

Available online at www.sciencedirect.com

EXPOSITIONES MATHEMATICAE

Expositiones Mathematicae 40 (2022) 140-154

www.elsevier.com/locate/exmath

Independent sets of generators of prime power order

Andrea Lucchini^a, Pablo Spiga^{b,*}

^a Dipartimento di Matematica "Tullio Levi-Civita", University of Padova, Via Trieste 63, 35121 Padova, Italy

^b Dipartimento di Matematica Pura e Applicata, University of Milano-Bicocca, Via Cozzi

55, 20126 Milano, Italy

Received 10 February 2021; received in revised form 18 June 2021; accepted 18 June 2021

Abstract

A subset X of a finite group G is said to be prime-power-independent if each element in X has prime power order and there is no proper subset Y of X with $\langle Y, \Phi(G) \rangle = \langle X, \Phi(G) \rangle$, where $\Phi(G)$ is the Frattini subgroup of G. A group G is \mathcal{B}_{pp} if all prime-power-independent generating sets for G have the same cardinality. We prove that, if G is \mathcal{B}_{pp} , then G is solvable. Pivoting on some recent results of Krempa and Stocka (2014); Stocka (2020), this yields a complete classification of \mathcal{B}_{pp} -groups.

© 2021 Elsevier GmbH. All rights reserved.

MSC 2010: primary 20D10; secondary 20D60; 20F05

Keywords: Independent sets; Generating set; Burnside basis theorem

1. Introduction

Throughout this paper, all groups are finite. We start this introductory section with some definitions fundamental for our work. Given a group G, an element $g \in G$ is said to be a *pp*-element if g has prime power order. A subset X of G is said to be

independent if $\langle X, \Phi(G) \rangle \neq \langle Y, \Phi(G) \rangle$ for every proper subset Y of X (where as customary we denote by $\Phi(G)$ the *Frattini subgroup* of G);

pp-independent if X is independent and each element in X is a pp-element; and

pp-base if X is a pp-independent generating set for G.

Finally, G is said to be a \mathcal{B}_{pp} -group if every two pp-bases of G have the same cardinality.

https://doi.org/10.1016/j.exmath.2021.06.003

0723-0869/© 2021 Elsevier GmbH. All rights reserved.

^{*} Corresponding author. E-mail addresses: lucchini@math.unipd.it (A. Lucchini), pablo.spiga@unimib.it (P. Spiga).

The main result of this paper is the following.

Theorem 1.1. If G is a \mathcal{B}_{pp} -group, then G is solvable.

Theorem 1.1 gives a solution to Question 1 in [10] in a strong sense. In fact, it yields a complete classification of the \mathcal{B}_{pp} -groups. Indeed, Krempa and Stocka [10,16] have obtained an entirely satisfactory classification of solvable \mathcal{B}_{pp} -groups and hence Theorem 1.1 together with the work in [10,16] gives a classification of all \mathcal{B}_{pp} -groups. This classification is easier to formulate for Frattini-free groups, that is, for groups G with $\Phi(G) = 1$. (Observe that G is a \mathcal{B}_{pp} -group if and only if so is $G/\Phi(G)$.)

Corollary 1.2. Let G be a group with $\Phi(G) = 1$. Then G is a \mathcal{B}_{pp} -group if and only if one of the following holds:

- (1) G is an elementary abelian p-group,
- (2) G = P ⋊ Q, where P is an elementary abelian p-group, Q is a non-identity cyclic q-group for distinct prime numbers p and q such that Q acts faithfully on P and the (Z/pZ)[Q]-module P is a direct sum of pair-wise isomorphic simple modules,
 (2) C = P ⋊ Q, where P is a direct sum of pair-wise isomorphic simple modules,
- (3) G is a direct product of groups given in (1) or in (2) with pair-wise coprime orders.

The groups as in (2) are simply refereed to as scalar extensions in [16]. We refer the reader to the work of Krempa and Stocka [10,16] for various motivations on investigating \mathcal{B}_{pp} -groups. Broadly speaking, this motivation is rooted on independent generating sets and on generalizations of the Burnside basis theorem; in turn, these motivations are useful for studying groups satisfying the exchange property for bases which is useful for constructing matroids starting from finite groups.

As a bi-product of the arguments used in the proof of Theorem 1.1, we obtain the following result of independent interest. (See Section 2.1 for undefined terminology.)

Theorem 1.3. Let G be a group and denote by m(G) the largest cardinality of an independent generating set of G. Then $m(G) \ge a + b$, where a and b are, respectively, the number of non-Frattini and non-abelian factors in a chief series of G.

We have verified with a computer computation [1] that the bound in Theorem 1.3 is sharp when *G* is the automorphism group of the alternating group of degree 6. Theorem 1.3 gives a strengthening of the bound $m(G) \ge a$, which was proved in [13]. Here, it was also proved that m(G) = a for every solvable group.

The structure of the paper is straightforward. In Section 2 after establishing some notation, and after a short detour through fixed point ratios and spreads, we give some basic results. In Section 3 after establishing a few rather technical results, we prove Theorem 1.1 and Corollary 1.2. Finally, we prove Theorem 1.3 in Section 4.

2. Preliminaries

2.1. Notation

Given a group G, we let m(G) and $m_{pp}(G)$ denote the largest cardinality of an independent generating set of G and of a pp-independent generating set for G. Since

every *pp*-independent generating set is also an independent generating set, we have $m(G) \ge m_{pp}(G)$. In fact, in Lemma 2.3 we show that $m(G) = m_{pp}(G)$. Let

$$1 = G_t \trianglelefteq \cdots \trianglelefteq G_0 = G$$

be a chief series for G. A factor G_i/G_{i+1} is said to be a **non-abelian** chief factor of G if G_i/G_{i+1} is a non-abelian group; moreover, G_i/G_{i+1} is said to be a **Frattini** chief factor of G if $G_i/G_{i+1} \le \Phi(G/G_{i+1})$.

The *socle* of G, denoted by socG, is the subgroup generated by the minimal normal subgroups of G. In particular, if socG is a minimal normal subgroup of G (that is, G has a unique minimal normal subgroup), then G is said to be *monolithic*.

Let G be a monolithic group with socle N. Following the notation in [14], we define $\mu(G) := m(G) - m(G/N)$.

Given a positive integer *n* and a group *H*, we denote by HwrSym(n) the *wreath product* of *H* with the symmetric group Sym(n) of degree *n*. We denote the elements of HwrSym(n) by ordered pairs $f\sigma$, where $f \in H^n$ and $\sigma \in Sym(n)$.

Given two positive integers x and n with $x, n \ge 2$, we say that the prime r is a **primitive prime divisor** of $x^n - 1$ if r divides $x^n - 1$ and r is relatively prime to $x^i - 1$, for each $i \in \{1, ..., n-1\}$. From a celebrated theorem of Zsigmondy [17], either $x^n - 1$ has a primitive prime divisor, or n = 6 and x = 2, or n = 2 and x + 1 is a power of 2. In the latter case, when x is a prime power, we deduce that x must be a (Mersenne) prime. We actually need the following refinement. The prime r is said to be a **large primitive prime divisor** of $x^n - 1$ if r is a primitive prime divisor of $x^n - 1$ and either r > n + 1 or r^2 divides $x^n - 1$. We recall the classical result of Feit [6] on the existence of large primitive prime divisors. (We refer also to [15], for an elementary proof of this result.)

Lemma 2.1. If x and n are integers greater than 1 there exists a large primitive prime divisor for $x^n - 1$ except exactly in the following cases:

- (1) n = 2 and $x = 2^s 3^t 1$ for some natural numbers $s \ge 0$ and $t \in \{0, 1\}$ with $s \ge 2$ if t = 0,
- (2) x = 2 and $n \in \{4, 6, 10, 12, 18\},\$
- (3) x = 3 and $n \in \{4, 6\}$,
- (4) x = 5 and n = 6.

Our last two definitions are rather technical and (for our application) they only pertain to almost simple groups, but they will prove useful. Given an almost simple group H with socle S and a subgroup K of H with H = KS, let

be the smallest cardinality of a set X of *pp*-elements in S with $H = \langle K, X \rangle$. Then, define

$$t(H) := \max\{t(H, K) \mid K \le H \text{ with } H = KS\}.$$

From [9, Theorem 1], S is generated by an involution and by an element of odd prime order and hence

$$t(H) \le 2. \tag{2.1}$$

Given a subgroup K of H, we say that a subset Y of H is K-generating for H if $H = \langle K, Y \rangle$. A K-generating set for H is said to be K-independent if no proper subset of Y generates H together with K. We denote by

$m_K(H)$

the largest cardinality of a K-independent generating set for H.

2.2. A (short) walk through fixed point ratios and spreads

Let *H* be an almost simple group with socle *S* and let $g, s \in H$. We set

$$P(g,s) \coloneqq \frac{|\{t \in s^H \mid \langle g, t \rangle \not\geq S\}|}{|s^H|}.$$

This definition is strictly related to the definition of spread and uniform spread in almost simple groups and we refer the reader to [3,8] for further details.

For any action of *H* on a set Ω and for any $g \in H$, consider the set $\operatorname{Fix}_{\Omega}(g) := \{\omega \in \Omega \mid \omega^g = \omega\}$ of fixed points of *g* on Ω and the *fixed point ratio*

$$\mu(g, \Omega) := \frac{|\operatorname{Fix}_{\Omega}(g)|}{|\Omega|}.$$

From [8, Section 2], if $M \setminus H$ denotes the set of right cosets of the subgroup M of H, then

$$\mu(g, M \setminus H) = \frac{|g^H \cap M|}{|g^H|}.$$
(2.2)

Let now $\mathcal{M}(H, g)$ be the collection of all maximal subgroups of H containing g and assume that H is almost simple with socle S. Then, from (2.2), we deduce

$$P(g,s) \leq \sum_{M \in \mathcal{M}(H,g)} \frac{|\{t \in s^H \mid \langle g, t \rangle \leq M\}|}{|s^H|}$$
$$= \sum_{M \in \mathcal{M}(H,s)} \frac{|\{h \in g^H \mid \langle h, s \rangle \leq M\}|}{|g^H|} \leq \sum_{M \in \mathcal{M}(H,s)} \mu(g, M \setminus H).$$
(2.3)

Eq. (2.3) also appears in [3, (2.4)]. We summarize in the following lemma the main application of fixed point ratios in our context.

Lemma 2.2. Let H be an almost simple group with socle S. Suppose $H \neq S$. If, for every $g \in H \setminus S$, there exists a pp-element $s_g \in S$ with $P(g, s_g) < 1$, then t(H) = 1. In particular, if $\sum_{M \in \mathcal{M}(H,s)} \mu(g, M \setminus H) < 1$ for every $g \in H \setminus S$, then t(H) = 1.

Proof. Let *K* be a subgroup of *H* with H = KS. For every $g \in K \setminus S$, let s_g be a *pp*-element belonging to *S* with $P(g, s_g) < 1$. Then by definition of $P(g, s_g)$, there exists $t \in s_g^H$ with $\langle g, t \rangle \geq S$. Thus $H = \langle K, t \rangle$ and hence t(H, K) = 1. Since this holds regardless of *K*, we have t(H) = 1. The rest of the proof follows from (2.3). \Box

2.3. Basic results

Lemma 2.3. Let G be a group. Then $m(G) = m_{pp}(G)$.

Proof. As we have observed above, $m(G) \ge m_{pp}(G)$ and hence we only need to show that $m(G) \le m_{pp}(G)$.

Let $X := \{x_1, \ldots, x_{m(G)}\}$ be an independent generating set for *G* of cardinality m(G). For each $i \in \{1, \ldots, m(G)\}$, we may write $x_i = y_{1,i} \cdots y_{k_i,i}$, where $y_{1,i}, \ldots, y_{k_i,i}$ are pair-wise commuting *pp*-elements of *G* with

$$\langle x_i \rangle = \langle y_{1,i}, \dots, y_{k_i,i} \rangle. \tag{2.4}$$

Clearly,

 $\{y_{j,i} \mid 1 \le j \le k_i, 1 \le i \le m(G)\}$

is a generating set for G consisting of pp-elements and hence it contains a pp-base Y.

We claim that, for each $i \in \{1, ..., m(G)\}$, there exists $j \in \{1, ..., k_i\}$ with $y_{j,i} \in Y$. Indeed, if for some \overline{i} , Y contains no $y_{i,\overline{i}}$, then

 $G = \langle Y \rangle \le \langle y_{j,i} \mid i \in \{1, \dots, m(G)\} \setminus \{\overline{i}\}, j \in \{1, \dots, k_i\} \rangle \le \langle X \setminus \{x_{\overline{i}}\} \rangle,$

where in the last inequality we have used (2.4). However, this contradicts the fact that X is independent and hence the claim is proved.

The previous paragraph yields $|Y| \ge m(G)$ and hence the lemma follows because $m_{pp}(G) \ge |Y|$. \Box

We now recall [10, Theorem 6.1 (1)].

Lemma 2.4. If G is a \mathcal{B}_{pp} -group, then every quotient of G is a \mathcal{B}_{pp} -group.

3. Proofs of Theorem 1.1 and Corollary 1.2

3.1. Technical lemmas

Lemma 3.1. Let q be a prime power with $q \ge 4$ and let H be an almost simple group with socle $S := PSL_2(q)$ and with $H \ne S$. Then t(H) = 1.

Proof. It suffices to prove that, for every subgroup K of H with H = KS, there exists a *pp*-element $x_K \in S$ with $H = \langle K, x_K \rangle$. Write $q := p^f$, where p is a prime number and f is a positive integer.

Let $K \leq H$ with H = KS and let $\theta \in K \setminus S$. Assume that $p^{2f} - 1$ admits no large primitive prime divisor. From Lemma 2.1, we deduce that either

$$S \in \{PSL_2(4) = PSL_2(5), PSL_2(8), PSL_2(32), PSL_2(64), PSL_2(512), PSL_2(9), PSL_2(27), PSL_2(125)\},\$$

or f = 1 and $q = p = 2^{s}3^{t} - 1$ for some natural numbers $s \ge 0$ and $t \in \{0, 1\}$ with $s \ge 2$ if t = 0. In the first eight exceptional cases, the result can be established with a direct inspection using, for instance, the assistance of the computer algebra system magma [1]. We now consider the case $q = p = 2^{s}3^{t} - 1$. Actually, we deal with the more general case that q = p is a prime number. As $H \ne S$, we have $H = \text{PGL}_{2}(q)$. Clearly, a Sylow *p*-subgroup of *S* is cyclic; let $x \in S$ be an element generating a Sylow *p*-subgroup of S. Observe that we may choose x so that θ does not normalize $\langle x \rangle$. Using the list of the maximal subgroups of S (see for instance [2, Tables 8.1, 8.2]), we see that $S = \langle x, x^{\theta} \rangle$. Thus $H = \langle K, x \rangle$ and t(H, K) = 1.

Assume now that $p^{2f} - 1$ admits a large primitive prime divisor r. Observe that, from the previous paragraph, we may suppose that f > 1. In particular, either $r > 2f + 1 \ge 5$ or r^2 divides q + 1. Clearly, a Sylow r-subgroup of S is cyclic; let $x \in S$ be an element generating a Sylow r-subgroup of S. Observe that we may choose x so that θ does not normalize $\langle x \rangle$ (this can be easily established by considering the structure of the subgroup lattice of S, see [2, Table 8.1]). Using the list of the maximal subgroups of S (see for instance [2, Tables 8.1, 8.2]), we see that either

- $S = \langle x, x^{\theta} \rangle$, or
- r = 5 and $\langle x, x^{\theta} \rangle \cong Alt(5)$, or
- r = 3 and $\langle x, x^{\theta} \rangle$ is isomorphic to either Alt(4) or Alt(5).

In the first case, $H = \langle K, x \rangle$ and hence t(H, K) = 1. In the last two cases, r is the cardinality of a Sylow *r*-subgroup of *S*, because 5 is the cardinality of a Sylow 5-subgroup of Alt(5) and 3 is the cardinality of a Sylow 3-subgroup of Sym(4). However, this contradicts the fact that r is a large primitive prime divisor of $p^{2f} - 1$. \Box

Lemma 3.2. Let q be a prime power and let H be an almost simple group with socle $S := PSU_3(q)$ and with $H \neq S$. Then t(H) = 1.

Proof. As $PSU_3(2)$ is solvable, we have q > 2. Here the argument is similar to the proof of Lemma 3.1: we use primitive prime divisors and the structure of the subgroup lattice of *S*, see [2, Tables 8.5, 8.6]. Write $q := p^f$, where *p* is a prime number and *f* is a positive integer.

Let $K \leq H$ with H = KS and let $\theta \in K \setminus S$. Assume $p^{6f} - 1$ admits a large primitive prime divisor r. Clearly, a Sylow r-subgroup of S is cyclic; let $x \in S$ be an element generating a Sylow r-subgroup of S. Observe that we may choose x so that θ does not normalize $\langle x \rangle$. Using the list of the maximal subgroups of S (see [2, Tables 8.5, 8.6]), we see that $S = \langle x, x^{\theta} \rangle$ (here we are using the fact that r is a large Zsigmondy prime and hence $\langle x, x^{\theta} \rangle$ cannot be contained in a maximal subgroup in the Aschbacher class S by [2, Table 8.6]). Thus $H = \langle K, x \rangle$ and t(H, K) = 1.

It remains to consider the case that $p^{6f} - 1$ does not admit a large primitive prime divisor. Lemma 2.1 yields $(f, p) \in \{(1, 5), (1, 3), (2, 2), (3, 2)\}$. Here the proof follows with the invaluable help of the computer algebra system magma [1]. \Box

Lemma 3.3. Let q be a prime power and let H be an almost simple group with socle $S := PSL_3(q)$ and with $S < H \nleq P\Gamma L_3(q)$. Then t(H) = 1.

Proof. As $PSL_2(7) \cong PSL_3(2)$, from Lemma 3.1, we may suppose that q > 2. Here the argument is similar to the proof of Lemma 3.1: we use primitive prime divisors and the structure of the subgroup lattice of *S*, see [2, Tables 8.3, 8.4]. Write $q := p^f$, where *p* is a prime number and *f* is a positive integer. As q > 2, we have $(p, f) \neq (2, 1)$.

Let $K \leq H$ with H = KS and let $\theta \in K \setminus S$. From Lemma 2.1, $p^{3f} - 1$ has a large primitive prime divisors, except when $(p, f) \in \{(2, 2), (2, 4), (2, 6), (3, 2), (5, 2)\}$. For

these exceptional cases, we have checked the veracity of this lemma with a computer computation. In particular, for the rest of the argument, we let r be a large primitive prime divisor of $p^{3f} - 1$.

A Sylow *r*-subgroup of *S* is cyclic; let $x \in S$ be an element generating a Sylow *r*-subgroup of *S*. Let $M \in \mathcal{M}(H, x)$. Here we use the information in [2, Tables 8.3, 8.4]. From the list of the maximal subgroups of *H* and recalling that $S < H \nleq P\Gamma L_3(q)$ and *r* is a large primitive prime divisor, we deduce that either $M = \mathbf{N}_H(\langle x \rangle)$, or *f* is even, $q = q_0^2$ and $M \cap S \cong SU_3(q_0)$ (here we are using the fact that *r* is a large Zsigmondy prime and hence $\langle x, x^{\theta} \rangle$ cannot be contained in a maximal subgroup in the Aschbacher class *S* by [2, Table 8.4]). In particular, when *f* is odd, we have $\mathcal{M}(H, x) = {\mathbf{N}_H(\langle x \rangle)}$. Therefore, we deduce

$$\sum_{M \in \mathcal{M}(H,x)} \mu(\theta, M \setminus H) = \mu(\theta, \mathbf{N}_H(\langle x \rangle) \setminus H) < 1,$$

and hence t(H, K) = 1, from Lemma 2.2.

Suppose now that f is even and let $\overline{M} \in \mathcal{M}(H, x) \setminus \{\mathbf{N}_H(\langle x \rangle)\}$. Then $\overline{M} \cap S \cong \mathrm{SU}_3(q_0)$, where $q = q_0^2 = p^{f/2}$. Observe that from the "c" column in [2, Table 8.42], we deduce that the maximal subgroups of H with $\overline{M} \cap S$ isomorphic to $\mathrm{SU}_3(q_0)$ form $\gcd(q_0 - 1, 3)$ *S*-conjugacy class. Let $\Omega_1 := \{\langle x^g \rangle \mid g \in H\}$. Using the information in [2, Table 8.3], we deduce

$$|\Omega_1| = \frac{q^3(q^3 - 1)(q^2 - 1)}{(q^2 + q + 1)3} = \frac{q^3(q^2 - 1)(q - 1)}{3}.$$

Let $\Omega_2 := \{\overline{M}^g \mid g \in H\}$. Using the information in [2, Table 8.3], we deduce

$$|\Omega_2| = \frac{q^3(q^3 - 1)(q^2 - 1)}{(q_0^3 + 1)q_0^3(q_0^2 - 1)} = q_0^3(q_0^3 - 1)(q_0^2 + 1).$$

How, consider the bipartite graph having vertex set $\Omega_1 \cup \Omega_2$ and having edge set consisting of the pairs $\{A, B\}$ with $A \in \Omega_1$, $B \in \Omega_2$ and $A \leq B$. Fix $B \in \Omega_2$. Using the structure of the unitary group B, we see that the number of $A \in \Omega_1$ with $A \leq B$ is

$$\frac{(q_0^3+1)q_0^3(q_0^2-1)}{(q_0^2-q_0+1)3} = \frac{q_0^3(q_0^2-1)(q_0+1)}{3}$$

In particular, the number of edges of the bipartite graph is

$$|\Omega_2|\frac{q_0^3(q_0^2-1)(q_0+1)}{3} = \frac{q^3(q^2-1)(q_0^3-1)(q_0+1)}{3}.$$

This shows that the number of elements in Ω_2 containing the element $\overline{M} \in \Omega_1$ is

$$\frac{\frac{q^{3}(q^{2}-1)(q_{0}^{3}-1)(q_{0}+1)}{3}}{|\Omega_{1}|} = q_{0}^{2} + q_{0} + 1.$$

Thus

$$|\mathcal{M}(H, x)| = |\{\mathbf{N}_H(\langle x \rangle)\} \cup \{M \in \Omega_2 \mid x \in M\}| = q_0^2 + q_0 + 2.$$

From [5, Lemma 2.10 (ii)], we have $\mu(\theta, M \setminus H) \leq \gcd(3, q-1)/(q_0(q+1))$ for every $M \in \mathcal{M}(\theta, M \setminus H)$ with $M \cap S \cong SU_3(q_0)$. Moreover, from [12, Theorem 1], we have

 $\mu(\theta, \mathbf{N}_H(\langle x \rangle) \setminus H) \leq 4/(3q)$. Therefore

$$\sum_{M \in \mathcal{M}(H,x)} \mu(\theta, M \setminus H) \le \gcd(3, q-1) \frac{q_0^2 + q_0 + 1}{q_0(q+1)} + \frac{4}{3q} < 1$$

whenever $q \notin \{4, 16\}$. Since we have excluded the case q = 4 above, it remains to deal with q = 16. This case, yet again, has been dealt with a computer computation. Now Lemma 2.2 shows that t(H) = 1. \Box

Lemma 3.4. Let e be a positive integer, let $q = 3^{2e+1}$ and let H be an almost simple group with socle $S := {}^{2}G_{2}(q)$ and with $H \neq S$. Then t(H) = 1.

Proof. Let $K \leq H$ with H = KS and let $\theta \in K \setminus S$. Let r be a primitive prime divisor of $q^6 - 1$. From the structure of the Ree groups ${}^2G_2(q)$, we deduce that the Sylow r-subgroups of S are cyclic. Let $x \in S$ be an element generating a Sylow r-subgroup of S. Using the list of the maximal subgroups of S [2, Tables 8.43], we deduce that $|\mathcal{M}(H, x)| = 1$. Indeed, $\mathcal{M}(H, x) = {\mathbf{N}_H(\langle x \rangle)}$. From (2.3), we have $P(\theta, x) \leq \mu(\theta, \mathbf{N}_H(\langle x \rangle) \setminus H) < 1$. Now Lemma 2.2 shows that t(H) = 1. \Box

Lemma 3.5. Let e be a positive integer, let $q = 2^{2e+1}$ and let H be an almost simple group with socle $S := {}^{2}B_{2}(q)$ and with $H \neq S$. Then t(H) = 1.

Proof. Let $K \leq H$ with H = KS and let $\theta \in K \setminus S$. Let *r* be a primitive prime divisor of $q^4 - 1$. From the structure of the Suzuki groups ${}^2B_2(q)$, we deduce that the Sylow *r*-subgroups of *S* are cyclic. Let $x \in S$ be an element generating a Sylow *r*-subgroup of *S*. Using the list of the maximal subgroups of *S* [2, Tables 8.16], we deduce that $|\mathcal{M}(H, x)| = 1$ and $\mathcal{M}(H, x) = {\mathbf{N}_H(\langle x \rangle)}$. Now, the proof follows as in the proof of Lemma 3.4. \Box

Lemma 3.6. Let e be a positive integer with $e \ge 1$, let $q = 3^e$ and let H be an almost simple group with socle $S := G_2(q)$ and with H containing an outer automorphism which is not a field automorphism. Then t(H) = 1.

Proof. Recall that $|\operatorname{Aut}(S) : S| = 2e$. When e = 1, we have checked the veracity of this lemma with the computer algebra system magma [1]. Therefore for the rest of the argument we suppose $e \ge 2$.

Let $K \leq H$ with H = KS and let $\theta \in K \setminus S$. Let r be a primitive prime divisor of $q^6 - 1$. From the structure of the Lie group $G_2(q)$, we deduce that the Sylow rsubgroups of S are cyclic. Let $x \in S$ be an element generating a Sylow r-subgroup of S. Let $M \in \mathcal{M}(H, x)$. Here we use the information in [2, Table 8.42]. From the list of the maximal subgroups of H and recalling that H does contain an outer automorphism which is not a field automorphism, we deduce that either $M = \mathbf{N}_H(\langle x \rangle)$, or e is odd and $M \cap S \cong {}^2G_2(q)$ (here we are assuming $e \geq 2$). In particular, when e is even, we have $\mathcal{M}(H, x) = {\mathbf{N}_H(\langle x \rangle)}$. Therefore, we deduce

$$\sum_{M \in \mathcal{M}(H,x)} \mu(\theta, M \backslash H) = \mu(\theta, \mathbf{N}_H(\langle x \rangle) \backslash H) < 1,$$

and hence t(H, K) = 1, from Lemma 2.2.

Suppose now that *e* is odd and let $\overline{M} \in \mathcal{M}(H, x) \setminus \{\mathbf{N}_H(\langle x \rangle)\}$. Then $\overline{M} \cap S \cong {}^2G_2(q)$. Observe that from the "*c*" column in [2, Table 8.42], we deduce that the maximal subgroups of *H* with $\overline{M} \cap S$ isomorphic to ${}^2G_2(q)$ form a unique conjugacy class. Observe that

$$q^{6} - 1 = (q^{3} - 1)(q + 1)(q + \sqrt{3q} + 1)(q - \sqrt{3q} + 1).$$

In particular, the primitive prime divisor r of $q^6 - 1$ can be chosen so that r divides $q + \sqrt{3q} + 1$. Let $\Omega_1 := \{\langle x^g \rangle \mid g \in H\}$. Using the information in [2, Table 8.42], we deduce

$$|\Omega_1| = \frac{q^6(q^6-1)(q^2-1)}{(q^2-q+1)6} = \frac{q^6(q^3-1)(q^2-1)(q+1)}{6}.$$

Let $\Omega_2 := \{ \overline{M}^g \mid g \in H \}$. Using the information in [2, Table 8.42], we deduce

$$|\Omega_2| = \frac{q^6(q^6 - 1)(q^2 - 1)}{(q^3 + 1)q^3(q - 1)} = q^3(q^3 - 1)(q + 1)$$

Now, consider the bipartite graph having vertex set $\Omega_1 \cup \Omega_2$ and having edge set consisting of the pairs $\{A, B\}$ with $A \in \Omega_1$, $B \in \Omega_2$ and $A \leq B$. Fix $B \in \Omega_2$. Using the structure of the Ree group *B*, we see that the number of $A \in \Omega_1$ with $A \leq B$ is

$$\frac{(q^3+1)q^3(q-1)}{(q+\sqrt{3q}+1)6} = \frac{(q-\sqrt{3q}+1)q^3(q^2-1)}{6}$$

In particular, the number of edges of the bipartite graph is

$$|\Omega_2|\frac{(q-\sqrt{3q}+1)q^3(q^2-1)}{6} = \frac{q^6(q^3-1)(q^2-1)(q-\sqrt{3q}+1)(q+1)}{6}$$

This shows that the number of elements in Ω_2 containing the element $\overline{M} \in \Omega_1$ is

$$\frac{q^{6}(q^3-1)(q^2-1)(q-\sqrt{3q}+1)(q+1)}{6}}{|\Omega_1|} = q - \sqrt{3q} + 1$$

Thus

$$|\mathcal{M}(H, x)| = |\{\mathbf{N}_H(\langle x \rangle)\} \cup \{M \in \Omega_2 \mid x \in M\}| = q - \sqrt{3}q + 2.$$

From [11, Theorem 1], we have $\mu(\theta, M \setminus H) < 1/(q^2 - q + 1)$ for every $M \in \mathcal{M}(\theta, M \setminus H)$. Therefore

$$\sum_{M \in \mathcal{M}(H,x)} \mu(\theta, M \setminus H) \le \frac{q - \sqrt{3}q + 2}{q^2 - q + 1} < 1.$$

Now Lemma 2.2 shows that t(H) = 1. \Box

Lemma 3.7. Let e be a positive integer with $e \ge 2$, let $q = 2^e$ and let H be an almost simple group with socle $S := Sp_4(q)$ and with H containing an outer automorphism which is not a field automorphism. Then t(H) = 1.

Proof. Recall that $|\operatorname{Aut}(S) : S| = 2e$. Let $K \leq H$ with H = KS and let $\theta \in K \setminus S$. Let *r* be a primitive prime divisor of $q^4 - 1$. From the structure of the classical group

 $\text{Sp}_4(q)$, we deduce that the Sylow *r*-subgroups of *S* are cyclic. Let $x \in S$ be an element generating a Sylow *r*-subgroup of *S*.

Let $M \in \mathcal{M}(H, x)$. Here we use the information in [2, Table 8.14]. From the list of the maximal subgroups of H and recalling that H does contain an outer automorphism which is not a field automorphism, we deduce that either $M = \mathbf{N}_H(\langle x \rangle)$, or e is odd and $M \cap S \cong {}^2B_2(q)$. In particular, when e is even, we have $\mathcal{M}(H, x) = {\mathbf{N}_H(\langle x \rangle)}$. Therefore, we deduce

$$\sum_{M \in \mathcal{M}(H,x)} \mu(\theta, M \backslash H) = \mu(\theta, \mathbf{N}_H(\langle x \rangle) \backslash H) < 1,$$

and hence t(H) = 1, from Lemma 2.2.

Suppose now that *e* is odd and let $\overline{M} \in \mathcal{M}(H, x) \setminus \{\mathbf{N}_H(\langle x \rangle)\}$. Then $\overline{M} \cap S \cong {}^2B_2(q)$. Observe that from the "*c*" column in [2, Table 8.14], we deduce that the maximal subgroups of *H* with $\overline{M} \cap S$ isomorphic to ${}^2B_2(q)$ form a unique conjugacy class. Observe that

$$q^4 - 1 = (q^2 - 1)(q + \sqrt{2q} + 1)(q - \sqrt{2q} + 1).$$

In particular, the primitive prime divisor r of $q^4 - 1$ can be chosen so that r divides $q + \sqrt{2q} + 1$. Let $\Omega_1 := \{\langle x^g \rangle \mid g \in H\}$. Using the information in [2, Table 8.14], we deduce

$$|\Omega_1| = \frac{q^4(q^4 - 1)(q^2 - 1)}{(q^2 + 1)4} = \frac{q^4(q^2 - 1)^2}{4}.$$

Let $\Omega_2 := \{\overline{M}^g \mid g \in H\}$. Using the information in [2, Table 8.14], we deduce

$$|\Omega_2| = \frac{q^4(q^4 - 1)(q^2 - 1)}{(q^2 + 1)q^2(q - 1)} = q^2(q^2 - 1)(q + 1).$$

How, consider the bipartite graph having vertex set $\Omega_1 \cup \Omega_2$ and having edge set consisting of the pairs $\{A, B\}$ with $A \in \Omega_1$, $B \in \Omega_2$ and $A \leq B$. Fix $B \in \Omega_2$. Using the structure of the Suzuki group B, we see that the number of $A \in \Omega_1$ with $A \leq B$ is

$$\frac{(q^2+1)q^2(q-1)}{(q+\sqrt{2q}+1)4} = \frac{(q-\sqrt{2q}+1)q^2(q-1)}{4}.$$

In particular, the number of edges of the bipartite graph is

$$|\Omega_2|\frac{(q-\sqrt{2q}+1)q^2(q-1)}{4} = \frac{q^4(q^2-1)^2(q-\sqrt{2q}+1)}{4}$$

This shows that the number of elements in Ω_2 containing the element $\overline{M} \in \Omega_1$ is

$$\frac{\frac{q^4(q^2-1)^2(q-\sqrt{2q}+1)}{4}}{|\varOmega_1|} = q - \sqrt{2q} + 1.$$

Thus

$$|\mathcal{M}(H, x)| = |\{\mathbf{N}_H(\langle x \rangle)\} \cup \{M \in \Omega_2 \mid x \in M\}| = q - \sqrt{2q} + 2.$$

Now, [4, Theorem 1] yields $\mu(\theta, M \setminus H) \leq |\theta^H|^{-\frac{1}{4}} = |H : \mathbf{C}_H(\theta)|^{-\frac{1}{4}}$ for every $M \in \mathcal{M}(H, x)$. As θ is an outer automorphism which is not a field automorphism and as e

is odd, replacing θ with a suitable power, we may suppose that θ is an involution and that θ is a graph-field automorphism. From [7, Section 4.9], we deduce that $C_S(\theta) \cong {}^2B_2(q)$ and hence

$$|\theta^{H}| = \frac{q^{4}(q^{4}-1)(q^{2}-1)}{(q^{2}+1)q^{2}(q-1)} = q^{2}(q^{2}+1)(q+1).$$

Therefore

$$\sum_{M \in \mathcal{M}(M,x)} \mu(\theta, M \setminus H) \le \frac{q - \sqrt{2q} + 2}{(q^2(q^2 + 1)(q + 1))^{1/4}} < 1,$$

where the last inequality follows with a computation. Now Lemma 2.2 shows that t(H) = 1. \Box

Lemma 3.8. Let *H* be an almost simple group with socle *S*. Then there exists a subgroup *K* of *H* with H = KS and with $m_K(H) > t(H)$.

Proof. Suppose first H = S. Choose K := 1. Then $m_K(H) = m(H) \ge 3$, because we can generate H = S with conjugated involutions. Therefore, the proof follows from (2.1). Thus, for the rest of the argument, we suppose $H \ne S$. Now, we use the Classification of Finite Simple Groups and we divide our proof depending on the type of S.

ALTERNATING GROUPS: Suppose S is an alternating group Alt(n) of degree $n \ge 5$. Assume first $n \ne 6$, or n = 6 and H = Sym(6). Then H = Sym(n). Choose $K := \langle (1, 2) \rangle$ and let

$$\Lambda := \{ (1, 2, 3), (1, 2)(3, 4), (1, 2)(3, 5), \dots, (1, 2)(3, n) \}.$$

It is readily seen that Λ is a *K*-independent generating set for *H*. Therefore, $m_K(H) \ge |\Lambda| = n - 2 \ge 3$ and the proof follows again from (2.1).

As Alt(6) \cong PSL₂(9), we postpone the proof of the case n = 6 and $H \neq$ Sym(6), when we deal with groups of Lie type.

SPORADIC GROUPS: Suppose S is a sporadic simple group. As $H \neq S$, we deduce H = AutS and S is one of the following groups

Fi₂₂, Fi₂₄, HN, J₃, M₂₂, O'N, HS, J₂, McL, He, M₁₂, Suz.

If $S \in \{Fi_{22}, Fi_{24}, HN, J_3, M_{22}, O'N\}$, then it follows from [3, Table 9] that t(H) = 1. However, if we choose α an involution from $H \setminus S$ and we set $K := \langle \alpha \rangle$, then $m_K(H) \ge 2$, because we can generated H with α and a suitable number (at least 2) of involutions from S.

If $S \in \{HS, J_2, McL, He, M_{12}, Suz\}$, we have verified that $m_K(H) \ge 3$ using magma: in all cases there exists $\alpha \in H \setminus S$ with $|\alpha| = 2$ and three conjugated involutions in S such that $\{\alpha, t_1, t_2, t_3\}$ is a $\langle \alpha \rangle$ -independent generating set for H.

GROUPS OF LIE TYPE: Here we use the information and the notation in [7, Section 2.4]. The simple group of Lie type S is generated by root elements $x_{\pm \hat{\alpha}}(t)$, where $\alpha \in \Pi$, Π is a fundamental system for the root system Σ of S, and t lies in a suitable finite field \mathbb{F} . As $x_{\hat{\alpha}}(t)$ is unipotent, $x_{\hat{\alpha}}(t)$ has prime order and hence it is a *pp*-element.

The action of the automorphism group of S on the root elements $x_{\pm \hat{\alpha}}(t)$ is described in [7, Section 2.5] and again we use the information and the notation therein. The outer automorphisms of *S* are divided in inner-diagonal, field and graph automorphisms. These can be chosen so that inner-diagonal and field automorphisms normalize each root subgroup $\langle x_{\hat{\alpha}}(t) | t \in \mathbb{F} \rangle$; whereas, graph automorphisms permute the root subgroups according to the action of the graph automorphism on the nodes of the Dynkin diagram. In particular, we may choose a supplement *K* of *S* in *H* so that the elements in *K* consist of inner-diagonal, field and graph automorphisms, with respect to the choice of the root system Σ . Now, let $\tilde{\Pi} \subseteq \Pi$ be a set of representatives of the orbits for the action of *K* on Π . Then

$$H = \langle K, x_{\hat{\alpha}}(t) \mid \alpha \in \pm \Pi, t \in \mathbb{F} \rangle$$

-

and hence from the set $\{x_{\hat{\alpha}}(t) \mid \alpha \in \pm \tilde{\Pi}, t \in \mathbb{F}\}$ we may extract a *K*-independent generating set *Y* for *H* consisting of *pp*-elements. For each $\beta \in \pm \Pi$, define $S_{\beta} := \langle x_{\hat{\alpha}}(t) \mid \alpha \in \pm \Pi \setminus \{\beta\}, t \in \mathbb{F}\}$. Observe that S_{β} is contained in a proper parabolic subgroup of *S* normalized by *K*. This implies $|Y| \ge 2|\tilde{\Pi}|$. A direct inspection on the various root systems gives that one of the following holds:

- (1) $|\tilde{\Pi}| \ge 2$, or
- (2) S is a simple group of Lie type of Lie rank 1, that is, $S \in \{A_1(q) = PSL_2(q), {}^2A_2(q) = PSU_3(q), {}^2B_2(q), {}^2G_2(q)\}$, or
- (3) $S = A_2(q) = \text{PSL}_3(q)$ and $H \nleq \text{P}\Gamma \text{L}_3(q)$,
- (4) $S = B_2(q) = PSp_4(q)$, $q = 2^e$ for some $e \ge 1$ and H contains an outer automorphism which is not a field automorphism,
- (5) $S = G_2(q), q = 3^e$ for some $e \ge 1$, and *H* contains an outer automorphism which is not a field automorphism.

If (1) holds, then the proof follows from (2.1). In the remaining cases, we have shown in Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 that t(H) = 1. Using this slight refinement on the value of t(H) and repeating the argument above for the remaining groups we deduce $m_K(H) \ge 2 > 1 = t(H)$. \Box

3.2. Pulling the threads of the argument

Proof of Theorem 1.1. We argue by contradiction and among all non-soluble \mathcal{B}_{pp} -groups we choose *G* having minimal order.

Let N be a minimal normal subgroup of G. From Lemma 2.4, G/N is a \mathcal{B}_{pp} -group and hence, from our minimal choice of G, we deduce that

$$G/N$$
 is solvable.

(3.1)

Suppose that G has two distinct minimal normal subgroups N_1 and N_2 . Since $N_1 \cap N_2 = 1$, G embeds into the cartesian product $G/N_1 \times G/N_2$. As G/N_1 and G/N_2 are both solvable, we deduce that G is solvable, which is a contradiction. Therefore, G has a unique minimal normal subgroup N, that is, G is monolithic.

If N is abelian, then G is solvable by (3.1), which is a contradiction. Therefore, N is non-abelian and hence $N \cong S^n$, for some non-abelian simple group S. Write $N := S_1 \times \cdots \times S_n$, where S_1, \ldots, S_n are the simple direct factors of N. Let H be the subgroup of Aut(S) induced by the conjugacy action of $N_G(S_1)$ on S. Clearly, H is an almost simple group with socle S. Moreover, since G is monolithic, G embeds into the wreath product HwrSym(n) and hence, without loss of generality, we may assume that G is a subgroup of H wrSym(n) with $S^n \leq G$ and with

$$\pi: \mathbf{N}_G(S_1) \to H$$

projecting onto H. In particular, we may write the elements of G as ordered pairs $f\sigma$, with $f \in H^n$ and $\sigma \in \text{Sym}(n)$.

Let

$$m_1 = m(G/N).$$

Let

$$Y = \{g_1, \ldots, g_{m_1}\}$$

be a set of *pp*-elements of *G* with $\{g_1N, \ldots, g_{m_1}N\}$ a *pp*-base for *G/N*.

Let

$$K := \pi(\mathbf{N}_{\langle Y \rangle}(S_1)).$$

As $G = \langle Y \rangle N$, from the modular law we get

$$\mathbf{N}_G(S_1) = \mathbf{N}_G(S_1) \cap G = (\mathbf{N}_G(S_1) \cap \langle Y \rangle)N = \mathbf{N}_{\langle Y \rangle}(S_1)N.$$

Thus

$$H = \pi(\mathbf{N}_G(S_1)) = \pi(\mathbf{N}_{\langle Y \rangle}(S_1))\pi(N) = KS.$$

Let X be a set of *pp*-elements in S with $H = \langle X, K \rangle$ and having cardinality t(H, K). Let

$$\tilde{X} := \{ (x, \underbrace{1, \dots, 1}_{n-1 \text{ times}}) \in N \mid x \in X \}$$

and observe that $\tilde{X} \subseteq S^n = N \leq G \leq H \operatorname{wrSym}(n)$.

As *N* is a minimal normal subgroup of *G*, *G* acts transitively by conjugation on the set $\{S_1, \ldots, S_n\}$ of simple direct factors of *N*. From this, it follows that $Y \cup \tilde{X}$ is a generating set for *G*. As $Y \cup \tilde{X}$ consists of *pp*-elements and as all *pp*-bases of *G* have the same cardinality, we get $m_{pp}(G) \le m_1 + t(H, K) \le m_1 + t(H)$. Thus

$$m(G) \le m_1 + t(H),\tag{3.2}$$

by Lemma 2.3.

Recall the definition of $\mu(G)$ and $\mu(S)$ in Section 2.1. In [14, page 403, inequality (1)] and in [13, Proposition 4], it is proved that $\mu(G) \ge \mu(H)$. Moreover, by [13, Lemma 7], we have $\mu(H) \ge m_K(H)$, for every subgroup K of H with H = KS. In particular, combining these two results, we deduce $\mu(G) \ge m_K(H)$. From (3.2), we get

$$t(H) \ge m(G) - m_1 = m(G) - m(G/N) = \mu(G) \ge m_K(H),$$

for every subgroup K of H with H = KS. However, this contradicts Lemma 3.8. \Box

Proof of Corollary 1.2. Let G be a \mathcal{B}_{pp} -group with $\Phi(G) = 1$. From Theorem 1.1, G is solvable and hence the proof now follows from [16, Theorem 1.2].

152

4. Proof of Theorem 1.3

Let G be a finite group. Take a chief series

$$1 = G_t \trianglelefteq \cdots \trianglelefteq G_0 = G$$

and consider the non-negative integers $\mu_i = m(G/G_{i+1}) - m(G/G_i)$. Clearly

$$m(G) = \sum_{0 \le i \le t-1} \mu_i.$$
 (4.1)

Information on the values of μ_i have been obtained in [13], where is it proved in particular:

- if G_i/G_{i+1} is abelian, then $\mu_i = 0$ if $G_{i+1}/G_i \leq \Phi(G/G_{i+1}), \ \mu_i = 1$ otherwise;
- if G_i/G_{i+1} is non-abelian, then $\mu_i = \mu_i(L_i) = m(L_i) m(L_i/\operatorname{soc} L_i)$, where $L_i = G/C_G(G_i/G_{i+1})$.

In the second case, L_i is a monolithic group and $\operatorname{soc} L_i = S_i^{n_i}$ where n_i is a positive integer and S_i is a finite non-abelian simple group. As we already recalled in the previous section, by [14, page 403, inequality (1)] and [13, Proposition 4], there exists an almost simple group H_i such that $\operatorname{soc} H_i = S_i$ and $\mu_i = \mu(L_i) \ge \mu(H_i)$. Moreover, by [13, Lemma 7], we have $\mu(H_i) \ge m_{K_i}(H_i)$, for every subgroup K_i of H_i with $H_i = K_i S_i$. By the results in Section 3, for every choice of H_i there exists K_i such that $K_i S_i = H_i$ and $m_{K_i}(H_i) \ge 2$. So $\mu_i \ge 2$ whenever G_i/G_{i+1} is non-abelian, and therefore the statement of Theorem 1.3 follows from (4.1).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (3-4) (1997) 235–265.
- [2] J.H. Bray, D.F. Holt, C.M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, in: London Mathematical Society, Lecture Note Series, vol. 407, Cambridge University Press, 2013.
- [3] T. Breuer, R.M. Guralnick, W.M. Kantor, Probabilistic generation of finite simple groups, II, J. Algebra 320 (2008) 443–494.
- [4] T.C. Burness, Fixed point ratios in actions of finite classical groups. I, J. Algebra 309 (2007) 69-79.
- [5] T.C. Burness, S. Guest, On the uniform spread of almost simple linear groups, Nagoya Math. J. 209 (2013) 35–109.
- [6] W. Feit, On large Zsigmondy primes, Proc. Amer. Math. Soc. 102 (1988) 26-36.
- [7] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups. number 3. part I. chapter A, 40 (1998) xvi+419.
- [8] R.M. Guralnick, W.M. Kantor, Probabilistic generation of finite simple groups, J. Algebra 234 (2000) 743–792.
- [9] C.S.H. King, Generation of finite simple groups by an involution and an element of prime order, J. Algebra 478 (2017) 153–173.

- [10] J. Krempa, A. Stocka, On some sets of generators of finite groups, J. Algebra 405 (2014) 122-134.
- [11] R. Lawther, M.W. Liebeck, G.M. Seitz, Fixed point ratios in actions of finite exceptional groups of Lie type, Pacific J. Math. 205 (2002) 393–464.
- [12] M.W. Liebeck, J. Saxl, Minimal degrees of primitive permutation groups, with an application to monodromy groups of Riemann surfaces, Proc. Lond. Math. Soc. (3) 63 (1991) 266–314.
- [13] A. Lucchini, The largest size of a minimal generating set of a finite group, Arch. Math. (Basel) 101 (1) (2013) 1–8.
- [14] A. Lucchini, Minimal generating sets of maximal size in finite monolithic groups, Arch. Math. (Basel) 101 (5) (2013) 401–410.
- [15] M. Roitman, On Zsigmondy primes, Proc. Amer. Math. Soc. 125 (1997) 1913–1919.
- [16] A. Stocka, Sets of prime power order generators of finite groups, Algebra Discrete Math. 29 (2020) 129–138.
- [17] K. Zsigmondy, Zur theorie der potenzreste, Monatsh. Math. Phys. 3 (1) (1892) 265-284.