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ABSTRACT Mm-wave radars have recently gathered significant attention as a means to track human
movement and identify subjects from their gait characteristics. A widely adopted method to perform the
identification is the extraction of the micro-Doppler signature of the targets, which is computationally
demanding in case of co-existing multiple targets within the monitored physical space. Such computational
complexity is the main problem of state-of-the-art approaches, and makes them inapt for real-time use.
In this work, we present an end-to-end, low-complexity but highly accurate method to track and identify
multiple subjects in real-time using the sparse point-cloud sequences obtained from a low-cost mm-wave
radar. Our proposed system features an extended object tracking Kalman filter, used to estimate the position,
shape and extension of the subjects, which is integrated with a novel deep learning classifier, specifically
tailored for effective feature extraction and fast inference on radar point-clouds. The proposed method
is thoroughly evaluated on an edge-computing platform from NVIDIA (Jetson series), obtaining greatly
reduced execution times (reduced complexity) against the best approaches from the literature. Specifically,
it achieves accuracies as high as 91.62%, operating at 15 frames per seconds, in identifying three subjects
that concurrently and freely move in an unseen indoor environment, among a group of eight.

INDEX TERMS mm-wave radar, person identification, point-clouds, multi-target tracking, convolutional
neural networks.

I. INTRODUCTION
The use of mm-wave radars for physical environment sens-
ing is a fast growing research area [1], [2]. They can be
used to infer the position of the surrounding obstacles and
humans, with high precision, by transmitting an interroga-
tion signal and analyzing the modifications in the received
reflected waves [3]. These systems represent an effective
means to monitor indoor environments, inferring key infor-
mation about the movement of people, without capturing any
visual image of the scene, which could rise privacy concerns.
In addition, in contrast with camera surveillance systems,
radars are insensitive to poor light conditions, to the presence
of smoke [4], and are also energy efficient and low-cost as
compared to other technologies such as LIDARs [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Zhang .

The high sensitivity of mm-waves to the frequency shifts
caused by the Doppler effect makes them suitable to infer
the movement patterns of humans. A widely adopted method
of analysis is to extract features from the so-called micro-
Doppler signature (µD) of the subject, which contains
time-frequency information about the induced Doppler shift,
including the contribution of small-scale movements [5], [6].
µD signatures have been used in the challenging task of dis-
tinguishing subjects from their way of walking (gait), which
is the aim of the present work.

Human gait has been classified as a soft biometric [7],
meaning it is unique for each person. Differently from hard
biometrics, however, such as fingerprints or DNA, it cannot
be used in high-stakes settings or to uniquely identify subjects
among very large groups, e.g., more than 1, 000 people.
Despite this, gait is difficult to fake, and it can be effectively
analyzed even at distance and without requiring the sub-
jects to collaborate. For these reasons, mm-wave radar based
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gait recognition can be a good option to identify subjects
in scenarios such as surveillance systems or individually-
tailored smart home applications, where the number of people
involved is in the order of a few tens, replacing or augmenting
traditional camera systems.

Using a deep learning (DL) classifier on raw micro-
Doppler spectrograms has proven to be robust and effective
for identifying subjects in the case of single- and multi-target
scenarios [8]–[11]. The extraction of representative features
from µD signatures is often accomplished via neural net-
works (NN) and DL methods. These, are becoming the tools
of choice due to the high randomness of mm-wave propa-
gation, which makes a full mathematical modelling of the
involved dynamics very difficult [12]–[14].

In the present work, we design and validate a realtime
multi-target tracking and identification system running on
constrained edge-computing devices1 equipped with hard-
ware accelerators (last generation GPUs). Instead of working
on the raw data obtained from the backscattered mm-wave
signal, as commonly done in the literature, we use sparse
point-clouds. This makes it possible to implement our system
on resource limited edge-computing devices. Point-clouds
carry information about the three-dimensional spatial coordi-
nates of the reflecting points, their velocity and the reflected
power, and are obtained by employing detection algorithms
at the radar processing unit, thus avoiding the need for trans-
ferring the full raw data from the radar to the edge computer.
Due to their much lower data size, they bring advantages in
terms of communication and computation at the connected
processing device. Nonetheless, these advantages entail a
more challenging person identification task: the sparsity of
radar point-cloud data can be a source of inaccuracy and
standard DL architectures are inapt for learning from them,
as they rely on the reciprocal ordering of their input ele-
ments [15]. As a solution, we present a novel DL classifier,
called temporal convolution point-cloud network (TCPCN),
which allows extracting meaningful order-invariant features
from sparse point-cloud data.

The proposed system sequentially performs person track-
ing and identification, estimating the positions and the iden-
tities of humans as they freely move in an indoor space. For
that, we use a low-cost Texas Instruments IWR1843BOOST
mm-wave, frequency-modulated continuous-wave (FMCW),
multiple-input multiple-output (MIMO) radar and implement
the required processing functions in real-time on a commer-
cial edge-computing node (NVIDIA Jetson series). To carry
out the person identification task, we combine standard track-
ing techniques, i.e., Kalman filter, with DL methods. This
combined use of filtering and DL makes it possible to effec-
tively capture the time evolution of the point-cloud represent-
ing each subject. Our main contributions are:

1) We build an end-to-end tracking and identification sys-
tem that reliably operates in real-time at over 15 fps
on a commercial edge-computing device paired with

1As an example, see the NVIDIA Jetson series.

a low-cost mm-wave radar. The approach reaches an
accuracy of 91.62% in identifying up to three subjects
(among a group of eight) freely and concurrently mov-
ing in a new indoor space, i.e., not seen at training time.

2) We propose a novel DL classifier, called temporal
convolution point-cloud network (TCPCN), that is tai-
lored on mm-wave radar point-cloud sequences and
that is both accurate and fast. TCPCN contains a feature
extraction block that obtains global information from
the radar output at each time-frame and a block that
exploits causal dilated convolutions [16] to recognize
meaningful patterns in the temporal evolution of the
features. Our model significantly outperforms state-of-
the-art neural networks in this field in terms of classi-
fication accuracy and inference time.

3) The tracking phase of our system employs a
converted-measurements Kalman filter (CM-KF) that,
in addition to estimating the position of the targets in
Cartesian coordinates, also estimates the extension of
the subject in the horizontal plane (x − y), considering
him/her as an extended object rather than an ideal
point-shaped reflector. This provides useful additional
information that could be exploited by, e.g., occu-
pancy or proximity based applications. In fact, knowing
the extension of the subjects would be valuable for
(i) smart-home applications that perform occupancy
detection in certain areas, (ii) security systems in
industrial settings, to estimate how close a person is
to some dangerous area or machinery, (iii) detection
systems (e.g., for automatic gates) that could quickly
discern between cars, adults, kids or pets from their
size. To the best of our knowledge, no earlier work uses
extended object tracking (EOT) within a point-cloud
based tracking and identification system.

The novelty of the proposed solution stems from the fol-
lowing main points: the design and implementation of a
novel DL-based neural network classifier working on time
sequences of sparse point-cloud data, that is at the same time
highly accurate and fast, the integration of tracking and iden-
tification phases, that in the literature on the subject are usu-
ally dealt with separately, the implementation and validation
of the solution on a commercially available edge-computing
platform with limited capacity.
The rest of the paper is structured as follows. In Section II,

the literature on person identification using mm-wave
radars is reviewed, underlining the novel aspects in our
approach. In Section III, the FMCW MIMO radar signal
model is outlined, by also describing the procedure to extract
the point-clouds. Our proposed framework is presented in
Section IV. In Section V, experimental results are shown,
while concluding remarks are given in Section VI.

II. RELATED WORK
In the last few years, person identification from backscat-
tered mm-wave radio signals has attracted a considerable
and growing interest. Most of the research attention has been
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paid to processing human micro-Doppler (µD) signatures as
a means to distinguish among subjects, usually employing
deep learning classifiers, applied to the µD spectrogram
[8]–[11], [17]–[20]. Although this approach is robust and
accurate, it presents some drawbacks. First, the extraction of
µD signatures in case of multiple targets is a rather complex
endeavour, and most of the above referenced solutions only
work for a single-subject. In very few works, e.g., [11],
the authors devised methods to single-out the contribution
from multiple concurrent targets, obtaining the individual
µD signatures. However, in the interest of obtaining highly
accurate signatures, these previous algorithms dealt with
non-sparse radar range-azimuth-Doppler (RDA) maps that
require a large communication bandwidth to transfer the raw
radio data from the radar to the processing device, preventing
their implementation on low-cost embedded boards.

Only a few works so far have considered point-clouds
obtained from a low-cost mm-wave MIMO radar device.
The sparsity of radar point-cloud data makes the identifi-
cation task more challenging, as the specific features that
identify each subject are more difficult to extract, and more
sensitive to external disturbances. In [21], a recurrent neu-
ral network with long short-term memory (LSTM) cells is
used for the identification. The overall accuracy obtained for
12 subjects is around 89%, and evidence that the system is
able to distinguish between two concurrently walking sub-
jects is provided. However, no evaluation of the accuracy
is conducted when more than 2 subjects share the same
physical space, nor by testing it in a different indoor envi-
ronment (e.g., a new room) after its training. In addition,
the point-cloud nature of the radar data is not fully exploited:
the velocity and the received power are not used, and the
classifier network requires the input data to be mapped onto
a 3D voxel representation, which is inefficient and compu-
tationally expensive. The authors of [22] proposed a deep
learning model that outperforms the bi-directional LSTM
in [21] on their dataset. Two radar devices are used, trans-
mitting and receiving simultaneously, leading to an increased
field of view in case of blockage. However, robust meth-
ods are neither provided for tracking multiple subjects, e.g.,
Kalman or particle filtering [23], nor to reliably associate the
detections (user identities) with trajectories. This seriously
impacts the identification performance when multiple targets
freely move in the monitored environment. In [22], it is in
fact reported that the accuracy drops to 45% in a multi-target
setting.

With the present work, we fill a literature gap, by designing
a system that performs accurate tracking of multiple subjects
from their point-clouds. Extended object tracking based on
Kalman filtering is exploited in conjunction with a fast and
novel domain-specific deep learning classifier. A tight inte-
gration of the tracking and identification modules is sought,
towards enhancing the identification robustness and avoiding
wrong identity associations and trajectory swaps. Moreover,
and to the best of our knowledge, we are the first to pro-
vide an empirical study on the feasibility of operating the

system in realtime on commercial edge-computing devices,
and low-cost mm-wave radars.

III. mmWave RADAR SIGNAL PROCESSING
A frequency-modulated continuous wave (FMCW) radar
allows the joint estimation of the distance and the radial
velocity of the target with respect to the radar device. This is
achieved by transmitting sequences of linear chirps, i.e., sinu-
soidal waves with frequency that is linearly increased over
time, andmeasuring the frequency shift of the reflected signal
at the receiver. The frequency of the transmitted chirp signal is
increased from a base value fo to a maximum f1 in T seconds.
Defining the bandwidth of the chirp as B = f1 − fo, band-
width B and chirp duration T are related through ζ = B/T ,
and the transmitted signal is expressed as

s(t) = exp
[
j2π

(
fo +

ζ

2
t
)
t
]
, 0 ≤ t ≤ T . (1)

The chirps are transmitted every Trep seconds in sequences
of L chirps each, so that the total duration of a transmitted
(TX) sequence is LTrep. A full sequence, termed radar frame,
is repeated with period1t . At the receiver, a mixer combines
the received signal (RX) with the one transmitted, generat-
ing the intermediate frequency (IF) signal, i.e., a sinusoid
whose instantaneous frequency corresponds to the difference
between those of the TX and RX signals. Each chirp is
sampled with sampling period Tf (referred to as fast time
sampling) obtainingM points, while L samples, one per chirp
from adjacent chirps, are taken with period Trep (slow time
sampling).

The use of multiple-input multiple-output (MIMO) radar
devices allows the additional estimation of the angle-of-
arrival (AoA) of the reflections, by computing the phase shifts
between the receiver antenna elements due to their different
positions (i.e., their different distances from the target). This
is referred to as spatial sampling, and enables the localization
of the targets in the physical space. The radar device used in
this work has NTX = 3 transmitter and NRX = 4 receiver
antennas, that are equivalent to a virtual receiver array of
NTXNRX = 12 antennas. The transmitting elements are
arranged along two spatial dimensions, which we refer to as
azimuth (AZ) and elevation (EL), and are used to transmit
the chirp sequences according to a time-division multiplexing
(TDM) scheme. This enables the estimation of the EL and
AZ angles of the reflecting points. In Section III-A, we first
consider one of the receiver elements, referring to it as ref-
erence antenna, and describe how the range and velocity of
the subjects are estimated. In Section III-B, we extend the
discussion tomultiple receiver antennas, showing how theAZ
and EL AoAs are computed.

A. RANGE AND DOPPLER INFORMATION
Next, we show how to extract the range and velocity
information from the received signal, focusing on the
reference antenna. The signal reflected by a target is an
attenuated version of the transmitted waveformwith a delay τ
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that depends on the distance between the target and the radar
and on their relative radial velocity.

Denoting by c the speed of light, and letting R and v respec-
tively be the range and velocity of the target with respect to
the radar device, the reflected signal delay is

τ =
2(R+ vt)

c
. (2)

After mixing and sampling, the IF signal is expressed as [2]

y(m, l) = α exp [jϕ(m, l)]+ w(m, l), (3)

where m and l represent the sampling indices along the fast
and slow time, respectively, α is a coefficient accounting for
the attenuation effects due to the antenna gains, path loss
and radar cross section (RCS) of the target and w(m, l) is a
Gaussian noise term. The phase ϕ(m, l) depends on the fast
time and slow time sampling indices. By neglecting the terms
giving a small contribution, an approximate expression for
ϕ(m, l) is written by introducing the quantities fd = 2fov/c
and fb = 2ζR/c, which respectively represent the Doppler
frequency and the beat frequency of the reflected signal,

ϕ(m, l) ≈ 2π
[
2foR
c
+ fd lTrep + (fd + fb)mTf

]
. (4)

Samples of y(m, l) can be arranged into an M × L matrix
containing all the information provided by a single antenna
for a given time frame. The frequency shifts of interest,
which reveal the range and velocity of each reflector, can
be extracted after applying a bi-dimensional discrete Fourier
transform (DFT) along the fast time and slow time dimen-
sions, followed by taking the square magnitude of each
obtained complex value. The result of this process is often
referred to as radar range-Doppler map (RD), and represents
the received power distribution along the range of distances
and velocities of interest.

The detection of the main reflecting points is per-
formed using the cell-averaging constant false alarm rate
(CA-CFAR) algorithm on the range-Doppler maps [24],
which consists in applying a dynamic threshold on each RD
value (or bin), depending on the power of nearby training
values. The use of an adaptive threshold introduces sparsity
in the resulting set of detected points, as a point is retained
(i.e., selected) only if its power is sufficiently larger than the
average power of its neighbors.

In addition, a processing step is required to remove the
reflections from static objects, i.e., the clutter. This opera-
tion is performed using a moving target indication (MTI)
high pass filter that removes the reflections with Doppler
frequency values close to zero [24].

The detection andMTI processing steps return a sparse RD
map containingN det detected reflecting points: the position of
each value along the fast time reveals the corresponding fre-
quency in the IF signal fd + fb ≈ fb, while the peak along the
slow time reveals the Doppler frequency fd . For each detected
point, the observed desired quantities are then expressed as

follows (we indicate with the symbol 1 the corresponding
resolution)

R̃ =
fbc
2ζ
, 1R̃ =

c
2B
, (5)

ṽ =
fdc
2fo
, 1ṽ =

c
2foLTrepNTX

. (6)

Additionally, from the RD map we obtain the reflected,
received power from each detection, denoted by PRX.

B. AZIMUTH AND ELEVATION ANGLES ESTIMATION
The complex-valued RD map of the radar illuminated range,
before taking the square magnitude, is computed at all the
receiving antenna elements, and presents a different phase
shift at each antenna, due to its different distance from the
target. This fact is referred to as spatial diversity of the
receiver array, and can be exploited to estimate the azimuth
and elevation angles of the targets.

Denote by d the distance between two subsequent antennas
along the azimuth and elevation dimensions and by ψAZ and
ψEL the corresponding experienced phase shifts, respectively.
Moreover, let θ and φ be the AZ and EL angles of a reflecting
point, while λ = c/fo is the base wavelength of the transmit-
ted chirps. The following relations hold

ψAZ ≈
2π
λ
d cosφ sin θ,

ψEL ≈
2π
λ
d sinφ. (7)

To compute the phase shift values, two DFTs across the
samples taken at the azimuth and elevation antennas in the
virtual receiver array are computed, extracting the peak posi-
tions similarly to what described in Section III-A for beat and
Doppler frequency. Finally, the Cartesian coordinates of each
detected point are obtained using Eq. (7) as

x̃ = R̃ cosφ sin θ = R̃
λψAZ

2πd
,

ỹ =
√
R̃2 − x̃2 − z̃2,

z̃ = R̃ sinφ = R̃
λψEL

2πd
. (8)

The vector describing a single detected reflecting point,
pr , r = 1, . . . ,N det, has five components, containing the
information on its Cartesian coordinates, its velocity and the
reflected power: pr =

[
x̃r , ỹr , z̃r , ṽr ,PRXr

]T
.

IV. SYSTEM DESIGN
The proposed system operates on discrete time steps, indi-
cized by variable k , whose duration corresponds to the radar
inter frame time 1t . At each frame, a set of N det

k reflecting
points pr are obtained through the signal processing steps of
Section III. Our system sequentially performs the following
operations on such points, see Fig. 1.

1) Clustering and extension observation: a density-
based clustering algorithm is used to group the points
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FIGURE 1. Block diagram of the proposed signal processing workflow: the raw radar data is processed on the
radar device, extracting the sparse point-cloud representation of the environment, i.e., points pr , then
(1) a clustering module groups the points pr into the contributions from the different targets and estimates their
position and extension, (2-3) tracking, data association and identification are jointly performed through an
identification algorithm.

detected by CA-CFAR into several clusters, each cor-
responding to a different subject present in the environ-
ment, see Section IV-A. The points associated with the
different targets are then used to obtain observations
of the subject’s state, which according to our design
includes his/her Cartesian position and extension in the
horizontal plane (x − y). The extension is modeled as
an ellipse, that is determined by the spread (covariance)
of the points in each cluster, Section IV-B.

2) Tracking and data association: a CM-KF [25] is
used to estimate the position, velocity and exten-
sion of the subjects in a multi-target tracking (MTT)
framework, processing the observations outputted by
the previous step, Section IV-C. A set of trajectories,
each corresponding to a human subject, are main-
tained and sequentially updated. The MTT association
between new observations and trajectories is achieved
using an approximation of the nearest-neighbors joint
probabilistic data association (NN-JPDA) algorithm,
see Section IV-D.

3) Identification: a deep NN classifier is applied to a
temporal sequence of K subsequent point-clouds asso-
ciated with each trajectory, with the objective of dis-
cerning among a set of Q pre-defined subject identi-
ties. The employed NN is called temporal convolution
point-cloud network (TCPCN), and is inspired by the
popular PointNet architecture used for 3D point-cloud
classification and segmentation [15]. TCPCN extends
PointNet to the radar domain, by adding the veloc-
ity and received power information to the input and
accounting for an additional block that handles the
extraction of temporal features. Also, TCPCN is used
in conjunction with an identification algorithm, which
includes an exponential moving-average smoother and
the Hungarian method, to jointly output a unique label
for each trajectory: this combined use greatly improves
the identification accuracy of the framework.

A. POINT-CLOUD CLUSTERING – DBSCAN
Density-based clustering algorithms, as opposed to dis-
tance-based ones, group input samples according to their

local density. One of the most widely used algorithms belong-
ing to this category is DBSCAN [26], which has been suc-
cessfully applied to cluster radar point clouds in [11], [21],
[22], [27]. The algorithm operates a sequential scanning of
all the data points, expanding a cluster until a certain density
connectivity condition is no longer met. The algorithm takes
two input parameters, ε and mpts, respectively representing a
radius around each point and the minimum number of other
points that must be inside such radius to meet the density
condition. DBSCAN is only applied to the x− y components
of the detected points pr , namely, the Cartesian coordinates
on the horizontal plane, as the different body parts of a subject
can have very different velocity and reflected power values.
We denote by

{
Znk
}
n=1,...,Dk

the Dk clusters obtained at time
step k by grouping theN det

k detected points. In principle, there
should be a distinct cluster for each human subject present in
the environment, but due to several phenomena such as noise,
imperfect clutter cancellation and blockage of the signal,
a subject can go undetected even for several consecutive
frames. DBSCAN was chosen for the following reasons: it
is an unsupervised algorithm, i.e., the number of clusters
(subjects) does not have to be known beforehand, it has a
noise rejection quality that, together with its density-based
clustering mechanism, allows a reliable and automatic sep-
aration of the reflections from distinct subjects, it has a low
computational complexity, of about O

(
N det
k logN det

k

)
.

B. SUBJECT POSITION AND EXTENSION OBSERVATIONS
Due to the high spatial resolution of mm-wave radars, human
subjects are detected as clusters containing tens of reflecting
points. In the literature, the typical approach to their tracking
has been to ignore the spatial extension of the targets, con-
sidering them as ideal point-shaped reflectors. In the present
work, given a cluster of points Znk selected by the DBSCAN
clustering algorithm at time k , we instead obtain an estimate
of the extension of the subject in the x − y plane. As a first
step, we define p̃r =

[
x̃r , ỹr

]T and we normalize the received
power values,PRXr , of the detected points in [0, 1]. The spread
of the points within each cluster around the cluster centroid
provides a measure of the subject’s extension. The centroid
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represents a noisy observation of the true position of the
person, and is obtained as

µnk =
∑

r :p̃r∈Z
n
k

PRXr p̃r , (9)

where µnk = [µnx,k , µ
n
y,k ]

T and the received normalized pow-
ers PRXr act as weights. The covariance matrix, 6n

k , contains
information on the dimensions of the ellipse representing the
extension of cluster n, and is obtained through the weighted
sample covariance estimator,

6n
k =

∑
r :p̃r∈Z

n
k

PRXr
(
p̃r − µ

n
k
) (
p̃r − µ

n
k
)T
. (10)

The norms of the eigenvectors of matrix 6n
k , denoted by

˜̀n
k and w̃nk provide the axes lengths of the ellipse, while the
orientation, ξ̃nk , has the same direction of the eigenvector
corresponding to the largest eigenvalue of 6n

k .

C. EXTENDED OBJECT TRACKING – CONVERTED
MEASUREMENTS KALMAN FILTER
With the tracking step, we perform a sequential estimation
of the state of the subjects present in the environment from
their observed positions and extensions. To this end, we use
a set of CM-KFs to establish a so-called track for each
subject. A new KF model is initialized for each detected
cluster in the first frame received by the radar, while in
successive frames, the tracks are maintained through the KF
predict-update steps [23]. We denote by T t

k the track with
index t at time k , by T k the set of currently maintained
tracks, i.e., T k =

{
T t
k

}
t=1,...,Tk

, and by Tk its cardinality.

We define the state of T t
k as xtk =

[
x tk , y

t
k , ẋ

t
k , ẏ

t
k , `

t
k ,w

t
k , ξ

t
k

]T ,
which contains the true (and unknown) user’s position
(x tk and ytk ), velocity (ẋ tk and ẏtk ), extension (`tk and wtk )
and orientation angle (ξ tk ). Each track is then defined as a
tuple, T t

k =
(
x̂tk ,P

t
k ,Z

t
k−K+1:k , I

t
k

)
, containing respectively

the current state estimate, x̂tk , the associated error covariance
matrix as computed by the KF, P tk , the collection of the
last K clusters associated with the track, Ztk−K+1:k , to be
fed to the NN classifier, and an integer I tk representing an
estimate of the identity of the associated subject, at time k .
The observation vector for a detected target n at time k is

znk =
[
µnx,k , µ

n
y,k ,
˜̀n
k , w̃

n
k , ξ̃

n
k

]T
.

The matching between any given cluster n and a corre-
sponding track t (n ↔ t) is carried out using a specific
procedure that will be detailed shortly in Section IV-D. For
the sake of a concise notation, for the remainder of this section
we drop the indices n and t , as the procedure that we describe
next is carried out independently for each track (subject) once
the matching n↔ t is performed.
Given the sequence of all collected measurements for a

track up to time k , z1:k , the state estimation is carried out using
the CM-KF. This approach assumes a posterior Gaussian
distribution of the state given the sequence of measurements,
i.e., p(xk |z1:k ) = N (x̂k ,Pk ). To update x̂k and Pk , a KF

recursion [23] is applied using themeasurements transformed
in Cartesian coordinates from Section IV-B.
The model of motion that is used by the Kalman filtering

block is defined by two matrices, F andH . F is the transition
matrix, connecting the system state at time k , xk , to that
at time k − 1, xk−1. H is the observation matrix, which
relates the observation vector zk to the true state xk . Referring
to uk ∼ N (0,Q) and rk ∼ N (0,Rk) as the process noise
and observation noise, respectively, a dynamic model of the
system is

xk = Fxk−1 + uk , (11)

zk = Hxk + rk . (12)

Denoting by blkdiag[A,B] the block diagonal matrix with
blocks given by matrices A and B, we have

F = blkdiag
[[

1 1t
0 1

]
⊗ I2, I3

]
, (13)

and

H =
[

I2 02×2 02×3
03×2 03×2 I3

]
, (14)

where In is an n × n identity matrix, 0n×m is an n × m
all-zero matrix and ⊗ refers to the Kronecker product
between matrices.

We assume the process noise uk is due to a random acceler-
ation ak that follows a Gaussian distribution with 0 mean and
variance σ 2

a , i.e., ak ∼ N (0, σ 2
a ), leading to uk = gak with

g =
[
1t2/2,1t

]T
. The process noise covariance matrix is

obtained as

Q = blkdiag
[
σ 2
a gg

T
⊗ I2, diag

(
σ 2
` , σ

2
w, σ

2
ξ

)]
, (15)

with σ 2
` , σ

2
w, σ

2
ξ being the constant process noise variances on

the extension- and orientation-related coordinates of the state.
The observation noise has covariance matrix given by

Rk = blkdiag
[
R′(xk ), diag

(
σ 2
˜̀
, σ 2

w̃, σ
2
ξ̃

)]
, (16)

with σ 2
˜̀
, σ 2

w̃, σ
2
ξ̃
being the constant observation noise vari-

ances on the extension- and orientation-related coordinates
of the state. For what concerns R′, as radar measurements
are obtained in polar coordinates, and then converted to the
Cartesian space using Eq. (8), the measurement covariance
matrix is time-varying as it depends on the current target’s
position. The sub-matrix R′ accounts for the uncertainty
in the Cartesian position observations, reflecting that an
error on the AoA causes a higher uncertainty in Cartesian
coordinates as the distance of the subject increases, due to
the non-linear mapping between polar and Cartesian coor-
dinates. In setting the uncertainty parameters for the mea-
surements, we use a constant measurement covariance in
polar coordinates, Rpol = diag

(
σ 2
R, σ

2
θ

)
, where R and θ are

the distance and azimuth AoA, respectively introduced in
Section III-A and Section III-B. Hence, we use the trans-
formR′(xk ) = J |xkRpolJT|xk , where J |xk is the Jacobianmatrix
of the conversion between polar and Cartesian coordinates,
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computed using the polar representation of the true subject
state, xk , which we approximate with xk ≈ H x̂k−1. Although
it can be seen that our conversion to Cartesian coordinates is
biased, we remark that employing the unbiased conversion
proposed in [28] did not lead to significant improvements.
Note that, by the structure of the model matrices in Eq. (13)
and Eq. (14), the kinematic part of the subject state and
the extension part are entirely decoupled and do not interact
during the CM-KF operations.

As a final remark about the KF model, with our approach
the extension of the subject is explicitly accounted for as
part of the state, fitting the point-clouds with ellipses, sim-
ilarly to [29]. Although other approaches exist, such as using
random matrices [30], [31], we found that our method leads
to more accurate and meaningful extension estimates of the
target’s shape, due to the fast variability of radar point-clouds.

D. DATA ASSOCIATION – NN-CJPDA
The association between new observations and tracks is
needed (i) to correctly update the tracks with the observations
generated by the corresponding subjects in a multi-target
scenario, (ii) to correctly collect the sequence of the past K
point-clouds associated with each subject, Ztk−K+1:k .

To match tracks t to clusters n (n↔ t), we use the nearest-
neighbors joint probabilistic data association (NN-JPDA)
scheme. This method consists in computing the probability
of each possible association between the Dk new clusters
and the previous Tk tracks. These probabilities are then
arranged into a Dk × Tk−1 matrix of scores, 0, and the
final assignment is done considering the association lead-
ing to the maximum overall probability, computed using the
Hungarian algorithm [32]. The Hungarian algorithm uses the
score matrix as input and solves the problem of pairing each
track with only one cluster while maximizing the total score,
entailing an overall complexity O((Tk−1Dk )3).

To compute the probability of eachmatch, i.e., the elements
of matrix 0, we consider the widely adopted JPDA logic,
using the approximate version of [33] called cheap-JPDA
(CJPDA). Exploiting the fact that the kinematic, extension
and orientation parts of the state are decoupled in our frame-
work, we apply CJPDA only using the kinematic state,
as extension and orientation are more unreliable and could
lead to association errors. Hence, in the following we refer to
the kinematic part of the KF vectors and matrices only, i.e., to
the components related to the Cartesian position and velocity
of the targets.

The score matrix 0 is computed as follows (the time index
k is omitted for a simpler notation). First, for all track-
detection pairs the quantity Gnt is computed, which is pro-
portional to the Gaussian function expressing the likelihood
that observation n is produced by the subject corresponding
to track t

Gnt =
1

√
detSnt

exp
[
−
1
2
νTnt (Snt)

−1 νnt

]
, (17)

where νnt = x̂t −Hzn is the innovation brought by mea-
surement zn to the kinematic state of track t , x̂t , and
Snt = HP tHT

+ R is its covariance matrix, obtained as part
of the KF recursion. Second, the association probabilities for
each track-detection pair are computed following [33], as

0nt =
Gnt∑Tk−1

t=1 Gnt +
∑Dk

n=1Gnt − Gnt + β
, (18)

where the bias term β accounts for the possibility that no
measurement is a good match for a specific track and is
connected with the probability of missed detection. In this
work, β is empirically set to β = 0.01, preventing the
association of track-detection pairs with a low Gnt score.

E. TRACK MANAGEMENT
The proposed system is robust to subjects that randomly
appear on and disappear from the monitored space: these
events may happen due to blockage of the radar signal at any
point in time, or because the subject has moved in or out of
the radio range. Blockage is a frequent problem in mm-wave
propagation and it happens frequently in multi-target scenar-
ios, as users may block the radio signal with their own body.
To deal with undetected subjects and new cluster detections
which cannot be reliably associated with any existing track,
while keeping the complexity of the system as low as pos-
sible, we follow a so-called m/n logic. In detail, a track is
maintained if it received a match with any of the clusters
detected by DBSCAN for at least m out of the last n frames.
Similarly, cluster detections that are not associated with any
existing track are initialized as new trajectories if they are
detected for at least m out of the last n frames. In addition,
to avoid tracks to merge when the subjects move too close
to one another, the inter-track proximity is monitored. If the
estimated Euclidean distance2 between any two tracks T t

k and
T t ′
k becomes smaller than the DBSCAN radius parameter, ε,

we remove the track having the largest determinant of the
estimated error covariance, i.e., argmaxj∈{t,t ′}(detP

j
k ).

F. POINT-CLOUD PRE-PROCESSING
The point cloud sequence Ztk−K+1:k obtained from each
CM-KF track is pre-processed before being sent to the NN
classifier. The features of the points are standardized by
subtracting their mean value and dividing by their empirical
standard deviation. Moreover, the point-clouds must contain
a fixed number of points before being sent to the TCPCN,
as the latter is a feed forward neural network processing
fixed size input vectors. We chose to limit the maximum
number of points for a single time step to nmax = 100. In case
the number of points is greater than such maximum value,
we randomly sample nmax points from the point-cloud with-
out repetitions, in case there are fewer points than nmax,
some of the points are randomly repeated to reach the max-
imum value. The choice of nmax was made by analyzing the
distribution of the number of detected points for different

2Obtained as d(T t
k ,T

t ′
k ) = ((xtk − x

t ′
k )

2
+ (ytk − y

t ′
k )

2)1/2.
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FIGURE 2. TCPCN – proposed DL-based classifier for subject identification: (i) a point-cloud block is applied to
each individual time step to extract a feature vector, (ii) causal dilated convolutions are used to learn the
temporal patterns in the sequence of feature vectors.

human subjects and empirically picking a suitable value:
the selected nmax suffices to contain the point-clouds of all
users in almost every frame in our experiments. Also, due to
blockage and clutter, a subject may go undetected, especially
in a multi-target scenario. If this occurs, the point-cloud
data for the current frame is not collected for the blocked
user and, in turn, is not sent to the NN classifier. A missed
detection persisting over multiple radio frames may make
the sequence of temporal features extracted for a subject
by the NN less representative of his/her movement, and
may ultimately degrade the identification performance of the
algorithm. To ameliorate this, we propose an identification
algorithm that jointly considers the outputs of the tracking
block and of the classifier, as detailed in Section IV-I.

Considering that the TCPCN classifier is applied consis-
tently to every track t at every time step k , in the following
we simplify the notation denoting the pre-processed input
point-cloud sequence Ztk−K+1:k , of length K , by Z1:K .

G. IDENTIFICATION – TEMPORAL CONVOLUTION
POINT-CLOUD NETWORK
The proposed classifier is designed to extract meaningful
features from a temporal sequence of point-clouds, which is
obtained as a result of the detection and tracking steps. The
proposed architecture includes two processing blocks, termed
point-cloud block (PC) and temporal convolution block (TC),
and we refer to the full neural network as temporal convolu-
tion point-cloud network (TCPCN), see Fig. 2.

1) POINT-CLOUD BLOCK
A number K of identical (same weights) feature extraction
blocks is applied to the standardized input point-clouds, Zi,
i = 1, . . . ,K , of size nmax × 5, i.e., each composed of
nmax reflecting points pr (see Section III-B). Each of such
blocks implements a function fW (·), obtained as the cascade
of a multi-layer perceptron (MLP) [34] followed by a global
average pooling operation, whereW is a set of weights to be
learned. Each reflecting point pr in point-cloud Zi (a vector of
size 1× 5), is fed to the first MLP layer and is independently
processed from all the other nmax points in Zi, by one of
nmax parallel branches. The MLPs located at the same depth

share the same weights across all the points: there are 3 fully-
connected (FC) layers with 96 units followed by 2 FC layers
with 192 units. Each FC layer applies a linear transformation
of the input followed by an exponential-linear unit (ELU)
activation function [35]. Batch normalization is used after
each linear transformation [36] and right before the following
non-linearity (ELU). The output feature vector from the last
MLP layer from each branch has size 1×192. Global average
pooling reduces this set of features to a single feature vector,
oi = fW (Zi), of size 1 × 192, by taking the average of each
element across all the 100 parallel branches. The structure
of function fW (·) is loosely inspired by the popular Point-
Net [15]. The key aspect of fW (·) is that it uses functions that
are invariant to the ordering of the input points, by sharing the
weights of the MLP and using suitable pooling operations.
This ensures robustness and generality, because point-clouds
that only differ in how the points are ordered will result in
the same output. We underline that our TCPCN significantly
differs from PointNet as the latter is designed to perform
end-to-end classification and segmentation of dense 3D point
clouds, whereas our fW (·) performs feature extraction from
sparse 5D point-clouds.

2) TEMPORAL CONVOLUTION BLOCK
The sequence of feature vectors o1:K = {fW (Zi)}i=1:K , each
of dimension 192, is then fed to the TC block, which operates
along the temporal dimension applying a function hU (·),
where U is another set of weights. To extract temporal fea-
tures efficiently, hU (·) contains temporal convolutions, which
are a type of convolutional neural network (CNN) layer [34]
where the input is convolved with a uni-dimensional filter
(or kernel) of learned weights in order to recognize tempo-
ral patterns. The output of the filters is organized into so
called feature maps, which become more and more complex
and abstract with the depth of the layer. In TCPCN we use
causal dilated convolutions [16], [37]. This technique con-
sists (i) in masking the filters in such a way that neurons
corresponding to a certain time step only depend on neurons
corresponding to past time steps, i.e., they cannot use future
information, as done in [16], and (ii) in applying the convo-
lution filters skipping blocks of δ − 1 samples in the input,
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where δ is the so-called dilation rate. Formally, denoting a
feature map as m and the filter as k, the output of a dilated
convolution, ∗δ , between m and k is [37],

(m ∗δ k) (s) =
∑
i+δj=s

m(i)k(j). (19)

The standard discrete convolution is obtained for δ = 1.
In the proposed TCPCN we employ 3 temporal convolu-
tion layers with filters of dimension 3 (also called kernel
dimension) and dilation rates of 1, 2 and 4, respectively. The
applied filters are repeated along the feature vector compo-
nents of the input, obtaining 32, 64 and 128 feature maps at
each layer, respectively.

The last layer of TCPCN is a temporal convolution layer
that maps the extracted temporal features onto Q feature
maps, each corresponding to one of the output classes.
It applies a standard convolution with a kernel size of 3
and it is followed by a global average pooling to group
the information from each feature map and obtain a single
vector of dimensionQ. Finally, a SoftMax function is applied,
defined for a generic vector x as SoftMax(x)i = exi/

∑
j e
xj .

The vector outputted by this last layer is denoted by
ŷ = SoftMax(hU (o1:K )) = TCPCN (Z1:K ) and its q-th ele-
ments represents the probability that the input point-cloud
sequence belongs to class q.

H. CLASSIFIER TRAINING AND INFERENCE
1) LOSS FUNCTION
The loss function used is the categorical cross-entropy, which
is a standard choice in classification problems [34]. The CE
compares the output of the last layer ŷ with the ground-truth
identities of the subjects expressed in one-of-Q representa-
tion, y: L

(
ŷ, y
)
= −

∑Q
q=1 yq log(ŷq).

2) TRAINING
To train TCPCN, we used the Adam optimizer with learning
rate η = 10−4 [34]. The process is stopped once the loss func-
tion computed on a validation set of data stops decreasing,
a technique called early stopping. Overfitting is a severe prob-
lem in the context of radar point-clouds: the high randomness
of the detected points and the sensitivity to different environ-
ments make the learning task challenging, especially when
generalization to unseen environments is required. To reduce
overfitting, several strategies were utilized: dropout [38] was
applied to the output of the PC blocks, randomly drop-
ping components of the feature vectors with probability
pdrop = 0.5, an L2 regularization cost [34] on all network
weights was considered, with parameter λL2 = 10−4. The
selection of the hyperparameters was carried out using a
greedy search procedure.

3) INFERENCE
During the inference (or prediction) step, TCPCN is used
to obtain classification probabilities for each maintained
track, T t

k ∈ T k , in the current time step k . We denote by

ỹtk ∈ [0, 1]Q the vector that collects these probabilities.
The prediction is carried out on a batch of Tk point-cloud
sequences in parallel with a single pass of the data through the
network, jointly obtaining

{
ỹtk
}
T t
k ∈T k

. Moreover, we apply
weight quantization, [39], to 8 bit integer values to reduce
even further the inference time and the memory cost of the
model. It is worth noting that, due to the use of convolutions,
TCPCN has a low number of parameters: in the PC block the
weights are shared among the nmax parallel branches, while
the TC block is a fully convolutional neural network, with
no fully connected layers. Fully convolutional networks are
typically very fast in terms of training and inference time
compared to fully connected or recurrent neural networks
and have fewer parameters (further analysis is carried out in
Section V-H).

I. IDENTIFICATION ALGORITHM
After obtaining the output probabilities for each track from
TCPCN, several problems still have to be tackled: (i) obtain-
ing stable classifications, robust to the fact that subjects
may turn or move in unpredicted ways which do not carry
their typical movement signature, (ii) finding a method to
compensate for the missing frames when subjects go unde-
tected, which can cause classification errors, (iii) dealing with
the uniqueness of the subject identities, as classifying the
subjects independently and solely based on ỹtk may lead to
assigning the same identity to multiple targets. To address
these problems, we devised the procedure detailed in Alg. 1,
which uses both the output of the tracking procedure and the
classification probabilities provided by TCPCN to estimate
the identities of the subjects in a stable and reliable way. The
procedure acts as follows.

1) At the first time step k = 1, a vector yt1 of size Q is
initialized for each track T t

1 ∈ T 1, with all compo-
nents equal to 1/Q. yt1 represents a stabilized vector of
probabilities for each track.

2) At the generic time step k > 1, ytk is updated using
Alg. 1, according to one of the two following rules:

a) if track T t
k was detected in the most recent K/2

time-steps (line 1), TCPCN is applied to the corre-
sponding sequence of point-clouds, obtaining the
probability vector ỹtk (line 2). Hence, an exponen-
tially weightedmoving average procedure (line 6)
is applied to mediate between the previous stable
estimate ytk−1 and the newly computed one ỹtk ,
obtaining a new stable estimate ytk (normalized so
that its elements sum to one, see line 7).

b) if track T t
k was not detected in at least one of the

most recentK/2 time steps (line 8), ytk is obtained
as γ ytk−1 with γ < 1 (line 9). In this way,
wemaintain the last reliable identification, but we
progressively lower the confidence that we put on
it over time. Note that after this step ytk does not
longer resemble a probability distribution, as the
sum of its elements is smaller than one.
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Algorithm 1 Joint Identification at Time Step k
Input: Current set of tracks, T k , smoothing parameter, ρ,

decay parameter, γ .
Output: Identities I tk , ∀T

t
k ∈ T k .

1: Set T (s)
k =

{
T t
k ∈ T k s.t. T t

k det. in the last K/2 frames
}

2:
{
ỹtk
}
T t
k ∈T

(s)
k
← TCPCN

({
Ztk−K+1:k

}
T t
k ∈T

(s)
k

)
3: Initialize Y k = 0Tk×Q
4: for T t

k ∈ T k do
5: if T t

k ∈ T (s)
k then

6: ytk ← (1− ρ) ỹtk + ρy
t
k−1

7: normalize ytk
8: else
9: ytk ← γ ytk−1

10: end if
11: (Y k)t,:← ytk
12: end for
13: I tk ← Hungarian(Y k , pconf), ∀ T t

k ∈ T k

3) To assign identities to subjects without repetitions,
we build a matrix of scores Y k with all vectors ytk
belonging to each track (line 11). We compute the best
assignment of the identities using the Hungarian algo-
rithm on Y k , which guarantees that the joint maximum
score is attained with a one-to-one mapping (line 13).

To avoid associating a label to a track if the corresponding
probability is very low, in the identification process we use a
slightly modified version of the Hungarian algorithm, which
behaves as follows: first, we compute the associations using
the standardHungarian algorithm. Hence, if the probability of
a certain association is below pconf = 0.1, we set the identity
of the considered track to unknown. In Alg. 1, this modified
Hungarian algorithm is indicated as Hungarian(Y k , pconf) to
highlight that the result is a function of the score matrix Y k
and of the confidence threshold pconf.

With Alg. 1, we jointly exploit the information from the
classifier (vector ỹtk ) and the tracking step (T (s)

k ) to improve
the identification performance.

Alg. 2 deals with errors in the tracking procedure, using
the identity information available for each track. Track-
ing or association errors may happen during a blockage event
involving two subjects (blocker and blocked in the following):
for example a blocked subject may be erroneously associated
when he/she becomes detectable again while being close
to the blocker. These errors are dynamically corrected by
analyzing the output of Alg. 1. Specifically, when the identity
of a track T t

k changes, we assume that this is an indication of
a tracking error of the above-mentioned type (see line 2
of Alg. 2). In this case, this track is removed from the set
of tracks that are maintained (line 4). At the same time, a new
track T j

k is initialized using the new identity I tk , a new track
index j (not yet used) and the current variables (state and
covariance) associated with the old track T t

k at time k (line 3).
The new track T j

k is then added to the set of maintained tracks

Algorithm 2 Tracking Error Correction at Time Step k
Input: Current set of tracks T k .
Output: Updated set of tracks T ′k .
1: for T t

k ∈ T k do
2: if I tk 6= I tk−1 then
3: initialize new track T j

k using xtk ,P
t
k and I

t
k

4: T ′k ←
{
T k \ T t

k

}
∪ {T j

k }

5: end if
6: end for

(line 4). Note that, the memory Ztk−K+1:k (past frames) is not
attached to the new track, which is started anew.

V. EXPERIMENTAL RESULTS
In this section, we present results obtained by evaluating our
tracking and identification method on

1) the mmGait dataset described in [22], available at
https://github.com/mmGait/people-gait (Section V-A).

2) Our own dataset, featuring 8 subjects (Section V-B).
This dataset was collected from our own measure-
ments, implementing the proposed system on an
NVIDIA Jetson TX23 board paired with a Texas Instru-
ments IWR1843BOOST mm-wave radar4 operating in
the 77− 81 GHz band.

The Jetson board mounts an NVIDIA Tegra X2 GPU acceler-
ator, the radar device is connected to it via USB and the com-
munication is performed via UART ports, as shown in Fig. 3a.
A camera was used to collect a video of the scene during the
measurements and to label the dataset with the correct identi-
ties of the subjects. This setup poses some severe limitations
on the amount of data that can be transferred in real-time to
the NVIDIA processing device. Note that a more advanced
solution such as an Ethernet connection would require addi-
tional hardware at an extra cost.5 The full system has been
implemented in Python, using the TensorFlow library for the
neural network classifiers. In Tab. 2, the system parameters
used in the evaluation are summarized.

A. EVALUATION ON THE mmGait DATASET
To assess the capabilities of TCPCN to effectively extract
human gait features from point-cloud sequences, we test it
on the publicly availablemmGait dataset [22], which contains
measurements from two different evaluation rooms, room_1
and room_2, including respectively 23 and 31 different
subjects. The dataset contains sequences where subjects are
constrained to walk along straight lines in front of the radar,
and other sequences where they walk freely.

Next, we present a comparison between our neural network
classifier, TCPCN, and the CNN proposed by the authors of
mmGait, denoted by mmGaitNet [22]. The accuracy results

3https://developer.nvidia.com/embedded/jetson-tx2
4https://www.ti.com/tool/IWR1843BOOST
5https://www.ti.com/tool/DCA1000EVM
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FIGURE 3. Overview of the experimental setup.

TABLE 1. Evaluation results on the mmGait dataset [22]. We report the
accuracy (%) obtained by mmGaitNet according to the original paper [22]
and the accuracy of our TCPCN, highlighting the best performance with a
bold font. In the table, two columns show the results for linear and
unconstrained motion. The dataset contains 29 subjects for room_2 in the
free motion case, and 30 in the linear motion case. The symbol ‘‘−’’ is
used for those cases for which no accuracy value is provided in [22].

obtained by TCPCN on a superset of the tests conducted by
the authors in [22] are shown in Tab. 1. We stress that, for the
sake of a fair comparison, for these results we just compared
TCPCN with the CNN of [22], without using our algorithms
Alg. 1 and Alg. 2, as they would provide an additional per-
formance increase.

For the results in Tab. 1, we consider the mmGait traces
recorded by a single TI IWR68436 radar working in the
60 − 64 GHz frequency band. The measurements for each
subject are split according to a 80% − 20% proportion to
obtain training and test sets, as done in [22].

TCPCN outperforms mmGaitNet in all the considered
cases. The gap is particularly large in case the subjects walk
freely: in this case, mmGaitNet reaches an accuracy of 45%
on 10 subjects, as compared to an accuracy of 70.31% for
TCPCN. This difference is due to the high variety of patterns
that occur in the presence of unconstrained motion. TCPCN
is more robust to such variability thanks to its invariance to
the ordering of the points in the data cloud. The obtained
performance on 30 subjects is encouraging, leading to iden-
tification accuracies as high as 89.34% and 64.73% for lin-
ear and unconstrained motion, respectively. This shows that
gait-based identification systems employing mm-wave radar
sensors hold the potential of scaling to scenarios where the
number of users is in the order of a few tens. Finally, we point
out that the accuracy with 30 subjects being higher than that
with 15 and 20 is probably due to the fact that room_2

6https://www.ti.com/tool/IWR6843ISK

TABLE 2. Summary of the parameters of the proposed system.

contains subjects who are more easily distinguishable than
those from room_1.

B. PROPOSED DATASET DESCRIPTION
To further validate the proposed system, we built our own
dataset using four different rooms: three to collect training
data and one for testing purposes. This arrangement of data
and rooms was intentionally adopted to assess the generaliza-
tion capabilities of the proposed system. Eight subjects were
involved in the measurements, see Tab. 3.

1) TRAINING
the training rooms are two research laboratories, of size 8×8
meters and 8 × 3 meters, respectively, containing desks,
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FIGURE 4. Tracking system evaluation.

TABLE 3. Details on the subjects involved in the measurements.

furniture and technical equipment, and a furnished living
room of size 8 × 5 meters. In the first room, due to space
limitations, the area used for the training measurements is a
rectangular space of size 3× 5 meters. To collect the training
data, one subject at a time walked freely for an amount
of time ranging from 1 to 5 minutes. Note that, in all our
measurements the subjects are allowed to cover a distance of
up to 6 m from the radar, within its field-of-view of ±60◦.

The measurement campaign was repeated across different
days, acquiring from 20 to 40 minutes of data per subject.
Taking into account different days, we aimed at reducing
the effect of clothing or daily patterns in the way of walk-
ing. Prior to the actual training phase, the point-clouds data
were pre-processed as described in Section IV-F and grouped
into sequences of K = 30 consecutive frames, leaving an
overlap of 20 frames between different sequences. To reduce
overfitting, we artificially augmented the training data by
applying random shuffling of the points in each point-cloud
and adding random noise to each point, drawn from a uni-
form distribution in the interval [−0.1, 0.1]. To select the
neural network hyperparameters, a portion of the training data
(one sequence of approximately 2, 250 frames per target) was
used as a validation set.

2) TEST
the test room is a 7 × 4 meters research laboratory, whose
measurement area is free of furniture (see Fig. 3). We stress
that, while training is performed on up to 8 single subjects,

all our test sequences include multiple targets concurrently
moving in the test environment. This leads to blockage events,
i.e., when a subject occludes the line-of-sight (LoS) between
the radar and another target, resulting in bursts of frames
where the blocked subject goes undetected.

The measurement sequences contained in the test dataset
are split as follows:

1) 10 sequences of 80 seconds (1, 200 frames) with
3 subjects. These are further split into 5 sequences
where the subjects were constrained to walk following
a linear movement at their preferred speed (back and
forth across predefined linear paths), and 5 sequences
where they could walk freely, following any trajec-
tory in the available space, as shown in Fig. 3c. This
leads to unpredictable trajectories that can cover the
whole field-of-view of the radar sensor (±60◦) and
distances up to 6 m. Moreover, in all our experiments
user trajectories intersect frequently, leading to ambi-
guities in the data association, and making tracking
more challenging.

2) 10 sequences of 80 seconds with 2 subjects, split into
5 sequences with a linear walking movement, and
5 sequences where the subjects walk freely.

C. TRACKING PHASE EVALUATION
In Fig. 4a, we show example trajectories followed by the
three targets in one of the test sequences. In this experiment,
the CM-KF succeeded in identifying and reconstructing the
trajectory of each target, even in the presence of complex and
strongly non-linear movement. The NN-CJPDA data associ-
ation logic was found to be very robust, as long as the targets
are correctly separated by DBSCAN into disjoint point-cloud
clusters.

In all the test measurements the main difficulty faced by
the system was that of handling blockage events that span
over a large number of frames, e.g., more than 2− 3 second
long. The number of such events increases significantly
when more subjects are added to the monitored environment.
We empirically assessed that, using a single radar sensor with
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FIGURE 5. Proposed identification algorithm (a - b - c) compared to a standalone tracking approach (d - e - f) on the x − y plane.
Subject 0 (S0) is lost at time k = 669 and tracked again at time k = 700. By joint use of tracking and identification algorithms, the new
track 3 is correctly re-associated with S0 (c), i.e., track 3 is mapped back onto track 0. Instead, the sole use of tracking would lead to the
initialization of a new track for the same subject (f), causing a mismatch.

the resolution and communication capabilities considered in
this work, going beyond three freely moving subjects at a
time in such a small indoor environment leads to insufficient
tracking and identification accuracy due to blockage. This is
coherent with the findings in the literature, e.g. [22], where
two radars placed in different locations were used to com-
pensate for these facts.

Fig. 4b shows the results of the extension estimation across
a full test sequence for all subjects. The expected shape
enclosing a human target is correctly estimated: the ellipse
axes are coherent with typical shoulder widths, `, and thorax
widths along the sagittal plane, w. The estimated value varies
depending on the position of the target with respect to the
radar: this is due to the fact that the received point-clouds con-
tain a smaller number of points as the distance increases, due
to propagation losses. Despite this fact, the average values are
still proportional to the true subjects’ extensions, as it can be
checked by comparing Fig. 4b with Tab. 3.

To evaluate the capability of the proposed system towards
tracking human subjects and the improvement brought by
combining tracking and identification algorithms, we use
the popular multiple object tracking accuracy (MOTA) met-
ric [40]. The MOTA conveniently summarizes the ratio of
missed targets (miss), false positives (fp) and track mis-
matches (mm), over the number of ground truth targets (gt)
in each time frame k of the test sequence, formally,

MOTA = 1−

∑
k
(
missk + fpk +mmk

)∑
k gtk

. (20)

The value of gtk was obtained from a reference video,
as mentioned at the beginning of Section V.

In Fig. 4c, we show theMOTAobtained for different values
of the DBSCAN radius, ε, for the NN-JPDA algorithm and
our method, where NN-JPDA is used in conjunction with
Alg. 1 andAlg. 2 (subject identification and label correction).
Note that, with the standard NN-JPDA tracking algorithm,
when a track is deleted and re-initialized, it is counted as
a mismatch in Eq. (20), significantly lowering the MOTA.
Moreover, data association errors can lead to track swaps
when the trajectories of two subjects intersect. The MOTA
obtained in this case is plotted as a blue curve in Fig. 4c. The
red curve instead represents the improved MOTA, obtained
by (i) merging together all the tracks associated with the
same subject’s identity, as described in Section IV-I, and
(ii) correcting track swaps using Alg. 2. For the sake of
clarity, in Fig. 5 we exemplify step (i), which significantly
improves the results by mitigating the effect of losing and
re-initializing tracks.

From Fig. 4c, we see that for the optimal value ε = 0.4 m,
the integration of tracking and identification provides an
improvement of almost 20% in terms of MOTA. Remarkably,
this is obtained at almost no additional complexity, by just
feeding back the identity information to the tracking block.

D. ACCURACY RESULTS
In Tab. 4, we report the person identification accuracy
obtained with the proposed method on the test sequences
described in Section V-B. For the unconstrained walks,
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TABLE 4. Accuracy and MOTA obtained with 2 and 3 subjects moving in the test room. We report the results both when the subjects follow linear
trajectories (‘‘linear’’) and when they move freely (‘‘free’’). With ‘‘Test x sub. train y ’’ we denote the fact that the TCPCN used for the identification was
trained on the single-target measurements of y subjects and tested on multi-target sequences containing x subjects simultaneously.

we also report the corresponding MOTA. The per-subject
identification accuracy is computed using the time-steps in
which the subject is correctly tracked, and is defined as the
fraction of time-steps where a subject, besides being tracked,
is also correctly identified. The final accuracy on a test
sequence is obtained by taking the average accuracy on each
subject, weighted by the total number of frames in which
he/she is detected and tracked by the system.

In our tests, the number of subjects used for training is
set as either 3 or 8 to assess how the system performs with
an increasing number of targets. In Tab. 4, this is indicated
with ‘‘Test x sub. train y’’, where x and y respectively refer to
the number of subjects in the training set and those who are
simultaneously present in the test data. The accuracy ranges
from a maximum of 98.98% down to 91.62%, with the latter
achieved for the most challenging case where 3 concurrent
subjects have to be identified among a set of 8.

Differently from the results on mmGait (see Section V-A),
there are no significant deviations in the identification per-
formance between linear and unconstrained motion. This is
due to the proposed identification algorithm, which lowers
the effect of turns and non-linear movements that are likely
to impact the classification accuracy. The MOTA is instead
significantly lower with three targets, because of the more
frequent blockage events (more misses and mismatches).

Fig. 6 shows the average accuracy obtained over the free-
walking test sequences by (i) using the proposed solution
(Alg. 1 and Alg. 2), (ii) using Alg. 1 only, (iii) using Alg. 1
without the Hungarian method, and (iv) identifying each
subject at each time step k by solely using the point-cloud data
at time k , and estimating the identity as argmax ỹtk . For this
evaluation the TCPCN was trained on 3 subjects. Note that
with 2 subjects (i) and (ii) lead to about the same performance,
but Alg. 2 leads to a slight improvement with 3 subjects,
as tracking errors caused by track swaps due to blockage are
more frequent in this case.

E. IMPACT OF TEMPORAL FILTERING PARAMETERS
Now, we analyze the impact of K and ρ, i.e., the number of
input time steps and the moving average smoothing parame-
ter, respectively. These parameters are intimately connected,

FIGURE 6. Accuracy of the proposed identification algorithm.

FIGURE 7. Effect of varying K and ρ on the identification accuracy.

as they both control the dependence of the current output
on past frames. In Fig. 7, we show the average accuracy
computed on 10 different trainings of TCPCN with Q = 3
subjects, when tested on 3 subjects moving freely. The shaded
areas represent 95% confidence intervals. In the abscissa,
we vary K , plotting a different curve for several selected
values of ρ. Lower values of ρ, e.g., 0.8 or 0.9, lead to a
lower performance, as the memory of the moving average
filter in these cases is too short to introduce stability in
the classification (it corresponds to 5 and 10 time steps for
ρ = 0.8 and 0.9, respectively) and high values of K
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are required to get an accuracy beyond 80%. Increasing ρ
has the effect of moving the point of maximum accuracy
towards lower values of K . From our results, we recom-
mend using K = 30 (two seconds of radar readings) and
ρ = 0.99, as these values lead to the best average accuracy
while keeping the system sufficiently reactive, with a moving
average memory of approximately 100 time steps (between
6 and 7 seconds).

TABLE 5. TCPCN accuracy (no Alg. 1 and Alg. 2) on 8 single targets using:
all the point-cloud features in pr (all), selectively leaving out the received
power information (no-P), the velocity (no-v ), the z coordinate
(no-z) or the x − y coordinates (no-xy ).

F. IMPORTANCE OF POINT-CLOUD FEATURES
In Tab. 5 we show the accuracy results of the sole TCPCN
(no Alg. 1 and Alg. 2) considering 8 single targets, by leav-
ing out some of the point-cloud features in pr . Specifically,
we trained and tested the NN by selectively leaving out the
received power (no-P), the velocity (no-v), the z coordinate
(no-z) or the x − y coordinates (no-xy). This evaluation pro-
vides insights on the importance of each of these features
towards identifying the subjects. In particular, removing the
velocity, x − y or z coordinates led to the largest reduction in
accuracy, suggesting that these carry the most useful informa-
tion. In addition, Tab. 5 proves that our method mostly relies
on movement-related features rather than on the reflectivity
of the target (related to the received power). We remark that
this is key to gain robustness to reflectivity changes due to dif-
ferent clothing or other environmental factors, and the lower
importance of certain features is enforced by the learning
procedure, which has automatically learned it by processing
data from the same subjects across different days (wearing
different clothes, etc.) and environments.

G. REAL-TIME IMPLEMENTATION REQUIREMENTS
Operating the proposed system in real-time poses constraints
on the execution time of each processing block, and on the
choice of the size and structure of the NN classifier. We mea-
sured the computation time needed by each block, respec-
tively denoting by tp the time needed to run the point-cloud
extraction module running on the radar device (including
the chirp sequence transmission, three DFTs along the fast
time, slow time and angular dimension and the CA-CFAR
detector), by tc the time to transmit the data using the UART
port, by tt the execution time of the DBSCAN clustering
algorithm, the CM-KF tracking step and the data association,
and by ti the inference time of the classifier. We found that
while tp is stable and strictly lower than 10 ms, tc is highly
variable, mostly because of the variable number of detected
points in the scene, and ranges between 0 ms (when no points
are detected) and 25 ms (with 3 subjects). The clustering
and tracking take on average tt = 12 ms with 3 subjects,

with very low variance. Being the radar frame duration
1t ≈ 67 ms, the identification step has meet the inequality
ti < 1t −max tp −max tc − tt ≈ 20 ms. In the next section,
we present a comparison between the proposed approach
and two works from the literature in terms of accuracy and
inference time, taking these considerations into account.

H. COMPARISON WITH STATE-OF-THE-ART SOLUTIONS
Out of the two other approaches from the literature (see
Section II), [22], does not obtain good results when sub-
jects move freely, as neither a robust tracking method is
implemented nor the identification information is used to
improve the tracking performance, while [21] performs the
identification in an offline fashion. In addition, they use dif-
ferent datasets. For these reasons, we chose to implement
the classifiers from [22] and [21] and evaluate them on our
multi-target test dataset using K = 30 input time steps and
the same training data. As a baseline, we consider a model
similar to TCPCN, but using a recurrent neural network
(RNN) instead of temporal convolutions after the point-cloud
feature extraction block.We refer to this model as PN + GRU
in the following, as it is obtained combining a feature extrac-
tion block similar to PointNet with a gated recurrent unit
layer (GRU) [41], which is capable of learning long-term
dependencies. GRU cells maintain a hidden state across time,
processing it together with the current input vector to learn
temporal features in the input sequence (see [41] for a detailed
description of GRU cells). In our implementation, we use a
GRU layer with 128 hidden units.

TABLE 6. Comparison between TCPCN and other models from the
literature in terms of training time and number of parameters.

In Tab. 6, we compare the learning models in terms of
training time and number of parameters. This evaluation
has been conducted on an NVIDIA RTX 2080 GPU for all
the models. The training time is affected by the processing
speed of each NN model and by the convergence time of the
training process (number of training epochs).We note that the
processing time of convolutional models (TCPCN and mm-
GaitNet) is lower than that of recurrent ones (PN + GRU
and bi-LSTM). However, training is significantly faster for
the two models featuring the proposed point-cloud feature
extractor (TCPCN and PN+GRU) due to faster convergence.

A comparison of accuracy and inference time, measured
on the NVIDIA Jetson board, is presented in Fig. 8. The
most accurate models in identifying the subjects are our
TCPCN and PN + GRU. This shows the superiority of
using a point-cloud feature extractor, due to its invariance
to the ordering of the input points. TCPCN proves to be
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FIGURE 8. Performance comparison of the proposed TCPCN model
against mm-GaitNet [22] and the bidirectional LSTM from [21]. As a
baseline, we also evaluate a network similar to TCPCN that uses a GRU
layer (PN + GRU) instead of temporal convolutions.

slightly better than PN + GRU, meaning that dilated tem-
poral convolutions do not only improve the inference and
training times but are also more effective in extracting tem-
poral features. Through a vertical dashed line, we mark
the maximum inference time for the algorithms to run in
real-time on the Jetson device, i.e., 20 ms (see Section V-G):
only two models satisfy this constraint, namely the pro-
posed TCPCN and mm-GaitNet [22], which both exploit
convolutions, as opposed to the RNN-based PN + GRU
and bi-LSTM. In particular, TCPCN is the fastest model
in making predictions, with an average inference time of
9.21± 2.12 ms.

VI. CONCLUDING REMARKS
In this work, we proposed a novel system that performs real-
time person tracking and identification on an edge computing
device using sparse point-cloud data obtained from a low-cost
mm-wave radar sensor. The raw signal undergoes several
processing steps, including detection, clustering and Kalman
filtering for position and subject extension estimation in the
x − y plane, followed by a fast neural network classifier
based on a point-cloud specific feature extractor and dilated
temporal convolutions. Our system significantly outperforms
previous solutions from the literature, both in terms of accu-
racy and inference time, being able to reliably run in real-time
at 15 fps on an NVIDIA Jetson TX2 board, identifying up
to three subject among a group of eight with an accuracy
of almost 92%, while simultaneously moving in an unseen
indoor environment.

Future research directions include the extension of the
system to multiple radar devices, to deal with the frequent
blockage events that can happen at mm-wave frequencies
when multiple subjects move in the same physical environ-
ment. This would allow covering bigger spaces, while also
getting better results in the presence of occlusions.
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