
Research in Developmental Disabilities 136 (2023) 104478

0891-4222/© 2023 Elsevier Ltd. All rights reserved.

Low discriminative power of WISC cognitive profile in 
developmental dyscalculia 

Maristella Lunardon a, Gisella Decarli b,1, Francesco Sella c, Silvia Lanfranchi d, 
Silvia Gerola e, Giuseppe Cossu e, Marco Zorzi b,f,* 

a Neuroscience Area, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy 
b Department of General Psychology and Padova Neuroscience Center, University of Padova, Italy 
c Centre for Mathematical Cognition, Loughborough University, UK 
d Department of Developmental Psychology and Socialisation, University of Padova, Italy 
e Centro Medico di Foniatria, Padova, Italy 
f IRCCS San Camillo Hospital, Venice-Lido, Italy   

A R T I C L E  I N F O   

Keywords: 
Developmental dyscalculia 
Math disability 
Specific learning disabilities 
Diagnosis 

A B S T R A C T   

Background: The role of domain-general cognitive abilities in the etiology of Developmental 
Dyscalculia (DD) is a hotly debated issue. 
Aims: In the present study, we tested whether WISC-IV cognitive profiles can be useful to single 
out DD. 
Methods and procedures: Using a stringent 2-SD cutoff in a standardized numeracy battery, we 
identified children with DD (N = 43) within a clinical sample referred for assessment of learning 
disability and compared them in terms of WISC cognitive indexes to the remaining children 
without DD (N = 100) employing cross-validated logistic regression. 
Outcomes and results: Both groups showed higher Verbal Comprehension and Perceptual 
Reasoning than Working Memory and Processing Speed, and DD scores were generally lower. 
Predictive accuracy of WISC indexes in identifying DD individuals was low (AUC = 0.67) and it 
dropped to chance level in discriminating DD from selected controls (N = 43) with average math 
performance but matched on global IQ. The inclusion of a visuospatial memory score as an 
additional predictor did not improve classification accuracy. 
Conclusions and implications: These results demonstrate that cognitive profiles do not reliably 
discriminate DD from non-DD children, thereby weakening the appeal of domain-general 
accounts.   

1. Introduction 

Developmental Dyscalculia (DD) (or Mathematical Learning Disability, MLD) is a neurodevelopmental disorder characterized by 
significantly low mathematical skills. According to the DSM-5 (American Psychiatric Association, APA, 2013), DD belongs to the 
category of Specific Learning Disabilities. The difficulties in arithmetic, calculation, number sense and math reasoning must persist for 
at least 6 months after instruction begins, cannot be attributed to other mental, neurological, sensory or motor conditions, emerge 
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during the school years and lead to academic skills significantly below to what expected according to chronological age. On the other 
hand, in the ICD-112 (World Health Organization, WHO, 2019/2021) the “Developmental learning disorder with impairment in 
mathematics” represents a distinct category from the other learning disorders, but its description resembles that of Specific learning 
disabilities, with the exception that ICD-11 stresses that academic skills should be well below the expectations according to age and 
general intellectual level. 

The prevalence of DD is estimated between 5% and 7% (Butterworth et al., 2011; Morsanyi et al., 2018), though the lack of in
ternational agreement on the diagnosis and the use of widely different inclusion criteria is a recurring issue in DD/MLD research 
(Kucian & von Aster, 2015; Murphy et al., 2007; Peters & Ansari, 2019; Shalev & von Aster, 2018). 

Several studies have highlighted that DD is a heterogeneous disorder including both domain-specific (numerical) and domain- 
general (non-numerical) deficits, and whether these deficits are predictive of DD is still under debate (e.g., Mammarella et al., 
2021). Children with DD present difficulties in processing both non-symbolic (e.g., dots comparison; Decarli et al., 2020; Libertus et al., 
2013; Mazzocco et al., 2011; Piazza et al., 2010) and symbolic numerical quantities (e.g., digit comparison and number ordering; 
Decarli et al., 2023; De Smedt & Gilmore, 2011; Iuculano et al., 2008; Rousselle & Noël, 2007). Conversely, other studies reported 
domain-general cognitive deficits in children with DD/MLD including processing speed, working memory and inhibition (Attout & 
Majerus, 2015; Gashaj et al., 2019; Mammarella et al., 2018; Peng et al., 2018; Rotzer et al., 2009; Szucs et al., 2013). Specifically, 
processing speed plays a crucial role in learning to count and fluently solve arithmetic problems (Geary, 1993), working memory 
allows to keep arithmetic partial results active while implementing the solving algorithm (e.g., Berg, 2008; Fung & Swanson, 2017) 
and inhibition processes reduce the interference of task-irrelevant features (Szucs et al., 2013; but see also Castaldi et al., 2018). 
Visuo-spatial skills are also considered a key component of DD as they show correlation with mathematical performance (Gilmore 
et al., 2013; Szucs et al., 2013). 

In this vein, scales that assess multiple domain-general cognitive abilities, such as the Wechsler Intelligence Scale for Children 
(WISC; Wechsler, 2003), can provide useful information on the cognitive profiles of children with learning disabilities (Dickerson 
Mayes et al., 1998; Hale et al., 2001; Harrison & Armstrong, 2014; Styck & Watkins, 2016; Van Iterson & Kaufman, 2009; Watkins & 
Worrell, 2000; Watkins et al., 1997). Besides the estimation of the full-scale intelligence quotient (FSIQ), the fourth edition of the WISC 
(Wechsler, 2003) provides indexes for verbal comprehension, perceptual reasoning, working memory and processing speed. These 
measures can also be combined to obtain further composite scores, such as the General Ability Index (GAI), which includes verbal 
comprehension and perceptual reasoning, and the Cognitive Proficiency Index (CPI), which includes working memory and processing 
speed. A large discrepancy between relative high GAI and low CPI characterizes children with learning disabilities compared to 
typically developing children (Poletti, 2016; Giofrè et al., 2017) and to children with intellectual disabilities (Cornoldi et al., 2014). 

Whether WISC indexes could be helpful in discriminating severe mathematical deficits from other learning difficulties has been 
overlooked. However, comparisons between children with DD and with other diagnosed learning disorders have been reported in 
previous studies. Compared to reading and writing disorders, DD presents lower FSIQ (Poletti, 2016; Poletti et al., 2018; Toffalini et al., 
2017), suggesting a more pronounced domain-general impairment compared to other specific learning disabilities. Nevertheless, 
cognitive indexes present specific variations between DD and other learning disabilities. Children with DD showed lower GAI and, 
when considering single indices, lower perceptual reasoning and working memory scores than children with reading disorders (Poletti, 
2016). Moreover, in DD, the perceptual reasoning index was lower than the verbal comprehension index, while the opposite was 
observed in the reading disorder group (Giofrè et al., 2022; Toffalini et al., 2017). Low math proficiency was also associated with low 
scores in reasoning, working memory, verbal comprehension, and processing speed indexes in children with learning disabilities 
(Poletti, 2016; Poletti et al., 2018). 

To sum up, children with DD seem to present a distinct profile in terms of the domain-general cognitive abilities addressed by the 
WISC compared to the other specific learning disorders. However, it is yet to be demonstrated whether this profile allows discrimi
nation of children with severe mathematical deficits, who receive the diagnosis of DD, from children without a mathematical 
impairment but who manifest other learning difficulties. Although the WISC-IV battery was not designed for the diagnosis of specific 
learning disabilities, detecting an index, or a combination of indexes, that reliably distinguish DD from non-DD children would provide 
the clinicians with an additional marker to support the diagnosis and, on the other hand, would inform the theory on the etiology of DD 
supporting the domain-general impairment account. Therefore, in the present study we tested whether cognitive profiles can be useful 
to single out children with DD from a sample of children referred to a clinical center for assessment of learning disabilities. We selected 
children with severe deficits in mathematical performance (i.e., below 2 SDs in a standardized numeracy battery) as the DD group and 
the remaining children were assigned to the non-DD group. Children with an average FSIQ were included in the study. A normative 
profile is characterized by a score of 100 in all indexes. However, as the reviewed literature showed, children with specific learning 
disorders present a specific pattern of weaknesses and strengths. The weaknesses are compensated by the strengths, resulting in an 
average FSIQ. Additionally, as it was previously demonstrated (e.g., Cornoldi et al., 2014), patterns of weaknesses and strengths in the 
WISC profile emerge also when the general cognitive level is in the normal range. Moreover, from the control group we also selected a 
subsample showing average math performance (thereby increasing the gap with DD) and matched for global IQ to the DD sample. In 
this way, we controlled for the difference in global cognitive functioning as a possible confound for the different profiles displayed by 
DD and control children. Differently from many other studies, we applied stringent criteria for the selection of children with DD (see 
Peters & Ansari, 2019, for discussion) and involved a control group with learning difficulties, thus improving ecological validity. We 

2 In the present study, children’s diagnosis was based on ICD-10 (World health organization, 1992) criteria because this was the classification 
system used at the time of our experiment. ICD-10 criteria do not significantly differ from the ICD-11 edition. 
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compared the two groups on the WISC-IV cognitive indexes, determined the multivariate pattern that best discriminated DD from 
non-DD, and tested the predictive accuracy of the classifiers trained to identify DD from the cognitive profile. 

2. Material and methods 

2.1. Participants 

One hundred and forty-three children took part in the present study after obtaining parents’ informed consent. The protocol was 
approved by the Psychological Science Ethics Committee of University of Padova and the study was conducted following the principles 
of the Declaration of Helsinki. From March 2019 to October 2020, we consecutively recruited all children referred to a specialized 
clinic for evaluation of learning disability, who attended a school grade from the third year of primary school to the third year of 
middle school. According to the ICD-10, which was the reference for diagnosis, we excluded children with WISC-IV (Wechsler, 2003; 
Italian version, Orsini et al., 2012) FISQ below the normal range (i.e., below 85, Flanagan & Kaufman, 2009). Other inclusion criteria 
were absence of ADHD, neurological, sensory or motor impairments. Children were administered a comprehensive standardized 
numeracy battery (BDE-2, Biancardi et al., 2016) and we assigned to the DD group (N = 43) those performing 2 SDs below the expected 
overall mean (considering age and grade), or performing below the 5th percentile in half or more of the battery’s subtests. The 
remaining children were assigned to the non-DD group (N = 100). According to the ICD-10 coding system (World Health Organization, 
1992), 14 children in the non-DD group received diagnosis of specific reading disorder (F81.0), 7 a diagnosis of specific spelling 
disorder (F81.1), 12 presented both in comorbidity, and 5 children were diagnosed with mixed or other disorder of scholastic skills 
(F81.3, F81.8). The remaining children manifested learning difficulties, which led them to the attention of the clinical service, but the 
assessment did not result in a diagnosis of neurodevelopmental disorder. In the DD group, 18 children presented comorbidity with 
reading disorder, spelling disorder or both, 5 children received a diagnosis of mixed disorder of scholastic skills (F81.3) and 9 children 
manifested a difficulty in another learning domain, besides the DD, not severe enough for a comorbid diagnosis. 

The DD and non-DD groups (DD: 26 females, 17 males; Control: 30 females, 70 males) did not differ for chronological age (t(141) =
1.10, p = .27, BF10

3 = 0.33, moderate evidence in favor of H0), whereas differences emerged in the total FSIQ score (t(141) = 4.06, p <
.001, BF10 = 260.79, extreme evidence in favor of H1) and in mathematical achievement (Total Score of BDE-2: t(108) = 16.06, p <
.001, BF10 = 8.05 * 1026, extreme evidence in favor of H1; Percentage of tasks below the 5th percentile in the BDE-2: t(31) = − 9.60, p 
< .001, BF10 = 5.75 * 107, extreme evidence in favor of H1). Descriptive statistics are reported in Table 1. 

We also extracted from the non-DD group a subset of participants with a BDE-2 total score greater or equal than 85 or with less than 
25% of the tasks below the 5th percentile, thereby showing average numeracy skills (Biancardi et al., 2016; see the Tasks section for the 
description of the battery) and paired for FISQ with the DD children. The FSIQ-matched non-DD group (hereafter FSIQ-non-DD) 
included 43 participants (8 females, 35 males) who did not differ from DD in FSIQ (M = 100.30, SD = 6.91, t(84) = 1.94, p = .06, 
BF10 = 1.16, anecdotal evidence in favor of H1) and age (Mmonths = 133.58, SD = 18.77, t(84) = 0.96, p = .34, BF10 = 0.34, moderate 
evidence in favor of H0), whereas they showed an average mathematical performance (Total Score of BDE-2: M = 98.22, SD = 8.21; t 
(66) = 22.62, p < .001, BF10 = 1.66 * 1029, extreme evidence in favor of H1; Percentage of tasks below the 5th percentile: M = 4.55, SD 
= 6.31; t(16) = − 13.66, p < .001, BF10 = 1.58 * 107, extreme evidence in favor of H1). The standardized difference between DD and 
FISQ-non-DD on the matching variable was d = 0.42 (C.I. [− 0.01; 0.85]) and the variance ratio was 1.21, indicating that the groups are 
adequately matched according to the rules described by Kover and Atwood (2013). 

2.2. Tasks 

All children in the sample completed standardized cognitive and numeracy assessments, as well as ad-hoc computerized numerical 
tasks. The latter can provide a fine-grained evaluation of domain-specific deficits but are largely redundant with the numeracy battery. 
In this study, we focused on the WISC cognitive profile, overall numeracy skills and, as a control, visuo-spatial skills. The tasks used for 
the assessment of reading and writing skills are briefly described in the Supplementary material. For all tasks, normative scores and 
indexes were calculated based on the Italian standardization. 

2.2.1. Numeracy 
We assessed numeracy with a standardized battery for the diagnosis of DD (BDE-2, Biancardi et al., 2016). It includes several 

subtests for assessing three main areas: general number knowledge (counting, number reading, number writing and number repeti
tion), calculation (multiplications, mental calculation, calculation fluency, multiplication table and written calculation) and number 
sense (triplets of numbers, insertions of Arabic digits on a number line, rapid calculation, number line). For fourth-to-thirteenth grade 
children, the raw score of each subtest was converted into normative score (M = 10, SD = 3) and the sum of all these scores composed 
the total quotient (M = 100, SD = 15). For third graders, the test manual does not provide conversion tables to compute the total 
quotient, so for each child we computed the percentage of subtests whose score fell below the 5th percentile, according to the Italian 
guidelines for the diagnosis of DD (Lucangeli, 2012). 

3 Bayes factor (BF10) represents the probability of the data given the alternative hypothesis (H1) relative to the null hypothesis (H0). In the results 
we reported the evidence associated with BFs as “anecdotal” (1/3 < BF10 < 3), “moderate” (BF < 1/3 or BF10 > 3), “strong” (BF < 1/10 or BF10 >

10), “very strong” (BF < 1/30 or BF10 > 30), or “extreme” (BF < 1/100 or BF10 > 100) (Jeffreys, 1961). 
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2.2.2. Intelligence 
Children were assessed with the Wechsler Scale of Intelligence (WISC-IV; Wechsler, 2003; Italian version, Orsini et al., 2012). For 

each child, the full FSIQ and the four composite indexes were calculated: Verbal Comprehension (VCI: Similarities, Vocabulary and 
Comprehension subtest); Perceptual Reasoning (PRI: Block Design, Picture Concepts and Matrix Reasoning subtest); Working Memory 
(WMI: Digit Span and Letter-Number sequencing subtest); Processing Speed (PSI: Coding and Symbol Search subtest). 

2.2.3. Visuo-spatial memory 
We assessed visuo-spatial memory using the Memory for Designs task (Immediate) (MDI) from the NEPSY-II (Korkman et al., 2007). 

Children were instructed to memorize a grid (21 × 29.7 cm) with some pictures (from 6 to 10) for 10 s; then children had to choose the 
pictures they had seen among a set of cards (from 10 to 20) and to locate them on an empty grid in the same position they had 
previously memorized. For each child, we extracted the total score obtained from the number of figures and positions correctly 
remembered by the child. The maximum score was 150, corresponding to a performance without mistakes. 

2.3. Data analysis 

We ran the statistical analyses using R v. 4.1.1 (R Core Team, 2020). 
First, we compared the performance of the groups on the cognitive indexes by means of a one-way MANOVA, with the four indexes 

as dependent variables and Group [DD vs. non-DD] as factor. We ran post-hoc two-tailed t-tests to investigate significant MANOVA 
effects. We adjusted the alpha value to 0.0125 according to Bonferroni correction for multiple comparisons (alpha = 0.05/4). As
sumptions for MANOVA (i.e., normality, linearity, lack of influential outliers, homogeneity of variance and absence of multi
collinearity) were met (Tabachnick & Fidell, 2007). Additionally, we conducted a mixed ANOVA with Group [DD vs. non-DD] as 
between factor and Index [GAI vs. CPI vs. FSIQ] as within-subject factor to assess the presence of the GAI-CPI discrepancy and the 
GAI-FSIQ discrepancy in the two groups. 

Then, to find among the four WISC indexes those that could better predict the level of numeracy achievement, we entered them as 
predictors in a series of logistic regression models with Group [DD vs. non-DD] as outcome variable. Assumptions for logistic regression 
(lack of influential outliers, absence of missing values and of multicollinearity) were met (Tabachnick & Fidell, 2007). We used a best 
subset regression strategy (Hosmer & Lemeshow, 2000), whereby all possible combinations of indexes are assessed and ranked based 
on the Bayesian Information Criterion (BIC). The best model (i.e., with the lowest BIC) was then selected (Vrieze, 2012). 

Subsequently, we tested the predictive accuracy of the selected models using leave-one-out cross-validation to train the logistic 
classifiers and assess their performance on the held-out children (Browne, 2000). The receiver operating characteristic (ROC) curve 
and its related area under the curve (AUC) were computed for each selected model. AUC is a threshold-invariant measure of classi
fication performance, whereby values of 0.5 to 0.7 indicate low discriminative accuracy, 0.7 to 0.9 moderate accuracy, and 0.9 to 1.0 
high accuracy (Swets, 1988). 

We also used the ROC curves to determine the optimal classification threshold for each model using the Youden index (i.e., the best 
tradeoff between specificity and sensitivity) and computed the resulting confusion matrices in terms of true positives/negatives and 
false positives/negatives (Youden, 1950). 

We repeated the above analyses to compare children with DD to a group of non-DD children matched for FSIQ and with average 
math performance. We used the matchControls function in R (Meyer et al., 2021) to select, for each DD child, the non-DD child with the 
nearest FSIQ value. 

Additionally, we re-trained the logistic classifiers including a visuospatial memory score as an additional predictor (MDI), because 
previous research has suggested this domain-general component being significantly lower in children with DD. 

Table 1 
Mean, standard deviation (SD), 95% confidence interval (C.I.) and range for age (year; months), BDE scores and cognitive indexes scores for non-DD 
and DD groups.   

non-DD (N = 100) DD (N = 43)  
Mean SD C.I. Range Mean SD C.I. Range 

Age 11;2 1;9 129.63–137.93 104–176 10;10 1;7 123.97–135.47 97–172 
BDE-2         
Total score 92.64 13.00 89.63 – 95.65 71 – 121 55.06 7.52 52.52 – 57.60 49–69 
% of tasks 

below the 5th perc. 
11.54 12.21 6.61–16.47 0 – 37.50 60.71 11.25 50.31 – 71.11 50–75 

WISC indexes         
VCI 108.02 12.79 105.48–110.56 82–140 101.35 12.34 97.55–105.15 78–124 
PRI 111.59 12.31 109.15–114.03 78–143 107.05 11.40 103.54–110.56 76–130 
WMI 92.47 12.60 89.97–94.97 64–127 85.28 11.37 81.78–88.78 61–115 
PSI 98.86 14.32 96.02–101.70 56–132 92.74 10.17 89.61–95.87 76–118 
FSIQ 105.02 11.49 102.74–107.30 85 – 140 97.26 7.61 94.92–99.6 86–124 
GAI 110.57 11.36 107.84–113.30 85–143 104.77 9.70 102.00–107.54 88–130 
CPI 105.02 11.49 102.74–107.30 85–140 86.26 9.00 83.27–89.25 70–113 

Note. VCI = Verbal comprehension index; PRI = Perceptual reasoning index; WMI = Working memory index; PSI = Processing speed index; FSIQ =
Full scale IQ; GAI = General ability index; CPI = Cognitive proficiency index. 
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Fig. 1. The WISC cognitive profiles of DD, non-DD and FSIQ-non-DD groups and the classification performance of the selected models. VCI = Verbal 
comprehension index; PRI = Perceptual reasoning index; WMI = Working memory index; PSI = processing speed index. (A) Mean scores of DD, non- 
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3. Results 

3.1. Indexes comparisons 

Descriptive statistics for the four WISC indexes for the two groups are reported in Table 1 and displayed in Fig. 1a. The MANOVA on 
the four WISC indexes yielded a significant effect of Group (Pillai’s trace = 0.12, F(4,138) = 4.87, p = .001, ηp

2 = 0.12). In particular, 
the visual inspection of Fig. 1a suggests that the DD and non-DD groups presented a similar pattern of indexes, even though the non-DD 
group had higher scores: the difference resulted statistically significant for VCI (t(141) = − 2.89, p = .004, BF10 = 7.95, moderate 
evidence in favor of H1), WMI (t(141) = − 2.07, p = .002, BF10 = 19.08, strong evidence in favor of H1) and PSI (t(141) = − 2.54, p =
.012, BF10 = 3.43, moderate evidence in favor of H1). 

In the mixed ANOVA assessing GAI, CPI and FSIQ discrepancies (descriptive statistics in Table 1), a significant main effect of Group 
(F(1, 423) = 37.89, p < .001) and Index (F(2, 423) = 78.82, p < .001) emerged, while their interaction was not significant (F(2, 423) 
= 0.45, p = .693), suggesting that the indexes’ discrepancies were consistent across groups. We conducted two post-hoc t-tests to 
assess the GAI-CPI and GAI-FSIQ discrepancies (Bonferroni corrected alpha value = 0.05/2 = 0.025) and they resulted significant, thus 
suggesting that GAI was higher than CPI (t(284) = 11.57, p < .001, BF10 = 2.21 × 1022, extreme evidence in favor of H1) and FSIQ (t 
(284) = 4.67, p < .001, BF10 = 3217, extreme evidence in favor of H1). 

Comparisons for single subtests (see Supplementary material) showed a group difference in Digit span (WMI). 
We then compared the WISC indexes between DD children and the group of non-DD children matched for FSIQ and with average 

mathematical performance. Fig. 1a shows that the pattern of cognitive indexes did not change and the DD and FSIQ-non-DD profiles 
were largely overlapping (index values of FSIQ-non-DD: VCI: M = 103.91, SD = 9.14, C.I. = [101.10, 106.72], range = [86,122]; PRI: 
M = 109.33, SD = 9.87, C.I. = [106.29, 112.37], range = [87,128]; WMI: M = 87.51, SD = 10.64, C.I. = [84.24, 90.78], range =
[64,106]; PSI: M = 95.09, SD = 12.80, C.I. = [91.15, 99.03], range = [56,126]; MANOVA: Pillai’s trace = 0.05, F(4,81) = 1.03, 
p = .398, ηp

2 = 0.05). As previously found, GAI resulted higher than CPI and FSIQ regardless of Group (values for FSIQ-non-DD: GAI: M 
= 107.14, SD = 7.74, C.I. = [103.72, 110.56], range = [86,126]; CPI: M = 86.56, SD = 11.12, C.I. = [87.18, 91.94], range = [70,111]; 
mixed ANOVA: Group: F(1,252) = 7.04, p = .008; Index: F(2,252) = 91.74, p < .001; interaction: F(2,252) = 0.06, p = .934; post-hoc 
t-tests: GAI vs. CPI: t(170) = 12.43, p < .001, BF10 = 2.12 × 1022, extreme evidence in favor of H1; GAI vs. FSIQ: t(170) = 5.79, 
p < .001, BF10 = 3.30 × 105, extreme evidence in favor of H1). No group difference emerged at subtest level (see Supplementary 
material). 

3.2. Classifier analyses 

We selected three logistic regression models because their associated BIC values were comparable (i.e., a difference in BIC lower 
than 2; Raftery, 1995): the model including VCI and WMI (BIC: 173.25), the model with VCI, WMI and PSI (BIC: 174.12), and the 
model with just WMI (BIC: 174.46). Estimates of the index effect in each model are displayed in Fig. 1b and their ROC curves and AUCs 
are illustrated in Fig. 1d. The AUC of the model with VCI+WMI was 0.672 and it indicated low accuracy in discriminating between 
children with and without DD. The other AUCs values were 0.682 and 0.630 for the models VCI+WMI+PSI and WMI respectively, 
again indicating low classification accuracy. 

Fig. 1c shows the confusion matrices computed with the optimal classification threshold obtained from the ROC curves. The model 
with VCI and WMI as predictors displayed an accuracy of 0.62 and it correctly detected 77% of the DD children, but the false positive 
rate was very high as the classifier misdiagnosed 44% of the non-DD children. The accuracy of the model with VCI, WMI and PSI was 
0.65 and it identified 79% of the children with DD but misclassified 41% of non-DD children. Finally, the model with WMI also 
displayed an accuracy of 0.65 and it accurately categorized only 56% of the children with DD and 69% of children in the non-DD group. 

Though the four WISC indexes did not differ between DD and FSIQ-non-DD, we entered them as predictors in a series of logistic 
regression analyses on Group [DD vs. FSIQ-non-DD]. Four models, each including a single index, yielded comparably low BICs: VCI 
(BIC: 126.91), PRI (BIC: 127.13), PSI (BIC: 127.22) and WMI (BIC: 127.23). The cross-validated logistic classifiers failed to discrim
inate between children with severe DD and non-DD children with average mathematical skills. The highest AUC was 0.525 for the 
model with PSI, which had an accuracy of 0.57. The other models showed even lower accuracies, with AUCs ranging from 0.467 to 
0.479 (see ROC curves in Fig. 1e). 

Finally, we retrained the classifiers including MDI. The mean MDI scores were 116.72 (SD = 22.54, C.I. = [109.78, 123.66], range 
= [74,147]) for DD, 123.81 (SD = 23.18, C.I. = [119.21, 128.41], range = [66,150]) for non-DD, and 120.65 (SD = 23.46, C.I. =
[113.43, 127.87], range = [66,150]) for FSIQ-non-DD groups. The DD score did not differ from the scores of the other groups (for DD 
vs non-DD, p = .093, BF10 = 0.70, anecdotal evidence; for DD vs FSIQ-non-DD, p = .430, BF10 = 0.30 moderate evidence in favor of 
H0). The best models discriminating DD from non-DD children, according to their BIC value, were the same as those previously 
selected (i.e., MDI was never included); therefore, cross-validation and ROC analysis led to the same results. For the DD vs FSIQ-non- 

DD and FSIQ-non-DD groups in each cognitive index. Error bars represent 95% confidence intervals. Transparent points represent individual scores. 
(B) Regression coefficients of the WISC indexes in the selected models (DD vs. non-DD classification). Error bars represent 95% confidence intervals. 
(C) Confusion matrices and accuracies (Acc) for the selected models (DD vs non-DD). The numbers within each cell represent how many observed 
cases on the y-axis are labeled as a group on the x-axis. (D) ROC curves and AUCs for the selected models (DD vs non-DD). (E) ROC curves and AUCs 
for the selected models (DD vs. FSIQ-non-DD). 
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DD discrimination, the model with just the MDI index was equivalent to the four previous models (BIC: 127.49) and was therefore 
retained. The cross-validated accuracy of the model with MDI as predictor was 0.51 and the AUC was 0.588, indicating the inability to 
discriminate between children with and without DD. 

3.3. Control analyses using weighted logistic classifiers 

The use of threshold-invariant AUC (as well as choosing an optimal classification threshold using the Youden index) is appropriate 
for reliably measuring classification accuracy even in the case of non-severe numerical imbalance between classes, as in the present 
case. Nevertheless, to further exclude class imbalance between DD and non-DD groups as cause for low classification accuracy, we also 
trained and assessed cross-validated weighted logistic classifiers (King & Zeng, 2001), which apply higher cost to wrong predictions of 
the minority class (here DD). The weighted classifiers (see Supplementary Figure 2) could correctly identify 72% of DD children and 
57% of non-DD children when the predictors were VCI and WMI, 74% of DD and 60% of non-DD when adding PSI to the previous 
model, and 63% of DD and 60% of non-DD when WMI was the only predictor. The model with the highest AUC was the VCI + WMI +
PSI (AUC: 0.724), indicating a limited discriminative power, as in the other two models (VCI + WMI: 0.709; WMI: 0.665). 

3.4. Additional group comparisons 

We compared the cognitive indexes of specific subgroups of our sample. Results are reported in the Supplementary material. When 
DD scores were contrasted to those of the non-DD children without a diagnosis of learning disorder, they differed in the FSIQ and the 
WMI (Supplementary table 2). Moreover, we compared the cognitive scores of children with a deficit in mathematics only and of 
children with a combined disorder in mathematics and in other learning domains, since previous research showed that the latter are 
likely to display lower cognitive levels (e.g., Toffalini et al., 2017). Contrary to the expectations, no significant difference emerged 
(Supplementary table 3). 

Finally, we tested the accuracy of WISC indexes in discriminating children with a diagnosis of specific learning disorder from those 
who did not receive the diagnosis. The model where the group [learning disorder vs. no learning disorder] was predicted by WMI 
yielded the lowest BIC, but its predictive accuracy was low (AUC: 0.586). This classifier could correctly detect 94% of the children with 
a diagnosis of learning disorder, but misclassified 94% of the children without a diagnosis. These results may be due to the fact that all 
children in our sample, including those without a learning disorder, manifested learning difficulties that motivated referral for the 
clinical assessment. 

4. Discussion 

The finding that children with DD show weaknesses in domain-general cognitive abilities has led to theoretical accounts that point 
to deficits in general cognitive skills (rather than in domain-specific numerical processing) as etiology of mathematical disability 
(Kaufmann et al., 2013, for a review). Here we assessed whether cognitive indexes derived from the WISC scale can effectively identify 
children with DD from children without mathematical impairments but with difficulties in other learning domains. All children were 
referred to a clinical service for the diagnosis of specific learning disorders. In line with previous findings, children with DD displayed a 
lower general cognitive functioning compared to non-dyscalculic children (Poletti, 2016; Poletti et al., 2018; Toffalini et al., 2017). 
Both children with DD and non-DD displayed a similar pattern of cognitive indexes whereby the VCI and the PRI were higher than the 
WMI and PSI and presented the GAI-CPI discrepancy found in previous studies (Cornoldi et al., 2014; Giofrè et al., 2017; Poletti, 2016; 
Toffalini et al., 2017). Especially the PRI in both groups and the VCI in the non-DD group were higher than the normative mean. On one 
hand, this may be due to the fact that in the non-DD group there were children with a learning disorder. Since GAI is more strongly 
related to general cognitive functioning (the g-factor) than CPI, it has been suggested that FSIQ may underestimate the intellectual 
level of children with specific learning disabilities (Giofrè & Cornoldi, 2015). On the other hand, these above average values may be 
the consequence of our sample selection procedure, which included children with an FSIQ above 85, where the low WMI and PSI may 
be compensated by above average VCI and PRI. 

To identify the combinations of cognitive indexes that better predicted the presence of DD, we ran a series of logistic regressions. 
We found that the best model was the one including VCI and WMI. However, the classifier’s (cross-validated) predictive accuracy in 
discriminating DD from non-DD was low (AUC: 0.672), with a very high false positive rate in DD detection. The runner-up models (i.e., 
VCI+WMI+PSI, WMI) showed an equivalent (low) classification performance (AUCs: 0.682 and 0.630, respectively). When we tested 
discrimination of DD against a group of children with average mathematical performance but matched for FSIQ with DD children, all 
classifiers (also those including a measure of visuospatial working memory as additional predictor) exhibited very low to chance-level 
predictive accuracy (AUCs: 0.479 - 0.588). 

The WISC is widely applied in the clinical setting to estimate general cognitive functioning and it has been proposed that the 
distribution of the cognitive indexes can contribute to discriminating neurodevelopmental disorders, especially specific learning 
disorders (Cornoldi et al., 2014; Giofrè et al., 2017; Poletti, 2016). Our study focused on DD and showed that children with severe 
mathematical underachievement present a global lower cognitive functioning compared to children referred for clinical evaluation of 
learning disabilities without math impairment, but they cannot be identified on the basis of the multivariate pattern of WISC indexes. 
Our results, therefore, suggest that the WISC cognitive profile does not provide a reliable cue to detecting DD children. 

This is the first time that predictive modeling is applied to separate DD from children with other learning difficulties and with a 
data-driven approach to cognitive index selection. There were some previous attempts to single out learning disabilities from typical 
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development based on WISC cognitive indexes. For instance, Giofrè et al. (2017) yielded an AUC of 0.78 for classification based on the 
four WISC-IV indexes and an AUC of 0.76 with the GAI and CPI. Even lower discriminative power resulted when indices extracted from 
the WISC-III were used as predictors, with AUCs ranging from 0.50 to 0.68 (Watkins et al., 1997; Watkins & Worrell, 2000). Our results 
are in line with these findings. WISC indexes provide information on cognitive processes that underlie academic achievement. 
However, they cannot provide reliable evidence for the diagnosis of specific learning disorders, and DD in particular. Nevertheless, this 
does not exclude their utility for a better definition of the clinical profile (also see Giofrè et al., 2017). 

This study presents some limitations. First, the non-DD group is highly heterogeneous. Only 38 of these children received a 
diagnosis for specific learning disorders. The remaining children displayed learning difficulties not severe enough for a clinical 
diagnosis. It is possible then that WISC profile discriminative power may be limited to the comparison of DD to other specific learning 
disorders, such as reading disorder or writing disorder, as described by the literature reviewed in the introduction. Given the limited 
sample size, our data did not allow these categorical comparisons, which was however beyond our interests: the goal of this study was 
to detect WISC cognitive indexes that contribute to single out children with DD from children without DD, regardless of the type of 
learning difficulty in the latter group. The low scholastic performance of non-DD children who did not get a diagnosis could also be the 
consequence of other forms of difficulties, for example at socio-emotional level. Another limitation of our study is that we did not have 
information about participants’ emotional states and family background, which could have contributed to clarify these cases. 

Secondly, the sample size is relatively small compared to other studies addressing cognitive profiles in specific learning disabilities 
(e.g., Toffalini et al., 2017). However, it is considerably large for DD given the very stringent selection criteria, the same used by 
professionals for clinical diagnosis. 

Thirdly, 23 out of 43 children in the DD group presented a comorbid learning disorder, and 38 out of 100 non-DD children were 
diagnosed with a specific learning disorder, thus possibly explaining their similar cognitive profiles. Therefore, our results should be 
interpreted with caution, since we did not consider in the logistic regressions “pure” DD separately from the cases of comorbidity 
between DD and other learning disorders (e.g., Mammarella et al., 2018), though the former are infrequent in the clinical setting and 
the contrasts run as supplementary analysis did not show differences between the two groups in any cognitive index. Nevertheless, the 
proportion of comorbidity in our DD group resembles the rates reported in previous studies (e.g., Morsanyi et al., 2018) and children 
with pure DD and those with comorbid dyslexia typically show the same profile in terms of numerical skills (e.g., Decarli et al., 2023). 
Moreover, the use of a standardized battery to assess numeracy skills ensured a reliable identification of mathematical under
achievement and the recruitment of participants among the population of children referred to a clinical service for the diagnosis of 
learning disorders guarantee the ecological validity of the findings. 

An additional limitation is the exclusion of children with FSIQ below the normative mean. In the current version of the DSM-5, the 
achievement-IQ discrepancy is no longer a criterion for diagnosis of specific learning disorders. Moreover, excluding children with 
below average FSIQ reduced the variability in the distributions of the four cognitive indexes, which may have affected their predictive 
accuracy. However, in our view, the contrast between an average IQ and extremely low mathematical performance holds theoretical 
value for our research question regarding DD, as it allows to study the actual cognitive correlates of DD without the confound of 
borderline intellectual functioning (which is characterized by its own specific cognitive profile; e.g., Pulina et al., 2019). In addition, an 
average FSIQ could hide multivariate patterns of component scores, which were our target in this study. It was previously found that in 
children with a learning disorder, regardless of the fact that their IQ was higher or lower than 85, the GAI was higher than the CPI, 
while in children with intellectual disability (FSIQ < 70) the profile was flat, meaning that they scored approximately the same in all 
indexes (Cornoldi et al., 2014). Therefore, we could expect to find specific patterns of strengths and weaknesses in the WISC-IV 
components in DD children also when the general FSIQ is in the normal range. 

In conclusion, our results provide further evidence that children with learning disorders tend to show cognitive profiles charac
terized by lower working memory and processing speed, compared to verbal comprehension and perceptual reasoning. However, these 
profiles do not discriminate DD from matched non-DD children, suggesting that it may be a common marker of specific learning 
disorders. Evaluating general cognitive skills is a fundamental step in the assessment of learning disabilities, which however does not 
contribute to characterizing the specific disorder components. Therefore, to reliably diagnose DD and provide adequate intervention, 
the focus should be mainly on domain-specific abilities, namely, numerical and arithmetic skills. 
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