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Abstract

A subset X of a finite group G is said to be prime-power-independent if each element in X has
prime power order and there is no proper subset Y of X with ⟨Y, 8(G)⟩ = ⟨X, 8(G)⟩, where 8(G)
is the Frattini subgroup of G. A group G is Bpp if all prime-power-independent generating sets
for G have the same cardinality. We prove that, if G is Bpp , then G is solvable. Pivoting on some
recent results of Krempa and Stocka (2014); Stocka (2020), this yields a complete classification
of Bpp-groups.
c⃝ 2021 Elsevier GmbH. All rights reserved.
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1. Introduction

Throughout this paper, all groups are finite. We start this introductory section with
ome definitions fundamental for our work. Given a group G, an element g ∈ G is said

to be a pp-element if g has prime power order. A subset X of G is said to be

ndependent if ⟨X,Φ(G)⟩ ̸= ⟨Y,Φ(G)⟩ for every proper subset Y of X (where as
customary we denote by Φ(G) the Frattini subgroup of G);

pp-independent if X is independent and each element in X is a pp-element; and

pp-base if X is a pp-independent generating set for G.

Finally, G is said to be a Bpp-group if every two pp-bases of G have the same cardinality.
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The main result of this paper is the following.

heorem 1.1. If G is a Bpp-group, then G is solvable.

Theorem 1.1 gives a solution to Question 1 in [10] in a strong sense. In fact, it
ields a complete classification of the Bpp-groups. Indeed, Krempa and Stocka [10,16]
ave obtained an entirely satisfactory classification of solvable Bpp-groups and hence
heorem 1.1 together with the work in [10,16] gives a classification of all Bpp-groups.

This classification is easier to formulate for Frattini-free groups, that is, for groups G
with Φ(G) = 1. (Observe that G is a Bpp-group if and only if so is G/Φ(G).)

Corollary 1.2. Let G be a group with Φ(G) = 1. Then G is a Bpp-group if and only
if one of the following holds:

(1) G is an elementary abelian p-group,
(2) G = P⋊Q, where P is an elementary abelian p-group, Q is a non-identity cyclic

q-group for distinct prime numbers p and q such that Q acts faithfully on P and
the (Z/pZ)[Q]-module P is a direct sum of pair-wise isomorphic simple modules,

(3) G is a direct product of groups given in (1) or in (2) with pair-wise coprime orders.

The groups as in (2) are simply refereed to as scalar extensions in [16]. We refer the
reader to the work of Krempa and Stocka [10,16] for various motivations on investigating
Bpp-groups. Broadly speaking, this motivation is rooted on independent generating sets
and on generalizations of the Burnside basis theorem; in turn, these motivations are
useful for studying groups satisfying the exchange property for bases which is useful
for constructing matroids starting from finite groups.

As a bi-product of the arguments used in the proof of Theorem 1.1, we obtain the
following result of independent interest. (See Section 2.1 for undefined terminology.)

Theorem 1.3. Let G be a group and denote by m(G) the largest cardinality of an
independent generating set of G. Then m(G) ≥ a + b, where a and b are, respectively,
the number of non-Frattini and non-abelian factors in a chief series of G.

We have verified with a computer computation [1] that the bound in Theorem 1.3
is sharp when G is the automorphism group of the alternating group of degree 6.
Theorem 1.3 gives a strengthening of the bound m(G) ≥ a, which was proved in [13].
Here, it was also proved that m(G) = a for every solvable group.

The structure of the paper is straightforward. In Section 2 after establishing some
notation, and after a short detour through fixed point ratios and spreads, we give some
basic results. In Section 3 after establishing a few rather technical results, we prove
Theorem 1.1 and Corollary 1.2. Finally, we prove Theorem 1.3 in Section 4.

2. Preliminaries

2.1. Notation

Given a group G, we let m(G) and m pp(G) denote the largest cardinality of an
independent generating set of G and of a pp-independent generating set for G. Since
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every pp-independent generating set is also an independent generating set, we have
m(G) ≥ m pp(G). In fact, in Lemma 2.3 we show that m(G) = m pp(G).

Let

1 = G t ⊴ · · · ⊴ G0 = G

e a chief series for G. A factor G i/G i+1 is said to be a non-abelian chief factor of G if
G i/G i+1 is a non-abelian group; moreover, G i/G i+1 is said to be a Frattini chief factor
of G if G i/G i+1 ≤ Φ(G/G i+1).

The socle of G, denoted by socG, is the subgroup generated by the minimal normal
ubgroups of G. In particular, if socG is a minimal normal subgroup of G (that is, G

has a unique minimal normal subgroup), then G is said to be monolithic.
Let G be a monolithic group with socle N . Following the notation in [14], we define

µ(G) := m(G) − m(G/N ).
Given a positive integer n and a group H , we denote by HwrSym(n) the wreath

product of H with the symmetric group Sym(n) of degree n. We denote the elements of
HwrSym(n) by ordered pairs f σ , where f ∈ H n and σ ∈ Sym(n).

Given two positive integers x and n with x, n ≥ 2, we say that the prime r is a
primitive prime divisor of xn

− 1 if r divides xn
− 1 and r is relatively prime to x i

− 1,
for each i ∈ {1, . . . , n − 1}. From a celebrated theorem of Zsigmondy [17], either xn

− 1
has a primitive prime divisor, or n = 6 and x = 2, or n = 2 and x +1 is a power of 2. In
the latter case, when x is a prime power, we deduce that x must be a (Mersenne) prime.
We actually need the following refinement. The prime r is said to be a large primitive
prime divisor of xn

− 1 if r is a primitive prime divisor of xn
− 1 and either r > n + 1

or r2 divides xn
− 1. We recall the classical result of Feit [6] on the existence of large

primitive prime divisors. (We refer also to [15], for an elementary proof of this result.)

Lemma 2.1. If x and n are integers greater than 1 there exists a large primitive prime
divisor for xn

− 1 except exactly in the following cases:

(1) n = 2 and x = 2s3t
−1 for some natural numbers s ≥ 0 and t ∈ {0, 1} with s ≥ 2

if t = 0,
(2) x = 2 and n ∈ {4, 6, 10, 12, 18},
(3) x = 3 and n ∈ {4, 6},
(4) x = 5 and n = 6.

Our last two definitions are rather technical and (for our application) they only pertain
to almost simple groups, but they will prove useful. Given an almost simple group H
with socle S and a subgroup K of H with H = K S, let

t(H, K )

be the smallest cardinality of a set X of pp-elements in S with H = ⟨K , X⟩. Then,
define

t(H ) := max{t(H, K ) | K ≤ H with H = K S}.

From [9, Theorem 1], S is generated by an involution and by an element of odd prime
order and hence

t(H ) ≤ 2. (2.1)
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Given a subgroup K of H , we say that a subset Y of H is K -generating for H if
H = ⟨K , Y ⟩. A K -generating set for H is said to be K -independent if no proper subset
f Y generates H together with K . We denote by

mK (H )

he largest cardinality of a K -independent generating set for H .

.2. A (short) walk through fixed point ratios and spreads

Let H be an almost simple group with socle S and let g, s ∈ H . We set

P(g, s) :=
|{t ∈ s H

| ⟨g, t⟩ ̸≥ S}|

|s H |
.

This definition is strictly related to the definition of spread and uniform spread in almost
simple groups and we refer the reader to [3,8] for further details.

For any action of H on a set Ω and for any g ∈ H , consider the set FixΩ (g) := {ω ∈

Ω | ωg
= ω} of fixed points of g on Ω and the fixed point ratio

µ(g,Ω ) :=
|FixΩ (g)|

|Ω |
.

From [8, Section 2], if M\H denotes the set of right cosets of the subgroup M of H , then

µ(g, M\H ) =
|gH

∩ M |

|gH |
. (2.2)

et now M(H, g) be the collection of all maximal subgroups of H containing g and
ssume that H is almost simple with socle S. Then, from (2.2), we deduce

P(g, s) ≤

∑
M∈M(H,g)

|{t ∈ s H
| ⟨g, t⟩ ≤ M}|

|s H |

=

∑
M∈M(H,s)

|{h ∈ gH
| ⟨h, s⟩ ≤ M}|

|gH |
≤

∑
M∈M(H,s)

µ(g, M\H ). (2.3)

q. (2.3) also appears in [3, (2.4)]. We summarize in the following lemma the main
pplication of fixed point ratios in our context.

emma 2.2. Let H be an almost simple group with socle S. Suppose H ̸= S. If, for
very g ∈ H \ S, there exists a pp-element sg ∈ S with P(g, sg) < 1, then t(H ) = 1. In
articular, if

∑
M∈M(H,s) µ(g, M\H ) < 1 for every g ∈ H \ S, then t(H ) = 1.

roof. Let K be a subgroup of H with H = K S. For every g ∈ K \ S, let sg be
pp-element belonging to S with P(g, sg) < 1. Then by definition of P(g, sg), there

xists t ∈ s H
g with ⟨g, t⟩ ≥ S. Thus H = ⟨K , t⟩ and hence t(H, K ) = 1. Since this holds

egardless of K , we have t(H ) = 1. The rest of the proof follows from (2.3). □

.3. Basic results

emma 2.3. Let G be a group. Then m(G) = m (G).
pp
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Proof. As we have observed above, m(G) ≥ m pp(G) and hence we only need to show
that m(G) ≤ m pp(G).

Let X := {x1, . . . , xm(G)} be an independent generating set for G of cardinality m(G).
For each i ∈ {1, . . . , m(G)}, we may write xi = y1,i · · · yki ,i , where y1,i , . . . , yki ,i are
pair-wise commuting pp-elements of G with

⟨xi ⟩ = ⟨y1,i , . . . , yki ,i ⟩. (2.4)

Clearly,

{y j,i | 1 ≤ j ≤ ki , 1 ≤ i ≤ m(G)}

is a generating set for G consisting of pp-elements and hence it contains a pp-base Y .
We claim that, for each i ∈ {1, . . . , m(G)}, there exists j ∈ {1, . . . , ki } with y j,i ∈ Y .

Indeed, if for some ī , Y contains no y j,ī , then

G = ⟨Y ⟩ ≤ ⟨y j,i | i ∈ {1, . . . , m(G)} \ {ī}, j ∈ {1, . . . , ki }⟩ ≤ ⟨X \ {xī }⟩,

where in the last inequality we have used (2.4). However, this contradicts the fact that
X is independent and hence the claim is proved.

The previous paragraph yields |Y | ≥ m(G) and hence the lemma follows because
m pp(G) ≥ |Y |. □

We now recall [10, Theorem 6.1 (1)].

Lemma 2.4. If G is a Bpp-group, then every quotient of G is a Bpp-group.

3. Proofs of Theorem 1.1 and Corollary 1.2

3.1. Technical lemmas

Lemma 3.1. Let q be a prime power with q ≥ 4 and let H be an almost simple group
with socle S := PSL2(q) and with H ̸= S. Then t(H ) = 1.

Proof. It suffices to prove that, for every subgroup K of H with H = K S, there exists
a pp-element xK ∈ S with H = ⟨K , xK ⟩. Write q := p f , where p is a prime number
and f is a positive integer.

Let K ≤ H with H = K S and let θ ∈ K \ S. Assume that p2 f
− 1 admits no large

primitive prime divisor. From Lemma 2.1, we deduce that either

S ∈ {PSL2(4) = PSL2(5), PSL2(8), PSL2(32), PSL2(64), PSL2(512), PSL2(9),
PSL2(27), PSL2(125)},

or f = 1 and q = p = 2s3t
−1 for some natural numbers s ≥ 0 and t ∈ {0, 1} with s ≥ 2

if t = 0. In the first eight exceptional cases, the result can be established with a direct
inspection using, for instance, the assistance of the computer algebra system magma [1].
We now consider the case q = p = 2s3t

− 1. Actually, we deal with the more general
case that q = p is a prime number. As H ̸= S, we have H = PGL2(q). Clearly, a Sylow
p-subgroup of S is cyclic; let x ∈ S be an element generating a Sylow p-subgroup of
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S. Observe that we may choose x so that θ does not normalize ⟨x⟩. Using the list of the
aximal subgroups of S (see for instance [2, Tables 8.1, 8.2]), we see that S = ⟨x, xθ

⟩.
Thus H = ⟨K , x⟩ and t(H, K ) = 1.

Assume now that p2 f
−1 admits a large primitive prime divisor r . Observe that, from

he previous paragraph, we may suppose that f > 1. In particular, either r > 2 f +1 ≥ 5
r r2 divides q + 1. Clearly, a Sylow r -subgroup of S is cyclic; let x ∈ S be an element
enerating a Sylow r -subgroup of S. Observe that we may choose x so that θ does not
ormalize ⟨x⟩ (this can be easily established by considering the structure of the subgroup
attice of S, see [2, Table 8.1]). Using the list of the maximal subgroups of S (see for
nstance [2, Tables 8.1, 8.2]), we see that either

• S = ⟨x, xθ
⟩, or

• r = 5 and ⟨x, xθ
⟩ ∼= Alt(5), or

• r = 3 and ⟨x, xθ
⟩ is isomorphic to either Alt(4) or Alt(5).

In the first case, H = ⟨K , x⟩ and hence t(H, K ) = 1. In the last two cases, r is
the cardinality of a Sylow r -subgroup of S, because 5 is the cardinality of a Sylow
5-subgroup of Alt(5) and 3 is the cardinality of a Sylow 3-subgroup of Sym(4). However,
this contradicts the fact that r is a large primitive prime divisor of p2 f

− 1. □

Lemma 3.2. Let q be a prime power and let H be an almost simple group with socle
S := PSU3(q) and with H ̸= S. Then t(H ) = 1.

Proof. As PSU3(2) is solvable, we have q > 2. Here the argument is similar to the proof
of Lemma 3.1: we use primitive prime divisors and the structure of the subgroup lattice
of S, see [2, Tables 8.5, 8.6]. Write q := p f , where p is a prime number and f is a
positive integer.

Let K ≤ H with H = K S and let θ ∈ K \ S. Assume p6 f
−1 admits a large primitive

prime divisor r . Clearly, a Sylow r -subgroup of S is cyclic; let x ∈ S be an element
generating a Sylow r -subgroup of S. Observe that we may choose x so that θ does not
normalize ⟨x⟩. Using the list of the maximal subgroups of S (see [2, Tables 8.5, 8.6]),
we see that S = ⟨x, xθ

⟩ (here we are using the fact that r is a large Zsigmondy prime
and hence ⟨x, xθ

⟩ cannot be contained in a maximal subgroup in the Aschbacher class
S by [2, Table 8.6]). Thus H = ⟨K , x⟩ and t(H, K ) = 1.

It remains to consider the case that p6 f
− 1 does not admit a large primitive prime

divisor. Lemma 2.1 yields ( f, p) ∈ {(1, 5), (1, 3), (2, 2), (3, 2)}. Here the proof follows
with the invaluable help of the computer algebra system magma [1]. □

Lemma 3.3. Let q be a prime power and let H be an almost simple group with socle
S := PSL3(q) and with S < H ≰ PΓL3(q). Then t(H ) = 1.

Proof. As PSL2(7) ∼= PSL3(2), from Lemma 3.1, we may suppose that q > 2. Here the
argument is similar to the proof of Lemma 3.1: we use primitive prime divisors and the
structure of the subgroup lattice of S, see [2, Tables 8.3, 8.4]. Write q := p f , where p
is a prime number and f is a positive integer. As q > 2, we have (p, f ) ̸= (2, 1).

Let K ≤ H with H = K S and let θ ∈ K \ S. From Lemma 2.1, p3 f
− 1 has a large

primitive prime divisors, except when (p, f ) ∈ {(2, 2), (2, 4), (2, 6), (3, 2), (5, 2)}. For
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these exceptional cases, we have checked the veracity of this lemma with a computer
computation. In particular, for the rest of the argument, we let r be a large primitive
prime divisor of p3 f

− 1.
A Sylow r -subgroup of S is cyclic; let x ∈ S be an element generating a Sylow

-subgroup of S. Let M ∈ M(H, x). Here we use the information in [2, Tables 8.3, 8.4].
From the list of the maximal subgroups of H and recalling that S < H ≰ PΓL3(q) and

is a large primitive prime divisor, we deduce that either M = NH (⟨x⟩), or f is even,
= q2

0 and M ∩ S ∼= SU3(q0) (here we are using the fact that r is a large Zsigmondy
prime and hence ⟨x, xθ

⟩ cannot be contained in a maximal subgroup in the Aschbacher
class S by [2, Table 8.4]). In particular, when f is odd, we have M(H, x) = {NH (⟨x⟩)}.
Therefore, we deduce∑

M∈M(H,x)

µ(θ, M\H ) = µ(θ, NH (⟨x⟩) \ H ) < 1,

and hence t(H, K ) = 1, from Lemma 2.2.
Suppose now that f is even and let M̄ ∈ M(H, x)\{NH (⟨x⟩)}. Then M̄∩S ∼= SU3(q0),

here q = q2
0 = p f/2. Observe that from the “c” column in [2, Table 8.42], we deduce

hat the maximal subgroups of H with M̄ ∩ S isomorphic to SU3(q0) form gcd(q0 −1, 3)
S-conjugacy class. Let Ω1 := {⟨xg

⟩ | g ∈ H}. Using the information in [2, Table 8.3],
e deduce

|Ω1| =
q3(q3

− 1)(q2
− 1)

(q2 + q + 1)3
=

q3(q2
− 1)(q − 1)

3
.

Let Ω2 := {M̄g
| g ∈ H}. Using the information in [2, Table 8.3], we deduce

|Ω2| =
q3(q3

− 1)(q2
− 1)

(q3
0 + 1)q3

0 (q2
0 − 1)

= q3
0 (q3

0 − 1)(q2
0 + 1).

How, consider the bipartite graph having vertex set Ω1∪Ω2 and having edge set consisting
of the pairs {A, B} with A ∈ Ω1, B ∈ Ω2 and A ≤ B. Fix B ∈ Ω2. Using the structure
of the unitary group B, we see that the number of A ∈ Ω1 with A ≤ B is

(q3
0 + 1)q3

0 (q2
0 − 1)

(q2
0 − q0 + 1)3

=
q3

0 (q2
0 − 1)(q0 + 1)

3
.

In particular, the number of edges of the bipartite graph is

|Ω2|
q3

0 (q2
0 − 1)(q0 + 1)

3
=

q3(q2
− 1)(q3

0 − 1)(q0 + 1)
3

.

This shows that the number of elements in Ω2 containing the element M̄ ∈ Ω1 is
q3(q2

−1)(q3
0 −1)(q0+1)
3

|Ω1|
= q2

0 + q0 + 1.

Thus

|M(H, x)| = |{NH (⟨x⟩)} ∪ {M ∈ Ω2 | x ∈ M}| = q2
0 + q0 + 2.

From [5, Lemma 2.10 (ii)], we have µ(θ, M\H ) ≤ gcd(3, q −1)/(q0(q +1)) for every
M ∈ M(θ, M \ H ) with M ∩ S ∼ SU (q ). Moreover, from [12, Theorem 1], we have
= 3 0
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(θ, NH (⟨x⟩)\H ) ≤ 4/(3q). Therefore∑
M∈M(H,x)

µ(θ, M\H ) ≤ gcd(3, q − 1)
q2

0 + q0 + 1
q0(q + 1)

+
4

3q
< 1,

whenever q /∈ {4, 16}. Since we have excluded the case q = 4 above, it remains to deal
ith q = 16. This case, yet again, has been dealt with a computer computation. Now
emma 2.2 shows that t(H ) = 1. □

emma 3.4. Let e be a positive integer, let q = 32e+1 and let H be an almost simple
roup with socle S :=

2G2(q) and with H ̸= S. Then t(H ) = 1.

roof. Let K ≤ H with H = K S and let θ ∈ K \ S. Let r be a primitive prime
ivisor of q6

− 1. From the structure of the Ree groups 2G2(q), we deduce that the
ylow r -subgroups of S are cyclic. Let x ∈ S be an element generating a Sylow r -
ubgroup of S. Using the list of the maximal subgroups of S [2, Tables 8.43], we
educe that |M(H, x)| = 1. Indeed, M(H, x) = {NH (⟨x⟩)}. From (2.3), we have

P(θ, x) ≤ µ(θ, NH (⟨x⟩)\H ) < 1. Now Lemma 2.2 shows that t(H ) = 1. □

emma 3.5. Let e be a positive integer, let q = 22e+1 and let H be an almost simple
roup with socle S :=

2 B2(q) and with H ̸= S. Then t(H ) = 1.

roof. Let K ≤ H with H = K S and let θ ∈ K \ S. Let r be a primitive prime divisor
f q4

− 1. From the structure of the Suzuki groups 2 B2(q), we deduce that the Sylow
-subgroups of S are cyclic. Let x ∈ S be an element generating a Sylow r -subgroup
f S. Using the list of the maximal subgroups of S [2, Tables 8.16], we deduce that
M(H, x)| = 1 and M(H, x) = {NH (⟨x⟩)}. Now, the proof follows as in the proof of
emma 3.4. □

emma 3.6. Let e be a positive integer with e ≥ 1, let q = 3e and let H be an almost
imple group with socle S := G2(q) and with H containing an outer automorphism which
s not a field automorphism. Then t(H ) = 1.

roof. Recall that |Aut(S) : S| = 2e. When e = 1, we have checked the veracity of
his lemma with the computer algebra system magma [1]. Therefore for the rest of the
rgument we suppose e ≥ 2.

Let K ≤ H with H = K S and let θ ∈ K \ S. Let r be a primitive prime divisor
f q6

− 1. From the structure of the Lie group G2(q), we deduce that the Sylow r -
ubgroups of S are cyclic. Let x ∈ S be an element generating a Sylow r -subgroup of

S. Let M ∈ M(H, x). Here we use the information in [2, Table 8.42]. From the list of
he maximal subgroups of H and recalling that H does contain an outer automorphism
hich is not a field automorphism, we deduce that either M = NH (⟨x⟩), or e is odd and

M ∩ S ∼=
2G2(q) (here we are assuming e ≥ 2). In particular, when e is even, we have

(H, x) = {NH (⟨x⟩)}. Therefore, we deduce∑
M∈M(H,x)

µ(θ, M\H ) = µ(θ, NH (⟨x⟩)\H ) < 1,

nd hence t(H, K ) = 1, from Lemma 2.2.
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Suppose now that e is odd and let M̄ ∈ M(H, x)\ {NH (⟨x⟩)}. Then M̄ ∩ S ∼=
2G2(q).

bserve that from the “c” column in [2, Table 8.42], we deduce that the maximal
ubgroups of H with M̄∩S isomorphic to 2G2(q) form a unique conjugacy class. Observe
hat

q6
− 1 = (q3

− 1)(q + 1)(q +
√

3q + 1)(q −
√

3q + 1).

n particular, the primitive prime divisor r of q6
− 1 can be chosen so that r divides

+
√

3q + 1. Let Ω1 := {⟨xg
⟩ | g ∈ H}. Using the information in [2, Table 8.42], we

educe

|Ω1| =
q6(q6

− 1)(q2
− 1)

(q2 − q + 1)6
=

q6(q3
− 1)(q2

− 1)(q + 1)
6

.

Let Ω2 := {M̄g
| g ∈ H}. Using the information in [2, Table 8.42], we deduce

|Ω2| =
q6(q6

− 1)(q2
− 1)

(q3 + 1)q3(q − 1)
= q3(q3

− 1)(q + 1).

Now, consider the bipartite graph having vertex set Ω1∪Ω2 and having edge set consisting
of the pairs {A, B} with A ∈ Ω1, B ∈ Ω2 and A ≤ B. Fix B ∈ Ω2. Using the structure

f the Ree group B, we see that the number of A ∈ Ω1 with A ≤ B is

(q3
+ 1)q3(q − 1)

(q +
√

3q + 1)6
=

(q −
√

3q + 1)q3(q2
− 1)

6
.

In particular, the number of edges of the bipartite graph is

|Ω2|
(q −

√
3q + 1)q3(q2

− 1)
6

=
q6(q3

− 1)(q2
− 1)(q −

√
3q + 1)(q + 1)

6
.

This shows that the number of elements in Ω2 containing the element M̄ ∈ Ω1 is
q6(q3

−1)(q2
−1)(q−

√
3q+1)(q+1)

6

|Ω1|
= q −

√
3q + 1.

Thus

|M(H, x)| = |{NH (⟨x⟩)} ∪ {M ∈ Ω2 | x ∈ M}| = q −
√

3q + 2.

From [11, Theorem 1], we have µ(θ, M\H ) < 1/(q2
− q + 1) for every M ∈

(θ, M \ H ). Therefore∑
M∈M(H,x)

µ(θ, M\H ) ≤
q −

√
3q + 2

q2 − q + 1
< 1.

Now Lemma 2.2 shows that t(H ) = 1. □

Lemma 3.7. Let e be a positive integer with e ≥ 2, let q = 2e and let H be an almost
imple group with socle S := Sp4(q) and with H containing an outer automorphism
hich is not a field automorphism. Then t(H ) = 1.

roof. Recall that |Aut(S) : S| = 2e. Let K ≤ H with H = K S and let θ ∈ K \ S.
Let r be a primitive prime divisor of q4

− 1. From the structure of the classical group
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p4(q), we deduce that the Sylow r -subgroups of S are cyclic. Let x ∈ S be an element
enerating a Sylow r -subgroup of S.

Let M ∈ M(H, x). Here we use the information in [2, Table 8.14]. From the list of
he maximal subgroups of H and recalling that H does contain an outer automorphism
hich is not a field automorphism, we deduce that either M = NH (⟨x⟩), or e is odd

nd M ∩ S ∼=
2 B2(q). In particular, when e is even, we have M(H, x) = {NH (⟨x⟩)}.

herefore, we deduce∑
M∈M(H,x)

µ(θ, M\H ) = µ(θ, NH (⟨x⟩)\H ) < 1,

nd hence t(H ) = 1, from Lemma 2.2.
Suppose now that e is odd and let M̄ ∈ M(H, x) \ {NH (⟨x⟩)}. Then M̄ ∩ S ∼=

2 B2(q).
bserve that from the “c” column in [2, Table 8.14], we deduce that the maximal

ubgroups of H with M̄∩S isomorphic to 2 B2(q) form a unique conjugacy class. Observe
hat

q4
− 1 = (q2

− 1)(q +
√

2q + 1)(q −
√

2q + 1).

In particular, the primitive prime divisor r of q4
− 1 can be chosen so that r divides

+
√

2q + 1. Let Ω1 := {⟨xg
⟩ | g ∈ H}. Using the information in [2, Table 8.14], we

deduce

|Ω1| =
q4(q4

− 1)(q2
− 1)

(q2 + 1)4
=

q4(q2
− 1)2

4
.

et Ω2 := {M̄g
| g ∈ H}. Using the information in [2, Table 8.14], we deduce

|Ω2| =
q4(q4

− 1)(q2
− 1)

(q2 + 1)q2(q − 1)
= q2(q2

− 1)(q + 1).

How, consider the bipartite graph having vertex set Ω1∪Ω2 and having edge set consisting
of the pairs {A, B} with A ∈ Ω1, B ∈ Ω2 and A ≤ B. Fix B ∈ Ω2. Using the structure
of the Suzuki group B, we see that the number of A ∈ Ω1 with A ≤ B is

(q2
+ 1)q2(q − 1)

(q +
√

2q + 1)4
=

(q −
√

2q + 1)q2(q − 1)
4

.

In particular, the number of edges of the bipartite graph is

|Ω2|
(q −

√
2q + 1)q2(q − 1)

4
=

q4(q2
− 1)2(q −

√
2q + 1)

4
.

his shows that the number of elements in Ω2 containing the element M̄ ∈ Ω1 is
q4(q2

−1)2(q−
√

2q+1)
4

|Ω1|
= q −

√
2q + 1.

hus

|M(H, x)| = |{NH (⟨x⟩)} ∪ {M ∈ Ω2 | x ∈ M}| = q −
√

2q + 2.

Now, [4, Theorem 1] yields µ(θ, M\H ) ≤ |θ H
|
−

1
4 = |H : CH (θ )|−

1
4 for every

M ∈ M(H, x). As θ is an outer automorphism which is not a field automorphism and as e
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is odd, replacing θ with a suitable power, we may suppose that θ is an involution and that
θ is a graph-field automorphism. From [7, Section 4.9], we deduce that CS(θ ) ∼=

2 B2(q)
and hence

|θ H
| =

q4(q4
− 1)(q2

− 1)
(q2 + 1)q2(q − 1)

= q2(q2
+ 1)(q + 1).

herefore∑
M∈M(M,x)

µ(θ, M\H ) ≤
q −

√
2q + 2

(q2(q2 + 1)(q + 1))1/4 < 1,

where the last inequality follows with a computation. Now Lemma 2.2 shows that
t(H ) = 1. □

Lemma 3.8. Let H be an almost simple group with socle S. Then there exists a subgroup
K of H with H = K S and with mK (H ) > t(H ).

Proof. Suppose first H = S. Choose K := 1. Then mK (H ) = m(H ) ≥ 3, because we
can generate H = S with conjugated involutions. Therefore, the proof follows from (2.1).
Thus, for the rest of the argument, we suppose H ̸= S. Now, we use the Classification
of Finite Simple Groups and we divide our proof depending on the type of S.

ALTERNATING GROUPS: Suppose S is an alternating group Alt(n) of degree n ≥ 5.
Assume first n ̸= 6, or n = 6 and H = Sym(6). Then H = Sym(n). Choose K := ⟨(1, 2)⟩
and let

Λ := {(1, 2, 3), (1, 2)(3, 4), (1, 2)(3, 5), . . . , (1, 2)(3, n)}.

t is readily seen that Λ is a K -independent generating set for H . Therefore, mK (H ) ≥

Λ| = n − 2 ≥ 3 and the proof follows again from (2.1).
As Alt(6) ∼= PSL2(9), we postpone the proof of the case n = 6 and H ̸= Sym(6),

hen we deal with groups of Lie type.
SPORADIC GROUPS: Suppose S is a sporadic simple group. As H ̸= S, we deduce

H = AutS and S is one of the following groups

Fi22, Fi24, H N , J3, M22, O ′N , H S, J2, McL , He, M12, Suz.

If S ∈ {Fi22, Fi24, H N , J3, M22, O ′N }, then it follows from [3, Table 9] that t(H ) =

. However, if we choose α an involution from H \ S and we set K := ⟨α⟩, then
K (H ) ≥ 2, because we can generated H with α and a suitable number (at least 2)

f involutions from S.
If S ∈ {H S, J2, McL , He, M12, Suz}, we have verified that mK (H ) ≥ 3 using magma:

n all cases there exists α ∈ H \ S with |α| = 2 and three conjugated involutions in S
uch that {α, t1, t2, t3} is a ⟨α⟩-independent generating set for H .

GROUPS OF LIE TYPE: Here we use the information and the notation in [7, Sec-
ion 2.4]. The simple group of Lie type S is generated by root elements x±α̂(t), where
∈ Π , Π is a fundamental system for the root system Σ of S, and t lies in a suitable

nite field F. As xα̂(t) is unipotent, xα̂(t) has prime order and hence it is a pp-element.
The action of the automorphism group of S on the root elements x±α̂(t) is described

n [7, Section 2.5] and again we use the information and the notation therein. The
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uter automorphisms of S are divided in inner-diagonal, field and graph automorphisms.
hese can be chosen so that inner-diagonal and field automorphisms normalize each root
ubgroup ⟨xα̂(t) | t ∈ F⟩; whereas, graph automorphisms permute the root subgroups

according to the action of the graph automorphism on the nodes of the Dynkin diagram.
In particular, we may choose a supplement K of S in H so that the elements in K consist
of inner-diagonal, field and graph automorphisms, with respect to the choice of the root
system Σ . Now, let Π̃ ⊆ Π be a set of representatives of the orbits for the action of K
on Π . Then

H = ⟨K , xα̂(t) | α ∈ ±Π̃ , t ∈ F⟩

and hence from the set {xα̂(t) | α ∈ ±Π̃ , t ∈ F} we may extract a K -independent
generating set Y for H consisting of pp-elements. For each β ∈ ±Π , define Sβ :=

⟨xα̂(t) | α ∈ ±Π \ {β}, t ∈ F⟩. Observe that Sβ is contained in a proper parabolic
subgroup of S normalized by K . This implies |Y | ≥ 2|Π̃ |. A direct inspection on the
various root systems gives that one of the following holds:

(1) |Π̃ | ≥ 2, or
(2) S is a simple group of Lie type of Lie rank 1, that is, S ∈ {A1(q) =

PSL2(q), 2 A2(q) = PSU3(q), 2 B2(q), 2G2(q)}, or
(3) S = A2(q) = PSL3(q) and H ≰ PΓL3(q),
(4) S = B2(q) = PSp4(q), q = 2e for some e ≥ 1 and H contains an outer

automorphism which is not a field automorphism,
(5) S = G2(q), q = 3e for some e ≥ 1, and H contains an outer automorphism which

is not a field automorphism.

If (1) holds, then the proof follows from (2.1). In the remaining cases, we have shown
in Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 that t(H ) = 1. Using this slight refinement
on the value of t(H ) and repeating the argument above for the remaining groups we
deduce mK (H ) ≥ 2 > 1 = t(H ). □

3.2. Pulling the threads of the argument

Proof of Theorem 1.1. We argue by contradiction and among all non-soluble Bpp-groups
we choose G having minimal order.

Let N be a minimal normal subgroup of G. From Lemma 2.4, G/N is a Bpp-group
and hence, from our minimal choice of G, we deduce that

G/N is solvable. (3.1)

Suppose that G has two distinct minimal normal subgroups N1 and N2. Since N1 ∩

N2 = 1, G embeds into the cartesian product G/N1 × G/N2. As G/N1 and G/N2 are
oth solvable, we deduce that G is solvable, which is a contradiction. Therefore, G has
unique minimal normal subgroup N , that is, G is monolithic.
If N is abelian, then G is solvable by (3.1), which is a contradiction. Therefore,

N is non-abelian and hence N ∼= Sn , for some non-abelian simple group S. Write
N := S1 × · · · × Sn , where S1, . . . , Sn are the simple direct factors of N . Let H be
he subgroup of Aut(S) induced by the conjugacy action of N (S ) on S. Clearly, H is
G 1
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an almost simple group with socle S. Moreover, since G is monolithic, G embeds into
the wreath product HwrSym(n) and hence, without loss of generality, we may assume
that G is a subgroup of H wrSym(n) with Sn

≤ G and with

π : NG(S1) → H

projecting onto H . In particular, we may write the elements of G as ordered pairs f σ ,
with f ∈ H n and σ ∈ Sym(n).

Let

m1 = m(G/N ).

Let

Y = {g1, . . . , gm1}

e a set of pp-elements of G with {g1 N , . . . , gm1 N } a pp-base for G/N .
Let

K := π (N⟨Y ⟩(S1)).

s G = ⟨Y ⟩N , from the modular law we get

NG(S1) = NG(S1) ∩ G = (NG(S1) ∩ ⟨Y ⟩)N = N⟨Y ⟩(S1)N .

hus

H = π (NG(S1)) = π (N⟨Y ⟩(S1))π (N ) = K S.

Let X be a set of pp-elements in S with H = ⟨X, K ⟩ and having cardinality t(H, K ).
et

X̃ := {(x, 1, . . . , 1  
n−1 times

) ∈ N | x ∈ X}

and observe that X̃ ⊆ Sn
= N ≤ G ≤ H wrSym(n).

As N is a minimal normal subgroup of G, G acts transitively by conjugation on the set
S1, . . . , Sn} of simple direct factors of N . From this, it follows that Y ∪ X̃ is a generating

set for G. As Y ∪ X̃ consists of pp-elements and as all pp-bases of G have the same
cardinality, we get m pp(G) ≤ m1 + t(H, K ) ≤ m1 + t(H ). Thus

m(G) ≤ m1 + t(H ), (3.2)

by Lemma 2.3.
Recall the definition of µ(G) and µ(S) in Section 2.1. In [14, page 403, inequality (1)]

and in [13, Proposition 4], it is proved that µ(G) ≥ µ(H ). Moreover, by [13, Lemma 7],
e have µ(H ) ≥ mK (H ), for every subgroup K of H with H = K S. In particular,

ombining these two results, we deduce µ(G) ≥ mK (H ). From (3.2), we get

t(H ) ≥ m(G) − m1 = m(G) − m(G/N ) = µ(G) ≥ mK (H ),

or every subgroup K of H with H = K S. However, this contradicts Lemma 3.8. □

roof of Corollary 1.2. Let G be a Bpp-group with Φ(G) = 1. From Theorem 1.1, G
s solvable and hence the proof now follows from [16, Theorem 1.2]. □
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Let G be a finite group. Take a chief series

1 = G t ⊴ · · · ⊴ G0 = G

and consider the non-negative integers µi = m(G/G i+1) − m(G/G i ). Clearly

m(G) =

∑
0≤i≤t−1

µi . (4.1)

nformation on the values of µi have been obtained in [13], where is it proved in
articular:

• if G i/G i+1 is abelian, then µi = 0 if G i+1/G i ≤ Φ(G/G i+1), µi = 1 otherwise;
• if G i/G i+1 is non-abelian, then µi = µi (L i ) = m(L i ) − m(L i/socL i ), where

L i = G/CG(G i/G i+1).

In the second case, L i is a monolithic group and socL i = Sni
i where ni is a positive

integer and Si is a finite non-abelian simple group. As we already recalled in the previous
section, by [14, page 403, inequality (1)] and [13, Proposition 4], there exists an almost
simple group Hi such that socHi = Si and µi = µ(L i ) ≥ µ(Hi ). Moreover, by [13,
Lemma 7], we have µ(Hi ) ≥ mKi (Hi ), for every subgroup Ki of Hi with Hi = Ki Si . By
the results in Section 3, for every choice of Hi there exists Ki such that Ki Si = Hi and
mKi (Hi ) ≥ 2. So µi ≥ 2 whenever G i/G i+1 is non-abelian, and therefore the statement
of Theorem 1.3 follows from (4.1).
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