place of cross-entropy or the CIoU-Sem instead of
the standard CIoU. Moreover, results show that our approach is
not much sensitive with respect to the hyper-parameters values,
and, more importantly, the Accuracy on the validation set indeed
represents well the Accuracy on the test set on both datasets.

7 CONCLUSION AND FEATURE WORK
This paper introduced a novel loss for Visual-Textual Grounding,
jointly with a simple two-stage approach model. The novel loss
combines a grounding loss and a bounding box coordinates refine-
ment loss, both based on semantic information, i.e. a probability
distribution over a set of pre-defined classes, returned by the object
detector. The experimental assessment showed that the proposed

Figure 3: This picture reports a qualitative example of our
model on the ReferIt test image id: 14651 . The ground truth
bounding box is reported in red. The complete sentence in
input is reported at the bottom of the figure. The predicted
bounding box presents an intersection over union value
with the ground truth of 0.08.

approach was able to reach a higher accuracy than state-of-the-art
models, even without using a more complex multi-modal feature fu-
sion component. Specifically, we have compared our results versus
several models in the literature over two commonly used datasets,
Flickr30K Entities and ReferIt. With respect to the best state-of-
the-art approaches, on the Flickr30K Entities dataset, we obtained
an improvement of 0.86%, while on the ReferIt dataset, our model
improved the state-of-the-art performance by 3.02%. By applying
the proposed loss to the DDPN model we were able to significantly
improve the performance of the model on both datasets, demon-
strating its usefulness independently from the proposed model.

Since this model uses a simple multi-modal feature fusion com-
ponent, there is space for trivial improvements, including a more so-
phisticated multi-modal feature fusion component, such as bilinear-
pooling and deeper architectures, as well as the exploitation of
dependencies among the queries contained by the input sentence.
Future work will also address more sophisticated object detectors,
and the idea to include different forms of information, such as a
scene graph and prior knowledge.

8 SUPPLEMENTARY MATERIAL
We have reported all the supplementary material available at the
following address: https://www.math.unipd.it/~drigoni/files/SAC
_2022_A_Better_Loss_for_Visual_Textual_Grounding_Supplem
entary.pdf.
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