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Abstract
The paper addresses an optimal ensemble control problem for nonlocal continuity
equations on the space of probability measures. We admit the general nonlinear cost
functional, and an option to directly control the nonlocal terms of the driving vector
field. For this problem, we design a descent method based on Pontryagin’s maximum
principle (PMP). To this end, we derive a new form of PMP with a decoupled Hamil-
tonian system. Specifically, we extract the adjoint system of linear nonlocal balance
laws on the space of signed measures and prove its well-posedness. As an implemen-
tation of the designed descent method, we propose an indirect deterministic numeric
algorithmwith backtracking. We prove the convergence of the algorithm and illustrate
its modus operandi by treating a simple case involving a Kuramoto-type model of a
population of interacting oscillators.
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1 Introduction

Nonlocal continuity equations on the spaces of probability measures arise as macro-
scopic mathematical models of multi-agent dynamical systems describing the time
evolution of large ensembles (beams, crowds, swarms, populations, networks) of
structurally identical objects (e.g., elementary particles, people, animals, “neurons” of
natural or artificial neural networks etc.). The main idea is to treat the many-particle
dynamics as a whole by focusing on its “statistical” behavior assuming that the agents
are homotypic and, therefore, indistinguishable.

Passing to the limit in the number of agents, a large set of individuals (described by
a system of many similar ODEs) is replaced by their continual probability distribution,
named the “mean field” (driven by a single transport PDE). This idea, rooted in statis-
tical mechanics [28], has been found useful in different areas of applied mathematics
such as mathematical biology [20, 21, 27, 39], modeling of pedestrian and urban traf-
fic [25, 26, 42], mathematical neuroscience [37] and even theoretical foundations of
artificial intelligence [13, 40, 49, 50], just to name a few.

Recent results in the analysis on the space of measures, achieved in the works of
Ambrosio, Gigli, Lott, Otto, Santambrogio, Savaré, Villani, and others, have been
proved fruitful for mathematical control theory, largely spurred by the variety of men-
tioned applications and the needs of control engineering. The starting point was the
derivation of a mathematically rigorous “mean field limit” of the classical multi-agent
optimal control problem [29, 30] (see also [12, 31]). In the consequent few years, the
cornerstones of the classical optimal control theory—such as Pontryagin’s maximum
principle (PMP) [7, 9–11, 25, 44–46], and the dynamic programming method [5, 6,
23, 38]—were extended to the area of mean field control.

The mean field PMP, which is at the focus of the present paper, was obtained on
different levels of generality by various mathematical strategies. Its particular version
was first derived in [44] for a specific “shepard’s” problem over the local continuity
equation, and subsequently, for a general linear problem with relaxed controls [45];
these version of PMP aremainly reconstructed from the differential properties of flows
of the driving vector field by standard analytical methods such as Filippov’s lemma. A
result of the similar spirit for another particular local problem was recently obtained
in [13] as a specification of a more general PMP [11] by an original technique of
generalized Lagrange multipliers on the convex subset of Radon measures with unit
mass. Notice that, in the local case, PMP takes the familiar form as it is formulated
in terms of a certain decoupled optimality system with an explicit backward adjoint
equation—a non-conservative transport PDE.

The first result in this line was obtained in [8] for a particular “bi-level” optimiza-
tion problem; a natural strategy was to pass to the limit in the usual PMP conditions
for conventional control problems obtained by the “finite-agent” approximations in
the Dobrushin’s framework. Similar arguments, based on a finite-dimensional approx-
imation and Ekeland’s variational principle, were used in [47] to prove an impulsive
version of PMP for a nonlocal transport equation with states being measure-valued
curves of bounded variation. For general (non-impulsive) nonlocal transport equa-
tions, PMP was first proved by an appropriate extension of the classical technique
of needle-shaped control variations for problems without [11] and with [9] addi-
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tional state-constraints. Another approach, relying on an appropriate linearization of
the nonlocal dynamics, was further proposed in [10]. A different method to derive
the necessary optimality conditions for mean-field control problems was suggested
in [16] exploiting an appropriate generalization of Karush–Kuhn–Tucker conditions.
Also, in [19, 34, 50], alternative versions of the mean-field PMP were obtained for
stochastic optimal control problems.

1.1 Numerical Solution: Mainstream Approaches and Their Pitfalls

The use of existing analytical methods is limited to the simplest mean-field control
problems, while the transition of these results to the numerical context is fraught with
critical technical difficulties. Here, PMP would be a promising footing if it were not
for a number of significant flaws. The key drawback is due to the mentioned coupling
in the Hamiltonian system. The state of such a Hamiltonian equation—a measure on
the cotangent bundle of the state space—is always singular, even if the solution of the
primal continuity equation—a measure on the state space—has a density. This makes
it impossible to solve the Hamiltonian system by the standard numerical schemes and,
consequently, the existing forms of PMP do not provide a descent algorithm.

In the finite-dimensional case, a wide range of various direct and indirect numer-
ical methods are described in numerous works. For nonlocal continuity equations,
the numerical solution of optimal control problems still remains a burning question,
which is principal for the transfer of the mean-field control theory to the practice of
control engineering. The mainstream approaches are represented by the following two
families:

1. Semi-direct (finite-particle) method: Approximation of the initial distribution by a
discrete measure and transformation of a distributed control system to a high-
dimensional ODE. The resulting finite-dimensional control problem is solved
directly or using special techniques such as, e.g., “random batch” methods [35].

2. Direct method: Total discretization of a nonlocal equation and reduction of a
variational problem to mathematical programming.

In practice, both the mentioned approaches typically lead to unsatisfactory results.
The first one returns one to a high-dimensional classical optimal control problem fol-
lowed by the “curse of dimensionality”; in fact, this approach rejects the very heart of
the mean-field approximation along with all profits of the statistical averaging, while
it draws us back to the need of keeping track of all individual representative of a large
population. The second approach leads to a complex (high-dimensional, nonlinear
and non-convex) mathematical programming problem, which is not always satisfac-
tory solved even by commercial solvers. Here, the main difficulty is the presence of
non-local terms depending on the density distribution over the entire spatial grid mak-
ing the computations much more demanding. This feature also leads to a dramatic
loss in the efficiency of parallelization, since integration steps require interprocessor
communications of the “all-to-all” pattern.

In contrast to the classical setting, the bibliography on indirect numeric algorithms
for optimal mean-field control is poor. There are only few results [2, 13, 43, 48, 49],
all focusing on particular problems, and relying on adequate necessary optimality
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conditions. The work [43] deals with the so-called “shepard’s problem”, where one
has to steer the population of non-interacting individuals to a given target set; the
proposed numeric algorithm is based on a specific form of PMP. On the conceptual
level, the algorithm [13] (named in the cited paper a “shooting method”) is a variant
of the classical Krylov-Chernous’ko algorithm—probably the first indirect algorithm
based on PMP in the history of optimal control. The convergence of the algorithm
essentially depends on the convexity of the cost functional, and is not guaranteed in
general, even for the finite-dimensional case μt = δx(t). An alternative algorithm
was proposed in [49] for the linear problem of ensemble control employing an exact
formula for the increment of the cost functional and feedback control variations. In
[48], a version of the gradient descent method was constructed for a mean-field opti-
mal control problem over a nonlocal Fokker-Planck-Kolmogorov equation modeling
interactions in a Kuramoto type model: the first variation of the objective functional
and the adjoint equation are obtained by a formal Lagrange method due to the model
specifics. Finally, to the best of our knowledge, there are no results of this sort for the
general μ-nonlinear problem.

1.2 Goals, Contribution, and Organization of the Paper

In the present work, we put forth an indirect numerical method for optimal mean-field
control. Namely, we design a PMP-based indirect deterministic numeric algorithm
with backtracking line search for a class of optimal ensemble control problems involv-
ing nonlocal continuity equations in the space of probabilitymeasures. Themethod can
be viewed as an adequate version of the classical gradient descent method, and demon-
strates encouraging results in a series of numeric experiments. To our knowledge, this
is the first indirect descent algorithm for mean-field control problems, nonlinear in
measure.

The derivation of the algorithm is based on a set of new theoretical results, which
are of independent interest. First, we derive the linearized form of the original nonlocal
transport PDE. In contrast to [10], our arguments apply to nonlocal perturbations of
the vector field, and therefore, cover the case, when the control is injected into the
nonlocal term of the dynamics. As a byproduct, we compute the first variation of the
cost functional within the class of weak variations of the control function. Another
contribution is a new, equivalent articulation of PMP, where the Hamiltonian equation
on the cotangent bundle of the state space is decoupled into the primal (forward) and
dual (backward) parts; the dual systems turns to be a system of nonlocal linear balance
laws (continuity equations with sources).

The rest of paper is organized as follows: A statement of the optimal control prob-
lem is presented in Sect. 1.3. Section2 collects the necessary notation, and several
noteworthy facts from the topology, analysis, and differential calculus over the space
of probability measures. In Sect. 2.6, we introduce the concept of a flow of a nonlocal
vector field and calculate a “directional derivative” of the flow along a nonlocal vector
field. Sections3–5 dwell on a simplified version of the stated optimization problem,
where the running cost rate is lifted, and the driving vector field is affine in the con-
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trol variable; this technical simplification is not critical but enables us to shorten the
presentation of the main results.

In Sect. 3, we exhibit two standard representations of the increment of the cost
functional. The first one is formulated in the language of flows of nonlocal vector
fields, while the second formula iswritten down in terms of thementionedHamiltonian
system. In Sect. 4, noting that none of these representations are suitable for numerical
purposes, we derive the third version of the cost increment, which relies on the notion
of adjoint equation. The corresponding numerical algorithm is presented in Sect. 5.
We study the convergence of the algorithm, discuss certain principal aspects of its
technical implementation and demonstrate its modus operandi by treating a simple
but illustrative case, namely, an aggregation problem for a mean-field Kuramoto-type
oscillatory model. Finally, in Sect. 6, the obtained results are extended to the general
problem, involving the running cost and the nonlinear dependence on the control
variable.

1.3 Problem Statement

Given the data V : I ×R
n ×P2(R

n)×U → R
n , L : I ×R

n ×P2(R
n)×U → R,

� : P2(R
n) → R, consider the following optimal control problem (P) on a fixed

finite time interval I
.= [0, T ]:

Minimize I [u] .=
∫ T

0
L (t, μt , u(t)) dt + �(μT ) subject to (1)

∂tμt + divx (Vt (x, μt , u(t)) μt ) = 0, μ0 = ϑ, (2)

u ∈ U . (3)

We assume that control signals are functions t �→ u(t) of time variable only, and take
values in a given set U ⊆ R

m , i.e., U
.= L∞(I ;U ), where L∞ is equipped with the

weak* topology σ(L∞, L1).
Optimization problems of this sort appear in the framework of multi-agent dynam-

ical systems, where the measureμt represents the spatial distribution of agents at time
t . The specified class of controls implies that u acts simultaneously on all agents (one
can imagine that we are able to influence a common agents’ environment rather than
agents in person). An important example of the nonlocal vector field is

Vt (x, μ, u) = ft (x, u)+
∫

Kt (x − y, u) dμ(y), (4)

where f models an external force pushing the agents and K stands for their internal
interaction. Typical terminal cost functionals are

�1(μ) =
∫

l(x) dμ(x)+
∫∫

W (x, y) dμ(x) dμ(y),

�2(μ) = 1

2

∣∣∣∣
∫

x dμ(x)− mT

∣∣∣∣
2

.
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Here, �1 represents the potential (l) and interaction (W ) energy terms, while �2 is
related to the averaged control problem [51], where the goal is to bring the expectation
of the distribution μ to some target positionmT . Finally, common versions of running
cost term are

L1(t, μ, u) = 1

2
|u|2, L2(t, μ, u) = 1

2

∣∣∣∣
∫

x dμ(x)− m(t)

∣∣∣∣
2

.

L1 represents the “total energy” of the control action, and L2 captures the problem of
following a desired path t �→ m(t).

2 Preliminaries

In this section, we introduce some notations, and recall several useful facts from
analysis on the metric space of probability measures.

2.1 Notation

Throughout the paper, we use the following notation:

• |·| the Euclidean norm on R
n .

• Br ⊂ R
n the closed unit ball of radius r centered at the origin.

• f�μ pushforward measure for μ ∈P(Rn) and a Borel function f : Rn → R
m .

• sptμ the support of a measure μ.
• M

m,n the space of matrices A with m rows and n columns.

• x =
⎛
⎜⎝
x1

...

xn

⎞
⎟⎠ an n-dimensional column vector, i.e., x ∈M

n,1 = R
n .

• p = (
p1 · · · pn

)
an n-dimensional row vector, i.e., p ∈M

1,n = (Rn)∗.
• A vector field f on R

n is a family of n real-valued functions f i = f i (t, x),
i = 1, . . . , n.
• A vector field f on R

n × (Rn)∗ is a family of 2n real-valued functions f i =
f i (t, x, p), fi = fi (t, x, p), i = 1, . . . , n.

• divx f =∑n
i=1 ∂xi f

i divergence of the vector field f = f (t, x) in x .
• div(x,p) f =∑n

i=1
(
∂xi f

i + ∂pi fi
)
divergence of the vector field f = f (t, x, p)

in (x, p).

• Dx f =
⎛
⎜⎝

∂x1 f
1 · · · ∂xn f 1

...
. . .

...

∂x1 f
n · · · ∂xn f n

⎞
⎟⎠ derivative of the vector field f = f (t, x) in x .

• ∇xψ =
(
∂x1ψ · · · ∂xnψ

)
gradient of a real-valued function ψ = ψ(t, x, p) in x .

• ∇pψ =
⎛
⎜⎝

∂p1ψ
...

∂pnψ

⎞
⎟⎠ gradient of a real-valued function ψ = ψ(t, x, p) in p.
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Below, we will also deal with vector measures whose values belong to M
1,n , i.e.,

ν = (
ν1 · · · νn

)
, where ν1, . . . , νn are Radon measures on R

n . Given ϕ : Rn → R
n ,

we set 〈ν, ϕ〉 =
∫

ϕ · dν
.=

n∑
i=1

∫
ϕi dνi .

Let X be a Polish space. From measures on X one can construct several important
topological spaces:M (X) ⊃P(X) ⊃P2(X) ⊃Pc(X).HereM (X) consists of all
signed Radon measures,P(X) of all probability measures,P2(X) of all probability
measures with finite second moments,Pc(X) of all compactly supported probability
measures. Below, the Wasserstein distance [1] onP2(X) is always denoted by W2.

Given a Radon measure μ on R
n , denote by L p

μ(Rn;Rm) the space of all
μ-measurable maps (equivalence classes) f : Rn → R

m such that ‖ f ‖L p
μ

.=(∫ | f |p dμ
)1/p

< ∞. If μ is the n-dimensional Lebesgue measure L n , we simply
write L p(Rn;Rm).

2.2 The SpacePc(R
n) and Functions of Probability Measures

The role of the main arena of our paper will be played by the spacePc(R
n) endowed

with the so-called final topology.

Definition 2.1 Let (Xn, τn) be a sequence of topological spaces such thatXn ⊂Xn+1
with continuous inclusion on every n. Let X = ∪nXn . The final topology is the
strongest topology τ on X which lets the inclusions idn : Xn → X be continuous
for every n.

In our case, (Xn, τn)
.= (P(Bn),W2) and X

.= Pc(R
n). The final topology τ

onPc(R
n) enjoys the following properties [33]:

• μn
τ−→ μ if and only if μn

W2−→ μ inP(BN ) for some N ,
• ifK ⊂Pc(R

n) is compact, thenK ⊂P(BN ) for some N ,
• τ is a Hausdorff topology but it is not induced by any distance.

Below, we will constantly deal with mappings � : I × R
n ×Pc(R

n)→ R
m of a

particular regularity. Recall the respective

Definition 2.2 Let � be a map I × R
n ×Pc(R

n)→ R
m . We say that

1. � is a Carathéodory map if and only if t �→ �(t, x, μ) is measurable for each
(x, μ), and (x, μ) �→ �(t, x, μ) is sequentially continuous for each t .

2. � is locally bounded if its restriction on any compact subset of I ×R
n ×Pc(R

n)

is bounded.
3. � is locally Lipschitz if and only if, for each t , the restriction of (x, μ) �→

�(t, x, μ) to any compact setK ⊂ R
n×Pc(R

n) is Lipschitz with some constant
LK , independent of t .

4. � is sublinear if and only if there existsC > 0 such that |�(t, x, μ)| ≤ C (1+ |x |)
for all t , x , μ.

Thanks to the outlined properties of the final topology, the definitions of the local
boundedness and local Lipschitzianity can be given in the following equivalent way:
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2′. � is locally bounded if and only if, for any compact  ⊂ R
n , there exists C > 0

such that |�(t, x, μ)| ≤ C for all t ∈ I , x ∈ , μ ∈P();
3′. � is locally Lipschitz if and only if, for any compact  ⊂ R

n , there exists L > 0
such that

∣∣�(t, x, μ)−�(t, x ′, μ′)
∣∣ ≤ L

(|x − x ′| +W2(μ,μ′)
)
for all t ∈ I ,

x, x ′ ∈ , μ,μ′ ∈P().

2.3 Derivatives in the Space of Probability Measures

There are several concepts of derivative of a functionP → R. In this paper, we shall
employ the notion of “intrinsic derivative” [18].

Definition 2.3 (C 1 maps)A function F : Pc(R
n)→ R is said to be of classC 1 if and

only if there exists a sequentially continuous, locally bounded map δF
δμ
: Pc(R

n) ×
R
n → R such that

F(μ′)− F(μ) =
∫ 1

0

∫
δF

δμ

(
(1− t)μ+ tμ′, y

)
d(μ′ − μ)(y) dt ∀μ,μ′ ∈Pc(R

n).

Since δF
δμ

is defined up to an additive constant, we adopt the normalization convention

∫
δF

δμ
(μ, y) dμ(y) = 0 ∀μ ∈Pc(R

n).

Definition 2.4 Let δF
δμ

beC 1 in y. Then the intrinsic derivative DμF : Pc(R
n)×Rn →

R
n is defined by DμF

.= Dy
δF
δμ

.

Some important properties of the intrinsic derivative are gathered in the following
proposition, which combines the statements of Propositions 2.2−2.4 from [17].

Proposition 2.1 Let F : Pc(R
n)→ R beC 1, δF

δμ
beC 1 in y, and DμF be sequentially

continuous and locally bounded. Then, the following holds:

1. For any Borel measurable, locally bounded map ϕ : Rn → R
n, the function s �→

F
(
(id + sϕ)�μ

)
is differentiable at zero, and

d

ds

∣∣∣
s=0F

(
(id + sϕ)�μ

) =
∫

DμF(μ, y) · ϕ(y) dμ(y). (5)

2. Given a compact set  ⊂ R
n, the restriction of F to P() satisfies

∣∣∣∣F(μ′)− F(μ)−
∫∫

DμF(μ, y) · (y − x) d�(x, y)

∣∣∣∣
≤ o

((∫∫
|x − y|2 d�(x, y)

)1/2
)

,

for any μ,μ′ ∈P() and any transport plan � between μ and μ′.
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3. The quantity δF
δμ

can be calculated as follows:

δF

δμ
(μ, y) = lim

h→0+
1

h

(
F
(
(1− h)μ+ hδy

)− F(μ)
)
.

The first property links the intrinsic derivative with a “directional” derivative, where
ϕ plays the role of direction. The second one relates the notion of intrinsic derivative
with the so-called localized Wasserstein derivative [10]:

Definition 2.5 (localized Wasserstein derivative) We say that F : P2(R
n) → R is

locally differentiable atμ ∈P2(R
n) if there exists a tangent vector ξ ∈ TanμP2(R

n)

such that, for any compact set  ⊃ sptμ, the restriction of F toP() satisfies

F(μ′)− F(μ) =
∫∫
〈ξ(x), y − x〉 d�(x, y)+ o

((∫∫
|x − y|2 d�(x, y)

)1/2
)

,

for any μ′ ∈ P() and any transport plan � between μ and μ′. Such ξ is uniquely
defined and called the localized Wasserstein derivative of F at μ.

Recall that the tangent space TanμP2(R
n) toP2(R

n) atμ ∈P2(R
n) is introduced

as

TanμP2(R
n) = {∇ϕ s.t. ϕ ∈ C∞c (Rn)

}L2
μ ⊂ L2

μ = L2
μ(Rn;Rn).

Proposition 2.1 says that any C 1 functional on the space of probability measures
with sequentially continuous and locally bounded intrinsic derivative DμF is locally
differentiable at anyμ ∈Pc(R

n), and the projection of DμF(μ, ·) onto TanμP2(R
n)

coincides with the corresponding localized Wasserstein derivative.
The third assertion of Proposition 2.1 offers a convenient tool for practical cal-

culation of the intrinsic derivative. We illustrate this machinery with the use of the
following paradigmatic example.

Example 1 Let K : Rn → R
n be a C 1 map. Fixed x ∈ R

n , let us compute the intrinsic

derivative of the functional μ �→ F(x, μ)
.= (K ∗ μ)(x)

.=
∫

K (x − y) dμ(y). By

observing that

F
(
x, (1− t)μ+ tδy

) = (1− t)
∫

K (x − y) dμ(y)+ t K (x − y),

the flat derivative is easily found as

δF

δμ
(x, μ, y) = K (x − y)−

∫
K (x − z) dμ(z),

which gives: DμF(x, μ, y) = Dy
δF
δμ

(x, μ, y) = −DK (x − y).
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Recall another useful fact:

Lemma 2.1 Let F be the same as in Proposition 2.1. Then F is locally Lipschitz.

Proof Fix a compact set and two measuresμ,μ′ ∈P(). Denote by� an optimal
plan between μ and μ′ and let μt = (1− t)μ+ tμ′. Then, we have

F(μ′)− F(μ) =
∫ 1

0

∫∫ [
δF

δμ
(μt , y)− δF

δμ
(μt , x)

]
d�(x, y) dt .

The difference in the squared brackets is

∫ 1

0
Dy

δF

δμ
(μt , (1− s)y + sx) (y − x) ds.

Hence the statement follows from the local boundedness of DμF = Dy
δF
δμ

. ��
Definition 2.6 We say that F : Pc(R

n)→ R is of class C 1,1 if F is C 1, δF
δμ

is C 1 in
y, and the intrinsic derivative DμF is locally Lipschitz and locally bounded.

2.4 Nonlocal Vector Fields and Their Flows

A time-dependent nonlocal vector field is a map V : I × R
n ×Pc(R

n) → R
n . If

the dependence on μ ∈ Pc(R
n) is fictitious we say that V is a local vector field (or

simply “vector field”). The basic regularity of nonlocal vector fields is understood in
the sense of Definition 2.2.

It is well-known that the local transport PDEs can be studied using their character-
istic flows. Recall the following

Definition 2.7 We say that a vector field v : I × R
n → R

n is of class C 1,1 if

1. v is a locally bounded Carathéodory map;
2. v is C 1 in x for each t ;
3. Dxv : I × R

n →M
n,n is Carathéodory, locally bounded and locally Lipschitz.

Any sublinear C 1,1 vector field v generates a unique continuous map P : I × I ×
R
n → R

n named the flow of vt ; this map is defined such that, for each t0 ∈ I and
x ∈ R

n , t �→ Pt0,t (x) is as a solution of the Cauchy problem

∂t Pt0,t (x) = vt
(
Pt0,t (x)

)
, Pt0,t0(x) = x .

For any t0, t ∈ I the map Pt0,t : Rn → R
n is a C 2 diffeomorphism. Moreover, it

satisfies the semigroup property: Pt1,t2 ◦ Pt0,t1 = Pt0,t2 for all t0, t1, t2 ∈ I .
In fact, the concept of flow can be extended to the case of nonlocal vector fields.

To this end, we modify Definition 2.7 as follows:

Definition 2.8 We say that a nonlocal vector field V : I ×R
n ×P2(R

n)→ R
n is of

class C 1,1 if
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1) V is a locally bounded Carathéodory map;
2) V is C 1 in x for each t and μ, and C 1 in μ for each t and x ;
3) both DxV : I×Rn×Pc(R

n)→M
n,n and DμV : I×Rn×Pc(R

n)×Rn →M
n,n

are Carathéodory, locally bounded and locally Lipschitz.

Now, observe that any sublinear C 1,1 nonlocal vector field V generates a unique
sequentially continuous function X : I × I ×R

n ×Pc(R
n)→ R

n such that, for each
x ∈ R

n and ϑ ∈P2(R
n), t �→ Xϑ

t0,t (x) is a solution of the ODE

∂t X
ϑ
t0,t (x) = Vt

(
Xϑ
t0,t (x), X

ϑ
t0,t�ϑ

)
, Xϑ

t0,t0(x) = x .

We abbreviate Xϑ
t = Xϑ

0,t and stress that μt = (Xϑ
t )�ϑ is the unique solution of

the nonlocal continuity equation

∂tμt + divx (Vt (·, μt )μt ) = 0, μ0 = ϑ.

We call the map X the flow of the nonlocal vector field V .
Notice that, for a given ϑ , we can define vt (x)

.= Vt (x, Xϑ
t�ϑ) and denote by P the

flow of v. It is clear that Xϑ
0,t = P0,t . We will use this fact below several times.

The outlined facts (existence of the flow, well-posedness of the nonlocal continuity
equation, and the representation formula for its solution) are well-known, refer, e.g.,
to [11, 29, 41].

2.5 Oloc(�2) Families of Vector Fields

In this section, we discuss some differential properties of nonlocal vector fields and
their flows.

Definition 2.9 Let�λ : X �→ R
m ,λ ∈ [0, 1], be a family of functions on a topological

space X . We say that �λ is Oloc(λ
2) family and write

�λ = Oloc(λ
2) or �λ(x) = Oloc(x; λ2)

if for any compact setK ⊂X there exists CK > 0 such that
∣∣�λ(x)

∣∣ ≤ CK λ2 for
all λ ∈ [0, 1] and x ∈ K .

In particular, a family of nonlocal vector fields V λ : I × R
n ×Pc(R

n) → R
n is

Oloc(λ
2) if, for any compact  ⊂ R

n , there exists C > 0 such that
∣∣V λ

t (x, μ)
∣∣ ≤

Cλ2, for all λ ∈ [0, 1], t ∈ I , x ∈ , μ ∈P().

Lemma 2.2 Let V be a nonlocal vector field of class C 1,1. Then, for any locally
bounded ϕ,ψ : Rn → R, one has

Vt
(
x + λϕ(x), (id + λψ)�μ

)− Vt (x, μ)

−λDxVt (x, μ)ϕ(x)− λ

∫
DμVt (x, μ, y)ψ(y) dμ(y)
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= Oloc(t, x, μ; λ2), λ ∈ [0, 1].

Moreover, the constant C that guaranties the estimate

Oloc(t, x, μ; λ2) ≤ Cλ2 ∀(t, x, μ) ∈ I ××P()

depends only on the data

r
.= max {|x | +max{|ϕ(x)|, |ψ(x)|} : x ∈ }

Lr = max
t∈I

{
max

Br×P(Br )
lip(DxVt ), max

Br×P(Br )×Br

lip(DμVt )

}
. (6)

Proof We split the proof into several steps.
1. Fix a compact set and a triple (t, x, μ) ∈ I××P(). Consider the identity:

Vt
(
x + λϕ(x), (id + λψ)�μ

)− Vt (x, μ)

= Vt
(
x + λϕ(x), (id + λψ)�μ

)− Vt
(
x, (id + λψ)�μ

)
+ Vt

(
x, (id + λψ)�μ

)− Vt (x, μ).

By the mean value theorem, the first difference in the right-hand side takes the form

λ

∫ 1

0
DxVt

(
x + sλϕ(x), (id + λψ)�μ

)
ϕ(x) ds,

and the second one yields

∫ 1

0

∫
δVt
δμ

(
μλ,τ , y

)
d
(
(id + λψ)�μ− μ

)
(y) dτ

=
∫ 1

0

∫ [
δVt
δμ

(
μλ,τ , y + λψ(y)

)− δVt
δμ

(
μλ,τ , y

)]
dμ(y) dτ

= λ

∫ 1

0

∫ 1

0

∫
DμVt

(
x, μλ,τ , y + sλψ(y)

)
ψ(y) dμ(y) ds dτ,

where μλ,τ = (1− τ)μ+ τ(id + λψ)�μ.
2. Let r be as in (6). Then x + λϕ(x) ∈ Br and (id + λψ)�μ ∈ P(Br ) for all

λ ∈ [0, 1], x ∈ , μ ∈P(). Since DxV and DμV are locally Lipschitz,

∣∣DxVt
(
x + sλϕ(x), (id + λψ)�μ

)
ϕ(x)− DxVt (x, μ)ϕ(x)

∣∣
≤ λLr

(
|ϕ(x)|2 + ‖ψ‖L2

μ
|ϕ(x)|

)
(7)∣∣∣∣

∫
DμVt

(
x, μλ,τ , y + sλψ(y)

)
ψ(y) dμ(y)−

∫
DμVt (x, μ, y)ψ(y) dμ(y)

∣∣∣∣
≤ Lr

(
W2(μ,μλ,τ )‖ψ‖L1

μ
+ λ‖ψ‖2L2

μ

)
. (8)
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3. Let us estimate W2
(
μ,μλ,τ

)
. To this end, recall that

W 2
2 ((1− τ)μ0 + τμ1, ν) ≤ (1− τ)W 2

2 (μ0, ν)+ τW 2
2 (μ1, ν), (9)

for all μ0, μ1, ν ∈ P2(R
n) and all τ ∈ [0, 1]. This inequality becomes evident if

we note that, for any �0 ∈ �o(μ0, ν) and �1 ∈ �o(μ1, ν), the convex combination
(1− τ)�0+ τ�1 is a transport plan between (1− τ)μ0+ τμ1 and ν. In our case, (9)
implies that

W2
(
μ,μλ,τ

) ≤ √τW2
(
μ, (id + λψ)�μ

) ≤ √τλ‖ψ‖L2
μ
.

The statement now follows from (7), (8) and the inequalities |ϕ| ≤ r , |ψ | ≤ r on . ��
Arguments, similar to those of the previous proof, lead to the following slight

modification of Lemma 2.2.

Lemma 2.3 Let V be a nonlocal vector field of classC 1,1 and X : I×Rn×Pc(R
n)→

R
n be a sequentially continuous and locally bounded map such that x �→ Xμ

t (x) is
bijective for all t andμ. Then, for any locally bounded Carathéodory maps ϕ,ψ : I ×
R
n ×Pc(R

n)→ R
n, we have

Vt
(
Xμ
t (x)+ λϕ

μ
t (x), (Xμ

t + λψ
μ
t )�μ

)− Vt
(
Xμ
t (x), Xμ

t�μ
)

− λDxVt
(
Xμ
t (x), Xμ

t�μ
)

ϕ
μ
t (x)

− λ

∫
DμVt

(
Xμ
t (x), Xμ

t�μ, Xμ
t (y)

)
ψ

μ
t (y) dμ(y)

= Oloc(t, x, μ; λ2).

Moreover, the constant C which guaranties the estimate

Oloc(t, x, μ; λ2) ≤ Cλ2 ∀(t, x, μ) ∈ I ××P()

depends only on

r
.= max

{∣∣Xμ
t (x)

∣∣+max{|ϕμ
t (x)|, |ψμ

t (x)|} : (t, x, μ) ∈ I ××P()
}

(10)

and Lr which bounds, for all t , the Lipschitz constants of DxVt and DμVt :

lip(DxVt ) ≤ Lr on Br ×P(Br ), lip(DμVt ) ≤ Lr on Br ×P(Br )× Br .

The following presents a refined version of the formula (5) for the intrinsic deriva-
tive.

Lemma 2.4 Let F : Pc(R
n) → R be of class C 1,1, and �λ : Rn → R

n, λ ∈ [0, 1],
be a family of Borel maps which can be expanded as follows:

�λ(x) = �0(x)+ λϕ(x)+ Oloc(x; λ2), (11)
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for some ϕ : Rn → R
n. Then,

F
(
�λ

�μ
)
− F(�0

�μ)− λ

∫
DμF

(
�0

�μ,�0(y)
)

ϕ(y) dμ(y) = Oloc(μ; λ2).

Proof In view of Lemma 2.3, it suffices to show that

F
(
�λ

�μ
)
− F

(
(�0 + λϕ)�μ

)
= Oloc(μ; λ2).

According to Lemma 2.1, F is locally Lipschitz. Hence, for any compact  ⊂ R
n ,

there exists L > 0 such that

∣∣∣F
(
�λ

�μ
)
− F

(
(�0 + λϕ)�μ

) ∣∣∣ ≤ LW2

(
�λ

�μ, (�0 + λϕ)�μ
)

≤ L

∥∥∥�λ −�0 − λϕ

∥∥∥
L2

μ

,

for all μ ∈P(). Now, by using (11), we complete the proof. ��

2.6 Derivative of the Flow

Recall that, for a fixed initial measure, any sublinear C 1,1 nonlocal vector field (n.v.f.)
V generates a map X that can be thought of as its flow. We shall study the flow Xλ of
the perturbed n.v.f. V λ = V + λW , where W is also sublinear C 1,1, and λ ∈ [0, 1].

The results of this section, which provide the linearization of the nonlocal flow, are
largely similar to those of [10, sec. 3.2] (both in their statements and their proofs).
However, in contrast to [10], we accept here nonlocal perturbations of the vector
field. On the other hand, we impose slightly more restrictive assumptions, enabling
us to expand the nonlocal flow up to the term of order O(λ2) rather than o(λ) as
demonstrated in [10]. This fact will play a crucial role in establishing the convergence
of our numerical algorithm in Sect. 5.1.

Theorem 2.1 Let V ,W be sublinear C 1,1 nonlocal vector fields, X be the flow of V
and Xλ be the flow of V λ .= V + λW, where λ ∈ [0, 1]. Then

Xλ − X − λw = Oloc(λ
2),

where w : I × R
n ×Pc(R

n)→ R
n satisfies the differential equation

∂tw
ϑ
t (x) = DxVt

(
Xϑ
t (x), Xϑ

t�ϑ
)

wϑ
t (x)

+
∫

DμVt
(
Xϑ
t (x), Xϑ

t�ϑ, Xϑ
t (y)

)
wϑ
t (y) dϑ(y)

+Wt

(
Xϑ
t (x), Xϑ

t�ϑ
)

(12)
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and the initial condition
wϑ
0 (x) = 0. (13)

Moreover, the constant C which guaranties the estimate

Oloc(t, x, ϑ; λ2) ≤ Cλ2 ∀(t, x, ϑ) ∈ I ××P()

depends only on the constants ρ, Cρ , r , Lr defined below by (14), (15), (17), (18).

Remark 2.1 First, notice thatϑ in (12) can be considered as a parameter. Thus, (12) can
be thought of as “linear transport equation with nonlocal source term”. One can easily
show (for example, by fixed-point arguments) that (12), (13) has a unique continuous
solutionw (see also [10, 11], where such solution is constructed explicitly for the case
Wt (x, μ) ≡ Wt (x)). Moreover, w is sequentially continuous as a function of t , x , ϑ .

Before presenting the proof, note that our assumptions on V and W imply that
there exists C > 0 such that

∣∣V λ
t (x, μ)

∣∣ ≤ C (1+ |x |), for all t , x , μ, λ. This means

that
∣∣∣Xλ,ϑ

t (x)
∣∣∣ ≤ eCt (Ct + |x |) for all t , x , ϑ , λ. As a consequence, (t, x, ϑ) �→(

t, Xϑ,λ
t (x), Xϑ,λ

t� ϑ
)
maps I ××P() into I × Bρ ×P(Bρ), where

ρ
.= max

{
eCT (CT + |x |) : x ∈ 

}
. (14)

Using the local boundedness of DxV , DμV and W , we can find Cρ > 0 such that

|DxV | ≤ Cρ |DμV | ≤ Cρ, |W | ≤ Cρ on I × Bρ ×P(Bρ). (15)

Now, it follows from (12), (13) that

|w| ≤ Cρe
2CρT on I ××P(). (16)

This implies that (t, x, ϑ) �→
(
t, (Xλ,ϑ

t + λwϑ
t )(x), (Xλ,ϑ

t + λwϑ
t )�ϑ

)
maps I ×

×P() into I × Br ×P(Br ), where

r
.= ρ + Cρe

2CρT . (17)

Finally, since V λ, DxV λ and DμV λ are locally Lipschitz, we choose Lr > 0 such
that

lip(V λ
t ) ≤ Lr , lip(DxV

λ
t ) ≤ Lr on Br ×P(Br ),

lip(DμV
λ
t ) ≤ Lr on Br ×P(Br )× Br , (18)

for all t ∈ I and λ ∈ [0, 1].
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Fix a compact set  ⊂ R
n and a measure ϑ ∈P(). From now on, we will omit

the index ϑ in Xλ,ϑ
t and wϑ

t . Consider the following set:

X () =
{
ϕ ∈ C0(I ×;Rn) : |ϕt (x)| ≤ eCt (Ct + |x |)

}
,

and equip it with the norm ‖ϕ‖σ = maxI× e−σ t |ϕt (x)|, σ > 0. Since ‖ · ‖σ is
equivalent to the standard sup norm, X () becomes a complete metric space.

Finally, for any λ ∈ [0, 1] and ϕ ∈X (), we define

F (λ, ϕ)(t, x) = x +
∫ t

0
V λ

τ

(
ϕτ (x), ϕτ�ϑ

)
dτ, t ∈ I , x ∈ .

One can easily check that F maps [0, 1] ×X () toX ().

Lemma 2.5 The map ϕ �→ F (λ, ϕ) is contractive in the σ -norm for all sufficiently
large σ . Moreover, the corresponding Lipschitz constant κ < 1 does not depend on λ.

Proof Let r be defined by (17). Given ϕ,ψ ∈X (), we have

|F (λ, ϕ)−F (λ, ψ)| (t, x) ≤
∫ t

0

∣∣V λ
τ

(
ϕτ (x), ϕτ�ϑ

)− V λ
τ

(
ψτ (x), ψτ�ϑ

)∣∣ dτ

≤ Lr

∫ t

0

(
‖ϕτ − ψτ‖C 0(;Rn) + ‖ϕτ − ψτ‖L2

ϑ

)
dτ,

for any t ∈ I , x ∈ , λ ∈ [0, 1]. Since ‖ϕτ − ψτ‖L2
ϑ
≤ ‖ϕτ − ψτ‖C 0(;Rn) , we

obtain:

‖F (λ, ϕ)t −F (λ, ψ)t‖C 0(;Rn) ≤ 2Lr

∫ t

0
‖ϕτ − ψτ‖C 0(;Rn) dτ.

Then, for all t ∈ I ,

e−σ t ‖F (λ, ϕ)t −F (λ, ψ)t‖C 0(;Rn) ≤ 2Lre
−σ t

∫ t

0
eστ ‖ϕ − ψ‖σ dτ

≤ 2Lr

σ
‖ϕ − ψ‖σ ,

which means that F (λ, ·) is contractive for any σ > 2Lr . ��
Proof of Theorem 2.1 Let σ be chosen so that σ > 2Lr as in the proof of Lemma 2.5.
By definition, Xλ is a fixed point ofF (λ, ·) for any λ ∈ [0, 1]. Therefore, by Theorem
A.2.1 in [15],

∥∥Xλ − X − λw
∥∥

σ
≤ 1

(1− κ)
‖F (λ, X + λw)− X − λw‖σ , (19)

where κ
.= 2Lr/σ < 1.
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It remains to estimate the right-hand side of (19). Since X = F (0, X), we obtain

F (λ, Xt + λwt ) (t, x)− Xt (x)

=
∫ t

0

[
Vτ

(
Xτ (x)+ λwτ (x), (Xτ + λwτ )� ϑ

)− Vτ

(
Xτ (x), Xτ�ϑ

)]
dτ

+ λ

∫ t

0
Wτ

(
Xτ (x)+ λwτ (x), (Xτ + λwτ )� ϑ

)
dτ.

Lemma 2.3 demonstrates that the first integrand is equal to

λDxVτ

(
Xτ (x), Xτ�ϑ

)
wτ (x)+ λ

∫
DμVτ

(
Xτ (x), Xτ�ϑ, Xτ (y)

)
wτ (y) dϑ(y)

+ Oloc(t, x, ϑ; λ2),

and the second one can be rewritten as λWτ

(
Xτ (x), Xτ�ϑ

)+Oloc(t, x, ϑ; λ2). Now,
the statement follows from (12). The fact that C depends only on ρ, Cρ , r , Lr is the
consequence of (17), (18) and the second part of Lemma 2.3. ��

3 Increment Formula

Now, we turn to the analysis of the increment of the cost functional along an ade-
quate class of control variations. The theory of Pontryagin’s maximum principle is
commonly built around the class of needle-shaped variation. However, for the speci-
fied control-affine case, the latter can be replaced by a simpler class of weak control
variations.

3.1 Problem Specification

In this section, in order to simplify the presentation, we assume that the driving vector
field V is affine in control variable u, i.e.,

Vt (x, μ, u) = V 0
t (x, μ)+

m∑
j=1

V j
t (x, μ) u j , u j ∈ R, (20)

and the running cost is identically zero, i.e., L ≡ 0. Later, in Sect. 6 we will discuss
how to deal with the general case. We begin by listing our basic assumptions.

Assumption (A1):

1. V takes the form (20), where all V j with 0 ≤ j ≤ m are of class C 1,1;
2. U ⊂ R

m is compact and convex;
3. � : Pc(R

n)→ R is of class C 1,1.

Assumption (A2): all maps DxV j with 0 ≤ j ≤ m are continuously differentiable
in x and their derivatives are locally bounded.
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Remark 3.1 We use Assumption (A2) only once: to show that, for any fixed control
function u ∈ U , the solution w of (12), (13) which corresponds to Vt (x, μ)

.=
Vt (x, μ, u(t)) isC 1 in x . Indeed, t �→ wϑ

t (x) satisfies the ODE:
d

dt
wt = A(t, x)wt+

b(t, x), where both functions

A(t, x)
.= DxVt

(
Xϑ
t (x), Xϑ

t�ϑ
)

, and

b(t, x)
.=
∫

DμVt
(
Xϑ
t (x), Xϑ

t�ϑ, Xϑ
t (y)

)
wϑ
t (y) dϑ(y)+Wt

(
Xϑ
t (x), Xϑ

t�ϑ
)

are continuously differentiable. Hence, w is C 1 in x , according to the standard ODE
theory.

3.2 Increment Formula I

Further in this section, ϑ is supposed to be fixed, so we will omit it when writing the
arguments X and w.

Let us fix a pair of control functions u, ū ∈ U , u �= ū. We call u a reference control
and ū a target control. A weak variation of u towards ū is the convex combination

uλ .= u + λ(ū − u), λ ∈ [0, 1]. (21)

In viewof (20), the variation (21) implies the following perturbation of the reference
vector field Vt (x, μ)

.= Vt (x, μ, u(t)):

V λ
t (x, μ)

.=Vt
(
x, μ, uλ(t)

) = Vt (x, μ)+ λWt (x, μ),

Wt (x, μ)
.=

m∑
j=1

V j
t (x, μ)

(
ū j (t)− u j (t)

)
.

Note that, by Assumption (A1), there exists C > 0 such that
∣∣V λ

t (x, μ)
∣∣ ≤ C(1+

|x |), for all t , x , μ, λ, u, ū. This means that ρ from (14) can be chosen independently
from u, ū ∈ U . Again, by Assumption (A1), we can find Cρ which guarantees, for
all u, ū ∈ U , the estimate (15), then construct r by (17) and find Lr such that (18)
holds for all u, ū ∈ U . Now, Theorem 2.1 implies that

Xλ
T − XT − λwT = Oloc(x, ϑ, u, ū; λ2),

where w is a solution of (12), (13). Here, we think of U as a compact topological
space equipped with the weak-∗ topology σ(L∞, L1).

Since I [u] = �(XT �ϑ) and I [uλ] = �(Xλ
T �ϑ) and ϑ is fixed, we can use

Lemma 2.4 to get
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Proposition 3.1 Under assumptions (A1), (A2) one has

I [uλ] −I [u] = λ

∫
Dμ�

(
XT �ϑ, XT (y)

)
wT (y) dϑ(y)+ O(u, ū; λ2), (22)

where w is a solution of the linear problem (12), (13).

Here we write O instead of Oloc because U is already compact.
Our next goal is to rewrite this formula in a “constructive” form, namely, in terms

of a Hamiltonian system associated to our optimal control problem.

3.3 Hamiltonian System

The Hamiltonian system associated with Problem (P) (see (1)-(3)) is merely a conti-
nuity equation on the cotangent bundle of Rn , i.e., on the space Rn × (Rn)∗ � R

2n

comprised by pairs (x, p), where x is the primal and p is the dual state variables. In
our case, this equation takes the form

∂tγt + div(x,p)

( �H (·, ·, γt , u(t)) γt

)
= 0, (23)

�H(x, p, γ, u)
.=
⎛
⎝ Vt (x, π

1
� γ, u)

−p DxVt (x, π
1
� γ, u)−

∫∫
q DμVt (y, π

1
� γ, u, x) dγ (y, q)

⎞
⎠ .

(24)

This equation is supplemented with the terminal condition

γT =
(
id,−Dμ�(μT )

)
�
μT , (25)

where μt satisfies (2). The standard well-posedness result for nonlocal continuity
equations (see, e.g., [46]) guarantees that (23), (25) has a unique solution γt .Moreover,
the projection of γt onto the x space coincides with μt :

π1
� γt = μt ∀t ∈ I . (26)

3.4 Increment Formula II

Let us go back to (22). First, recalling that μT
.= XT �ϑ , we express the integral

entering in its right-hand side as follows:

∫
Dμ�(μT , x) wT

(
X−1T (x)

)
dμT (x)

= −
∫∫

pwT

(
X−1T (x)

)
d
[(
id,−Dμ�(μT )

)
�
μT

]
(x, p)

= −
∫∫

pwT

(
X−1T (x)

)
dγT (x, p).
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By Lemma 8.1.2 [1], the following version of the classical Newton-Leibniz formula
holds for any function ψ ∈ C 1(I × R

2n):

∫∫
ψT dγT −

∫∫
ψ0 dγ0 =

∫ T

0

( ∫∫
�t (x, p) dγt (x, p)

)
dt, (27)

�t (x, p)
.= ∂tψt (x, p)+∇xψt (x, p) Vt (x, μt )

−
[
p DxVt (x, μt )+

∫∫
q DμVt (y, μt , x) dγt (y, q)

]
∇pψt (x, p). (28)

Remark 3.1 allows us to take ψt (x, p)
.= p · wt

(
X−1t (x)

)
in the above expression.

Recall that Xt (x) = P0,t (x), where P is the flow of the noauthonomous vector field
vt (x) = Vt (x, μt , u(t)), in particular, X−1t = Pt,0 and we can use the standard rules
of flow differentiation (Theorem 2.3.3 [15]) to perform the calculations:

∂tψt (x, p) = p
[
∂twt

(
Pt,0(x)

)+ Dxwt
(
Pt,0(x)

)
∂t Pt,0(x)

]
= p

[
∂twt

(
Pt,0(x)

)− Dxwt
(
Pt,0(x)

)
Dx Pt,0(x) Vt (x, μt )

]
= p ∂twt

(
Pt,0(x)

)−∇xψt (x, p) · Vt (x, μt ) ,

∇xψt (x, p) = p Dxwt
(
Pt,0(x)

)
Dx Pt,0(x), ∇pψt (x, p) = wt

(
Pt,0(x)

)
.

Then,
∫∫

�t dγt =
∫∫ [

p ∂twt

(
X−1t (x)

)
− p DxVt (x, μt ) wt

(
X−1t (x)

)]
dγt (x, p)

−
∫∫ [ ∫∫

qDμVt (y, μt , x) dγt (y, q)
]
wt

(
X−1t (x)

)
dγt (x, p).

In view of (12), the right-hand side reduces to

∫∫
p Wt (x, μt ) dγt (x, p)

+
∫∫

p
[ ∫

DμVt (x, μt , y) wt

(
X−1t (y)

)
dμt (y)

]
dγt (x, p)

−
∫∫ [ ∫∫

q DμVt (y, μt , x) dγt (y, q)
]
wt

(
X−1t (x)

)
dγt (x, p).

Renaming the variables (x, p) ↔ (y, q) in the latter term shows that the last two
terms cancel out. Hence,

∫∫
�t dγt =

∫∫
p Wt (x, μt ) dγt (x, p).

Finally, noticing that ψ0
.= pw0 ≡ 0 and

λ

∫∫
ψT dγT = λ

∫∫
pwT

(
X−1T (x)

)
dγT (x, p)
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= −
(
I [uλ] −I [u] − O(u, ū; λ2)

)
,

then using (27) and the definition of Wt , we have

Proposition 3.2 Under assumptions (A1), (A2) it holds

I [uλ] −I [u] = −λ

∫ T

0
(Ht (γt , ū(t))− Ht (γt , u(t))) dt + O(u, ū; λ2), (29)

where

Ht (γ, u)
.=
∫∫

p Vt (x, π
1
� γ, u) dγ (x, p) (30)

and t �→ γt is a solution of the Hamiltonian system (23)–(25).

3.5 Pontryagin’s Maximum Principle

A consequence of the increment formula (29) is the following version of Pontryagin’s
maximum principle.

Theorem 3.1 (PMP in terms of Hamiltonian system) Assume that (A1,2) hold, and
ϑ ∈Pc(R

n). Let (μ, u) be an optimal pair for (P). Then u(t) satisfies, for a.e. t ∈ I ,
the maximum condition

Ht (γt , u(t)) = max
υ∈U Ht (γt , υ), (31)

where γ is a unique solution of the Hamiltonian system (23)–(25) and Ht is defined
by (30).

Proof Since u is optimal, we have I [uλ] −I [u] ≥ 0 for any target control ū. Now,
the increment formula implies that

sup
ū∈U

∫ T

0
Ht (γt , ū(t)) dt =

∫ T

0
Ht (γt , u(t)) dt .

On the other hand,

sup
ū∈U

∫ T

0
Ht (γt , ū(t)) dt ≤

∫ T

0
max
υ∈U Ht (γt , υ) dt . (32)

Let ψ(t, υ)
.= Ht (γt , υ) and α(t)

.= maxυ∈U ψ(t, υ). It is easy to check that ψ is a
Carathéodory map. Since α(t) ∈ ψ(t,U ) for a.e. t ∈ I , we deduce from Filippov’s
lemma [4, Theorem 8.2.10] that there exists ũ ∈ U satisfying α(t) = ψ(t, ũ(t))
for a.e. t ∈ I . Hence, the inequality in (32) can be replaced by the equality, which
completes the proof. ��
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Remark 3.2 Pontryagin’s maximum principle displayed by Theorem 3.1 is essentially
the same as in [10, 12]. However, in these papers, the driving vector field has a specific
form: It can be represented as the sum of a nonlocal drift term and an external Lipschitz
vector field u = u(t, x) playing the role of control action. In our case, the control is a
measurable function of time variable only u = u(t), which may enter in the non-local
term itself, thus enabling us, e.g., to govern convolution kernels as in (4). Finally, note
that Theorem 3.1 can be derived from the (most general) version of PMP recently
obtained in [7], which relies on the so-called Lagrangian interpretation [24] of the
mean-field control problem (P).

Remark 3.3 We conclude this section by stressing two obvious drawbacks of the pre-
sented form of the necessary optimality condition, which are critical for its numerical
implementation.

1. Equation (23) is defined on the space of dimension 2n, which makes its numerical
solution computationally demanding even for n = 2.

2. Even ifμ is absolutely continuous, γ is not. In other words, γ never takes the form
ρt L 2n with a density function (t, x, p) �→ ρt (x, p). This is due to the fact that
γT is supported on the graph of the map x �→ −Dμ�(μT )(x), which is always
L 2n-null set. This means that system (23) can not be solved by standard numerical
methods for hyperbolic PDEs, which can be used only when densities exist.

These issues motivate the development of a new version of Theorem 3.1, which is
obtained by extracting the “adjoint system” from the Hamiltonian PDE (23).

4 Adjoint Equation

It this section, we shall see that the Hamiltonian system (23) can be decoupled into the
primal and dual parts just as one is used to experience in the classical optimal control
theory. This fact will allow us to rewrite the increment formula and Pontryagin’s
maximum principle in an equivalent form, suitable for numerics.

4.1 Derivation

After reflecting upon the formula (29), one comes upwith an idea to take, as amatter of
adjoint trajectory, the family of signed vector (namely, row vector) measures defined
by

〈νt , ϕ〉 .=
∫

p ϕ(x) dγt (x, p), ϕ ∈ C 1(Rn;Rn), (33)

where γt is the solution of (23)–(25). Indeed, return to representation (27), (28) and
specify the class of test functions ψ as follows:

ψt (x, p) = p ϕt (x), ϕ ∈ C 1
c

(
(0, T )× R

n;Rn) .
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In this case, the left-hand side of (27) vanishes, which implies

∫ T

0

( ∫∫
�t dγt

)
dt = 0, (34)

where � is defined in (28). In terms of ν, the parts of the integral in the left hand side
of (34) can be represented as follows:

∫∫
∂tψt (x, p) dγt (x, p) =

∫∫
p ∂tϕt (x) dγt (x, p) =

∫
∂tϕt (x) · dνt (x),

∫∫
∇xψt (x, p) Vt (x, μt ) dγt (x, p) =

∫∫
p Dxϕt (x) Vt (x, μt ) dγt (x, p)

=
∫

Dxϕt (x) Vt (x, μt ) · dνt (x),
∫∫

p DxVt (x, μt )∇pψt (x, p) dγt (x, p) =
∫

DxVt (x, μt ) ϕt (x) · dνt (x),

and, according to (26),

∫∫ (∫∫
qDμVt (y, μt , x) dγt (y, q)

)
∇pψt (x, p) dγt (x, p)

=
∫∫ (∫

DμVt (y, μt , x) ϕt (x) · dνt (y)

)
dγt (x, p)

=
∫ (∫

DμVt (y, μt , x) ϕt (x) · dνt (y)

)
dμt (x).

Substituting these expressions into (34), we obtain

0 ≡
∫ T

0

[ ∫
(∂tϕt (x)+ Dxϕt (x) Vt (x, μt )) · dνt (x)

]
dt

−
∫ T

0

∫
DxVt (x, μt ) ϕt (x) · dνt (x) dt

−
∫ T

0

∫ (∫
DμVt (y, μt , x) ϕt (x) · dνt (y)

)
dμt (x) dt . (35)

The choice ϕ(x) = (0, . . . , ϕi (x), . . . 0)T , where only i-th component of ϕ is nonzero,
shows that this ismerely theweak formulation of the following systemof balance laws:

∂tνi + divx (v νi ) =
∑
j

[( ∫
m j

i dν j

)
μ− ∂xi v

j ν j

]
, 1 ≤ i ≤ n. (36)

Here, for the sake of readability, we omit the lower index t of νt and abbreviate

vt (x)
.= Vt (x, μt , u(t)) ,

∫
m j

i dν j
.=
∫

m j
i (t, x, y) d(ν j )t (y),
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where m j
i = m j

i (t, x, y) are elements of the matrix DμVt (y, μt , u(t), x).
At the final time instant T , one has

〈νT , ϕ〉 =
∫∫

p ϕ(x) d
[
(id,−Dμ�(μT ))�μT

]
(x, p)

= −
∫

Dμ�(μT )(x) ϕ(x) dμT (x),

which can be rewritten in terms of the Radon-Nikodym derivative as

dνT

dμT
= −Dμ�(μT ). (37)

Definition 4.1 We call the backward system (36), (37) of nonlocal linear PDEs the
adjoint system associated to the optimal control problem (P).

4.2 Well-Posedness

We observe that there exists a solution of the adjoint system, namely, the one defined
by (33). Let us show that this solution is unique. Basically, the adjoint system (36) is
a system of linear balance laws with sources of the form

ςi
.=

n∑
j=1

[( ∫
m j

i dν j

)
μ− ∂xi v

jν j

]
. (38)

To proceed, recall basic properties [47] of the linear balance law

∂tρt + divx ( ft�t ) = ςt (39)

with a Carathéodory, locally Lipschitz, sublinear vector field ft and an integrable
source ςt .

Definition 4.2 A curve ς : I → M (Rn) is called integrable if for any Borel set
A ⊂ R

d the map t �→ ςt (A) is measurable and
∫ T
0 ‖ςt‖T V dt < +∞, where ‖ · ‖T V

denotes the total variation norm on M (Rn).

For integrable curves we can define a notion of integral in the usual way:(∫ t

0
ςs ds

)
(A)

.=
∫ t

0
ςs(A) ds, for all Borel sets A ⊂ R

n .

Definition 4.3 A curve ρ ∈ C
(
I ;M (Rn)

)
is called a solution of (39) if and only if,

for any test function ϕ ∈ C∞c (Rn) and a.e. t ∈ I , one has

d

dt

∫
ϕ dρt =

∫
∇ϕ · ft dρt +

∫
ϕ dςt .
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Theorem 4.1 Under our assumptions, there exists a unique solution of (39) with the
initial condition ρ0 = ξ . Moreover, it can be expressed by

ρt = P0,t�ξ +
∫ t

0
Ps,t�ςs ds, t ∈ I , (40)

where P is the flow of ft .

The following Lemma collects several well-known properties of the total variation
norm (since their proof is quite standard, we drop them for brevity).

Lemma 4.1 Let ρ ∈M (Rn) and ς : I →M (Rn) be an integrable curve. Then,

1. for any Borel measurable bijective map f : Rn → R
n,

‖ f�ρ‖T V = ‖ρ‖T V ;

2. for all t ∈ I ,

∥∥∥
∫ t

0
ςs ds

∥∥∥
T V
≤

∫ t

0
‖ςs‖T V ds;

3. if sptρ is contained in a compact set , then for any ϕ ∈ C 0(Rn)

‖ϕρ‖T V ≤ ‖ϕ‖C 0() ‖ρ‖T V ;

4. if sptρ is contained in a compact set , then for any K ∈ C 0(R2n)

∣∣∣∣
∫

K (x, y) dρ(y)

∣∣∣∣ ≤ ‖K‖C 0(2) ‖ρ‖T V ∀x ∈ .

The well-posedness of the adjoint system is established by the following result,
where Mc(R

n) denotes the subset of M (Rn) composed of signed measures with
compact support.

Proposition 4.1 Under assumptions (A1,2), the adjoint system (36) with the terminal
condition νT = ξ , ξ ∈ [

Mc(R
n)
]n
, has a unique solution.

Proof Take two terminal measures ξ, ξ ′ ∈ [
Mc(R

n)
]n and denote by νt and ν′t the

corresponding (potentially, non-unique) trajectories of (36). Then, from Theorem 4.1
and Lemma 4.1, it follows that

∥∥(νi − ν′i )t
∥∥
T V ≤

∥∥ξi − ξ ′i
∥∥
T V +

∫ t

0

∥∥(ςi − ς ′i )s
∥∥
T V ds,

where ς and ς ′ are the corresponding sources defined by (38). Since

ςi − ς ′i =
n∑
j=1

∂xi v
j (ν j − ν′j )−

n∑
j=1

( ∫
m j

i d(ν j − ν′j )
)
μ,
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we obtain, again by Lemma 4.1,

∥∥ςi − ς ′i
∥∥
T V ≤ C1



n∑
j=1

∥∥∥ν j − ν′j
∥∥∥
T V
+ C2

‖μ‖T V
n∑
j=1

∥∥∥ν j − ν′j
∥∥∥
T V

,

where  is a compact set containing the supports of the measures νt , ν′t , μt , t ∈ I
(one can show that there is such a set by reasoning as in [47]), C1

 is an upper bound

of
∑

i, j |∂xi v j | on I × and C2
 is an upper bound of

∑
i, j |m j

i | on I ××.

By letting r(t) =
n∑

i=1
‖(νi − ν′i )t‖T V , we obtain

r(t) ≤
n∑

i=1

∥∥ξi − ξ ′i
∥∥
T V + n

∫ t

0

(
C1

 + C2
‖μ‖T V

)
r(s) ds.

Now, Grönwall’s lemma gives the uniqueness. ��

4.3 Increment Formula III

The increment formula (29) and Pontryagin’s maximum principle (Theorem 3.1) are
trivially reformulated in terms of a solution to the adjoint system.

Theorem 4.2 (Increment formula) Assume that (A1,2) hold, and ϑ ∈ Pc(R
n). Let

u, ū ∈ U and uλ = u + λ(ū − u), λ ∈ [0, 1], be the weak variation of u. Then,

I [uλ] −I [u] = −λ

∫ T

0
(Ht (μt , νt , ū(t))−Ht (μt , νt , u(t))) dt + O(u, ū; λ2),

(41)
where

Ht (μ, ν, u)
.=
∫

Vt (x, μ, u) · dν(x). (42)

Theorem 4.3 (PMP in terms of the adjoint system) Assume that (A1,2) hold, and
ϑ ∈ Pc(R

n). Let (μ, u) be an optimal pair for (P). Then u satisfies, for a.e. t ∈ I ,
the maximum condition

Ht (μt , νt , u(t)) = max
υ∈U Ht (μt , νt , υ), (43)

where ν is a unique solution of the adjoint system (36), (37) andHt is defined by (42).

Remark 4.1 Since the adjoint system (36), (37) has a unique solution νt , it must coin-
cide with the one given by (33). In particular, νt acts on test functions ϕ ∈ C 1(Rn;Rn)

by the rule

〈νt , ϕ〉 =
∫

p ϕ(x) dγt (x, p) =
∫ ( ∫

p dγ x
t (p)

)
ϕ(x) dμt (x), (44)
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where γ x
t is the disintegration of γt with respect to μt (see [1, Theorem 5.3.1]). If the

initial measure ϑ is absolutely continuous with respect to the Lebesgue measureL n ,
then so are all μt , t ∈ I (thanks to the representation μt = Xt�ϑ). Now, (44) implies
that every νt , t ∈ I , must be absolutely continuous as well.

The discussed fact has important consequences, which answer the challenges out-
lined by Remark 3.3:

1. In contrast to the Hamiltonian continuity equation (23) as a whole, the adjoint
system is solvable numerically.

2. While handling the adjoint equation, we deal with a system of n + 1 first-order
hyperbolic PDEs, each one “living” on R

n . Solving this system is less computa-
tionally expensive than treating a single equation on R2n .

4.4 Linear Case

Now, we establish a connection between Theorem 4.3 and the well-known version of
PMP for μ-independent vector fields Vt (x, μ, u) = Vt (x, u) (see, e.g., [13, 45]). For
such fields, the part of adjoint state is played by a solution (t, x) �→ ψt (x) of a single
non-conservative transport equation

∂tψ +∇xψ Vt = 0. (45)

It is reasonable to expect that, under sufficient regularity, the adjoint system (36) boils
down to (45). This ansatz is confirmed by the following

Proposition 4.2 Assume that (A1,2) hold, x �→ δ�
δμ

(μ, x) is of class C 2, ϑ ∈Pc(R
n)

and Vt (x, μ, u) = Vt (x, u). Let u ∈ U , and μt and νt be the corresponding solutions
of (2) and (36), (37), respectively. Then, for a.e. t ∈ I ,

dνt

dμt
= ∇xψt , (46)

where (t, x) �→ ψt (x) is a solution of the transport equation (45) with the terminal
condition

ψT = − δ�

δμ
(μT ). (47)

Proof It is clear that the representation (46), (47) does agreewith the terminal condition
(37), since

−∇xψT
.= Dx

δ�

δμ
(μT )

.= Dμ�(μT ).

Due to the uniqueness of a solution to (36), we only need to formally check that
νi

.= ∂xiψ μ, 1 ≤ i ≤ m, meets the identity (35)with the vector field Vt (x, μt , u(t)) =
vt (x).

A solution of (45), (47) can be written explicitly as ψt (x) = − δ�
δμ

(μT , Pt,T (x)),
where P is the flow of v. This formula, together with our assumptions, implies that ψ
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admits the partial derivatives ∂xi ψ , ∂xi ∂x j ψ and ∂xi ∂tψ for all 1 ≤ i, j ≤ m. These
derivatives are at least measurable in t , continuous in x and locally bounded. Take the
standard mollification kernel ηε : R→ R and consider the convolution

ψε
t (x) =

∫
ηε(t − s)ψs(x) ds.

It is easy to see that ∂xi ∂tψ
ε = ∂t∂xiψ

ε and ∂αψε → ∂αψ as ε→ 0 in the sense that

∫
I
sup
x

∣∣∂αψε − ∂αψ
∣∣ dt → 0, (48)

where ∂α denotes any of the derivatives ∂xi , ∂xi ∂x j , ∂xi ∂t . Let ν
ε
i

.= ∂xi ψ
εμ. Then, we

can formally write

∂tν
ε
i = ∂t (∂xiψ

εμ) = ∂xi (∂tψ
ε)μ− ∂xiψ

ε
∑
j

∂x j (v
jμ).

More precisely, for any test function ϕ ∈ C∞c (I × R
n;R), we have

−
〈
∂xi ψ

ε∂x j (v
jμ), ϕ

〉
= −

〈
∂x j (v

jμ), ϕ ∂xi ψ
ε
〉

=
〈
v jμ, ∂x j ϕ ∂xi ψ

ε + ϕ ∂xi ∂x j ψ
ε
〉

=
〈
v jνε

i , ∂x j ϕ
〉
+

〈
μ, ϕ ∂xi (v

j ∂x j ψ
ε)
〉
−

〈
νε
j , ϕ ∂xi v

j
〉
.

Therefore,

〈
∂tν

ε
i , ϕ

〉 =
〈
μ, ∂xi

⎛
⎝∂tψ

ε +
∑
j

v j ∂x j ψ
ε

⎞
⎠ ϕ

〉

−
〈∑

j

∂x j (v
jνε

i ), ϕ

〉
−

〈∑
j

∂xi v
jνε

j , ϕ

〉
.

It remains to use (48) for passing to the limit as ε→ 0. The first term in the right-hand
side vanishes thanks to (45), so we get

∂tνi +
∑
j

∂x j (v
jνi ) = −

∑
j

∂xi v
jν j ,

in the sense of distributions. Since DμV = 0, we conclude that ν does satisfy (36). ��
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5 Descent Method

Now, we are able to construct an algorithm for the numerical solution of Problem (P)

with vector field as in (20). Note that similar algorithms were earlier proposed for
solving classical [3] and stochastic [2] optimal control problems.

5.1 Algorithm

Letu be a reference control,μt and νt be the corresponding trajectory and co-trajectory.
Construct the target control as follows:

ū(t)
.= argmax

υ∈U Ht (μt , νt , υ) = argmax
υ∈U

m∑
j=1

υ j

∫
V j
t (x, μt ) · dνt (x).

The increment formula (41) shows that ū − u is a descent direction. Let us introduce
the functional

E [u] .= 〈ū − u, d[u]〉L2
.=
∫ T

0
〈ū − u, d[u]〉 dt, where

d j [u](t) .=
∫

V j
t (x, μt [u]) · dνt [u](x), t ∈ I , 1 ≤ j ≤ m. (49)

It is clear that E [u] ≥ 0 and E [u] = 0 implies that the pair (μ[u], u) satisfies the
PMP. In other words, E measures the “non-extremality” of u.

Now, we can use the descent direction ū − u for developing the following version
of the classical backtracking algorithm.

Algorithm 1 Descent method with backtracking (k-th iteration)

Require: uk ∈ U , c, θ ∈ (0, 1).
1: Compute the trajectories μk (forward in time) and νk (backward in time starting from (37)) of the initial

and the adjoint systems corresponding to uk , and take dk (t)
.= (d1, . . . , dm )[uk ](t), where d j [u] are

introduced in (49).
2: Compute the target control

ūk (t)
.= argmax

υ∈U
(
υ · dk (t)

)
. (50)

3: Set λk
.= max

{
θ j | j ≥ 0, I

[
uk + θ j (ūk − uk )

]
−I [uk ] ≤ c θ j 〈uk − ūk , dk 〉L2

}
.

4: Set uk+1 .= uk + λk (ūk − uk ).

The convergence analysis of the algorithm is provided by the following theorem.

Theorem 5.1 For any initial control u0 ∈ U , the sequence {uk} generated by the
algorithm
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1. is monotone in the sense that

E [uk] �= 0 ⇒ I [uk+1] < I [uk], and E [uk] = 0 ⇒ I [uk+1] = I [uk]

2. converges in the sense that E [uk] → 0 as k →∞.

Proof Let ek := E [uk] and assume that ek �→ 0. In this case, there exists ε > 0 such
that ek ≥ ε for all indices k from some countable set K ⊂ N. By the choice of λk , we
obtain, for all k ∈ K ,

I [uk] −I [uk+1] ≥ cλk
〈
ūk − uk, dk

〉
L2
= cλkek .

This shows that (λk)k∈K → 0, because otherwiseI [uk] → −∞ up to a subsequence.
For any large k we have λk ≤ θ . Hence λ := λk/θ is an admissible step. On the other
hand, by Step 4 of the algorithm for such λwe have:I

[
uk + λ(ūk − uk)

]−I [uk] ≥
cλ〈uk − ūk, dk〉L2 , that is,

−cλk

θ

〈
ūk − uk, dk

〉
L2
≤ I

[
uk + (λk/θ)(ūk − uk)

]
−I [uk]

= −λk

θ
ek + O

((
λk/θ

)2)
,

where we use the increment formula (41) to get the last equality. Hence (1−c)λk
θ

ek ≤
C
(

λk

θ

)2
, for some C > 0, or equivalently,

(1− c)ε ≤ (1− c)ek ≤ C
λk

θ
.

Since the right-hand side tends to zero, we come to a contradiction. ��

5.2 Implementation

In the algorithm described in Sect. 5.1, the primal and adjoint equations are solved
numerically. If the original problem is periodic in space, and the driving vector field has
a convolutional structure (4), then, for the numeric integration, one gives preference
to so-called spectral methods [14].

Assume that the initial measure ϑ ∈Pc(R) is absolutely continuous. This implies
that the corresponding trajectories μt and νt are absolutely continuous as well, and
all ingredients of the algorithm can be recast in terms of their densities ρt and ζt ,
respectively. Moreover, since ϑ is compactly supported, there exists a segment [a, b]
such that sptμt ⊂ [a, b], and sptνt ⊂ [a, b] for all t ∈ I . This implies that μt and
νt can be considered as measures on the circle S1 (i.e. the measures can be view as
2π -periodic in x).
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The primal and the adjoint equations can be written in the form:

∂tρ + ∂x (V (x, ρ)ρ) = S(x, ρ),

V (x, ρ) = f (x)+ (K ∗ ρ)(x), S(x, ρ) = g(x)ρ(x)+ h(x)(M ∗ ρ)(x),

(51)

f , g, h, K , M : I × S
1→ R are given functions.

Suppose that all the densities are of the class L2(S1). Upon substitution of the
truncated Fourier series

ρ(x, t) =
N /2∑

n=−N /2

ρ̂n(t)e
inx , (52)

in (51), the partial differential equation transforms into the system of ODEs

dρ̂n

dt
= −in(V̂ρ)n + Ŝn, n ∈ Z, ‖n‖ ≤ N /2, (53)

where the hat over nonlinear terms denotes their Fourier coefficients, and

ρ̂n(t) = 1

2π

∫ 2π

0
ρ(x, t)e−inx dx, (54)

stands for the Fourier coefficients of ρ(x, t).
The system (53) can be integrated by any appropriate numerical method (e.g. the

Runge–Kutta method). Transformations between the physical and spectral (Fourier)
spaces are computed by using the Fast Fourier Transforms (FFT). Multiplications of
fields are usually computed in the physical space, derivatives and convolutions are
evaluated in the Fourier space.

5.3 Numerical Experiment

Asan example,we consider the paradigmaticmodel ofKuramoto [36],which describes
an assembly of pairwise interacting homotypic oscillators. Specifically, we consider
an optimization problem in the spirit of [48], in which the goal is to synchronize a
continuous oscillatory network by a given time moment T .

The prototypic ODE representing the dynamics of N oscillators takes the form

ẋi = ωi + u1 + u2
1

N

N∑
j=1

sin(x j − xi − α), 1 ≤ i ≤ N . (55)

Here, xi (t) ∈ S
1 and ωi ∈ R are the phase and natural frequency of the i th oscillator,

respectively, α is the phase shift. Control inputs are t �→ u(t)
.= (u1(t), u2(t)), where

u1 affects the angular velocity, and u2 modulates the connectivity of the network.
As in [48], we assume that all oscillators have a common natural frequency ω,

which, in this case, can be specified as ω = 0. As the number of oscillators N →∞,
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the limiting mean-field version of (55) is described by the curve t �→ μt ∈ P(S1)

satisfying the nonlocal continuity equation driven by the vector field

V (x, μ, u)
.= u1 + u2

∫ 2π

0
sin(y − x − α) dμ(y)

.= u1V
1 + u2V

2(x, μ). (56)

Consider the problem of steering the ensemble to a given phase x0 + 2πn, n ∈ Z:

minI [u] = �(μT )
.=

∫ 2π

0
J (x, x0) dμT (x),

J (x, y)
.= 1

2
(sin x − sin y)2 + 1

2
(cos x − cos y)2 = 1− cos(x − y).

To specify the adjoint equation, we compute (see Example 1 in Sect. 2.3):

DxV (x, μ, u) = −u2
∫ 2π

0
cos(x − y + α) dμ(y),

DμV (y, μ, u, x) = u2 cos(y − x + α),

and Dμ�(μ; x) = sin(x − x0). Then, (36) becomes

∂tν + ∂x (v ν) = u2 [(K1 ∗ ν)μ+ (K2 ∗ μ)ν] , (57)

where vt (x) = Vt (x, μt , u(t)), K1(x) = cos(−x + α), K2(x) = cos(x + α).
Let us associate μ and ν with their densities represented as in (52) in terms of the

Fourier coefficients ân and b̂n , respectively. To represent the PDE (2) in the Fourier
space (i.e. in the form (53)), notice that the only non-vanishing Fourier coefficients of
(56) are V̂0 = u1, V̂1 = iπu2μ̂1 exp(iα), and the complex conjugate of the latter one
is V̂−1. This form of V (x, μ, u) enables us to compute the r.h.s. of (53) exclusively
in the Fourier space with no recourse to the physical space, in contrast with the case
when applying the pseudospectral methods to the system with a generic V (x, μ, u).

In the Fourier space, the nonlocal continuity equation reads

dân
dt
= −inu1ân + πnu2

(̂
a1ân−1eiα − â−1ân+1e−iα

)
, n ∈ Z, (58)

while the adjoint equation (36) and the terminal condition (37) become:

db̂n
dt
= −inu1b̂n + πnu2

(̂
a1b̂n−1eiα − â−1b̂n+1e−iα

)

+ πu2
(
(̂a1b̂n−1 + b̂−1ân+1)eiα + (̂a−1b̂n+1 + b̂1ân−1)e−iα

)
,

b̂n(T ) = i

2

(̂
an−1(T )e−i x0 − ân+1(T )ei x0

)
, n ∈ Z. (59)
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Fig. 1 Numerical solution of the synchronization problem for T = 6, α = 0, x0 = π , the initial
control u01 =

√
2 sin(2π t), u02 =

√
2 cos(2π t), and the initial distribution ρ0(x) = (2 + sin x +

0.8 cos 2x − 0.2 sin 2x)/(4π). The trajectory ρkt produced by the algorithm is depicted in (a) at t = 0
and in (b) at t = T . The adjoint trajectory ζ kt at the same time moments is presented in (c). The correspond-
ing controls uk1(t) and uk2(t) are shown in (d). For these controls, the cost functional is I [uk ] ≈ 8 · 10−3
(cf. I [u0] = 1). In computations, we used N = 2048 spatial Fourier harmonics, and c = 0.01, θ = 0.5
for determination of λk . The systems of ODEs (58) and (59) were solved by the 4th-order Runge–Kutta
method with constant time step τ = 0.001; stopping criterion: λk < 10−2

In order to compute the transformation ρ(x j , t) �→ ρ̂k(t) and its inverse, we employ
the forward and backward FFTs implemented in the library FFTW [32].

The problem is considered under the control constraint u21 + u22 ≤ 2; for the kth
iteration, the corresponding target control (ūk1, ū

k
2) provided by (50) takes the form:√

2√
(dk1 )2+(dk2 )2

(dk1 , d
k
2 ), and the control-update rule reads: uk+1 = uk + λk(ūk − uk).

Some computational results are presented by Fig. 1.

Remark 5.1 Let us stress several differences between the problem that we solve here
and the one addressed in [48]. First of all, in [48] the authors consider the so-called
mean-field type controls, i.e., they assume that u depends not only on t but also
on x . It is clear that this choice greatly improves the controllability of the system.
Moreover, the system in [48] is subject to common noise, which also contributes to
the controllability. Indeed, let the initial density be given by ρ0 = 1+ sin kx , k ≥ 2.
Then, the convolution in (56) vanishes, which means that our control options reduce to
shifting the wave ρ0 back and forth. On the other hand, under the presence of common
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noise, the Fourier coefficient corresponding to sin x immediately becomes nonzero
and, as a result, the system is self-synchronizing for any positive u2. A similar effect
can be observed if we try to solve (2), (56) with a discretization scheme that involves
a numerical diffusion (such as the classical Lax-Friedrichs method).

6 General Case

In this section, we shall discuss a natural extension of the obtained results to the
control-nonlinear case and general cost functional (1).

6.1 Nonlinear Dependence on Control

To handle the case of nonlinear dependence u �→ Vt (x, μ, u), we shall resort to the
standard technique based on the extension of the original classU of control signals to a
broader space Ũ

.= {
η ∈P(I ×U ) : [(t, u) �→ t]� η = 1

T L
1
}
of Young measures

[22]. It is well-known that such an extension provides the linearization of the vector
field w.r.t. the driving signal and, in a certain sense, reduces the general model to the
above control-affine case. Recall that i)U is dense in Ũ due to the embedding u �→ η,
ηt = δu(t), where t �→ ηt ∈ P(U ) is the weakly measurable family of probability
measures obtained by disintegration of η w.r.t. 1

T L
1; and ii) Ũ is compact in the

topology of weak convergence of probability measures (and therefore, in any metric
Wp, p ≥ 1) as soon as U is compact, thanks to the classical Prohorov theorem.

This passage, which is a routine of the mathematical control theory, leads to the
following relaxation of the original dynamics (2):

∂tμt + div
(
Ṽt (·, μt , ηt ) μt

) = 0, μ0 = ϑ,

Ṽt (x, μt , ηt )
.=
∫
U
Vt (x, μt , u) dηt (u)

.= 〈ηt , Vt (x, μt , ·)〉; (60)

the original cost should be reformulated in the corresponding form: Ĩ = �(μ̃T ),

where μ̃t is a solution of (60).
Observing that the dependence ω �→ Ṽt (x, μ, ω) is linear, we invite the reader

to consider the weak variation ηλ = η + λ(η̄ − η) and the respective cost increment
Ĩ [ηλ] − Ĩ [η] in place of (21) and (22), and reproduce the arguments of Sect. 3
and 4. By doing this, one ensures that the resulting increment formula and necessary
condition for the optimality of a Young measure η keep the form of Theorems 4.2
and 4.3, where V and Ht are replaced by Ṽ and H̃t , respectively, H̃t (μ, ν, ω)

.=∫
U
Ht (μ, ν, u) dω(u), and the maximum condition (43) becomes

H̃t (μ̃t , ν̃t , ηt ) = max
ω∈P(U )

H̃t (μ̃t , ν̃t , ω) ⇔ spt(ηt ) ⊆ argmax
υ∈U Ht (μ̃t , ν̃t , υ),

where ν̃t is the adjoint backward solution associated toη. Now, if the addressed control-
nonlinear problem (P) does have a usual minimizer u ∈ U , then PMP for u is restored
by taking η such that ηt = δu(t).
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6.2 Running Cost

If the map u �→ Lt (x, μ, u) is affine, one easily adapts PMP by reformulating the
dynamics (24) of the Hamiltonian PDE and the Hamiltonian (42) as

�H .=
⎛
⎝ Vt

−p Dx Vt −
∫∫

q DμVt dγ + Dx Lt +
∫∫

DμLt dγ

⎞
⎠ , (61)

and Ht
.=
∫

Vt · dν − Lt . Further details can be found, e.g., in [10]. The general

u-nonlinear case refers to the relaxation technique exhibited in Sect. 6.1.
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