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Summary

We investigate the distribution of gains among participants in the Infant Health
and Development Program, an understudied randomized controlled trial that
targets infants with low birth weight. Our primary focus is on assessing the
effects in cognitive and health outcomes within distinct subgroups, which we
define based on the outcomes that would occur in the absence of program
participation. We propose a strategy to estimate the distribution of gains from
the program by using anthropometrics measurements taken at birth, under
the assumption that potential outcomes depend on underlying latent factors
explaining neonatal health. Our findings reveal that the enhancements in cog-
nitive and health outcomes at 36 months are not uniformly distributed among
program participants. The variability in these effects can be attributed to several
factors, including neonatal health, post-natal shocks, and family income.
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1 INTRODUCTION

Randomized assignment is ideal for investigating treatment effect heterogeneity because it identifies the marginal dis-
tribution of potential outcomes with and without treatment. Quantile treatment effects (QTE) serve as a valuable tool
in quantifying the extent of this heterogeneity, as demonstrated in important studies by Heckman et al. (1997), Bitler
et al. (2006), and Powell (2020), among others. Tests for the equality of potential outcome distributions, as in Abadie (2002)
and Heckman et al. (2010), show that there might be winners and losers from policy interventions. Heterogeneous treat-
ment effects raise several questions, including how widely gains are distributed across participants and who benefits from
interventions. As individual gains cannot be identified, many of such policy-relevant questions cannot be answered in
general (Heckman, 2020). For example, knowledge of QTE is not enough to assess what fraction of participants have
positive returns from the intervention.

How can one learn about the distribution of gains? We revisit this question using the Infant Health and Devel-
opment Program (IHDP), a randomized controlled trial aimed at promoting the development of children in poor
health (IHDP, 1990). Features of the effect distribution other than its average are particularly relevant in this con-
text, as health status during childhood is an important mechanism for transmission of economic conditions (Currie &
Rossin-Slater, 2015). Besides, although IHDP is one of the few early-life interventions implemented as a randomized exper-
iment, it has received relatively scant attention from economists to date (Chaparro & Sojourner, 2019; Chaparro et al.,
2020, are recent examples). Differently from the Perry Preschool study and the Abecedarian Project, for which eligibil-
ity was income-based, IHDP targeted a demographically heterogeneous population of low birth weight (LBW) children.
Moreover, IHDP combined center-based education with home visits and parent group meetings (Gross et al., 1997).
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We propose an approach to study the gain from enrolling infants in IHDP at specific values of the baseline outcome,
which is a causal parameter defined in Heckman et al. (1997). We depart from their framework by breaking down the
status quo outcome, which represents the outcome without any intervention, into two independent components. In the
context of IHDP, the first component is influenced by a set of low-dimensional factors denoted as H, representing endow-
ment at birth. The second component, denoted as U0, ranks children based on the intensity of unforeseen shocks they
would have experienced after birth in the absence of any intervention. We consider a collection of policy parameters
denoting quantiles of the conditional distribution (QCD) of treatment effects from enrolling children at different values
of (H,U0). Unlike QTE, the QCD parameters provide insights into how the distribution of gains and the proportion of
individuals experiencing positive returns vary based on the outcome without intervention. These insights are particularly
relevant for targeting interventions and addressing issues related to social justice (see Heckman et al., 1997). Importantly,
we show that the analytical framework in which we define the QCD parameters is consistent with an economic model of
human capital accumulation during early stages of life.

A virtue of this framework is to introduce flexibility in how latent components shape mobility of participants in poten-
tial outcome distributions. Specifically, we assume that the dependence between potential outcomes is generated by the
factors H (in addition to covariates we can control for). This assumption is used in the treatment effect literature to
recover the joint distribution of potential outcomes (Abbring & Heckman, 2007) and lies at the heart of many empirical
applications, for example, on earning dynamics (Bonhomme & Robin, 2010) and in education (Ashworth et al., 2021).
Compared with this literature, we allow H to affect the distribution of gains in a general way by allowing loadings to be
quantile-specific, similarly to Chen et al. (2021). This framework implies that the size and sign of post-natal shocks U0
can affect the gains from participation directly but also indirectly by attenuating or boosting the contribution of neona-
tal health H. As we demonstrate in Section 5, the empirical conclusions from IHDP data are robust to violations of the
independence assumptions embedded in our factor model.

We show that QCD can be computed from quantiles of potential outcomes conditional on H. This relationship lays the
foundation for an analogous estimation method that is computationally convenient and applicable beyond the specific
case study. Our approach to estimating the QCD using IHDP data leverages the smooth relationship between quantiles of
the outcome conditional on latent neonatal health and quantiles of the outcome conditional on proxies of neonatal health.
Specifically, using observed measurements as proxies for latent health can introduce bias in quantile estimates due to
measurement errors in these proxies. However, we demonstrate that this bias converges smoothly to zero as the measure-
ment error in the proxies approaches zero. When measurement error in proxies is small, the measurement error variance
is the leading term for this convergence (Chesher, 2017). The case of small error variance is relevant in many empirical
applications where the choice of proxies is driven by the underlying theory and the measurement tools employed. Indeed,
we show that this is true in the IHDP data as well.

Our main methodological contribution revolves around estimating the quantiles of potential outcomes conditional on
H. This step entails estimating the loadings of a quantile factor model, which are then used to obtain the QCD. Our
approach stands out for its computational simplicity and, in contrast to Chen et al. (2021), does not need large panel data,
which is often lacking in early childhood interventions such as IHDP. In particular, our approach involves simulating the
bias arising from measurement error in proxies, and then estimating quantiles of potential outcomes conditional on H
by extrapolation to the case of no error (a recent example of extrapolation-driven identification is Arnold et al., 2022). We
implement this idea by adapting Cook and Stefanski's (1994) simulation-extrapolation (SIMEX) method and show that it
works well to implement our strategy when the measurement error variance is small, which is the case in IHDP data. This
approximation at zero error strategy requires knowledge of the variance of the measurement error or an estimate of it,
which we show how to obtain in empirical applications. The extrapolation relies on functional form assumptions for the
bias introduced by measurement error. The theoretical case for this approach follows from a well-established literature
in statistics which, to date, has been relatively overlooked by economists.1

Our empirical investigation begins by finding the best proxy of a child's latent health prior to IHDP. As health inher-
ently reflects several prenatal endowments, we consider gestational age, birth weight, length, and head circumference as
possible candidates. The latter two measurements are markers of prenatal growth and brain development (Conti et al.,
2018). Low-birth weight has long been used as an indicator of poor health among newborns, and its effects on life-long

1Carroll et al. (2006) show that SIMEX has a number of attractive features and a high degree of accuracy in parametric and nonparametric settings.
Because extrapolation is based on an unknown function, SIMEX provides an approximation rather than a consistent estimator of the quantities of inter-
est. We assess the quality of such approximation using several simulations. We informally use identification at zero and approximation with the same
meaning in what follows. We also show, in the supporting information, that SIMEX outperforms other measurement error bias correction approaches.
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well-being are documented (Almond & Currie, 2011). We show that birth weight is the measurement of neonatal health
with the lowest error.2 After proxying neonatal health with birth weight, we derive our first empirical result: a child's
health endowment at birth affects the whole potential outcome distribution—not only its location—with and without
treatment (a fact that a traditional factor model would fail to detect). We find that, without IHDP, better neonatal health
yields better and less dispersed outcomes at 36 months. However, participation in IHDP reshuffles how children are
ranked in the outcome distribution and, also, changes the rank distribution conditional on neonatal health. This finding
serves as a catalyst for investigating treatment effect distributions.

We then present a novel empirical finding—striking effect heterogeneity across participants during the first 3 years
of life depending on neonatal health and family income. For example, the share of LBW children above 2000 g with
positive returns on cognitive skills is 65% and about 20 points larger than in the LBW group with less than 2000 g. Thus,
we document that the difference in average effects between children above and below 2000 g is due to large positive
effects among a minority of cases. This could spark further research in the IHDP and potential investigation in other
settings. Moreover, we find that within income group variability in treatment effects is at least as important as between
income group differences in treatment effects. Past work studied how the effects of IHDP vary with income by looking at
differences between group averages (e.g., Duncan & Sojourner, 2013). Our results imply that these differences mask an
important component of treatment effect heterogeneity.

The results expand the empirical literature concerned with the IHDP that focuses in heterogeneity of effects with respect
to observables (e.g., Brooks-Gunn et al., 1992; Duncan & Sojourner, 2013). For instance, Brooks-Gunn et al. (1992) show
heterogeneous effects by the level of education of the mother and Duncan and Sojourner (2013) find heterogeneous effects
by household income. We contribute to this literature by showing heterogeneous effects in two new dimensions. First,
the treatment effects vary across the conditional quantile of the treatment distribution. Also, the effects vary by health
conditions at birth and intensity of unanticipated shocks in the nonparticipation status. The results presented in our paper
illustrate how policymakers and practitioners can assess the relative importance of latent factors in interventions.

2 CONTEXT, DATA, AND DESCRIPTIVE STATISTICS

We use data from IHDP, a randomized controlled trial implemented in 1985 to enhance the cognitive, behavioral, and
health status of low birth weight (less than 2500 g) and premature (less than 37 weeks) infants born in selected US medical
institutions.3 One unique feature of this program is the population targeted, as in early childhood development interven-
tions eligibility typically depends on the socio-economic status. IHDP consisted of activities to foster child functioning
provided in specialized institutions, pediatric follow-ups, frequent home visits, parent support groups, and a systematic
educational program (see Elango et al., 2016; Gross et al., 1997; Ramey et al., 1992). The intervention lasted until the age
of 36 months.

Two strata were considered at the randomization stage: the “lighter” low birth weight group (LLBW, less than 2000 g)
and the “heavier” low birth weight group (HLBW, between 2000 and 2500 g). We use children from both strata as in IHDP
(1990). This selection yields a sample of 985 infants, of which 377 belong to the treatment group and 608 to the control
group. The size of the IHDP sample is similar to the sample sizes of other model programs in the literature.

We consider three of the outcomes in the original study, all measured at 36 months: one index of cognitive (IQ) develop-
ment, the Stanford-Binet intelligence score, and two indicators of health. Specifically, we use a morbidity index defined as
the total number of hospitalizations, outpatient surgeries, injuries not resulting in hospitalization or outpatient surgery,
and different illnesses and conditions over the first 3 years of life (higher values of this index indicate lower health). We
also use the General Health Ratings Index, which is constructed using the maternal perception of child health over the
first 3 years of life (higher values of this index indicate better health). Due to missing data, our final sample includes 929
infants, of which 343 are in the HLBW group and 586 in the LLBW group. Table 1 shows descriptive statistics for the
working sample, along with balancing tests to corroborate the IHDP randomization to treatment and control groups.

2We interpret birth weight as error-ridden child's health endowment after netting off demographics that may have affected conditions at birth, as in
Chaparro and Sojourner (2019).
3Eight institutions were involved in Little Rock, Arkansas; New Haven, Connecticut; Miami, Florida; Cambridge, Massachusetts; Bronx, New York;
Philadelphia, Pennsylvania; Dallas, Texas; and Seattle, Washington. Participating sites were selected through a national competitive review. Section S.7 in
the supporting information provides background information regarding the activities implemented within IHDP, including details about the recruitment
of participants and the measurement of outcomes in our analyses.
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BATTISTIN ET AL.

TABLE 1 Balancing tests for random
assignment of infants.

HLBW (2000– LLBW (Less
All 2500 g) than 2000 g)
Mean Effect Mean Effect Mean Effect
(1) (2) (3) (4) (5) (6)

Panel A. Demographics at birth
Weight (kg) 1.787 0.035 2.256 0.002 1.520 0.036

[0.465] (0.030) [0.138] (0.015) [0.363] (0.029)
Length (cm) 42.259 0.531∗∗ 45.33 0.174 40.511 0.618∗∗

[3.966] (0.253) [2.208] (0.252) [3.672] (0.291)
Body mass index 9.823 −0.003 11.046 −0.055 9.127 −0.024

[1.602] (0.109) [1.310] (0.157) [1.311] (0.108)
Gestational age (weeks) 33.067 0.008 34.961 −0.107 31.989 −0.002

[2.719] (0.174) [1.431] (0.174) [2.690] (0.209)
Neonatal Health Index 99.750 0.923 98.913 0.416 100.227 1.269

[15.446] (1.068) [14.371] (1.620) [16.025] (1.405)
Head circumference (cm) 29.426 0.059 31.437 −0.196 28.282 0.129

[2.553] (0.163) [1.348] (0.144) [2.363] (0.191)
Infant is a boy 0.484 0.014 0.539 −0.042 0.453 0.047

[0.500] (0.034) [0.500] (0.055) [0.498] (0.043)
Infant is a first-born 0.430 0.027 0.393 0.074 0.450 0.001

[0.495] (0.033) [0.490] (0.055) [0.498] (0.042)
Panel B. Mother demographics

Age 24.863 −0.306 24.990 −1.019 24.790 0.125
[6.148] (0.405) [6.346] (0.654) [6.04] (0.516)

Married 0.484 −0.066∗ 0.485 −0.047 0.483 −0.077∗

[0.500] (0.033) [0.501] (0.055) [0.500] (0.042)
High school graduate 0.491 −0.054 0.471 −0.091∗ 0.503 −0.030

[0.500] (0.034) [0.500] (0.054) [0.501] (0.043)
College graduate 0.120 0.004 0.155 −0.039 0.099 0.026

[0.325] (0.022) [0.363] (0.037) [0.300] (0.027)
Black 0.526 0.014 0.500 −0.033 0.541 0.043

[0.500] (0.034) [0.501] (0.055) [0.499] (0.042)
Hispanic 0.116 −0.014 0.126 −0.017 0.110 −0.012

[0.321] (0.021) [0.333] (0.035) [0.314] (0.026)
Observations 929 343 586

Note: Column (1) shows control-group means and standard deviations (in brackets) and column (2) shows
treatment-control differences, with robust standard errors in parenthesis. Results in columns (3)–(6) are
from regressions stratified for infants with birth weights lower or higher than 2000 g. All regressions
control for site and birth weight group effects.*p < 0.1.**p < 0.05.***p < 0.01.

2.1 Balancing tests and average effects

Treatment and control groups were comparable at initial assignment. This can be seen from Table 1, where no signif-
icant differences emerge across a number of demographics. The control group average and standard deviation of each
variable at the left are reported in column (1) of the table. Column (2) shows treatment-control differences obtained from
regressions of variables at the left on the treatment indicator.4 Significant differences emerge in a limited number of cases,
although the size of these differences is small when compared with standard deviations in column (1). Balancing tests in
the remaining columns are for LLBW and HLBW groups and convey a similar message.

IHDP participants showed significantly higher IQ scores, on average, in both the heavier and lighter birth weight groups.
This can be seen from columns (2), (6), and (10) in Panel A of Table 2, which presents treatment effect estimates from
regressions of outcomes on the participation indicator controlling for mother demographics (shown in panel B of Table 1).
Demographics at baseline are used in these specifications to control for residual differences in the treatment and control

4Outcomes in regressions are not standardized, and significance is assessed using heteroskedasticity-robust standard errors. For example, the difference
in length is 0.531 over a baseline of 42.259, or about 1.2% of this baseline.
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BATTISTIN ET AL.

TABLE 2 Average treatment effects 3 years from the assignment.

All infants HLBW (2000–2500 g) LLBW (less than 2000 g)
Mean Effect Mean Effect Mean Effect
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A. Cognitive development
Development 84.3 9.348∗ ∗ ∗ 9.388∗ ∗ ∗ 8.942∗ ∗ ∗ 84.8 13.619∗ ∗ ∗ 13.996∗ ∗ ∗ 13.476∗ ∗ ∗ 84.1 7.153∗ ∗ ∗ 7.238∗ ∗ ∗ 6.750∗ ∗ ∗

Index [20.1] (1.158) (1.150) (1.120) [18.9] (1.713) (1.667) (1.681) [20.7] (1.520) (1.512) (1.482)
Observations 855 855 855 310 310 310 545 545 545

Panel B. Health
Morbidity 6.9 0.866∗ ∗ ∗ 0.885∗ ∗ ∗ 0.936∗ ∗ ∗ 6.7 0.588∗ 0.624∗ 0.639∗ 6.9 1.027∗ ∗ ∗ 1.049∗ ∗ ∗ 1.106∗ ∗ ∗

Index [3.1] (0.219) (0.218) (0.222) [3.0] (0.354) (0.360) (0.371) [3.1] (0.276) (0.277) (0.281)
Observations 844 844 844 308 308 308 536 536 536
General health 27.1 0.418 0.376 0.291 27.6 0.945∗ 0.751 0.644 26.8 0.157 0.131 0.092
Ratings index [5.1] (0.368) (0.367) (0.368) [4.7] (0.570) (0.573) (0.591) [5.2] (0.471) (0.476) (0.476)
Observations 851 851 851 309 309 309 542 542 542

Note: Columns (1), (5), and (9) show control-group means and standard deviations (in square brackets) for variables listed at the left. Coefficients in columns
(2), (6), and (10) show treatment-control differences for variables listed at the left, controlling for mother demographics (in Panel B of Table 1). Coefficients in
columns (3), (7), and (11) are from regressions with mother demographics and randomization strata effects (site and birth weight group) as additional controls.
Coefficients in columns (4), (8), and (12) are from regressions where controls include both mother demographics and infant demographics at birth (in Panel A
of Table 1), and randomization strata effects. Results in columns (5)–(12) are from regressions stratified for infants with birth weights lower (LLBW) or higher
(HLBW) than 2000 g. Robust standard errors are shown in brackets. Cognitive development is measured using the Stanford-Binet intelligence scale. Morbidity
is defined as the presence or absence of health conditions. The index considered here is the sum, over the 3 years, of the number of hospitalizations, outpatient
surgeries, injuries not resulting in hospitalization or outpatient surgery, and different illnesses and conditions. Higher scores indicate lower health. The
General Health Ratings Index is constructed from the Rand Corporation Health Insurance Study using the maternal perception of child health. Higher scores
indicate better perceived health.*p < 0.1.**p < 0.05.***p < 0.01.

groups. We find that IHDP yielded a 9 point increase in mean IQs from a baseline of about 84 points (or about 0.45𝜎
using the standard deviation in the control group), as shown in column (1). Results for IQ were considerably stronger for
HLBW children, as shown in column (6), and estimated at about 13.6 points from a baseline of about 85, or about 0.72𝜎.
Columns (3), (7), and (11) report treatment effect estimates obtained from regressions that include randomization strata.
The estimates shown in columns (4), (8), and (12) are from regressions with mother and infant demographics (Panel A
of Table 1), and randomization strata.

Panel B of Table 2 shows mixed results on health. Specifically, columns (2) to (4) show that, at the age of three,
IHDP participants had about one more reported episode of illness (the morbidity index effect is in the 0.87 to 0.94
range depending on the specification adopted). However, there are no statistically significant improvements, on average,
using the General Health Ratings Index. In line with other influential studies, we conclude that average effects show
relatively more substantive promise for reducing the risk of developmental disability later in life for LLBW premature
infants.

2.2 Treatment effect heterogeneity

Figure 1 offers suggestive evidence that the benefits derived from IHDP enrollment differ among infants. Unconditional
QTE estimates are obtained as in Firpo (2007) and Frölich and Melly (2013) by controlling for mother demographics. Each
panel plots values generated by a local linear regression (LLR) fit to the estimated QTEs, along with confidence intervals
obtained from 100 bootstrap replications. The LLR smoother uses a triangular kernel and optimal bandwidth determined
from the procedure in Calonico et al. (2019). We find that QTEs vary across quantiles. For example, the smoothed line for
the IQ outcome ranges between 7, at the lowest quantile, and about 11, at the median, with an overall inverted U-shape.
However, the limited sample size affects the precision around estimates of QTEs, and the hypothesis of constant gains is
only marginally rejected in the data (as we further discuss in Section S.8 in the supporting information).

Effect heterogeneity is likely the result of changes in a child's rank in potential outcome distributions with and without
IHDP. We reach this conclusion by looking at the interaction between key neonatal anthropometrics (birth weight, length,
and head circumference) and ranks in observed outcome distributions for participants and nonparticipants. The rationale
for considering this relationship stems from rank similarity, which is often used as a benchmark in empirical work (see
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BATTISTIN ET AL.

FIGURE 1 Quantile treatment effects. Note: The line shows estimates of quantile treatment effects (QTE) for the three outcomes. Mother
demographics are included as covariates. The continuous line is generated by a local linear regression fit to estimated QTEs. Shaded areas
denote 95% confidence intervals obtained from 100 bootstrap replications.

Dong & Shen, 2018 and Frandsen & Lefgren, 2018).5 Specifically, under rank similarity the distribution of ranks should
be identical for participants and nonparticipants conditional on anthropometrics if these variables are “rank shifters.”
Using the test in Frandsen and Lefgren (2018), we find that rank similarity for the cognitive ability outcome is rejected
because birth weight acts as a rank shifter (see Table S.7 in the supporting information). While Figure 1 allows one to
conclude that effects are heterogeneous, it does not reveal how this heterogeneity is distributed across participants.

3 MODEL AND PARAMETER OF INTEREST

3.1 Factor model for potential outcomes

All results hold conditionally on a vector of covariates X , which we suppress for clarity. Let D be the treatment assignment
indicator yielding potential outcomes (Y1,Y0) for IHDP-treatment and IHDP-control children, respectively. We refer to
children in the IHDP-treatment sample as “participants.” Children in the IHDP-control sample are called “nonpartici-
pants.” Because only Y = Y0 +D(Y1 −Y0) is observed, identification of the distribution of gains Δ = Y1 −Y0 is precluded.
The randomized assignment to treatment does not eliminate this problem.

We model the dependence between potential outcomes as the result of persistent, long term factors proxying conditions
prior to IHDP enrollment. Specifically, for d ∈ {0, 1}, we assume

Yd = 𝝀d(Ud)′H + Ud, (1)

5Under rank invariance, an infant's relative position in the outcome distributions remains the same with or without IHDP. Rank similarity allows
for slippages in this position across distributions. For additional details, we refer there reader to Definitions 1 and 2 in Dong and Shen (2018). Rank
similarity alone will not be enough to identify treatment effect distributions (or the QCD in our case). Point identification can be achieved under special
circumstances, like rank invariance.
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BATTISTIN ET AL.

where H = (H1, … ,Hr)′ is a vector of r continuous random variables (factors), 𝝀d(·) is an r-dimensional and continuous
function of the scalar random variable Ud, and the right-hand side of the equation is stricly increasing in Ud.6 Following
the literature, we refer to the heterogeneity term Ud as uniqueness.

We assume to observe (Y ,D,W ′) for a sample of units, where Y is a scalar and continuous outcome and W =
(W1, … ,Wr)′ is a vector of r continuous random variables. Factors are not observed and related to W through the
following measurement equations:

W = H + V , (2)

where V = (V1, … ,Vr)′ is a vector of random variables. The heterogeneity terms (U0,U1) are assumed independent
of H and V , as we state more formally in Assumption 1. In Section 5, we consider Equation (1) and interpret H as a
unidimensional factor representing neonatal health. The outcomes we examine are measurements of cognitive and health
development at the age of 36 months. We use birth weight as W to proxy for the unobserved neonatal health, and X
includes the mother demographics described in Table 1.7 In some empirical settings, the classical measurement error
assumption might be violated. For instance, if W serves as a prediction of H, one might argue that the prediction error is
uncorrelated with H rather than W . In such cases, Berkson-type measurement errors would render equation (2) invalid
(Hyslop & Imbens, 2001).

Assumption 1 (Factor model and measurement error). In the model defined by equations (1) and (2), for d =
{0, 1} the variables (Ud,V ,H) have continuous distributions, with finite moments, and are mutually independent.
Moreover, the variables Ud and V have mean zero.

This assumption is standard in the literature. The measurement errors V have zero mean, so that the location of H is
identified from Equation (2). The classical properties of measurement error are maintained here to connect with models
used in most empirical work. However, the extrapolation approach in Section 4 is valid in more general nonclassical
models. For example, the variance of measurement error could be allowed to depend on H (Carroll et al., 2006) at the
cost of introducing additional parameters whose values would need to be specified in the estimation strategy. Finally, the
assumption on the location of U0 and U1 is a standard normalization.

We also maintain the assumption that treatment is randomly assigned. Assumption 2 is made for convenience, as iden-
tification stems from the factor structure and not from the assignment mechanism. Our analysis extends to regression
discontinuity designs using a local randomization argument. Other variants to randomization may be considered to allow
for nonrandom selection (such as ignorability conditional on X).

Assumption 2 (Treatment assignment). The treatment D is randomly assigned.

Finally, the independence condition in Assumption 3 was used in past work to achieve identification of the gain distri-
bution. Together with Assumption 1, it implies that the dependence between potential outcomes is driven by H. Battistin
and Chesher (2014) show that independence conditional on H does not imply independence conditional on W . Thus,
the identification results presented below are in general not valid after conditioning on W , as shown in the simulations
presented in Section S.6 of the supporting information.8 In Section 5, we show how Assumption 3 can be relaxed to
accommodate correlated uniqueness in the context of our empirical investigation.

Assumption 3 (Independence). The random variables (U1,U0) are independent.

3.2 Parameter of interest

Equation (1) enables factors H to act as shifters for an individual's rank in the gain distribution and implies

Δ =
(
𝝀1(U1)′ − 𝝀0(U0)′

)
H + U1 − U0. (3)

6Factor models have a longstanding tradition in empirical work, including the studies by Carneiro et al. (2003), Aakvik et al. (2005), Cunha et al. (2010),
Chaparro and Sojourner (2019), and Attanasio et al. (2020). Factor models are also used to enhance external validity in regression discontinuity designs
(Rokkanen, 2015) and in time-varying treatment effect models (Cooley Fruehwirth et al., 2016).
7Our conclusions are robust to the choice of control variables, as shown in Section S.8.1 of the supporting information.
8When estimands conditional on the latent variable H are of interest, conditioning on W alone will introduce biases. However, average and quantile
treatment effect parameters conditional on W are interesting in their own right. Columns (6)–(8) and (10)–(12) in Table 2 report average causal effect
estimates given by groups defined using birth weight, which is one of the proxies considered in Section 5.1.
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BATTISTIN ET AL.

Based on this equation, we define the following parameter: Δ(𝜏;h,u0) ∶= QY1−Y0 (𝜏|H = h,U0 = u0), which represents
the quantile function of the conditional distribution (QCD) of Δ given H = h and U0 = u0.9 Under the assumptions stated
above, QCD is monotonically increasing in 𝜏 ∈ (0, 1) for all (h,u0). Furthermore, using Equation (3), we have

Δ(𝜏;h,u0) =
(
𝝀1(𝜏)′ − 𝝀0(u0)′

)
h + QU1 (𝜏) − u0, (4)

where we write 𝝀1(𝜏) ≡ 𝝀1(QU1 (𝜏)) to simplify notation. Equation (4) defines a point-identifying functional conditional
on H = h and U0 = u0 and sets the stage for analog estimation of QCD from knowledge of the quantile functions QUd(𝜏)
and the factor loadings 𝝀d(·). The value u0 in (4) affects gains from participation directly but also indirectly by attenuating
or boosting the contribution of H. For example, in Section 5, we find that better neonatal health implies gains in cognitive
development, but these gains depend on the value of u0 that a participant would have experienced without IHDP.

3.3 Interpretation of the parameter

In relation to our specific application, the factor model (1) and the resulting expression for QCD in (4) can be motivated
using an economic model of human capital accumulation during early stages of life. To demonstrate this, we consider the
following dynamic equation (see, e.g., Attanasio et al., 2020) for d = 0, 1:

Yd = 𝜇1Yd,−1 + 𝜇2Id + 𝜀d = 𝝀′
dH + (𝜂d + 𝜀d) . (5)

Here, Yd and Yd,−1 represent the infant's outcomes at 36 months and at birth, respectively; Id represents parental invest-
ment that occurs between birth and 36 months; and 𝜀d represents a zero-mean random shock to infant development in the
first 3 years of life. Note that this shock and the inputs of the production function may vary with the random assignment
to IHDP. The second equality arises from employing a CEF (conditional expectation function) decomposition, where the
CEF of 𝜇1Yd,−1 + 𝜇2Id is 𝝀′

dH, 𝜂d denotes the corresponding zero-mean projection error, and H represents determinants
of the outcome at birth, Yd,−1. The expression (5) suggests that the r × 1 vector 𝝀d is a reduced-form parameter.

The terms within brackets, resulting from projection errors and shocks, may have variance that depends on H. For
example, heteroskedasticity can arise if health endowment at birth shapes the spread of subsequent shocks 𝜀d. Het-
eroskedasticity can also be attributed to errors in approximating the CEF of 𝜇1Yd,−1 + 𝜇2Id. Participation in IHDP and
initial conditions can influence future parenting styles or preferences, potentially leading to adjustments in the inputs
Id, as discussed in Chaparro and Sojourner (2015) and Chaparro et al. (2020). Consequently, Equation (5) would exhibit
treatment-control differences in the loadings 𝝀d and the residuals 𝜂d. The variability of these residuals may also depend
on H, across treatment arms, due to the mentioned adjustments.

To provide an example, assume that the errors 𝜀d and 𝜂d are jointly normally distributed. In that case, their sum in (5)
is also normally distributed, and we set its conditional standard deviation to be 1 + 𝜸′dH, where 𝜸d is a r × 1 vector of
parameters. Substituting and rearranging terms, we obtain Yd =

(
𝝀′

d + 𝜸′dUd
)

H + Ud, where Ud = (𝜂d + 𝜀d)∕(1 + 𝜸′dH) is
a standard normal random variable conditional on H. The resulting equation for the potential outcome Yd represents a
special case of the factor model in (1) under the following location-shift specification:

𝝀d(Ud) = 𝝀d + 𝜸dUd. (6)

The traditional factor model is obtained by setting 𝜸d to zero in the equation below. In this case, the factors H act solely
as a location shifter in the distribution of Δ, as evident from (4).

Although the procedure developed in the next section does not rely on Equation (6), this simplified representation
provides examples of potential channels that could account for heterogeneity in the distribution of gains Δ. It also clari-
fies that, in our specific application, the uniqueness Ud in (1) arises from a combination of shocks and projection errors
stemming from the reduced-form representation of a model of human capital accumulation. This clarification allows for
a better understanding of the assumption of independent uniqueness between potential outcomes for the same infant
(Assumption 3): while potential outcomes may be correlated through the common factors H, and covariates X , any
residual variability in these outcomes must be effectively random.

9For variable A having conditional distribution FA|B=b, the 𝜏th quantile QA(𝜏|B = b) is defined as the smallest value a such that FA|B(a) = 𝜏.

1052

 10991255, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.3071 by U

niversity O
f Padova C

enter D
i, W

iley O
nline L

ibrary on [30/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BATTISTIN ET AL.

4 ESTIMATION

4.1 Approximation to zero error

Consider the quantile regression of Yd on H in Equation (1), and let 𝝓d(𝜏) ∶=
(
𝝀d(𝜏)′,QUd(𝜏)

)′ be the vector of slopes
and intercepts at quantile 𝜏 for participants (D = 1) and nonparticipants (D = 0). The theoretical case for considering
separate regressions for the two groups when treatment effects are heterogeneous is discussed, for example, in Negi and
Wooldridge (2021).

The parameter 𝝓d(𝜏) cannot be directly estimated from the data due to the measurement errors in W , as shown in
Equation (2). Let the diagonal matrix 𝚺 be the variance of V in Equation (2) and, to fix ideas, assume that this variance
is known or has been estimated. Following Cook and Stefanski (1994), we define an additional variable W̃ = W +

√
𝜌𝝐,

where 𝝐 ∼  (0,𝚺) is a r × 1 vector of normal and independent errors with mean zero and covariance matrix 𝚺 scaled by
a known constant 𝜌 > 0. The variance of W̃ given H is (1 + 𝜌)𝚺, and this variance tends to zero as 𝜌 → −1. We denote by
�̃�d(𝜏, 𝜌) the vector of parameters at quantile 𝜏 retrieved from the quantile model of Yd on W̃ .

The estimation of𝝓d(𝜏) involves two steps, as shown in the algorithm detailed in Section S.5 and interpreted graphically
in Figure S.1 of the supporting information. In the first step, we obtain via simulation estimates of �̃�d(𝜏, 𝜌), which we
denote by �̂�d(𝜏, 𝜌), at different 𝜌's. Specifically, starting with the raw measurements W , we draw random values from a
normal distribution with mean zero and variance 𝜌𝚺 to obtain W̃ , and estimate the quantile regression of Yd on W̃ . The
value of �̂�d(𝜏, 𝜌) is then obtained by simulating multiple draws, and averaging across simulations the slopes and intercepts
obtained from quantile regressions. In our implementations of the approach, we use 50 draws and let 𝜌 vary in the interval
(0, 2]. In the second step, we plot �̂�d(𝜏, 𝜌) against 𝜌, fit a second-order polynomial to this plot, and extrapolate back to the
“no error” case to obtain the following estimate of 𝝓d(𝜏):

�̂�d(𝜏) = �̂�d(𝜏, 𝜌 = −1).

Such extrapolation at 𝜌 = −1 relies on the parametric model fitted for explaining how �̂�d(𝜏, 𝜌) varies with 𝜌. The term
�̃�d(𝜏, 𝜌) can be interpreted as the counterfactual parameter that would be estimated had the measurement error variance
been (1 + 𝜌)𝚺 instead of 𝚺. The term 𝝐 adds instrumental-like variability to estimate the bias arising from increasingly
larger values of the measurement error variance.

4.2 Properties of the approximation

The combination of these simulation and extrapolation steps is the core of Cook and Stefanski (1994) SIMEX algorithm.
The method has been applied to nonlinear models and its asymptotic theory is derived in Carroll et al. (2006) for a general
class of estimating equations. In particular, we show in Section S.1 of the supporting information that

�̃�d(𝜏, 𝜌) − 𝝓d(𝜏) ≈ −E
([

𝜎(𝜏,h)−1B̃B̃′
])−1

E
(
𝜎(𝜏,h)−1B̃Ṽ ′ (

𝝀d(𝜏)′((1 + 𝜌)𝚺)1∕2)) , (7)

where 𝜎(𝜏,h) are quantile-specific weights, B̃ = (W̃ ′
, 1)′, Ṽ = 𝚺−1∕2V , and the term on the right-hand side of the approx-

imation is zero if 𝜌 = −1. This approximation shows that measurement error in our setting is likely to generate an
attenuation bias in quantile regressions like in OLS, which is a point also noted by Angrist et al. (2006, footnote 9).

Section S.6 of the supporting information reports a number of simulation studies to investigate the finite sample prop-
erties of our estimator, and to compare it with naive estimates that do not take measurement error into account. We show
there that the SIMEX approximation of 𝝓d(𝜏) works well as long as the measurement error variance 𝚺 is not too large
(theoretical derivations in Cook and Stefanski, 1994, lead to the same conclusion), which is the case in IHDP data as
we demonstrate in Section 5. We also show that using W instead of H (i.e., setting 𝜌 = 0) may lead to severely biased
conclusions, which is a fact echoing results in Battistin and Chesher (2014) and Chesher (2017). Finally, because of the
relationship between �̃�d(𝜏, 𝜌) and 𝝓d(𝜏) in (7), the literature has shown that a number of parametric models work well for
the extrapolation step in most applications. This expectation is borne out in Section S.6, where we show that a quadratic
model in 𝜌 is a good extrapolant for the quantities we are interested in IHDP data.

The rationale for our approach is supported by a well-established statistical literature that, to date, has received lit-
tle attention from economists. There are other alternatives available for estimating the parameter 𝝓d(𝜏), such as the
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BATTISTIN ET AL.

corrected-loss function estimator proposed by Wang et al. (2012). However, our approach offers several advantages over
their estimator, particularly when the measurement error variance is small, and it does not require the use of numerical
integration. We demonstrate this superiority through a simulation study, which is presented in Section S.6. Furthermore,
the factor model considered by Chen et al. (2021) offers a broader scope than our own model. In their model, factors can
vary by quantile and over time, and loadings are specific to each unit. They discuss an algorithm in their article that effec-
tively locates the stationary points of the objective function used to retrieve these unknown quantities. However, their
algorithm relies on large-N, large-T panel data. In contrast, our approach is designed to be applicable to cross-sectional
data and accommodates loadings that can vary based on the treatment status of units. Moreover, the estimation procedure
in Chen et al. (2021) initiates with latent factor estimates obtained from a principal component analysis and iteratively
refines them through the algorithm. In contrast, we start with a proxy for latent factors and enhance the estimates by
purging them from measurement error using the SIMEX method.

4.3 Computation of QCD and inference

The last step of the algorithm described in Section S.5 of the supporting information consists of estimating the QCD
parameter in (4) as follows:

Δ̂(𝜏;h,u0) =
(
�̂�1(𝜏)′ − �̂�0(u0)′

)
h + Q̂U1 (𝜏) − u0, (8)

where Q̂U1(𝜏) is the SIMEX quantile intercept at 𝜏 from the sample of participants, �̂�1(𝜏) is the SIMEX quantile slope
at the value Q̂U1 (𝜏) from the sample of participants, and �̂�0(u0) is the SIMEX quantile slope at the value u0 from the
sample of nonparticipants. We show Δ̂(𝜏;h,u0) at specific combinations of (h,u0). Specifically, we select the value of u0
by considering specific SIMEX quantile intercepts Q̂U0(𝜏) from the sample of nonparticipants, for example setting 𝜏 to the
median. Regarding the value of h, note that Assumption 1 implies E(H|Y0 = 𝑦0) = E(W |Y0 = 𝑦0). Thus, in our application
we set h = Ê(H|Y0 = 𝑦0), where this value is the prediction from a regression of W on Y estimated for nonparticipants.10

To obtain standard errors, we employ a pair bootstrap strategy as discussed in Carroll et al. (1996) and Koenker (2005).
More precisely, we sample participants and nonparticipants with replacement, and re-estimate the various quanti-
ties entering QCD for each bootstrap pseudo-sample. Confidence intervals in Section 5 are obtained from bootstrap
distributions of QCD estimates.

5 QCDS OF LOW BIRTH WEIGHT AND PREMATURE INFANTS

5.1 Measurement error variance

For IHDP data, we assume that the potential outcomes in Equation (1) are correlated due to their dependence on a com-
mon factor (r = 1), which represents neonatal health. To capture this factor, we consider four anthropometric measures
taken at birth as possible candidates for the proxy variable W in Equation (2). These measures are weight, length, head
circumference, and gestational age, for which descriptive statistics are reported in Table 1. The first principal component
derived from these four measures explains approximately 82.2% of their correlation matrix, bolstering the idea that they
can be considered as different manifestations of the same underlying dimension. We also find in the data that the average
value of the first principal component for HLBW infants is approximately 1.4 standard deviations larger than that of the
LLBW group. Furthermore, the first principal component exhibits substantial associations with all anthropometric mea-
sures, indicating that it can be interpreted as a proxy for health endowment at birth. Over-identification tests, reported
in this section and in Table S.1 of the supporting information, provide further support for the notion that specifications
involving a single latent factor are consistent with the data.

We have assumed thus far a known measurement error variance 𝚺 for the variable W in Equation (2). We now present
an approach to estimate the measurement error variance in each of the four anthropometric measures. We additionally
provide a test for the hypothesis that the correlation among these four measures is spanned by their dependence on one

10When the measurement error variance is small, the quantile function of the latent factors, QH (𝜏), could alternatively be computed using the approxi-
mation in Chesher (2017) as we show in Section S.2 of the supporting information. Therefore, one could alternatively select a value of h by considering
quantiles of the latent factors distribution.
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BATTISTIN ET AL.

TABLE 3 Measurement error variances. Gestational Age Head
(weeks) Length Weight circumference p-value
(1) (2) (3) (4) (5)

Estimate 0.373∗ ∗ ∗ 0.244∗ ∗ ∗ 0.067∗ 0.230∗ ∗ ∗ 0.207
(0.043) (0.048) (0.039) (0.050)

Note: Columns (1) to (4) in this table present estimates and standard errors of the measurement
error variances E

(
V 2
𝑗

)
for the four anthropometric measures of latent health at birth: weight,

length, head circumference, and gestational age, denoted by 𝑗 = 1, … , 4. These measures are
obtained as residuals from separate regressions on mother demographics (refer to Panel B of
Table 1). The residuals are standardized to have unit variance. The estimation is performed
using the residuals of the measurement equations (9), and by considering the system of
equations (10) as implied by Assumption 1. Further details can be found in Section S.3 of the
supporting information. The p-value in column (5) is for the hypothesis that the assumptions
underlying the system (10) explain the correlation structure among the four anthropometric
measures.*p < 0.1.**p < 0.05.***p < 0.01.

common factor H. Our objectives are threefold: to provide supporting evidence for the existence of the scalar variable H;
to identify the anthropometric measure W in (2) that exhibits the lowest measurement error when used as a proxy for H;
to initiate the SIMEX method in Section 4.1 using the estimated measurement error variance for this chosen proxy. The
approach in Carroll et al. (1996) accommodates unknown variance, and the attractive features of SIMEX are maintained
if a consistent estimate of this variance is available.

With a slight abuse of notation, we consider the following system of measurement equations that generalizes
Equation (2):

W = aH +V, (9)

where W = (W1,W2,W3,W4)′ is a 4 × 1 vector representing the anthropometric measures, V = (V1,V2,V3,V4)′ is a
4 × 1 vector representing the corresponding measurement errors, H is a scalar representing the common factor, and
a = (1, a2, a3, a4)′ is a 4×1 vector of unknown parameters. This setup follows closely that in Section 3, with the exception
that we now have more measures W (four) than latent factors (one). Our approach, outlined below, leverages this degree
of over-identification to estimate the variance of the measurement errors V𝑗 for 𝑗 = 1, … , 4. In particular, the scale
of H in (9) is normalized to match the scale of the first anthropometric measure. Thus, the anthropometric measure
corresponding to the first equation in (9) can be interpreted as the measure used in Equation (2) when r = 1.

Equation (9) yields the following moment conditions under Assumption 1:

E
(
WW

′) = aa′E
(

H2) + E
(
VV

′) , (10)

which depend on the unknown scalar E
(

H2), the vector a, and the diagonal matrix E
(
VV

′) whose elements are the
measurement error variances. We estimate these variances after netting out the observables X . Specifically, we compute
residuals from regressions of each anthropometric measure on mother demographics (see Panel B of Table 1), separately
for treatment and control groups, and standardize residuals to have zero average and unit variance in the sample. These
standardized residuals are then used to define W, and the unknown parameters are estimated using the nonlinear system
of equations in (10).11

We select birth weight as the proxy variable in (2) for the latent factor H due to its lower measurement error compared
with other anthropometric measures, as demonstrated in Table 3. In the following sections, we initiate the SIMEX proce-
dure using the value reported in column (3). We show in Section S.3 of the supporting information that the unknowns on
the right-hand side of (10) are over-identified, meaning that there are more usable empirical moments on the left-hand side
than parameters to be estimated. The p-value presented in column (5) of Table 3 is obtained from a test assessing the valid-
ity of the restrictions imposed in the system (9). We also show in the supporting information that additional equations can
be added to (10) by considering the relationship with potential outcomes as implied by Assumption 1 and the assumption

11As the residualized anthropometric measures have a zero average in the sample, the equations E(W) = aE(H) do not provide additional informa-
tion about the unknowns on the right-hand side. Furthermore, given that the residuals have a unit variance, the equations in (10) imply additional
constraints, as explained in Section S.3 of the supporting information, and yield estimates of the “noise” (V𝑗) to “signal” (W𝑗) ratio in Equation (9), for
𝑗 = 1, … , 4.
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BATTISTIN ET AL.

FIGURE 2 Quantile loadings for IHDP participants and nonparticipants. Note: Dots in the figure are SIMEX estimates of quantile loadings
𝜆1(𝜏) (treatment) and 𝜆0(𝜏) (control) for the model in Equation (1). Panels refer to the three outcomes analyzed: the cognitive development
index, the morbidity index, and general health ratings index. Definitions for these outcomes are in Table 2. Solid lines in the figure are
estimates of quantile loadings obtained under the location-shift specification (6). Shaded areas denote 95% confidence intervals obtained
from 200 bootstrap replications.

of a single latent factor. These equations introduce additional degrees of over-identification, which we employ to conduct
tests. The p-values for these over-identification tests are reported in Table S.1 in the supporting information. In all cases,
the p-values of the over-identification tests deviate considerably from conventional significance levels, suggesting that the
assumptions made are not rejected in IHDP data.12

5.2 SIMEX loadings

Quantile loadings and intercepts are obtained as described in Section 4.1. We consider 50 draws from the distribution
of 𝜖; the extrapolation step uses a quadratic polynomial over 20 equally spaced values for 𝜌 in the interval [0.1, 2], as in
Figure S.1 of the supporting information.

The dots in Figure 2 represent the SIMEX quantile estimates �̂�1(𝜏) and �̂�0(𝜏) for the slopes in Equation (1). Each panel
in the figure corresponds to one of the three outcomes analyzed: cognitive development (Y CD

d ), morbidity (Y MB
d ), and

general health (Y GH
d ).13 While the estimated loadings do not vary much by quantile in the case of morbidity, we observe

a sharp decline as we go across 𝜏 in the case of cognitive development. Figure 3 displays SIMEX estimates Q̂U1 (𝜏) and
Q̂U0 (𝜏) for the uniqueness terms in Equation (1). We do not find significant differences in the uniqueness distributions of
IHDP participants and nonparticipants. Moreover, in Figure 2, we present the estimated slopes that would be obtained
under the location-shift specification in Section 3.3—see Equation (6). Specifically, we perform regressions of the SIMEX

12Note that independence between V and H aligns with studies that interpret birth weight (W) as a combination of genetic components of the infant
(H) and external factors affecting fetal development (V), like oxygen availability. For example, following Rosenzweig and Schultz (1982), V can be seen
as biologically exogenous variability, supporting Assumption 1.
13In what follows, outcomes are standardized to have zero mean and unit variance in the sample after taking residuals from regressions on mother
demographics.
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BATTISTIN ET AL.

FIGURE 3 Quantile functions of uniqueness for IHDP participants and nonparticipants. Note: The figure shows SIMEX estimates of
QU1

(𝜏) (treatment) and QU0
(𝜏) (control) for the model in Equation (1). Panels refer to the three outcomes analyzed: the cognitive

development index, the morbidity index, and general health ratings index. Definitions for these outcomes are in Table 2. Shaded areas denote
95% confidence intervals obtained from 200 bootstrap replications.

slope estimates �̂�d(𝜏) on the SIMEX estimates Q̂Ud(𝜏) separately for d = {0, 1}, and show with solid lines in Figure 2 the
predictions derived from these regressions.14

We find that the quantile-specific slope and intercept associated with Equation (1) are well approximated by the
location-scale shift model. The estimates of the factor loading, corresponding to the intercept of (6), are presented in
columns (1) and (2) of Table 4. The estimated slopes in (6) are reported in columns (4) and (5) along with their difference
in the last column. Sharper treatment-control differences in slopes emerge for cognitive development.

The results in Table 4 imply that IHDP affects both the location and scale of outcome distributions depending on a
child's health at birth. For example, columns (2) and (5) imply that, without IHDP, as one moves across the birth endow-
ment distribution, outcomes become more concentrated around better values. This conclusion can be seen by considering
specification (6), upon noting that the scale parameters affect the outcome variance. Treatment-control differences in col-
umn (3) of Table 4 imply positive treatment effects on outcome averages for all children. However, IHDP participation
has different effects on the variance of the distribution depending on the outcome, as shown in column (6).

5.3 Distribution of gains

We next estimate the distribution of gains for LLBW and HLBW infants using Equation (8). To exemplify, we compute
the QCD at the value u0 = QU0(0.5) ≈ 0 obtained from SIMEX estimates of the quantiles of U0 in Figure 3. We consider
two values of the latent factor, h ∈ {hL, hH}. Specifically, hL is a prediction from a linear regression of birth weight on the
outcome in the sample of LLBW nonparticipants (as detailed in Section 4.3). Separate regressions are considered for the
three outcomes, and predictions are computed at the outcome average. The value hH is constructed in a similar manner
using HLBW nonparticipants.

14To obtain the location and scale parameters in model (6), we estimate �̂�d(𝜏) = 𝛼0 + 𝛼1Q̂Ud
(𝜏) + 𝜈 by treatment status. The slope coefficient from this

regression yields an estimate of 𝜸d, while the intercept estimate 𝜆d.
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BATTISTIN ET AL.

TABLE 4 Location and scale
parameters from the location-shift
specification.

Location parameters Scale parameters
Treatment Control Difference Treatment Control Difference
(1) (2) (3) (4) (5) (6)

Panel A: Cognitive development index
Estimate 0.304∗ ∗ ∗ 0.069∗ ∗ ∗ 0.235∗ ∗ ∗ −0.140∗ ∗ ∗ −0.082∗ ∗ ∗ −0.058∗ ∗ ∗

(0.004) (0.003) (0.005) (0.004) (0.003) (0.004)
Panel B: Morbidity index

Estimate −0.140∗ ∗ ∗ −0.103∗ ∗ ∗ −0.037∗ ∗ ∗ −0.005 −0.027∗ ∗ ∗ 0.022∗ ∗ ∗

(0.004) (0.003) (0.006) (0.004) (0.004) (0.005)
Panel C: General health ratings index

Estimate 0.224∗ ∗ ∗ 0.092∗ ∗ ∗ 0.131∗ ∗ ∗ −0.059∗ ∗ ∗ −0.088∗ ∗ ∗ 0.028∗ ∗ ∗

(0.005) (0.003) (0.006) (0.003) (0.002) (0.004)

Note: The table shows estimates for the factor loadings obtained under the location-shift specification (6).
Columns (1) and (2) show the estimated intercepts (loadings) in specification (6) for d = {0, 1}, while column
(3) shows the differences between columns (1) and (2). Columns (4) and (5) show the estimated slopes (scale
parameters) in specification (6) for d = {0, 1}, while column (6) shows the differences between columns (4)
and (5).*p < 0.1.**p < 0.05.***p < 0.01.

FIGURE 4 Quantiles of the conditional distribution of treatment effects. Note: The figure shows estimates of QCD at u0 = QU0
(0.50) and

h ∈ {hL, hH} for LLBW and HLBW infants. The horizontal lines denote estimates of the average effects for LLBW and HLBW groups. Shaded
areas denote 95% confidence intervals obtained from 200 bootstrap replications.

We start with IQ gains, as this dimension shows consistently large average effects in many early childhood interventions
similar to IHDP. An improvement in neonatal health H influences the location and scale of QCDs. This pattern can be seen
from the first panel of Figure 4, where the dashed and continuous lines represent the estimated QCDs, Δ

(
𝜏; hH ,QU0(0.5)

)
and Δ

(
𝜏; hL,QU0 (0.5)

)
, for HLBW and LLBW infants, respectively. The horizontal lines indicate the average effects for

these two groups, and the shaded areas represent the 95% point-wise bootstrap confidence intervals. The figure illustrates
that, when conditioning on a post-natal shock U0 value approximately equal to zero, infants with better neonatal health
exhibit a gain distribution with the lower tail shifted toward larger values. Differences between QCDs tend to disappear
as one moves across quantiles (i.e., 0.70𝜎 at the 0.10 quantile and 0.14𝜎 at the 0.90 quantile). This pattern indicates that
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BATTISTIN ET AL.

FIGURE 5 Conditional distribution of treatment effects at selected
quantiles. Note: The figure shows how Δ (𝜏; h,u0) varies with (h,u0)
at the 0.10 quantile (lower surface) and 0.90 quantile (upper surface)
of cognitive development (Stanford–Binet intelligence scale).

the gains from the intervention are more widely distributed among infants with worse health endowment at birth. For
example, the interquartile range for LLBW infants is approximately 0.6 − (−0.8) = 1.4𝜎 compared with a value of 0.7 −
(−0.4) = 1.1𝜎 for HLBW infants. Furthermore, the first panel implies positive gains for about 62% of HLBW participants,
whereas this proportion is much lower for LLBW participants, at about 50%.

The distribution of effects in Figure 4 points to negative returns to participation for some children, and the incidence of
such negative returns tends to be larger among those participants with comparatively lower health endowments at birth.
A closer look at Equation (4) reveals that such negative returns are likely driven by a draw from the U1 distribution that
is below the counterfactual median draw that the same child would have experienced without participating in IHDP (the
median of U0 is approximately zero in our sample). Ramey et al. (1992) highlight significant variation across IHDP sites
in terms of how the program was implemented and the extent of participation by children and families. Table 3 in their
article provides insights into these variations, indicating that, on average, children attended the development centers for
267 days, but this duration ranged from 225 days to 300 days across different sites. Notably, the standard deviation in
the number of days spent at the development centers is approximately 50% to 70% of the mean. This statistic suggests
that some children in the treatment group had relatively limited exposure to IHDP. For these children, the value of U1 is
likely lower than the median of U0 used in the computation of QCD, particularly with low health endowments, and this
difference can explain the negative effects documented in Figure 4.

For health-related outcomes, improved neonatal health leads to a shift toward larger values of QCDs, as demonstrated
in the remaining panels of Figure 4, where lower values of the morbidity index indicate more favorable outcomes. How-
ever, when examining health during the first 3 years of life, the disparities between LLBW and HLBW QCDs are smaller
compared with IQ, and they appear to change gradually across quantiles. For example, the difference between curves in
the third panel is about 0.19𝜎 at the 0.10 quantile, and 0.08𝜎 at the 0.90 quantile.

The empirical relevance of nonseparability between neonatal health and post-natal shocks is demonstrated in Figure 5,
which shows how Δ (𝜏; h,u0) varies with (h,u0) at the 0.10 and 0.90 quantiles of cognitive development.15 The positive
gradient in neonatal health suggests that better endowment at birth H leads to an upward shift in the distribution of
treatment effects. However, this shift conceals significant heterogeneity based on the intensity of post-natal shocks U0. To
illustrate this point, consider infants in the figure with the same h but different baseline outcomes because of significantly
positive (high 𝜏0) and negative (low 𝜏0) values u0. IHDP proves to be particularly effective for infants in the latter group, as
they have a higher probability of experiencing positive returns from participation. However, the two surfaces are not par-
allel. Therefore, IHDP redistributed larger gains toward children who would have encountered relatively worse post-natal
conditions in the absence of the intervention, but it had a less pronounced effect on children with a poor endowment
at birth.

15We consider 17 equally-spaced values for u0 (using Figure 3) and the 1 to 99 percent range for predictions Ê(W |Y0 = 𝑦0) of h. Values of 𝜏0 in the figure
refer to quantiles in the U0 distribution.
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BATTISTIN ET AL.

FIGURE 6 Conditional quantiles of cognitive development by neonatal health and family income. Note: The figure shows how estimates of
QCD at u0 = QU0

(0.50) and selected quantiles (in different panels) vary with neonatal health H. Shaded areas denote 90% confidence
intervals obtained from 200 bootstrap replications.

5.4 Interactions with socio-economic status

Are the positive effects of IHDP explained by differences in the socio-economic status of participants? We address this
question by defining two groups of children in families with income below (low-income) and above (high-income) the
IHDP median, and estimating QCDs separately for each group.16 The four panels in Figure 6 show how estimates of
Δ
(
𝜏; h,QU0(0.5)

)
at selected quantiles 𝜏 ∈ {0.20, 0.40, 0.60, 0.80} vary with neonatal health h. Only IQ gains are consid-

ered, and values for h on the horizontal axis are the 1 to 99 percent range for predictions of latent health Ê(W |Y0 = 𝑦0)
from a regression of birth weight on IQ for nonparticipants. The analysis reveals that treatment effects exhibit an upward
trend with h across all quantiles for both income groups. Specifically, the effects at the 0.60 and 0.80 quantiles consistently
demonstrate positive outcomes throughout the health spectrum. Moreover, the effects are generally more pronounced for
children from lower income backgrounds, particularly at the higher end of the health distribution. However, the precision
of our analysis is somewhat affected due to the limited sample size.

Income group differences in treatment effects are comparable in magnitude to within-income group variability. Past
research indicates that, on average, low-income families tend to observe larger effects for HLBW children compared with
high-income families (e.g., see Duncan & Sojourner, 2013). In our analysis, an OLS regression for HLBW children's IQ
based on the IHDP treatment assignment dummy, a lower-income group dummy, and their interaction reveals a coeffi-
cient of approximately 0.26𝜎 for the latter variable (results not shown for brevity). In Figure 6, the 0.80− 0.20 quantile
range for H = 0.5 is approximately 0.70 − (−0.71) = 1.41𝜎 for high-income families and 0.89 − (−0.58) = 1.47𝜎 for
low-income families. These figures suggest that variability in IHDP effects within groups is substantially greater than
between groups.

Our point estimates suggest that, while lower-income children generally benefit more from IHDP on average, around
20% of higher-income children achieve gains exceeding the median of their lower-income counterparts. This is evident

16Approximately 10% of observations that lack income information are excluded from the analysis. Duncan and Sojourner (2013) employ an alterna-
tive approach to define income groups, which involves multiple imputation of missing values. They estimate average differences based on income by
employing weights derived from the Early Childhood Longitudinal Study - Birth Cohort data.
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BATTISTIN ET AL.

at H = 0.5 in the fourth panel of Figure 6, where the effect for the higher-income group is about 0.6, and the median gain
for the lower-income group at H = 0.5 is below 0.5, as indicated by the 0.60 quantile in the third panel. Our findings also
suggest that the higher average effects observed in the healthiest children within the lower-income group are primarily
due to significant gains in a minority of cases. The differences in Figure 6 panels become more pronounced for larger H
values, typically between the 0.60 and 0.80 quantiles. Meanwhile, income disparities among participants are less relevant
for children with the poorest health conditions, likely LLBW children. Considering IHDP's target population, infants at
the higher end of Figure 6 panels resemble normal birth weight infants. This group has well-documented causal links
between family income and health and development (e.g., Ko et al., 2020).

5.5 Robustness of results to correlated uniqueness

We extend our empirical investigation to the case of dependence between the post-natal potential shocks, or uniqueness
terms, (U0,U1). Positive dependence may arise, for example, due to unobserved factors specific to each infant that are not
accounted for by health status at birth or the variables X . In what follows, we employ the location-shift specification (6),
as we have shown to fit the IHDP data well. Under this specification, the QCD has the following expression:

Δ (𝜏; h,u0) =
((
𝜆1 + 𝛾1QU1|U0 (𝜏|u0)

)
− (𝜆0 + 𝛾0u0)

)
h + QU1|U0 (𝜏|u0) − u0, (11)

where QU1|U0 (𝜏|u0) represents the 𝜏th conditional quantile of U1 given U0 = u0. Note that, even with correlated
uniqueness, the location and scale parameters in (11) can be estimated as explained in Section 5.2 and shown in Table 4.

It follows that the computation of (11) rests on the particular expression of QU1|U0 (𝜏|u0), which depends on the joint dis-
tribution of the uniqueness terms. For example, under Assumption 3, this conditional quantile becomes QU1 (𝜏). We derive
in Section S.9 of the supporting information the expression for conditional quantiles considering examples of families of
semi-parametric copulas for (U0,U1). In particular, we show there that bivariate normality with correlation coefficient
𝜁 ∈ (0, 1) implies

QU1|U0

(
𝜏|QU0 (𝜏0)

)
=
√(

1 − 𝜁2
)

QU1 (𝜏) + 𝜁QU1 (𝜏0) . (12)

Thus, without Assumption 3, specific assumptions about the form of the conditional quantile QU1|U0 (𝜏|u0) pave the way
for the computation of (11). Joint normality and the location-scale shift model (6) are maintained here to flesh out the
sensitivity of our results to dependence between the uniqueness.17 In this case, QCD can be obtained via (12) at given
values of the coefficient 𝜁 . We do not use restrictions to point-identify 𝜁 , although we discuss briefly examples of such
restrictions in the supporting information. For the sake of brevity, our discussion below focuses on cognitive development,
as it is the outcome with the most substantial effects in our analysis.

The difference between lines in Figure 4 is attenuated when 𝜁 ≠ 0, but it still decreases as one moves to upper quantiles.
This can be seen by noticing that (11) implies 𝜕

𝜕h
Δ
(
𝜏; h,QU0 (0.5)

)
≈ (𝜆1 −𝜆0)+ 𝛾1

√
1 − 𝜁2QU1 (𝜏), which is decreasing in 𝜏

because 𝛾1 < 0 (see Table 4) and QU0 (0.5) ≈ 0. The takeaways from Figure 5 are qualitatively similar when 𝜁 is not larger
than 0.60. This figure demonstrates the relevance of taking into account the nonseparability between neonatal health
H and post-natal shocks U0. When 𝜁 = 0, nonseparability depends on the value of −𝛾0, which is 0.082 in our data and
obtained as second derivative of QCD with respect to H and U0. Nonseparability implies that the effect of improvements
in health H on QCD increases in U0 for all 𝜏 's. When 𝜁 ≠ 0 this conclusion is maintained if−𝛾0+𝛾1𝜁 > 0, which represents
the second derivative of QCD in (11) with respect to H and U0 if one assumes (12) and that the uniqueness have the same
variance, which is approximately true in IHDP data. Taking at face value the parameter estimates in Table 4, the expression
−𝛾0+𝛾1𝜁 > 0 is valid if 𝜁 < 0.60.18 Finally, for the low-income group in Figure 6, lines are approximately parallel implying
that 𝛾1 ≈ 0. In this case, the slope of QCD is unaffected by 𝜁 . A similar reasoning implies that 𝛾1 < 0 is approximately true
for the high-income group. In this case, increasing values of 𝜁 will attenuate the slope of lines in Figure 6.

17Figure S.6 in the supporting information suggests that joint normality of the uniqueness is approximately valid for IHDP.
18Figures S.7 and S.8 of the supporting information are the analog of Figure 5 considering three scenarios for mild (𝜁 = 0.1), moderate (𝜁 = 0.2) and
high (𝜁 = 0.4) dependence between uniqueness.
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BATTISTIN ET AL.

6 CONCLUSION

We defined a novel distributional parameter, the QCD of treatment effects, to study the effects of the IHDP program.
Identification of this parameter hinges on specifying a quantile factor model for potential outcomes and having proxies
for the latent factors. We estimated QCD using a simulation-extrapolation (SIMEX) method, which accounts for the bias
introduced by using proxies instead of the unobserved factors. Beyond its methodological contributions, our research
shows that the effects of IHDP on cognitive and health outcomes vary across participants and depend on health conditions
at birth.
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