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Simple Summary: Animals and plants present asymmetric structures in nature. The most relevant
motor behavioural manifestation of lateralisation is handedness, which is defined as the consis-
tent use of one effector rather than the other in performing certain tasks. In animals, including
human beings, handedness is associated with the presence of a nervous system. Researchers have
recently challenged this idea by reporting that even organisms without a nervous system, such as
plants, exhibit similarities with animals in terms of directional movement patterns (i.e., right-handed
prevalence), opening up the possibility of a comparative study of handedness across taxa. Here, we
advance a comparative approach to the study of handedness in plants by adopting the experimental
paradigms already used to research laterality in various animal species.

Abstract: Structural and functional asymmetries are traceable in every form of life, and some
lateralities are homologous. Functionally speaking, the division of labour between the two halves
of the brain is a basic characteristic of the nervous system that arose even before the appearance of
vertebrates. The most well-known expression of this specialisation in humans is hand dominance,
also known as handedness. Even if hand/limb/paw dominance is far more commonly associated
with the presence of a nervous system, it is also observed in its own form in aneural organisms, such
as plants. To date, little is known regarding the possible functional significance of this dominance in
plants, and many questions remain open (among them, whether it reflects a generalised behavioural
asymmetry). Here, we propose a comparative approach to the study of handedness, including plants,
by taking advantage of the experimental models and paradigms already used to study laterality in
humans and various animal species. By taking this approach, we aim to enrich our knowledge of the
concept of handedness across natural kingdoms.

Keywords: handedness; climbing plants; lateralisation; asymmetry; chirality; animals; humans;
kinematics; comparative biology

1. The Asymmetric Nature of the Universe

“Life as manifested to us is a function of the asymmetry of the universe and of the
consequences of this fact”. Pasteur, 1860

Nature is asymmetric at all levels, and most of the elements characterizing it have a
structure that differs from their mirror image, a phenomenon termed chirality. Chirality
is present from the simplest form of an element, such as molecules. A molecule exists in
two mirror image forms that cannot be superimposed (i.e., enantiomers). Mirror-image
molecules could be either Levorotatory enantiomers (i.e., L-enantiomers) or Dextrorotatory
enantiomers (i.e., D-enantiomers), and they are produced in equal amounts (i.e., homochi-
rality) [1]. These molecules are crucial for the development of specific proteins for the
structure and chemical regulation of living cells and their DNA (i.e., deoxyribonucleic
acid), and both exhibit a fixed chirality (e.g., DNA presents a right-handed helix form) [1,2].
Cells mostly comprise chiral molecules, which define the cell’s left–right (L-R) asymmetric
morphology. Cell chirality is observed in protozoans (i.e., groups of unicellular eukaryotes);
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eukaryotic cells, such as metazoan (i.e., specialised cells in tissues and organs that have a
division of labour and perform specific functions) [1]; the blastomeres (i.e., a type of cell
produced by cell division of the zygote after fertilisation) of various invertebrate species [3];
and vertebrate cultured cells [4,5]. Recent evidence has suggested that the intrinsic cell chi-
rality underlies the L-R asymmetric morphogenesis in invertebrates (e.g., drosophila) [6,7]
and vertebrates (e.g., zebrafish melanophores) [8]. From this perspective, this mechanism
may contribute to the asymmetric development of L-R asymmetry across phyla [1].

From plants to human beings, all organisms present a structure that is not identical to
its mirrored image. Variation in the anatomical structure (i.e., position and orientation of
organs) across and among species (e.g., plants and animals) is often described in relation
to the primary organism’s axes [2]. For example, animals with frontally placed eyes have
large binocular overlap and combine images from the two eyes into one percept whereas
animals with laterally placed eyes have two separated visual fields, and this might lead to
a different analysis of visual stimuli [9]. Animal species, including human beings, present
three whole-body axes, as follows (Figure 1A,B): (i) the anterior–posterior (A–P) axis, which
extends longitudinally from head to tail; (ii) the dorsal–ventral (D–V) axis, in which ventral
typically faces toward and dorsal away from a substrate; and (iii) the left–right (L–R) axis,
which is defined in relation to a plane running along the A–P midline. In plants, the axes
are related to the direction of growth of the organismal parts (e.g., stem, roots).
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direction (i.e., polarisation) depends on various environmental cues (e.g., gravity) [10,12], and 
it remains active throughout plant development by defining the growth direction of the stem 
and the roots [13,14]. The A–B axis is related only to the plant’s simplest growth forms. 
However, the stem and the root system present their own relative elongation, which is 
characterised by a rhythmic repetition of leaves or secondary roots, respectively, at different 
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Figure 1. Primary axes in animal and plants. In animals (A) and human beings (B), there are three
main axes: the anterior–posterior (A–P) axis (from the head to the tail/feet), the dorsal–ventral (D-V)
axis (the upper or back side of an organism), and the right–left (R–L) axis (defined in relation to a
plane running along the anterior–posterior midline). In plants (C), the main axis is the apical–basal
(A–B) axis, which refers to the straight line from the origin of the plant either to the tip of the shoot or
the roots.

The main axis of plant growth is the apical–basal (A–B), which represents a single
straight line from the origin of the plant to the tip of the shoot or the roots (Figure 1C) [10,11].
Its direction (i.e., polarisation) depends on various environmental cues (e.g., gravity) [10,12],
and it remains active throughout plant development by defining the growth direction of the
stem and the roots [13,14]. The A–B axis is related only to the plant’s simplest growth forms.
However, the stem and the root system present their own relative elongation, which is
characterised by a rhythmic repetition of leaves or secondary roots, respectively, at different
distances. For instance, along the stem, leaves are added asymmetrically in the form of a
single leaf primordium (i.e., groups of cells that will form into new leaves) to one side of
the growing point as an investment around the stem. In this case, symmetry can also be
observed in the leaves, which are characterised by several axes, such as the proximal–distal
(i.e., distance from the base to the apex; Figure 2A), the D–V (i.e., distance from the adaxial
to the abaxial side; Figure 2B), and the medial–lateral (i.e., distance from the midvein to the
margin; Figure 2C). In plants, “proximal” and “distal” should be applied to organ parts
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that do not develop from an apical meristem (e.g., leaflets, petals; Figure 2A) or to organs
with an apical meristem that branch out from another site (e.g., branches or lateral roots).
In the adaxial–abaxial axis, the adaxial part includes the top of the leaf and the abaxial the
bottom of the leaf (Figure 2B). Then, the medial–lateral axis is used to describe laminar
plant parts, such as many leaves and petals and some shoot axes (e.g., cactus paddles), that
expand through the growth of marginal meristems (Figure 2C) [15].
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axes in the plants’ leaves.

Furthermore, symmetry can be observed in several plant organs (e.g., leaves, roots,
and shoots). It can be (i) radial (i.e., similar parts are arranged in a balanced way around
the centre of the plant’s body; Figure 3A), such as in the development of petals in flowers,
roots, and shoots; (ii) dorsiventral (i.e., the front and back parts of the plant’s organs;
Figure 3B), such as in leaves; (iii) bilateral (i.e., the left and right parts of the plant’s
body are symmetrical; Figure 3C), as in the flowers of pea plants; or (iv) helical/spiral
(i.e., there is a central vertical axis around which the plant’s organs, such as the stem,
twist, either towards or away; Figure 3D), as in the arrangement of leaves along the stem
(i.e., phyllotaxy) [16].
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Asymmetries represent a way to adapt to the predominance of various environmental
conditions. Humans, together with many other species, exhibit directionally cerebral
and functional asymmetries that in some cases are linked, such as the localisation of the
language centre in one hemisphere and the position of the organs (i.e., the heart is on
the left, the liver is on the right side, and the small and large intestines coil in a chiral
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manner) [17,18]. On the other hand, in plants, the arrangement of leaves in a helix/spiral
along the stem is necessary to balance the mass of the leaves along the stem and to provide
an optimal structure for maximising light capture, efficient gas exchange, and protection
from excessive damage by insects, wind, or the sun [16,19,20]. Functional asymmetry
can also be observed at the level of motor behaviour, that is, how an organism behaves
and interacts with the environment. Functional motor asymmetries can be exemplified
at the level of specific effectors, such as hand/foot dominance. The most prominent and
studied example of lateralisation is the hand/limb/paw dominance and performance,
also known as handedness (i.e., the consistent use of one effector rather than the other in
performing certain tasks) [21–25]. In some cases, the meaning of handedness is clear, as
in hand dominance in human beings. In other cases, when bodies are characterised by
irregular shapes (e.g., plants), the designation of handedness is far more critical.

At this point, the reader may wonder how handedness can be used to study lateralisa-
tion in brainless organisms, such as plants. Plants do not have a nervous system and do not
develop along the same axes as animals do. However, as animals and plants co-evolved,
they heavily interacted, and it is not surprising that several features of both groups of
organisms are subjected to selection pressures, such as symmetry vs. asymmetry. This
opens up the possibility of a comparative taxonomic and evolutionary study of handedness
focused on animals and plants. Naturally, we cannot equate brain asymmetries with those
exhibited by plants. However, in terms of directional movement patterns, some factors
(i.e., right-handed prevalence) can be compared across species. In the following paragraphs,
we introduce the phenomenon of handedness in animals and plants. We then examine the
empirical studies on handedness in separate animal species. This will lead us to propose
a comparative approach to the study of handedness in plants by taking advantage of the
experimental models and paradigms already used to study laterality in various animal
species. Finally, to determine the basis for valid cross-species comparisons, we highlight
those factors that, from our perspective, should be considered in future research.

2. Handedness: One Term, Multiple Meanings

Before proceeding, we must acknowledge that when species other than humans are
considered, not all comparative researchers refer to the term “handedness” for phenom-
ena commonly labelled as behavioural laterality/directional asymmetry. For example,
behavioural laterality has been investigated in a large number of species, considering either
parts or their entire body. The asymmetry of movement and preferred side are observed in
coiling in snakes [26], tail-wagging in dogs [27], and trunk movements in elephants [28,29].
Even when limbs are present in non-human species, the literature refers to limb preference
instead of handedness, underlining an anatomical–functional distinction compared to
handedness in our species [30]. The determination of handedness in plants is more critical
than in animals due to several factors, such as the presence of irregular body shapes and the
absence of specific effectors (e.g., hands, feet). This leads to the arbitrary determination of
handedness in plants from the observer’s point of view and discrepancies in the definition
of right-handed and left-handed plants. Considering all this in the present perspective
paper, we adopt (though with a certain degree of caution) the term “handedness” (also as a
matter of consistency with the existing literature on plants), being aware that this term’s
meaning is related to the species investigated.

The concept of handedness includes the idea that an organism uses one effector (i.e., a
hand) more frequently than the other and the related idea that performance is more skilled
or efficient with the preferred effector [2,31]. Handedness is commonly associated with the
various specialisations of function that are related to the left and right hemispheres [32,33].
Until the 1980s, the idea persisted that directional asymmetry was unique to Homo sapiens
given that right-handedness was linked to the emergence of language [34]. As commonly
known, this applies to a majority of humans exhibiting a left-hemispheric dominance for
the control of speech [35]. In the 1970s and early 1980s, the findings of Nottebohm [36]
on laterality regarding song control in birds and those of Rogers [37] and Andrew [38]
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regarding visual responding in domestic chicks lay the groundwork for a series of in-
depth studies on numerous other species. Today, we are aware that lateralisation is a
characteristic that defines a wide range of species and that there is no discontinuity in its
evolution [39–41].

Handedness is by far the most studied behavioural asymmetry in humans;
in over 50 years of research, it has been studied with consideration for genetic [42,43],
behavioural [44], and environmental aspects [45]. Handedness can be distinguished into
two forms: left- and right-handedness. Almost 90% of humans are right-handed, and
this percentage holds consistently across cultures [42,46]. Handedness varies in strength
(i.e., individuals who may be weakly or strongly lateralised) and direction (i.e., left or
right) within and across species. Handedness is often task-dependent (e.g., writing, reach-
to-grasp, reach-to-eat), which makes identifying the factors driving the expression of
handedness difficult [47–49]. Furthermore, handedness can be observed at the population
level (i.e., when most individuals in the same population show the same bias for the right
or the left) or at the individual level (i.e., a consistent preference for a single individual
irrespective of the population).

Describing a pattern of human handedness is much more complex than often reported.
The methodologies used to assess handedness in humans are themselves a source of
variability. The use of self-report questionnaires can introduce the risk of response bias
and is affected by the motor task used (i.e., using scissors and/or unscrewing a jar), which
can produce an overestimation of right bias. To investigate interspecific comparisons,
some studies are based on the observation of naturalistic spontaneous behaviours [50]
even though few data are available and direct observation of spontaneous behaviours
is rare. Furthermore, handedness in humans seems considerably affected by cultural
differences [51,52]. For instance, in Western societies, the prevalence of reported left-
handers varies between 2 and 13%, whereas in other cultures, it varies from 2 to 27% [53].

Whether non-human species exhibit functional directional asymmetries comparable
to human handedness is still debated, considering the extreme preference documented in
our species for the right hand, a laterality which is unmatched by limb preference in other
species, except for a few species of parrot [54] and ground-living kangaroos [55].

A recent review of non-human primates indicates, indeed, that population-level
handedness is rare outside our species [56]. Nevertheless, evidence of consistent hand
or limb preference has been documented in a host of vertebrates, including fish, rodents,
birds, and anurans [57], as well as some species of prosimians [58]. Moreover, evidence
of the predominance of right-handedness in captive chimpanzees for specific complex
tasks (e.g., bimanual feeding) has suggested a continuity between humans and our closest
relative [47]. An extensive body of literature on animal species [57] has indicated how
strongly brain asymmetries affect everyday behaviour regardless of the presence of hands
or limbs (e.g., fish and/or reptiles). In fish, behavioural asymmetries include a preferential
ventral fin use among blue gourami, Trichogaster trichopterus [59], and lateralised pectoral
spine stridulation among catfish, Ictalurus punctatus [60]. Snakes exhibit a lateralised use of
a hemipenis according to different temperatures [61], whereas Roth [26], while observing
coiling posture in cottonmouth snakes (used for defensive and offensive strikes directed at
predators and prey), found a preference for counterclockwise coiling. The above evidence
suggests that the study of behavioural asymmetry is not solely limited by the presence
of limbs.

3. Handedness in Plants

As previously reported, asymmetries represent a way to adapt to the prevailing envi-
ronmental conditions at any time. In plants, a clear example of adaptability is represented
by the helical growth (i.e., circumnutation) of the stem and related extensions (e.g., tendrils,
leaves) [62,63]. This movement involves many behavioural patterns, such as (i) the ar-
rangement of the leaves or petals, (ii) the twisting of the flat plant’s organs to increase their
rigidity, (iii) exploratory movements of the stem or tendrils (i.e., filamentary organs sensi-
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tive to contact and used exclusively for climbing), and (iv) the coiling of tendrils around the
potential support in the environment. For instance, climbing plants adopt the helical pattern
of movement to find a potential support (e.g., wooden pole, tree trunk) in the environment
and, once perceived, to direct their organs, such as tendrils (i.e., modified leaves that a
climbing plant uses to climb a potential support), toward it for climbing [62–64]. Further,
the direction of the tendrils’ helical growth determines the side of the coiling movement
around the support, which could be clockwise (i.e., on the left side), counterclockwise (i.e.,
on the right side), or mixed (i.e., both directions; Figure 4A) [64–70]. This direction could
be fixed within species or flexible between organs of the same plants.
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Many plant species exhibit a helical structure with a preferred direction (e.g., honey-
suckle grows in a left-handed helix), indicating a sort of handedness or chirality (i.e., right-
and/or left-handed helices of the plant’s organs during growth) [70–72]. Some botanists,
such as Hugo von Mohl, defined right-handed plants as those that climb a support “with
the sun” or “like the clock hands” [67,69]. On the other hand, botanists such as Charles
Darwin claimed that when the circle made by the finger runs clockwise, the plant’s spiral
is right-handed [63], and when the circle is counterclockwise, it is left-handed [67,69].
Kihara [69] adopted the terminology that described “clockwise” as “right-handed” and
“counterclockwise” as “left-handed”. Hashimoto [73] suggested defining it as “left-handed”
clockwise helical growth. Indeed, clockwise arrangements of petals and leaves are corre-
lated with left-handed helical epidermal cell files, and counterclockwise arrangements are
correlated with right-handed epidermal helices. To avoid misunderstandings, here, we
use the Hashimoto [73] definition: everything that turns clockwise and moves away from
the observer is considered left-handed (Figure 4A), and counterclockwise movement is
right-handed (Figure 4A).

Examples of handedness in plants include (i) the spiral arrangement of leaves along the
stem (i.e., phyllotaxy). For instance, the coconut tree (Cocos nucifera) shows a clockwise (i.e.,
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left-handed) or counterclockwise direction (i.e., right-handed) of phyllotaxy, depending
on the plant’s location in the northern or southern hemisphere. Indeed, right-handed
forms are predominantly present in the northern hemisphere, with left-handed forms
being present in the southern hemisphere [72,74,75]. Such examples also include (ii) the
heliotropic response of plants’ organs, which follows the sun during the day. Heliotropic
adaptation of plant organs (e.g., leaves) with appropriate torsions (i.e., left and/or right-
handed) allows plants to orient themselves at right angles to the light source to optimise
light capture and improves plant performance and fitness [62,76,77]. Another example
is (iii) the helical growth of various plant organs (e.g., the stem, leaves, petals). The turn
of the shoot of Arabidopsis (Arabidopsis thaliana L.) and the Ipomea purpurea (Ipomea
purpurea Roth) plants is usually clockwise [78], whereas bean shoots (Phaseolus vulgaris L.)
and Fallopia baldschuanica (Polygonum baldschuanicum Regel) display a counterclockwise
direction [79]. (iv) Examples also include the coiling of the tendrils or stem in climbing
plants. Some plants, such as pea plants (Pisum sativum L. cv, Alaska), show a mixed
pattern of coiling direction (i.e., clockwise and/or counterclockwise direction). Jaffe [68]
observed that the prevalence of the tendril’s rotation in pea plants was predominantly
clockwise (i.e., 53%; 47% counterclockwise). Recent studies have confirmed these findings,
showing that the direction of the circumnutation in pea plants during the approach-to-clasp
movement towards a potential support (i.e., a wooden pole or another plant) can be either
clockwise or counterclockwise and that it can change in the same plant [80,81]. However,
except for a few cases, such as among pea plants, 92% of climbers show a right-handed
coil-direction preference independent of hemispheric locations, latitude, circumnutation
direction, and the thigmotropic response given by the first contact of the plant’s organ
(e.g., tendril) with the supporting host or stimulus [65]. These results showed that the
phenomenon of twining is not random and could be genetically determined [82]. At the
molecular and cellular levels, the direction of the helical movement is linked with the
arrangement of the arrays of the microtubules (i.e., hollow tubes made of alpha and beta
tubulin that are a part of the cell’s cytoskeleton) in the cellular cortex and the related coiling
of the cellulose microfibrils around the cell. Further, a range of microtubule-associated
proteins are involved in helical growth development, such as the SPIRAL1 (i.e., SKU6),
SPIRAL2 (i.e., TORTIFOLIA1), and the gene GCP2. The right or left direction depends on
the microtubule arrays’ structural properties. For instance, right-handed organ twisting is
always associated with left-handed microtubule arrays and vice versa. In sum, genetic and
cellular investigation have demonstrated a strong link between microtubule arrangement
and the potential twisting of cells and tissues [70].

The above evidence suggests that the pattern of left/right handedness in plants
appears to differ depending on the plant organ (i.e., stem, leaves, tendrils), species (e.g.,
pea plants), and development (e.g., coconut palm phyllotaxy, plant twisting on a potential
support), implying that handedness in plants may have various causes [73]. Symmetry in
plants is, indeed, a plastic trait which is determined by the plant’s physiological state (i.e.,
plant fitness) and various environmental conditions [83,84]. In this view, the handedness
preference in plants may be determined by various factors (i.e., genetic, biological, and
environmental factors) and may have evolved in various ways to allow plants to function
more efficiently in their surroundings by increasing their chances of survival.

4. Toward a Comparative Study of Handedness in Animals and Plants?

When we refer to handedness in humans, other animal species, and plants, the dif-
ferences are far more obvious than the similarities. As aforementioned, handedness is a
complex concept to deal with the variability in hand use in our species. Also, it is still
debated whether non-human species exhibit functional forelimb asymmetries comparable
to human handedness. In a potentially comparative context, it is essential to underline
whether the adoption of the term “handedness” for plants refers to the presence of a pre-
ferred growth direction (i.e., circumnutation and/or twisting), and it can be summarised
as that property shown by two forms of structures that are mirror images of each other.
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They are often distinguished by the names right (dextral) and left (sinistral), which may be
arbitrarily determined [70].

Taking this into account, an increasing number of studies have suggested that plant
and animal behaviours show strong similarities (e.g., decision-making, learning) and that a
neural architecture is not ubiquitously necessary to support certain abilities [80,81,85–97].
Can this statement be extended also to the phenomenon of handedness? In other words, is
it possible to enhance the concept of handedness in plants by including functional aspects
as for animals?

As reported previously, a critical point is that handedness in plants is determined by
the observer’s perspective; therefore, it is quite difficult to unequivocally define plants
as right- or left-handed [67,69,73]. Another critical aspect is how and when to measure
handedness. Indeed, the spiral arrangement, the helical growth, and the coiling of tendrils
or the stem are all used as indicators of handedness, and to our knowledge, there is no
agreement on what the most reliable measure may be or on the correlation between the
various measurements. This led us to another consideration: which phases of plant growth
are most indicative of handedness? Given that all of the indicators are useful, which
moment is the most critical to consider?

Having said that, we found evidence of what can be potentially described as hand-
edness at the population level in plants. Ninety-two percent of climbing plants appear to
be right-handed based on the coiling direction [65], but this percentage drops to almost
the chance level (53%) for some other plants [68]. It is rather unclear to what extent these
two outcomes are comparable and to what extent they reflect an actual asymmetry at the
population level. Do the authors estimate handedness at similar phases? Do the authors
share the same criteria to assess handedness? Is it possible to hypothesise a scenario in
which to investigate the variability of handedness in plants? The answer is potentially
yes but with great caution. Given the fact that handedness in plants can be measured in
terms of direction (right vs. left) and, perhaps, in terms of extent (e.g., the timing with
which the tendrils coil around the support), only systematic studies could clarify whether
there is a direction of growth and climbing common to the majority of plants observed
in the same conditions with a shared methodology. There is a second critical aspect that
might be difficult to address as far as handedness in plants is concerned. In humans and
other animal species, handedness is often measured through repeated observations. With
plants, this is obviously difficult to achieve given that on many occasions, the moment at
which plants climb a support represents a non-repeatable event. A possible strategy to
overcome this obstacle can be the study of plants that achieve their objective through a
form of trial-and-error approach. For instance, Guerra and collaborators [80] investigated
the growing movement of the apex and the tendrils from the germination of the seed until
the clasping of the support. The results revealed that as the number of leaves increases, the
velocity and the time taken to perform a circumnutation increase. Also, this corresponds
with a decrease in the number of circumnutation and “handedness” switches. In light of
this, at the population level, even if there are similar proportions of plants with clockwise,
counterclockwise, and mixed directions of circumnutation movement, single plants might
exhibit a preference that could be revealed through the acquisition of repeated measures.

Furthermore, how can we measure the consistency of handedness at the individual
level? Even though handedness in primates is task dependent, once again, the situation is
far more complex in plants. For example, in humans, manual preference is extremely strong
if measured in a writing task but is greatly reduced as the task used to assess it varies.
Ideally, handedness should be measured in multiple contexts and for as many functions
as possible. It could be very informative to investigate handedness as a task-dependent
function in plants. For instance, it might be of interest to assess how climbers’ handedness
(e.g., clasping a support) and/or the goal (e.g., competition or cooperation with other
plants) varies in various tasks. In other words, investigating handedness at the individual
level is a key factor in estimating the consistency of lateralisation across various tasks.
However, as previously reported, the above approaches limit the categorisation of the plant
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as right- or left-handed at the time they have completed their growth process. We are
practically blind to the range of adjustments that precedes, for instance, the climbing of a
support and that can enhance the analysis of lateralised behaviour in plants.

To uncover the nature of handedness in plants, we propose to characterise plants’
movement by means of three-dimensional (3D) kinematical analysis. This methodology per-
mits researchers to define the time course of changes in the position and orientation of the
body or one of its parts (e.g., effector) in terms of trajectories, velocities, and accelerations.
In human beings and various animal species, this approach has been applied in studying
the handedness of goal-directed motor programmes, such as the reach-to-grasp movement,
at various stages of development. Evidence has shown that right-hand preference is already
observed in the foetus during hand-to-face movements [98,99]. Right- and left-handed foe-
tuses were faster in reaching targets requiring greater precision (i.e., eye and mouth) with
their dominant (vs. nondominant) hand [98]. Hand preference was also observed in young
infants for grasping objects (i.e., toys or block), in which movements showed straighter
and smoother paths of the dominant effector and a shorter movement time compared to
the nondominant one [100–106]. Similar findings have been observed in adults, whose
movements performed with the dominant hand were generally faster, whereas grasping
movements with the nondominant hand presented a wider safety margin [107–112]. In
other words, movements performed with the nondominant hand showed a longer move-
ment time and more correction adjustments than movements with the dominant hand,
possibly to compensate for a greater endpoint variability (i.e., variability of finger positions
on the object). These findings have also been confirmed in non-human primates [113–115].
Evidence has shown that chimpanzees who used a precision grip to grasp small pieces of
food were more likely to use their right hand and that this hand preference may reflect a
property of the brain that is ancient and hardwired [107,113,115].

Recently, the kinematical approach has been extended to the study of goal-directed
movement in plants. Specifically, the approaching and clasping movements
performed by various organs of a pea plant towards a potential support have been
characterised [80,81,85–89,97,116]. These findings have demonstrated that pea plants are
able to perceive an element in the environment and to modulate the kinematics of their
movement in terms of velocity, acceleration, aperture of their tendrils, and smoothness on
the basis of the feature of the to-be-grasped support [80,87–89,97], the task (e.g., decision-
making) [81], and the context (e.g., competition or cooperation) [85]. The tracking and
analysing of plants’ movement through time and space using dedicated in-house soft-
ware [115] is a potential tool for studying the distribution and functional significance of
laterality in plants. Also, many of the kinematical features can be considered in a lateralised
fashion. Figure 5 depicts the possible kinematical features to quantify specific properties of
handedness in plants.

All of these measures might be applied to investigate laterality in plants, with specific
reference to climbing plants (e.g., peas and/or beans). Climbers are an ideal model that,
through their development, can somewhat represent the vegetal side of manual preference.
For instance, pea plants are annual climbing plants that need to find a potential support in
the environment to climb and to reach the light source, which are necessary for its survival.
Their leaves are arranged asymmetrically along the stem, and each leaf has tendrils and
filamentary organs that allow the plant to clasp an external support (Figure 6).

The morphological structure of pea plants will allow us to assess various aspects of
handedness, such as (i) whether clasping the support occurs predominantly in a clockwise
or counterclockwise direction, (ii) whether plants have a preference for climbing a support
with leaves developed on their right or left side, (iii) whether this preference could be
observed in terms of a difference in kinematical patterning (e.g., velocity profiles, movement
time, number of changes in direction), and (iv) movements’ smoothness (e.g., number of
submovements, endpoint variability). In this case, because plants do not have right and left
sides, the R–L axis in plants should be determined by the observer’s perspective (Figure 6),
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and (iii) the movement of right- or left-handed plants changes based on the support’s
position (e.g., on the left or right side with respect to the plant).
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Figure 5. Graphical representation of the kinematical measures to quantify handedness in plants.
(A) Graphical representation of the velocity profile of a pea plant’s tendrils during the approaching
and clasping movement towards a potential support. Normalised movement time (%) refers to
the time between the beginning and end of the movement. Acceleration/deceleration refers to
the increasing and decreasing of the tendrils’ velocity before it clasps the support. The peak of
maximum velocity (%) refers to the maximum velocity tendrils reach over the entire movement.
Submovements are the corrective adjustments in the tendrils’ trajectories and velocity to execute
a proper motor behaviour. (B) The path of the tendrils’ trajectories during the approaching and
clasping of the support. (C) The endpoint variability refers to the variability of the tendrils’ contact
point on the support. (D) Number of changes in direction (i.e., clockwise and/or counterclockwise)
during circumnutation.

At this point, the reader may wonder whether data obtained with a methodology
allowing for a comparison across species (i.e., kinematics) may help in theorising about
lateralisation. Several theories have been proposed to explain the extreme effector prefer-
ence in the animal kingdom [31]. The right-shift theory [33] posited that the formation of
behavioural asymmetries depends on brain asymmetries, which are induced by genes (i.e.,
RS+). McManus [43] suggested that genes directly affect handedness but not hemispheric
dominance. The lack of explanatory power of some of the central theoretical arguments
has led to a reduction in the likelihood of a purely genetic inheritance of handedness and
to alternative explanations. The postural origins hypothesis states that all anthropoids,
regardless of their ecology (i.e., arboreal or terrestrial primate species) share a right-hand
bias in object manipulation [117,118]. For humans, a feedback specificity has been sug-
gested for each brain hemisphere. That is, the preferred hand relies on visual feedback,
while the non-preferred hand on proprioception [119]. Despite these proposals, it is still
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not clear how the phenomenon of handedness evolved and/or why right-handedness
dominates in humans and non-human primates. One of the main reasons is the lack of
homogeneity across the experimental approaches [120,121]. The use of kinematics could
overcome this issue by providing a standardised methodology to study the phenomenon
of handedness among and across species. Remember that recent evidence suggests that
kinematical specifiers used to distinguish the use of the dominant from the nondominant
hand in humans [98,107,110] can now be identified in plants [116]. This may allow us to
quantify ecological variables’ influence on the evolution of handedness across taxa. The
discovery of a possible pattern of correspondence in handedness across species through
the expression of movement could provide an integrative view of this phenomenon and a
resulting theoretical understanding of its functional and evolutionary benefits.
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5. Conclusions

In the present review, we examined the question of laterality across kingdoms. What
may emerge from our work is that even though animals and plants are different organ-
isms with different structures, they exhibit similarities in terms of directional movement
patterns (i.e., right-handed prevalence), opening up the possibility of a comparative study
of handedness across taxa. However, research on plants’ handedness is still in its early
stages, and the existing literature is sparse and often controversial. The term “handed-
ness” is controversial when adopted for humans, other animals, and plants, as pointed
out. We believe that from a comparative perspective, it is appropriate to refer to the term
“handedness” when describing certain plants’ behaviour, being aware of the structural and
functional differences that occur between the species investigated. Another crucial point is
whether to consider any possible common aetiology between animals and plants regarding
laterality. In humans, functional asymmetries have been described earlier than structural
asymmetries, and for a long time, the idea that anatomical and functional asymmetries
might be related was simply not considered [122]. The opposite is true for research on
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non-human animals, among whom structural and functional asymmetries (e.g., in the
avian brain) have been described as interrelated [123]. In this framework, one might argue
that during evolution, similar solutions (e.g., laterality) have been selected to solve similar
problems in such disparate and diverse species. Here, we suggest that the use of critical
and specific methods would help identify, define, and evaluate the functional aspects of
handedness in plants, as widely documented in various animal species. As knowledge
about plant behaviour expands, the similarities between plant and animal behaviour are
becoming increasingly evident. What may emerge from the study of handedness in plants
and animals is the realisation that they complement each other nicely and, if nothing else,
once again demonstrate just how similar all free-living organisms are to one another.
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