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Abstract

Meta-analysis is a long-established and widespread tool to summarize, aggregate and

combine results from independent studies about the same issue of interest. As inde-

pendent studies included in a meta-analysis differ in many ways, properly accounting

for between-study heterogeneity is a relevant goal. The traditional meta-analysis model

has a random-effect formulation, where between-study heterogeneity is accounted for

through a variance component. When available, study-specific covariates can be in-

serted in the model, in order to better explain heterogeneity due to, for example, dif-

ferences in studies’ design and characteristics of participants. The resulting model is a

meta-regression model, where additional covariates represent information summarized

at the study level, and thus can be affected by aggregation error.

This thesis focuses on control risk regression, which is an example of meta-regression

used in medical investigations to evaluate the effectiveness of a treatment in clinical

trials comparing a treatment group and a control group. Control risk regression is char-

acterized by the inclusion of a summarized measure of risk for the subjects in the control

condition (control rate) as a covariate in the meta-regression model. Such a covariate

represents a proxy for the underlying risk, that is, the measure of risk at the population

level useful to describe unmeasurable sources of heterogeneity associated to a disease,

as, for example, the severity of illness. Control rate is thus affected by measurement

error. An appropriate analysis should correct for the presence of errors in order to pro-

vide reliable inference.

The thesis focuses on two extensions of the classical control risk regression model.

First, the model is extended to include additional study-specific covariates other than

the control rate, as a way to provide a more accurate explanation of the heterogeneity.

Likelihood-based inference is carried out by including measurement error corrections to

prevent biases due to error in the control rate and errors in the additional covariates.



Attention is paid to an approximate normal specification of the measurement error struc-

ture as well as to an exact, and more computationally involved, specification. The lack

of information about within-study covariances between risk measures and the covariate

components is overcome by deriving explicit expressions using Taylor expansion based

on study-level covariate subgroup summary information. As an alternative, a more

efficient solution based on a pseudo-likelihood solution is developed, under a working

independence assumption between the observed error-prone measures. The methods are

evaluated in a series of simulation studies under different specification for the sample

size, the between-study heterogeneity, as well as the underlying risk distribution. The

methods are applied to real meta-analyses about the association between COVID-19

and schizophrenia, and the association between COVID-19 and myocardial injury.

A second extension of the classical control risk regression model intends to modify the

linear relationship between the true treatment risk and the true control risk, which

is motivated by convenience, although it is not always reasonable. The proposal is a

U-shaped relationship between the risk measures, in this way allowing to describe treat-

ments which have a positive effect and a negative effect. The price to pay is in terms

of computational issues, since the likelihood function loses a closed-form expression,

even under an approximate normal measurement error specification. The method is

evaluated in a series of simulation studies, involving scenarios of different sample sizes

and between-study heterogeneity, absence or presence of linear/quadratic relationships

between the risk measures. The approach is applied to a meta-analysis about the as-

sociation between diabetes and Parkinson’s disease and to re-analyze the data about

the association between COVID-19 and myocardial injury used in the first part of the

thesis.



Sommario

La meta-analisi è uno strumento consolidato e diffuso da tempo per riassumere, aggre-

gare e combinare i risultati di studi indipendenti riferiti allo stesso oggetto di interesse.

Poiché gli studi indipendenti inclusi in una meta-analisi differiscono in molti modi, un

obiettivo rilevante è tenere adeguatamente conto dell’eterogeneità tra gli studi. Il mo-

dello tradizionale di meta-analisi è un modello ad effetti casuali in cui l’eterogeneità tra

studi viene tenuta in considerazione attraverso una componente di varianza. E’ possibile

inserire nel modello covariate studio-specifiche al fine di fornire una migliore spiegazione

della eterogeneità, la quale può essere dovuta, ad esempio, alle differenze nel disegno

degli studi e nelle caratteristiche dei partecipanti. Il modello risultante è un modello di

meta-regressione, in cui le covariate sono informazioni riassuntive a livello di studio e

quindi possono essere soggette da errori di aggregazione.

Questa tesi si concentra sulla regressione con rischio per il gruppo di controllo, la qua-

le è un esempio di meta-regressione utilizzata prevalentemente in Medicina per valutare

l’efficacia di un trattamento negli studi clinici che confrontano un gruppo di trattati e

un gruppo di controllo. La regressione con rischio per il gruppo di controllo è caratteriz-

zata dall’inclusione di una misura aggregata di rischio per i soggetti nella condizione di

controllo (tasso di controllo) che figura come covariata nel modello di meta-regressione.

Tale covariata è una rappresentazione del rischio di base, cioè una misura del rischio a

livello di popolazione utile per descrivere fonti non misurabili di eterogeneità associate

ad una malattia, come, ad esempio, la gravità della malattia. Per tale ragione il tasso

di controllo è una quantità affetta da errore di misura. Un’analisi appropriata deve

correggere per la presenza di errori al fine di fornire risultati inferenziali affidabili.

La tesi si concentra su due estensioni del classico modello di regressione con rischio

per il gruppo di controllo.



Innanzitutto, il modello viene esteso per includere ulteriori covariate studio-specifiche

diverse dal tasso di controllo, in modo da fornire una spiegazione più accurata dell’etero-

geneità. L’inferenza basata sulla verosimiglianza viene effettuata includendo correzioni

degli errori di misurazione per prevenire distorsioni dovute a errori nel tasso di controllo

ed errori nelle covariate aggiuntive. Si considera sia un modello approssimato normale

per l’errore di misura, sia un modello esatto, sebbene più complesso dal punto di vista

computazionale. Le covarianze interne agli studi tra le misure di rischio e le covaria-

te, solitamente non disponibili, vengono esplicitamente derivate tramite un’espansione

di Taylor che sfrutta le informazioni sommarie relative a sottogruppi delle covariate a

livello di studio. In alternativa, viene sviluppata una soluzione più efficiente basata

sulle pseudo-verosimiglianze, sotto l’assunzione di indipendenza tra le quantità soggette

a errore di misurazione. I metodi proposti vengono valutati in una serie di studi di

simulazione al variare della dimensione del campione, dell’eterogeneità tra gli studi e

della distribuzione del rischio sottostante. I metodi vengono applicati a meta-analisi

reali sull’associazione tra COVID-19 e schizofrenia e sull’associazione tra COVID-19 e

danno miocardico.

Una seconda estensione del classico modello di regressione con rischio per il gruppo di

controllo prevede la modifica della relazione lineare tra il vero rischio nella condizione

di trattamento e il vero rischio nella condizione di controllo, che è solitamente adottata

per motivi di convenienza, sebbene non sia sempre una scelta ragionevole. La propo-

sta è una relazione a forma di U tra le misure di rischio, che permette di descrivere

trattamenti che hanno un effetto positivo e un effetto negativo. La scelta ha un costo

in termini computazionali, poiché la funzione di verosimiglianza associata non è più in

forma chiusa, anche nel caso di errori di misura assunti approssimativamente normalie.

Il metodo viene valutato in una serie di studi di simulazione, che coinvolgono scenari con

diverse dimensioni del campione ed eterogeneità tra studi, sia in assenza sia in presenza

di relazioni lineari/quadratiche tra le misure di rischio. L’approccio viene applicato ad

una meta-analisi sull’associazione tra diabete e malattia di Parkinson e per analizzare

nuovamente i dati sull’associazione tra COVID-19 e danno miocardico utilizzati nella

prima parte della tesi.
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Introduction

Overview

Meta-analysis is a long-established approach for the quantitative analysis of information

from independent studies about the same issue of interest. Traditionally, meta-analysis

has been employed in medical and epidemical investigations. Recent attention has

involved other disciplines, including economics, ecology, education (see, e.g., Shadish and

Lecy, 2015, Gurevitch et al., 2018). A relevant goal in meta-analysis is the evaluation

and explanation of heterogeneity across studies, which can be carried out through the

inclusion of study-specific information, or covariates, giving rise to the so-called meta

regression (Tipton et al., 2019a).

In meta-analysis of the effectiveness of a treatment, differences between studies can

be due to studies’ design or patients’ characteristics. However, not all the sources

of heterogeneity can be quantified, as, for example, the severity of illness in patients.

An approximation of the severity of illness is given by the control risk, namely, the

proportion or rate of events in the control condition. The inclusion of this information in

meta-regression gives rise to the so-called control risk regression (Chaimani, 2015, Guolo

et al., 2021). The measures of risk in the treated group and in the control group are

surrogates of the true unknown values, which are estimated from each study included in

the meta-analysis (see, e.g., van Houwelingen et al., 2002). The consequent measurement

error problem should be taken into account in the meta-analytic model in order to avoid

fallacious inference (Carroll et al., 2006, Yi, 2017). Several solutions have been proposed

in the literature to face the measurement error problem in control risk regression (Guolo

et al., 2021). A hierarchical modeling approach considers a linear random-effects meta-

analytic model for the true unknown risks of outcome for treated and controls and a

measurement error model for the observed measures of risk. The normal approximate

error model is the typical choice for computational reasons. Likelihood-based inference

is typically performed, with or without flexibly accounting for deviations from normality

for the random effects (Arends et al., 2000, Ghidey et al., 2007, Guolo, 2013). Other

3
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solutions are based on the corrected score or conditional score approaches (Ghidey

et al., 2013) or make use of simulation-based techniques (Guolo, 2014) derived from

the measurement error literature.

In the above-mentioned approaches, control risk is the only covariate considered in the

meta-regression model mainly for computational convenience. Additional study-specific

covariates are usually not accounted for, although they may help explaining between-

study heterogeneity. Their inclusion in the control risk regression model, however, is

expected to induce substantial practical issues. Most of study-specific covariates are

the results of summarizing individual information. Accordingly, their observations are

affected by measurement error and by aggregation bias (Simmonds and Higgins, 2007),

which might make the relationship between the covariates and risk measure at individual

level and study level conflict. Furthermore, the lack of information about within-study

covariances between the risk measures and the error-affected covariates makes likelihood-

based inference even more problematic.

A typical feature of control risk regression is the linear relationship assumed between

the control risk and the treatment risk. Actually, linearity may not hold in general,

or it may only describe a small picture of the true and complex relationship between

the measures of risk (Boissel et al., 2008). More flexible solutions could be explored,

such as, for example, a quadratic relationship (Arends et al., 2000), leading to a U-

shaped behavior, accounting for a positive effect and a negative effect of a treatment.

Such a choice, however, comes at the cost of computational effort, since the associated

likelihood function loses a closed-form expression.

Main contributions of the thesis

This thesis focuses on some open questions in control risk regression, which are summa-

rized below.

Firstly, attention has been paid to the problem of detecting and explaining between-

study heterogeneity, by exploiting the information from study-specific covariates. To

this aim, likelihood-based solutions have been proposed for inference accounting for

the presence of measurement errors. The lack of information about within-study vari-

ance/covariance components is overcome by deriving explicit expressions using Taylor

expansions based on study-level covariates’ subgroup summary information. As an al-

ternative, a more efficient solution based on a pseudo-likelihood solution is developed,

under a working independence assumption between the observed error-prone measures.
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The methods perform satisfactorily in a series of simulation studies under different spec-

ifications for the sample size, the between-study heterogeneity, as well as the underlying

risk distribution. The methods are applied to real meta-analyses about the association

between COVID-19 and schizophrenia (Pardamean et al., 2022), and the association

between COVID-19 and myocardial injury (Sanz-Sánchez et al., 2021).

A second project of the thesis has started during the period spent at the School of Public

Health, Brown University, under the supervision of Professor Christopher H. Schmid.

The focus is on a more flexible description of the relationship between measures of risk

in the treatment group and in the control group. The classical control risk regression

model is modified to a U-shaped relationship between the risk measures, in this way

allowing to describe treatments which have a positive effect and a negative effect. The

price to pay is in terms of computational issues, since the likelihood function loses a

closed-form expression, even under an approximate normal measurement error specifi-

cation. The method is evaluated in a series of simulation studies, involving scenarios

of different sample sizes and between-study heterogeneity, absence or presence of the

linear/quadratic relationships between the risk measures. The approach is applied to a

meta-analysis about the association between Parkinson’s disease and diabetes (Lu et al.,

2014), and the meta-analysis about the association between COVID-19 and myocardial

injury (Sanz-Sánchez et al., 2021).





Chapter 1

Meta-analysis and meta-regression

Meta-analysis is a well-established process to combine, analyze and summarize seem-

ingly conflicting results from different independent studies that address similar research

questions or about the same issue of interest (Sutton and Higgins, 2008). Meta-analysis

is recognized as the highest-level tool to construct evidence-based practice. It has quickly

become popular in plenty of fields (Shadish and Lecy, 2015). Application of meta-

analysis has been mostly seen in medical and epidemiology since 1980. However, it has

recently appeared in other sciences, including psychology, ecology, economics, genetics,

astronomy, sociological and behavioral sciences. See, for example, extensive illustrations

of meta-analysis studies in Koricheva et al. (2013) and Gurevitch et al. (2018).

1.1 Fixed-effects and random-effects models

Suppose that there are n independent studies about the same issue of interest which

provide information about an effect size. The term ‘effect size’ can be thought of as

the effect of a treatment in clinical trials or the strength of a relationship between

variables. Let Yi be the estimate of the effect size θ provided by study i, i = 1, · · · , n.
Examples include the standardized mean difference, the log odds ratio, the risk difference

or correlation. The choice of effect sizes depends on the type of outcome and the goal of

analysis. We refer the interested readers to Chapter 3 in Schmid et al. (2021) for further

details about different outcomes and effect measures. Together with Yi, an estimate of

the associated uncertainty is provided, usually in form of the estimated standard error

s2i . As an alternative, a 95% confidence interval for θ can be supplied. Therefore, the

minimum information from each study is the pair (Yi, s
2
i ).

The literature distinguishes two main approaches for inference for θ. The simplest meta-

analytical model is the fixed-effects model, or the common-effect model, which assumes

that every Yi is sampled from a normal distribution with mean θ and variance σ2
i (see,

7
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e.g., Stijnen et al., 2021)

Yi = θ + εi, εi ∼ N
(
0, σ2

i

)
, (1.1)

where variance σ2
i is usually assumed known and equal to the estimated variance s2i .

The assumption about σ2
i can be reasonable in case the meta-analysis includes large

studies, but can be questionable if the included studies have small sample sizes. See,

for example, Van Houwelingen et al. 1993, Hamza et al. 2008, Bellio and Guolo 2016,

Papadimitropoulou et al. 2019 for proposals accounting for the uncertainty in the esti-

mation of σ2
i through s2i . Furthermore, s2i is the only source of variability considered in

the model. An estimator of θ can be obtained by pooling estimates Yi from the recruited

studies, taking into account the measure of precision of Yi through s2i

θ̂FE =

∑
i ωi,FEYi∑
i ωi,FE

, ωi,FE =
1

s2i
,

where the subfix ‘FE’ stands for ‘fixed-effects’. This estimator is a weighted mean in

which larger studies with lower s2i have larger weights (Rice et al., 2018). Under standard

conditions, θ̂FE is an unbiased and normally distributed estimator of θ. The associated

variance is given by
(∑

i ωi

)−1

(e.g., Viechtbauer, 2005, Guolo and Varin, 2017).

The second meta-analytic model is the random-effects model which has one more source

of variability compared to the fixed-effect model. In other words, it imposes a hierar-

chical or two-stage structure. First, within every study i, the random-effects model

assumes that the estimated effect Yi is drawn from a normal distribution with mean θi

and variance s2i , as follows,

Yi = θi + εi, εi ∼ N
(
0, s2i

)
, (1.2)

where θi denotes the underlying effect measure in study i which is unobserved. The first-

stage model (1.2) is referred to as the within-study model as it describes the variability

within every study. The second-stage model, or the between-study model, then considers

the between-study availability, assuming that every study-level effect size θi is normally

distributed with mean θ and variance τ 2 (DerSimonian and Laird, 1986)

θi = θ + δi, δi ∼ N
(
0, τ 2

)
. (1.3)

Error terms δi and εi are assumed to be independent (Thompson and Sharp, 1999,

Glasziou and Sanders, 2002, Knapp et al., 2006). Marginally, the estimated effect is

normally distributed Yi ∼ N (θ, s2i + τ 2) and the parameter vector of interest is (θ, τ 2)⊤.
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See, for example, Schmidt et al. (2009), Borenstein et al. (2010), Hunter and Schmidt

(2000), Schulze (2004), for further discussion about the choice between the fixed-effects

model and the random-effects model specification.

1.1.1 Detecting between-study heterogeneity

Heterogeneity across studies is a renowned topic in meta-analysis which receives much

attention from the literature (Hardy and Thompson, 1998, Whitehead, 2002, Viecht-

bauer, 2007b). Testing homogeneity is equivalent to testing H0 : τ 2 = 0, a problem

usually resolved using a classical Q test based on the Cochran’s statistic (Cochran,

1954, 1937)

QFE =
n∑

i=1

ωi,FE

(
Yi − θ̂FE

)2
.

Under the null hypothesis of homogeneity among studies, test statistic QFE follows

a χ2
n−1 distribution. The null hypothesis H0 is rejected when the observed value of

QFE is larger than χ2
n−1;1−α, where χ2

n−1;1−α is the α-th quantile of a χ2
n−1 distribution.

However, small values of QFE do not mean the presence of heterogeneity. The test also

has low power when the number of studies or the study size is small and hence it is not

recommended as an instrument to evaluate homogeneity (Hardy and Thompson, 1998,

Viechtbauer, 2007a).

Other ways to detect heterogeneity have also been suggested in the literature. For

instance, through simulation, Sanchez-Meca and Maŕın-Mart́ınez (1997) compare a Q

test with some Schmidt-Hunter procedures based on their powers and Type I error

rates. They show that the Q test adjusts correctly Type I error rate to the nominal

significance level, while the Schmidt-Hunter procedures obtain higher power. In another

comparison, Viechtbauer (2007b) concludes that the Q test keeps the tightest control

of the Type I error rate if compared to the likelihood ratio test, the Wald test and the

score test.

An alternative way to detect heterogeneity is to consider confidence intervals for the

between-study variance. Viechtbauer (2007a) proposes the Q-profile confidence interval

for τ 2 and shows that its coverage probability is larger compared to the Biggerstaff-

Tweedie confidence interval, the profile likelihood confidence interval, the Wald-type

confidence interval, the Sidik-Jonkman confidence interval, and the bootstrap confidence

interval, especially when assumptions about normally distributed effect size estimates

and known within-study variances only hold asymptotically. Moreover, when these

assumptions are satisfied, the Q-profile confidence interval reaches the nominal coverage
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probability.

Some statistics which are independent of the number of studies and the choice effect

measures are also proposed in Higgins and Thompson (2002) to measure the impact of

heterogeneity on a meta-analysis, namely,

H =

√
QFE

n− 1
, R =

se
(
θ̂RE

)

se
(
θ̂FE

) , I2 = max

{
QFE − (n− 1)

QFE

× 100%, 0

}
,

where θ̂RE is an estimate of θ in the random-effects model. The most common statistic

is I2, defined as the percentage of total variation due to between-study heterogeneity.

Values of I2 equal to 25%, 50% and 75% are tentatively considered low, moderate and

high, respectively (Higgins et al., 2003).

Since most of the tools discussed in this section are affected when the number of studies

is small, it is recommended to always assume heterogeneity across studies and hence

model the estimated effect measures Yi through a random-effect model (e.g., Borenstein

et al., 2010).

1.1.2 DerSimonian-Laird estimator

The most famous estimator of (θ, τ 2)
⊤
is proposed in a seminar paper by DerSimonian

and Laird (1986). When τ 2 is known, the authors suggest to estimate the effect size by

taking a weighted average of Yi

θ̂DL =

∑
i ωi,DLYi∑
i ωi,DL

, ωi,DL =
1

τ 2 + s2i
, (1.4)

where each weight is the inverse of the sum of a within-study variance and the between-

study variance. Under the random-effects model, θ̂DL is a uniformly minimum variance

unbiased estimator of the true effect measure (see, e.g., Langan et al., 2019). Since

θ̂DL has smaller weights compared to θ̂FE as τ 2 is also included in ωi,DL, the standard

error of θ̂DL is larger than the standard error of θ̂FE and thus the associated Wald-type

confidence intervals are wider.

In practice, the between-study variance τ 2 is unknown. DerSimonian and Laird propose

to estimate it using the method of moments

τ̂ 2DL = max

{
0,

QFE − (n− 1)∑
i ωi,FE −

∑
i ω

2
i,FE/

∑
i ωi,FE

}
, (1.5)
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where the truncation is needed to avoid negative values. By replacing τ in formula (1.4)

with τ̂ 2DL, we obtain the DerSimonian-Laird (DL) estimator of θ

θ̂DL =

∑
i ωi,DLYi∑
i ωi,DL

, (1.6)

where

ωi,DL =
1

τ̂ 2DL + s2i
.

The standard error of this estimator is

ŝe
(
θ̂DL

)
=

1√∑
i ωi,DL

.

According to the central limit theorem, the DL estimator of the true effect size is asymp-

totically normally distributed. The approach works reasonably well if the number of

studies is relatively large (Jackson et al., 2010), and it has a straightforward imple-

mentation. However, the uncertainty due to including τ̂ 2DL in formula (1.6) of θ̂DL is

not taken into account. Thus, the method produces confidence intervals for θ which

are narrower on average than they should be. The DL estimator of the between-study

variance is positively biased because of the truncation (Viechtbauer, 2005). Moreover,

when the number of studies is small and the between-study variance is large, τ̂ 2DL often

becomes negatively biased (Langan et al., 2019).

Other moment-based estimators are also proposed in the literature. They assume that

the estimator of the true effect is a weighted average of Yi, then equate the associated

Q statistic to its expectation and solve for τ 2, and finally plug in the solution to for-

mula (1.4) to obtain an estimator of θ. The general formula of estimators of τ 2 from

moment-based approaches is (Langan et al., 2019)

τ̂ 2M = max

{
0,

∑
i ωi

(
Yi − θ̂

)2
−
∑

i ωis
2
i +

∑
i ω

2
i s

2
i /
∑

i ωi
∑

i ωi −
∑

i ω
2
i /
∑

i ωi

}
.

Different choices of weights have been proposed (Paule and Mandel, 1982, Hedges and

Olkin, 1985, DerSimonian and Kacker, 2007, Jackson, 2013, Veroniki et al., 2016, Langan

et al., 2019). Although the choice of weights’ formulas does not affect the estimation of

the true effect measure, it has an impact on the associated standard error and confidence

intervals (Stijnen et al., 2021). Some moment-based estimators have a closed-form ex-

pression, while others need to be computed numerically. Veroniki et al. (2016) review all
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papers which compare estimation methods for the between-study heterogeneity variance

and recommend to use the Paule-Mandel approach for meta-analyses with continuous

and dichotomous outcomes. However, the Paule-Mandel estimator of τ 2 is consider-

ably positively biased if the included studies’ sizes are much different from each other

(Langan et al., 2019).

1.1.3 Hartung-Knapp-Sidik-Jonkman approach

Inference for the true effect size based on asymptotic normality of the DL estimator

of θ becomes unreliable when the number of studies is small. It is thus suggested to

adjust the standard error of the estimator of the true effect size in order to account

for the uncertainty from τ̂ 2DL (Hartung and Knapp, 2001a,b, Knapp and Hartung, 2003,

Sidik and Jonkman, 2002)

ŝeHKSJ

(
θ̂DL

)
=

√√√√
∑

i

(
Yi − θ̂DL

)2
/ (s2i + τ̂ 2DL)

(n− 1)
∑

i 1/ (s
2
i + τ̂ 2DL)

×
√

1∑
i 1/ (s

2
i + τ̂ 2DL)

=

√√√√
∑

i

(
Yi − θ̂DL

)2
/ (s2i + τ̂ 2DL)

(n− 1)
∑

i 1/ (s
2
i + τ̂ 2DL)

× ŝe
(
θ̂DL

)
, (1.7)

where a truncation towards one can be implemented when the adjusted standard error

is smaller than the unadjusted standard error. When Yi ∼ N
(
θ, τ 2 + s2i

)
,

θ̂DL − θ

ŝeHKSJ

(
θ̂DL

) ∼ tn−1.

Therefore, it is further suggested to perform the inference using a Student t distribution

with n− 1 degrees of freedom in place of the standard normal distribution for statistic

t =
(
θ̂DL − θ

)
/ŝeHKSJ

(
θ̂DL

)
. This two-step method is referred to as Hartung-Knapp-

Sidik-Jonkman (HKSJ) method and is preferred to unadjusted approaches when the

number of studies is small. Confidence intervals for the true effect size from this approach

are wider than (Wald-type) confidence intervals from the DL approach. Therefore,

confidence intervals from HKSJ method also have larger coverage probability compared

to the DL approach. In general, the first step, namely, the adjustment of standard

errors, can be applied on any estimators of θ and τ 2. However, this method still assumes

that every within-study variance is equal to its estimate. Moreover, HKSJ confidence

intervals become conservative when the number of studies is small.
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1.1.4 Likelihood estimators

The likelihood-based approach is commonly used because of its optimal large-sample

properties. Since Yi ∼ N
(
θ, τ 2+s2i

)
, the associated log-likelihood function for

(
θ, τ 2

)⊤

has a closed-form expression, as follows, up to (additive) constants,

ℓ
(
θ, τ 2

)
= −1

2

n∑

i=1

log
(
s2i + τ 2

)
− 1

2

n∑

i=1

(Yi − θ)2

s2i + τ 2
.

This function is also referred to as the approximate log-likelihood function because it is

derived from a structure which assumes known within-study variances for the estimated

effect sizes (van Houwelingen et al., 2002, Stijnen et al., 2010). Setting the partial

derivatives of this function to zero, we obtain the following score equations

θ̂MLE =

∑
i Yi/ (s

2
i + τ̂ 2MLE)∑

i 1/ (s
2
i + τ̂ 2MLE)

,

τ̂ 2MLE =

∑
i

{(
Yi − θ̂MLE

)2
− s2i

}
/ (s2i + τ̂ 2MLE)

2

∑
i 1/ (s

2
i + τ̂ 2MLE)

2 .

Since the maximum likelihood (ML) estimating equations for θ and τ 2 are connected,

the ML estimator can be computed by jointly solving these equations employing simple

iterative numerical methods, for example, the Newton-Raphson method (Hardy and

Thompson, 1996, Brockwell and Gordon, 2001). The ML estimator of θ is a weighted

average of Yi with weights proportional to s2i + τ 2. Under regularity conditions, the

ML estimator of τ 2 is asymptotically unbiased and normally distributed with variance

approaching Cramér-Rao lower bound (Veroniki et al., 2016). Therefore, it is common

to perform inference based on Wald-type statistics.

Since the ML estimator of τ 2 is known to be biased downwards because of the loss of

degree of freedom due to the estimation of θ, a preferable solution is to rely on the

restricted likelihood function (Viechtbauer, 2005)

ℓREML(τ
2) =− 1

2

n∑

i=1

log(s2i + τ 2)

− 1

2

n∑

i=1

{Yi −
∑

i Yi/ (s
2
i + τ 2) /

∑
i (s

2
i + τ 2)}2

s2i + τ 2
− 1

2
log

(
n∑

i=1

1

s2i + τ 2

)
.

The restricted log-likelihood function is the marginal log-likelihood function based on

residuals Yi − θ̂MLE. The associated restricted maximum likelihood (REML) estima-

tor can also be computed using iterative numerical methods. Specifically, the REML
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estimator of τ 2 is the solution of the following equation

τ̂ 2REML =

∑
i

[
{Yi −

∑
i Yi/ (s

2
i + τ̂ 2REML) /

∑
i 1/ (s

2
i + τ̂ 2REML)}

2 − s2i

]
/(s2i + τ̂ 2REML)

2

∑
i 1/(s

2
i + τ̂ 2REML)

2

+
1∑

i 1/(s
2
i + τ̂ 2REML)

,

which is often approximated with the following equation

τ̂ 2REML ≈
∑

i

[
n/(n− 1) {Yi −

∑
i Yi/ (s

2
i + τ̂ 2REML) /

∑
i 1/ (s

2
i + τ̂ 2REML)}

2 − s2i

]
/(s2i + τ̂ 2REML)

2

∑
i 1/(s

2
i + τ̂ 2REML)

2
.

This approximation becomes exact when the included studies have the same within-

study variances, i.e., s21 = · · · = s2n (Viechtbauer, 2007a). The REML estimator of θ is

computed using weighted average formula (1.4) with τ 2 = τ̂ 2REML. This method is pre-

ferred to the ML approach since it results in nearly unbiased estimators for τ 2 (Stijnen

et al., 2021). In Veroniki et al. (2016) and Langan et al. (2019), it is recommended over

many methods for estimating the between-study variance.

The likelihood-based inference for θ can be performed using a Wald-type confidence

interval. However, this interval is symmetric and not invariant with respect to model

reparameterization. These disadvantages can be avoided by adopting the profile likeli-

hood approach. Let τ̂ 2θ denote the constrained maximum likelihood estimator of τ 2 for

a fixed value of θ and let ℓP (θ) = ℓ
(
θ, τ̂ 2θ

)
denote the profile log-likelihood function for

θ, respectively. The signed profile log-likelihood ratio is

rP (θ) = sgn
(
θ̂MLE − θ

)√
2
{
ℓP

(
θ̂MLE

)
− ℓP (θ)

}
,

where ℓP

(
θ̂MLE

)
= ℓ

(
θ̂MLE, τ̂

2
MLE

)
. Under regularity conditions, rP (θ) is asymptot-

ically normally distributed up to an error of order O
(
n−1/2

)
(Severini, 2000). The

associated 100(1 − α)% confidence interval for θ is {θ : zα/2 ≤ rP (θ) ≤ z1−α/2}, where
zα is the α-th quantile of the standard normal distribution. A hypothesis test for θ at

100α% significance level is merely based on the comparison of the value of rP (θ) under

the null hypothesis with zα/2 and z1−α/2.

When the number of studies is small, likelihood-based inference relying on first-order

approximations can be prone to misleading results. Guolo (2012) suggests to perform

a second-order adjustment to the signed profile log-likelihood ratio statistic rP (θ) using
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Skovgaard’s statistic (Skovgaard, 1996)

r⋆P (θ) = rP (θ) +
1

rP (θ)
log

u(θ)

rP (θ)
,

where u(θ) is a function of the observed information evaluated at the unconstrained

ML estimate and the sample space derivatives of likelihood quantities with respect to

the ML estimates. The refined statistic converges to a normally distributed variable

with better accuracy O (n−1) and maintains a computationally feasible form. Through

simulation, Guolo (2012) shows that Skovgaard’s statistic results in better confidence

intervals and rejection rates compared to the first-order counterpart when the number

of studies is small to moderate. However, Skovgaard’s statistic might suffer from some

computational difficulties and numerical instabilities.

Alternatively, Huizenga et al. (2011) propose to improve the performance of the signed

profile log-likelihood ratio r2P (θ) by applying Bartlett’s correction

(1 + A)−1 r2P (θ) ∼ χ2
1,

where (1 + A)−1 is the Bartlett’s correction factor. The associated 100(1 − α)% confi-

dence interval for the true effect size is
{
θ : (1 + A)−1 r2P (θ) < χ2

1;1−α

}
, where χ2

1;1−α is

the α-th quantile of the chi square distribution with one degree of freedom χ2
1. The test

based on the corrected ratio has Type I error rate closer to the nominal level compared

to the Wald-type test, especially when there are a few studies.

As an alternative to the profile likelihood approach, Bellio and Guolo (2016) propose the

use of the integrated likelihood approach for inference for the true effect size for contin-

uous outcomes when the number of studies is small. The integrated likelihood method

eliminates the nuisance parameters given by the between study variance and within-

study variances through integration with respect to a weight function. The integrated

log-likelihood is (Severini, 2000)

ℓI(θ) = log

[∫ ∞

0

{
n∏

i=1

gi(θ, ζ)

}
π(ζ)dζ

]
,

where

gi(θ, ζ) =

∫ ∞

0

L (θ, ζ, σi) π(σi)dσi, ζ = τ 2 −
(
θ̂MLE − θ

)2
,
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and π (ζ) denotes a weight function specified in Bellio and Guolo (2016). Inference for

θ can be performed based on the signed integrated log-likelihood ratio statistic

rI(θ) = sgn
(
θ̃ − θ

)√
2
{
ℓI

(
θ̃
}
− ℓI(θ)

)
,

where θ̃ = argmax
θ

{ℓI(θ)}. The approach is shown to provide confidence intervals

with coverage probability closer to the nominal level compared to the profile likelihood

method. It also avoids numerical issues related to the estimation of heterogeneity which

might affect the inference for the true effect.

1.1.5 Nonparametric hypothesis tests for the true effect

Normality assumption for random effects’ distribution in meta-analysis is often crit-

icized in the literature (e.g., van Houwelingen et al., 2002, Guolo, 2012), despite its

computational convenience. Nonparametric solutions avoid distributional assumptions.

Follmann and Proschan (1999) propose a test for the true effect size θ. Under the as-

sumption of symmetric estimated effect sizes and the null hypothesis of no effect, this

test permutes the sign of Yi N times. This approach is equivalent to randomly switching

the label of the treatment group and the control group in each study. In every permuta-

tion, the test recomputes the value of the chosen test statistic, for example, a z statistic

or a t statistic. The reference distribution is the empirical distribution of the N obtained

values and the p-value is the proportion of values larger than the value evaluated from

the original data. The test controls Type I error rate for typical meta-analyses scenarios

(Follmann and Proschan, 1999). It is also robust to model misspecification. However,

this test is computational expensive, so it is often suggested to consider a subset of per-

mutations rather than a full set. When the number of studies is very small, it might be

impossible to obtain conventional significance levels (Viechtbauer, 2010). Furthermore,

this test can also have low power compared to parametric tests.

1.1.6 Bayesian inference

Bayesian inference can be performed on study-level effects θi, the true effect size θ and

the between-study variance τ 2. In other words, the between-study model θi ∼ N (θ, τ 2)

shows a prior distribution for θi. Moreover, study-level effect sizes are exchangeable

since their joint distribution does not depend on their order. Their exchangeability

reflects a degree of prior ignorance where their magnitudes cannot be differentiated

(Higgins et al., 2009), which allows to estimate and infer a study-level effect measure
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using information from the other studies (Schmid et al., 2021).

Let YYY = (Y1, · · · , Yn)
⊤ denote a n× 1 vector of estimated effect sizes. If the true effect

size is normally distributed θ ∼ N
(
θ0, σ

2
θ

)
, regardless of the choice of priors for the

between-study variance, the conditional posterior distributions of θ|τ 2,YYY and θi|θ, τ 2,YYY
have closed-form expression, as follows,

θ|τ 2,YYY ∼ N
(
θ1, σ

2
1

)
,

θi|θ, τ 2,YYY ∼ N

(
θ̂i,

1

1/s2i + 1/τ 2

)
,

where

θ1 =
θ̂DL

∑
i 1/(τ

2 + s2i ) + θ0/σ
2
θ∑

i 1/(τ
2 + s2i ) + 1/σ2

θ

, σ2
1 =

1

1/σ2
θ +

∑
i 1/(τ

2 + s2i )
, θ̂i =

τ 2Yi + s2i θ

τ 2 + s2i
.

Therefore, Gelman et al. (2013) and Schmid et al. (2021) describe a simple algorithm

to sample the parameters of interest which starts by numerically generating τ 2 from its

posterior distribution f (τ 2|YYY ) and then generate θ from N
(
θ1, σ

2
1

)
with the obtained

value of τ 2. Next, this algorithm generates θi from N

[
θ̂i, 1/

{
(s2i )

−1
+ (τ 2)

−1
}−1

]
with

the updated values of θ and τ 2. Finally, Yi is generated from the random-effects model

and the algorithm returns to the first step, until convergence. The computation of the

full marginal posteriors of θ and τ 2 requires numerical methods such as Markov chain

Monte Carlo (MCMC) method because of their complex analytic formulas.

A Bayesian method is complete with the choice of prior distributions for θ and τ 2, which

are usually assumed to be independent. While a common choice for the true effect size

is a normal distribution N
(
θ0, σ

2
θ

)
with a quite large value of variance σ2

θ , the literature

suggests to adopt informative priors for τ 2 which can be constructed based on the past

meta-analyses. For instance, in case of dichotomous outcomes, Turner et al. (2012,

2015) derive log-normal priors which account for the type of outcome and the type of

intervention. In case of continuous outcomes, Rhodes et al. (2015) propose log-t priors

which also account for studies’ characteristics. These data-based priors substantially

reduce the uncertainty of the estimators of θ and τ 2.

Although Bayesian methods naturally allow for full uncertainty, especially in predicting

study-level effect sizes, they may suffer from computational intensity and sensitivity to

priory judgement.
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1.1.7 Flexible random-effect distributions

Normality assumption in the between-study model is a strong assumption which

might affect the conclusions of inference (Higgins et al., 2009). It is thus suggested

to assume flexible parametric distributions for study-level effect sizes. For instance,

Smith et al. (1995) and Lee and Thompson (2008) suggest a t distribution which gives

more weight to outlying studies compared to a normal distribution. Lee and Thompson

(2008) propose to consider skewed distributions to allow for potential skewing. Böhning

(2000) uses mixture distributions, in order to account for studies belonging to unknown

groupings.

Relatively complex models, such as non-parametric likelihood distributions and Bayesian

semi-parametric distributions, are suitable choices for the random effect distribution

when there is a large number of studies, since they let the observed data determine

the shape of the random effect distribution (Higgins et al., 2009). The non-parametric

likelihood model results in a discrete distribution that is based on a finite number of mass

points (Laird, 1978, Böhning, 2005). Therefore, non-parametric likelihood distributions

are able to detect and incorporate outliers, but they are unstable (Van Houwelingen

et al., 1993). The Bayesian semi-parametric model is based on a Dirichlet process

prior (Burr et al., 2003, Burr and Doss, 2005, Ohlssen et al., 2007). Similar to non-

parametric likelihood models, Bayesian semi-parametric models can result in predictive

distributions which have unconventional shapes and strongly depend on studies at hand

(Higgins et al., 2009).

1.2 Meta-regression

Besides the use of the between-study variance, the variability across studies can be

explained by study-level characteristics which include the methodological features of

studies, the descriptors of study context, the descriptors of participants, the character-

istics of experiment interventions and exposures being evaluated in included studies, and

the aspects of outcome being measured (Tipton et al., 2019b,a). These characteristics

are encoded with study-specific covariates.

It is first suggested in Glass and Smith (1979) to fit the ordinary least squares regres-

sion to meta-analysis with covariates. However, such a solution does not account for

heteroscedasticity in the estimated effect sizes, i.e., var (Yi) = τ 2 + s2i changes across

studies. As an alternative, Raudenbush and Bryk (1985) extend the random-effects

model by keeping the within-study model (1.2) and assuming the linear relationship

between covariates and the study-level effects instead of the estimated effects. This
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solution gives rise to the so-called meta-regression model. Besides subgroup analysis,

meta-regression is an instrument to quantify the contribution of study-level characteris-

tics to the heterogeneity across studies. Let X1, · · · , Xk denote k study-level covariates.

A meta-regression model is defined as

Yi = β0 + β1Xi1 + · · ·+ βkXik + δi + εi, δi ∼ N
(
0, τ 2

)
, εi ∼ N

(
0, s2i

)
, (1.8)

where τ 2 denotes the residual variance which shows the heterogeneity across studies

that is unexplained by the study-level covariates.

Consider a meta-regression model of n studies. Let YYY = (Y1, · · · , Yn)
⊤ denote an n× 1

vector of estimated effect sizes andXXX denote an n× (k+1) design matrix of full column

rank, respectively. The meta-regression model (1.8) can be rewritten in the matrix form

YYY =XβXβXβ + δδδ + εεε, δδδ ∼ N
(
0, τ 2In

)
, εεε ∼ N

{
0, V = diag

(
s2i
)}

,

where βββ =
(
β0, β1, · · · , βk

)⊤
is a (k + 1) × 1 vector of regression coefficients, δδδ =

(δ1, · · · , δn)⊤ is an n × 1 vector of residuals, and εεε = (ε1, · · · , εn)⊤ is a n × 1 vector of

within-study errors, and V denotes the diagonal matrix of within-study variances. The

parameter of interest is thus θ =
(
β0, β1, · · · , βk, τ

2
)⊤

.

1.2.1 Estimation

A moment-based approach to estimate θ starts by estimating regression coefficients

using the weighted least squares method (Raudenbush, 2009),

β̂ββ =
(
XXX⊤WXXX

)−1
XXX⊤WYYY , (1.9)

where W = diag (ωi) is an n× n diagonal matrix of weights. Then the method sets the

associated weighted residual sum of squares to its expectation and solves for τ 2. The

estimated residual variance τ̂ 2M is then plugged in the following formula for estimating

regression coefficients,

β̂ββM =
(
XXX⊤WMXXX

)−1

XXX⊤WMYYY , v̂ar
(
β̂ββM

)
=
(
XXX⊤WMXXX

)−1

, (1.10)

where WM = diag

{(
s2i + τ̂ 2M

)−1
}

is an n× n diagonal matrix of estimated weights. A

truncation toward zero is used when obtaining negative estimates of the residual vari-

ance. The choice of weight matrices in the first step is different across moment-based
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approaches. See, e.g., Raudenbush (1994), Sidik and Jonkman (2005a,b), Raudenbush

(2009), López-López et al. (2014), Viechtbauer et al. (2015), for different moment-based

approaches. Moment-based estimators of regression coefficients are asymptotically nor-

mally distributed. If the residual variance is known, weighted least squares estimators

of the regression coefficients are unbiased, i.e., E
(
β̂ββ
)
= βββ. The choice of weight ma-

trices W does not influence the estimation of regression coefficients but the associated

standard error and thus inference. However, moment-based inference for regression co-

efficients might be unreliable since the uncertainty of the estimated residual variance is

not taken into account when estimating regression coefficients in the last step.

It is thus preferable to use the maximum likelihood approach to account for the un-

certainty in the estimator of the residual variance. Under normality assumption of the

estimated effects,

YYY ∼ Nn

(
XβXβXβ, V + τ 2I

)
.

Therefore, the log-likelihood function for θ is, up to constants (Raudenbush, 2009,

Viechtbauer et al., 2015)

ℓ (θ) ∝ −1

2
log
∣∣V + τ 2I

∣∣− 1

2
(YYY −XβXβXβ)⊤ W (YYY −XβXβXβ) .

Under regularity conditions, the maximum likelihood (ML) estimator of θ is asymptot-

ically normally distributed with mean θ and covariance matrix −J−1, where J is the

observed Fisher information. Nevertheless, the ML estimator of the residual variance

is negatively biased due to the loss of degree of freedom when estimating regression

coefficients. This problem can be resolved by using the restricted maximum likelihood

(REML) method, which removes βββ from ℓ (θ) through integration (Raudenbush, 2009,

Viechtbauer et al., 2015)

ℓREML

(
τ 2
)
∝ 1

2
log
∣∣XXX⊤XXX

∣∣− 1

2
log
∣∣V + τ 2I

∣∣− 1

2
log
∣∣XXX⊤WXXX

∣∣− 1

2
YYY ⊤MYYY ,

where

M = W −WXXX
(
XXX⊤WXXX

)−1
XXX⊤W.

While the REML estimator of regression coefficients has the same asymptotic behavior

as the ML estimator, the REML estimator of the residual variance is nearly unbiased.

The ML estimator and REML estimator are computed by equating the associated score

functions to zero and solving the resulting equations with iterative numerical algorithms,
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for example, the Newton-Raphson algorithm. Alternatively, Raudenbush (2009), López-

López et al. (2014), Viechtbauer et al. (2015) describe an algorithm to compute the

likelihood-based estimators which starts by choosing a value of τ̂ 2 from non-iterative

approaches such as moment-based ones. Then it updates the weight matrix in formula

(1.9) via the following formula

ωi =
1

s2i + τ̂ 2old
,

and updates the estimator of the residual variance by adding an amount of ∆ to the

previous estimate τ̂ 2old. This step is repeated until convergence is obtained. Finally, a

likelihood-based estimator of regression coefficients follows formula (1.9). The formula

of the updated amount ∆ is

∆ML =
YYY ⊤MMYYY − tr(W )

tr(WW )
,

for the maximum likelihood approach and

∆REML =
YYY ⊤MMYYY − tr(M)

tr(MM)

for the restricted maximum likelihood approach.

It is also possible to perform Bayesian inference for θ with, e.g., MCMC approaches

or the Gibbs sampling approach (Sutton and Abrams, 2001, Spiegelhalter et al., 2003,

Higgins et al., 2009). Specifically, it is common to assume vague priors such as normal

distributions with large variance for regression coefficients. For the residual variance,

it is possible to adopt priors which are similar to priors of the between-study variance

in a random-effects model. Likelihood-based approaches and non-informative Bayesian

approaches provide similar results when there are many studies, while credible intervals

for regression coefficents become wider than the corresponding confidence intervals when

the number of studies decreases (Schmid et al., 2021).

1.2.2 Hypothesis testing and confidence intervals

Wald-type inference for βj, j = 1, · · · , k, can be carried out straightforwardly starting

from the moment-based estimators. However, since moment-based approaches do not

account for the uncertainty in the standard errors of the estimators of regression coeffi-

cients due to the estimator of the residual variance, the empirical coverage probabilities

of Wald-type confidence intervals are smaller than the nominal coverage probability and
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the associated hypothesis tests do not adequately control Type I error (e.g., Tipton

et al., 2019a).

As an alternative, when data are in form of 2× 2 tables, Berkey et al. (1995) suggest to

approximate the sampling distribution of the centering estimator
(
β̂j − βj

)
/ŝe
(
β̂j

)
as

a Student t-distribution with n − k − 3 degrees of freedom since the t distribution pe-

nalizes meta-analyses with a few studies and/or many covariates (Tipton et al., 2019a).

To account for the uncertainty due to the estimator of the residual variance, Knapp

and Hartung (2003) (KH) propose to adjust the estimator of the standard error of the

estimator of βj, as follows,

ŝeKH

(
β̂j

)
=

√√√√√ 1

n− k − 1

n∑

i=1

{
Yi −

(
β̂0 + β̂1Xi1 + · · ·+ β̂kXik

)}2

s2i + τ̂ 2
× ŝe

(
β̂j

)
,

where a truncation towards one can be used when the adjusted standard error is smaller

than the unadjusted standard error. They also define the t statistic, as follows,

t =
β̂j − βj

ŝeKH

(
β̂j

) ,

and show that it follows a Student t-distribution with n − k − 1 degrees of freedom.

Hypothesis tests based on the Knapp-Hartung approach maintain their nominal Type I

error rates across a wide range of conditions (Higgins and Thompson, 2004, Viechtbauer

et al., 2015). However, this method can be over-conservative due to the truncation when

the number of studies is small.

Since Wald-type confidence intervals for the regression coefficient βj based on the ML

estimator are symmetric and not invariant to model reparameterization, a signed profile

likelihood ratio test statistic can be used (Huizenga et al., 2011)

rP (βj) = sgn
(
β̂j,MLE − βj

)√
2
{
ℓP

(
β̂j,MLE

)
− ℓP (βj)

}
,

where ℓP (βj) is the profile log-likelihood function for βj. The test statistic rP (βj)

converges to a normal distribution with an error of order O
(
n−1/2

)
. Several adjusted

versions of the test statistic are also proposed to improve its accuracy and hence the

associated Type I error rate. For instance, Huizenga et al. (2011) apply Bartlett’s

correction to the profile likelihood ratio test statistic r2P (βj) to reduce the deviation of

the likelihood ratio test from a chi square distribution χ2
1, especially when the number

of studies is small. Or Guolo (2012) proposes a second-order profile likelihood ratio test
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statistic based on the Skovgaard’s statistic (Skovgaard, 1996)

r⋆P (βj) = rP (βj) +
1

rP (βj)
log

u(βj)

rP (βj)
,

where u(βj) is the function of the observed information evaluated at the unconstrained

ML estimate of θ and the sample space derivatives of likelihood quantities with respect

to the ML estimates. This second-order profile likelihood ratio test statistic is asymptot-

ically normally distributed up to an error of order O (n−1). Therefore, this test statistic

has empirical rejection rate and empirical coverage probability very close to the nomial

level. The profile likelihood ratio test with the Bartlett’s correction and the second-

order profile likelihood ratio test outperform Wald-type tests with and without the KH

approach, especially when the number of studies is small (Huizenga et al., 2011, Guolo,

2012).

To avoid the distributional assumptions of random effects and within-study errors, non-

parametric tests are suggested, especially when the number of studies is small. A non-

parametric test proposed in Higgins and Thompson (2004) starts by computing a t

statistic and then permutes the index of link pairs
(
Yi, s

2
i

)⊤
several times. In each per-

mutation, the test recomputes the t statistic. The p-value of this test is the proportion

of permutations whose values of the t statistic are larger or equal to the value in the

first step. This permutation test adequately controls Type I error rate compared to the

other tests in a wide range of scenarios (Higgins and Thompson, 2004, Viechtbauer et al.,

2015). Huizenga et al. (2011) evaluate the significance of regression coefficient βj us-

ing a resampling test which starts by computing the statistic
(
β̂j − βj

)/
ŝe
(
β̂j

)
based

on the full model and computing the residuals when fitting the meta-regression model

without covariate Xj. Then this test resamples n times without replacement from the

obtained residuals, adds the resampled residuals to the models for the included studies,

reorders the elements of V accordingly, and recomputes the statistic
(
β̂j − βj

)/
ŝe
(
β̂j

)

based on the full model. This step is repeated several times and the p-value of the test

is the proportion of values of the resampled statistic which exceed the value from the

first step. Through simulation, Huizenga et al. (2011) shows that their resampling test

has slightly more accurate Type I error rate and slightly less power compared to the

profile likelihood ratio test with the Bartlett’s correction. However, this resampling

test and the permutation test in Higgins and Thompson (2004) might not reach some

conventional significance levels and suffer from heavy computational expense.
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1.2.3 Type I and Type II errors

Inference in meta-regression models with very large number of covariates might yield

to some issues with Type I error. As a solution, Hunter and Schmidt (2015) propose to

focus on covariates to avoid inflated Type I error. The choice of covariates is important,

especially when the number of studies is small to moderate (Raudenbush, 1994) because

choosing covariates without a strong reason may lead to spurious findings as a result

of chance, even if the number of studies is large (Schmidt and Hunter, 2015). Another

way to control Type I error rate is to use adjustment methods, for example, the KH

approach, the Bartlett’s correction, and the second-order test statistic. When testing

multiple regression coefficients and reporting statistically significant ones, (Thompson

and Higgins, 2002) propose to prespecify covariates and use multiple-comparisons cor-

rections to avoid very high family-wise error rates. Alternatively, Type I errors can be

controlled by concentrating on the magnitude of the estimates of regression coefficients

and the practical importance of values entertained by confidence intervals (Sterne and

Smith, 2001).

Risk of low power to detect relationship is also an issue in meta-regression. The failure to

find associations between the estimated effect size and covariates is due to the insufficient

number of studies or limited variability in the values of covariates. Through simulation,

Schmid et al. (2004) show that a meta-regression model is effective for detecting associa-

tions between effect sizes and covariates if there are at least ten studies. The approaches

in Subsection 1.2.2 have power under 80% when being applied on meta-analyses with at

most 20 studies (Huizenga et al., 2011, Viechtbauer et al., 2015). Through simulation,

Berkey et al. (1995) show that the power of a test for a regression coefficient associated

to a single continuous covariate with moderate effect can be quite low when the number

of studies is small. Some analytic methods are derived in Hedges and Pigott (2004) to

calculate the power of a test for coefficients, which show that the power is often quite

low. Furthermore, Hedges and Pigott (2004) propose to perform power analyses in the

review process and avoid performing hypothesis tests for regression coefficients when

the power is low.

1.2.4 Aggregation bias

Meta-regression models are characterized by the presence of study-level covariates

which are summarized information of individual characteristics provided by each study

included in the meta-analysis. The use of aggregate information can give rise to ag-

gregation bias, or ecological fallacy, which is a term referred to situations where the
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relationship between the effect size and covariates at the individual level is different

from the relationship at the study level (Simmonds and Higgins, 2007, Baker et al.,

2009). Aggregation bias commonly occurs when effect sizes are reasonably homoge-

neous across studies, a condition resulting in no relationship between the effect size and

the covariates, although there might exist an association between them at the individual

level. Ecological fallacy may also occur when the values of a covariate are similar at the

study level (Berlin et al., 2002). Besides, confounders can result in an association found

at the study level that does not exist at the individual level. Aggregation bias might

also occur when the values of a covariate at the individual level largely fluctuates since

the summary of these values at each study does not accurately represent their sample

in that study (Baker et al., 2009). To reduce this bias, when the covariate of interest is

the prevalence of a category, Schmid et al. (2004) suggest not to extrapolate the effect

of a change in the prevalence at the population level to the individual level except in a

vague directional sense.





Chapter 2

Classical control risk regression

Meta-analysis is commonly used in studies aimed at evaluating the effect of a treat-

ment based on the comparison of a treatment group with a placebo or control group.

The contribution of study-level characteristics to the heterogeneity across studies can

not be quantified by meta-regression if these characteristics are not measured or avail-

able. In this case, the underlying or baseline outcome event rate or mean for patients

in the control group provides a surrogate measure that is always available from studies

included in the meta-analysis. The inclusion of the baseline risk as a covariate in a

meta-regression model gives rise to the so-called control risk regression model. See, e.g.,

Schmid et al. (1998), Arends et al. (2000), van Houwelingen et al. (2002), Guolo et al.

(2021).

2.1 Model for treatment risk given control risk

Consider a meta-analysis of n independent studies about the effectiveness of a treat-

ment. Let ηi and ξi denote risk measures in the treatment group and in the control

group of study i, i = 1, · · · , n, respectively. Let η⋆i = ηi− ξi denote the treatment effect.

The classical control risk regression model assumes that the measures of risk are related

by a linear model (Arends et al., 2000, van Houwelingen et al., 2002)

ηi = β0 + β1ξi + εi, εi ∼ N
(
0, τ 2

)
, (2.1)

where τ 2 is the variance of the treatment risk across studies that is unexplained by the

control risk. The events under consideration are negative. If the intercept is zero, a

value of β1 smaller than one corresponds to the effectiveness of the treatment, while a

value of β1 larger than one corresponds to the harmfulness of the treatment. There is

no relationship between the treatment effect and the control risk when β1 is equal to

27
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one, so it is more interesting to see values of β1 different from one. The control risk

regression model can also be defined as a linear model of the treatment effect η⋆i and the

baseline risk ξi (see, e.g., Brand and Kragt, 1992, McIntosh, 1996, Schmid et al., 1998)

η⋆i = β⋆
0 + β⋆

1 (ξi − µξ) + ε⋆i , ε⋆i ∼ N
(
0, τ ⋆2

)
. (2.2)

Model (2.2) is actually a reparameterization of model 2.1, where β⋆
0 denotes the average

treatment effect when the control risk is equal to its expected value µξ. Specifically,

model (2.1) can be re-expressed as model (2.2) by simply subtracting ξi from two sides of

model (2.1) and centering this variable. A negative value of β⋆
1 indicates that η

⋆
i decreases

with ξi, i.e., the treatment becomes more effective when the disease is more serve in

population under control condition. Similarly, a positive value of β⋆
1 corresponds to the

harmfulness of the treatment. A value of β⋆
1 equal to zero shows no relationship between

the treatment effect and the baseline risk. While model (2.2) is more computationally

efficient and intuitive than the control risk regression model with treatment risk, it has

some drawbacks resulted from the negative correlation between the estimated measures

of treatment effect and the control risk since the former depends on the latter (van

Houwelingen et al., 2002). Therefore, its application is not recommended and we will

mainly consider the model with the treatment risk in this thesis.

The linear relationship between the control risk and the treatment risk is mainly based on

empirical consideration and computational convenience. However, through simulation,

Boissel et al. (2008) discover that the linear relationship only holds in a short range

of frequency of event and hence shows an incomplete picture of the true relationship

between the measures of risk, due to the limited number of studies. Therefore, flexible

relationships between the true risk measures have been discussed or derived in the

literature. Examples include the quadratic model Arends et al. (2000) and a model

resulting a U-shaped relationship between the absolute risk difference and the control

risk Wang et al. (2009). Further details can be found in Chapter 4.

2.1.1 L’Abbé plot

The true unobserved measures of risk in model (2.1) are estimated with the pro-

portion or the rate of diseased participants in every group and study. The observed

or estimated risk measures serve as a surrogate for the true ones. A graphical way to

evaluate the treatment effect is via the L’Abbé plot (L’Abbé et al., 1987) which is a

scatter plot of the observed control risk measure (x-axis) and the observed treatment

risk measure (y-axis). Every data point in a L’Abbé plot is shown in form of a circle
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With MI Without MI
Events Total Events Total
68 94 15 109
13 21 28 158
50 123 18 209
12 23 16 105
31 52 12 135
14 24 8 30
46 112 26 112
504 914 302 1906
48 89 15 35
51 133 11 538
121 170 65 989
0 10 1 125
3 16 0 85
23 50 1 95

Table 2.1: Myocardial injury dataset (Sanz-Sánchez et al., 2021).

with size proportional to the amount of information from the associated study. For

example, the circle’s size can be the inverse of the standard error of the associated ob-

served treatment effect or the inverse of the associated study size. Thus, large circles

correspond to studies with large sample size and precise estimate of the treatment effect.

Originally, the L’Abbé plot is suggested to show the variation of the treatment effects

(L’Abbé et al., 1987). When the risk difference is chosen as the treatment effect, the

heterogeneity is present if data points are not close to any lines which are parallel to

the identity line, i.e., η ̸= constant + ξ. When the treatment effect is the risk ratio, the

heterogeneity occurs if data points are not close to any lines which pass through the

origin, i.e., η ̸= constant × ξ. While treatment effects are homogeneous regardless of

choices of treatment effect if data points are close to the identity line, different choices

of treatment effect result in contrary conclusions on the heterogeneity. Therefore, it is

recommended to choose the same risk measures for the L’Abbé plot and fitting a control

risk regression model. Moreover, L’Abbé plot can be a graph of the treatment effect

against the control risk (Sharp et al., 1996) or a graph of the treatment effect against the

average of the control risk measure and the treatment risk measure (Bland and Altman,

1986), which will not be discussed in this thesis.

Table 2.1 shows a meta-analysis of 14 studies in Sanz-Sánchez et al. (2021) which eval-

uates the association between myocardial injury (MI) and COVID-19. Every study

reports the total number of COVID-19 patients and the number of deaths due to all

causes in the group with MI and the group without MI.

As an example of L’Abbé plot, Figure 2.1 shows a L’Abbé plot for the myocardial
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injury dataset (Sanz-Sánchez et al., 2021), where the log odds of all-cause mortality is

the measure of risk and the log odds ratio is the treatment effect. The identity line

(the thick solid line) is also referred to as the no-effect line. All the circles do not

scatter around any lines which are parallel to the identity line, indicating the presence

of heterogeneity of treatment effects. Most of the circles are under a line whose slope is

smaller than one. The MI dataset is of of examples that the thesis focuses on and will

be examined in detail later in Section 3.4.

Figure 2.1: L’Abbé plot for the myocardial injury dataset (Sanz-Sánchez et al.,
2021). The thick solid line is the identity line. The thin solid line is the graph of the

linear model fitted by the weighted least squares approach.

Although L’Abbé plot is a useful graphical way to detect heterogeneity, this plot

should not be used to assess the treatment effect since it only shows the measures of

risk estimated based on samples in the included studies.

2.1.2 Weighted least squares method

Brand and Kragt (1992) propose to fit a control risk regression model using the

weighted least squares (WLS) approach. This method estimates (β0, β1)
⊤ in model (2.1)

with the inverses of the variances of the observed measures of treatment risk as weights.

Inference for the regression coefficients is based on the Wald-type test and confidence
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intervals. The thin solid line in Figure 2.1 is the graph of the linear model fitted with

the WLS approach. The slope of this line is smaller than one. The x-coordinate of

the intersection of the line and the identity line is referred to as the break-even point,

which is defined as a level beyond that the treatment effect is negative and below that

the treatment effect is positive. In the MI dataset, the break-even point is between zero

and one.

The WLS approach has two major disadvantages despite of simplicity. First, since

the measure of treatment effect is a function of the risk measures, errors in estimating

the treatment effect and the control risk are negatively correlated. Therefore, if the

WLS is applied on model (2.2), negative correlation is not accounted for and hence it

yields a negative bias in the estimator of β⋆
1 . A suggested solution is to apply the WLS

approach on models where errors in the dependent variable and the independent variable

are uncorrelated, then convert the fitted model to the model of treatment effect (2.2).

For instance, (2.1) can be fitted using the WLS approach because the observed measures

of the treatment risk and the baseline risk are conditionally independent as they are

computed based on different samples. Alternatively, the WLS approach is proposed to

the linear model where the dependent variable and independent variable are the risk

difference and the average of the measures of treatment risk and control risk, respectively.

However, even if the correlation between the errors is avoided by choosing an appropriate

model, the WLS method does not take into account the fact that the measures of

treatment risk and baseline risk are observed with error since they are computed based

on samples included in the meta-analysis. The inappropriate consideration of estimation

error can result in biased estimators of the regression coefficients, which is discussed

further in the next section.

2.2 Measurement error models

2.2.1 Measurement error

Since the measure of control risk is estimated with a summary of responses from a

control group, it has measurement error. In linear regression models, failure to account

for measurement error in independent variables can attenuate regression coefficients

toward zero. A substantial amount of literature on measurement error in linear and

nonlinear models illustrate the risk of such bias (e.g., Carroll et al., 2006, Yi et al.,

2021). Control risk regression can lead to biased inference unless measurement error

is properly accounted for, which is illustrated in van Houwelingen et al. (2002), Guolo

et al. (2021) and Guolo (2021).
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In control risk regression, there are two ways to model measurement errors. An ap-

proximate model directly specifies the conditional distribution of the observed measures

of risk given the true ones through a bivariate normal distribution, while exact models

determine the relationship between the observed risk measures and the true ones by

specifying the distribution of outcomes given the true risk measures (McIntosh, 1996,

Schmid et al., 1998, van Houwelingen et al., 2002).

2.2.2 Exact measurement error model

The choice of exact measurement error model depends on the type of data and on

the risk measure. Let Yi and Xi denote the outcomes in the treatment group and the

control group in study i, respectively. In the following, we discuss exact measurement

error models for continuous data, binary data and count data.

In continuous data, each study reports the mean responses (Yi, Xi)
⊤, the standard de-

viations of responses (SDiT , SDiC)
⊤ and the group sizes (niT , niC)

⊤. If the true risk

measures ηi and ξi are the true mean responses, an exact measurement error model can

assume a normal distribution for each mean, as follows,

Yi|ηi ∼ N

(
ηi,

SD2
iT

niT

)
, Xi|ξi ∼ N

(
ξi,

SD2
iC

niC

)
. (2.3)

In binary data, each participant does or does not experience the event of interest, e.g.,

death. Let Yi and Xi be the number of subjects with events. Let niT and niC be the

size of the treatment group and the control group, respectively. If the risk measure is a

log odds of an event, a binomial distribution can be assumed for each outcome given the

true measures of risk, as follows, (Thompson et al., 1997, Arends et al., 2000, Schmid

et al., 2004)

Yi|ηi ∼ Binomial {niT , expit(ηi)} , Xi|ξi ∼ Binomimal {niC , expit(ξi)} , (2.4)

where expit (x) = exp (x) / {1 + exp (x)}.
In count data, each study reports the number of events Yi and Xi and the number

of person-years TiT and TiC . If the true risk measures ηi and ξi are the log rate of

participants with the event of interest in the treatment group and the control group,

respectively, an exact measurement error model can assume a Poisson distribution for

each count given the true risk measures (Arends et al., 2000)

Yi|ηi ∼ Poisson {exp(ηi)TiT} , Xi|ξi ∼ Poisson {exp(ξi)TiC} . (2.5)
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2.2.3 Approximate measurement error model

Let η̂i and ξ̂i denote the observed measures of the treatment risk and of the control

risk, respectively. Let s2ηi and s2ξi denote the within-study variances of η̂i and ξ̂i, respec-

tively, which are assume to be known and equal to their estimates. The approximate

model assumes that the observed risk measures are distributed as a bivariate normal

variable conditionally on the true unobserved ηi and ξi (McIntosh, 1996),

(
η̂i

ξ̂i

)∣∣∣∣∣

(
ηi

ξi

)
∼ N2

{(
ηi

ξi

)
,Γi =

(
s2ηi 0

0 s2ξi

)}
. (2.6)

The observed risk measures are uncorrelated since they are computed based on different

groups of participants. The expression of the observed risk measures and the associated

covariance matrix depends on the type of data and the choice of the risk measure. In

continuous data, the observed measures of risk are the means of responses
(
η̂i, ξ̂i

)⊤
=

(Yi, Xi)
⊤ and the formula of Γi is straightforward. In case of binary data, if the true

risk measure is a log odds of an event, the observed measures of risk are (Arends et al.,

2000, Schmid et al., 2004)

η̂i = log

(
Yi

niT − Yi

)
, ξ̂i = log

(
Xi

niC −Xi

)
, (2.7)

with

s2ηi =
1

Yi

+
1

niT − Yi

, s2ξi =
1

Xi

+
1

niC −Xi

. (2.8)

In case of count data, if the true risk measure is a log odds of an event, the observed

measures of risk and their associated within-study variances are (Arends et al., 2000)

η̂i = log

(
Yi

TiT

)
, ξ̂i = log

(
Xi

TiC

)
, s2ηi =

1

Yi

, s2ξi =
1

Xi

.

In discrete data, an ad hoc correction can be applied to an observed risk measure

and its within-study variance to ensure that they are well-defined. For example, 1/2

can be added to the nominator and the denominator in the formula of η̂i and the

denominators in the formula of s2ηi when there are no participants with or without event

in the treatment group of study i.
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2.3 Measurement error correction

In control risk regression, there are two approaches to correct measurement errors,

namely the structural approach and the functional approach. In the first way, it is

assumed that the true measure of control risk is a random variable whose distribution

is usually parametric and specified with unknown parameters. The functional method

requires no distributional assumptions for the true measures of baseline risk, i.e., they are

treated as nuisance parameters. Therefore, inference procedures are derived to address

problems arising from these two approaches accordingly.

2.3.1 Structural approaches

The structural approach assumes a distribution D (θξ) with parameter vector θξ

for the true measure of control risk. Thus, the parameter of interest in this case is

θ = (β0, β1, τ
2, θξ)

⊤
. Let fξi denote the density function of the true baseline risk. Let

fηi|ξi denote the conditional density function of the true treatment risk given the true

control risk. Note that ηi|ξi ∼ N (β0 + β1ξi, τ
2) under model (2.1). Let fη̂|ηi and fξ̂i|ξi

denote the conditional density function of the observed risk measure given the true one

in the treatment group and the control group, respectively. Under the approximate

measurement error model, the likelihood function for θ can be derived by marginalizing

the joint density of the observed risk measures and the true ones over the distribution

of the true risk measures, as follows,

L (θ) ∝
n∏

i=1

fη̂i,ξ̂i (2.9)

∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

fη̂i,ξ̂i,ηi,ξidηidξi

∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

fη̂i|ηifξ̂i|ξifηi|ξifξidηidξi,

Let fYi|ηi and fXi|ξi denote the conditional density functions of the outcomes given the

true risk measures. The same technique can be applied to derive a likelihood function
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if an exact measurement error is adopted

L (θ) ∝
n∏

i=1

fYi,Xi
(2.10)

∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

fYi,Xi,ηi,ξidηidξi

∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

fYi|ηifXi|ξifηi|ξifξidηidξi,

The approximate measurement error model can result in a likelihood function which

has a closed-form expression. This is however not the same for exact models in case of

discrete data. Although it is more computationally convenient to perform inference with

the approximate model, the distribution of the observed risk measures assumed by the

approximate model is just an asymptotic distribution and hence may not be accurate

when there are not sufficiently many participants in each of included groups. Moreover,

when data is discrete, there is a correlation between the observed risk measures and

their associated within-study variances, which may bias inference (Stijnen et al., 2021,

Guolo et al., 2021).

For computational convenience, a normal distribution is the first choice for the baseline

risk distribution (McIntosh, 1996, van Houwelingen et al., 2002). Under the approximate

measurement error model, the observed measures of risk marginally follow a bivariate

normal distribution

(
η̂i

ξ̂i

)
∼ N2

{(
β0 + β1µξ

µξ

)
,

(
s2ηi + β2

1σ
2
ξ + τ 2 β1σ

2
ξ

β1σ
2
ξ s2ξi + σ2

ξ

)}
,

and the associated likelihood function is, up to constants,

L (θ) ∝
n∏

i=1

{det (Σ + Γi)}
1

2 exp


−1

2

{(
η̂i

ξ̂i

)
− µµµ

}⊤

(Σ + Γi)
−1

{(
η̂i

ξ̂i

)
− µµµ

}
 ,

where

µµµ =

(
β0 + β1µξ

µξ

)
, Σ =

(
β2
1σ

2
ξ + τ 2 β1σ

2
ξ

β1σ
2
ξ σ2

ξ

)
.

The ML estimator of θ can be computed using iterative approaches or the EM al-

gorithm (McIntosh, 1996). The EM algorithm is based on the idea that if the true

measures of risk are observed, their sample means and covariance matrix are sufficient
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statistics. Therefore, this algorithm estimates the sufficient statistics based on the cur-

rent estimates of θ and then estimates θ based on the obtained sufficient statistics, until

convergence. Alternatively, Bayesian inference can be performed with non-informative

priors (McIntosh, 1996). The data augmentation algorithm can be used to compute

the Bayesian estimator of θ since the posterior distribution does not have a closed-form

expression. Specifically, this algorithm simulates the true risk measures based on the

current values of θ and then samples this parameter vector from the updated posterior

density, until convergence.

The normal specification of the control risk distribution is commonly adopted since it

results in a likelihood function with closed-form expression. Furthermore, it is difficult

to verify normality assumption for baseline risk because of the typically small number

of studies at hand. However, the true baseline risk distribution may not be normal as a

consequence of case-control scheme (Guolo, 2008). Specifically, the distribution of the

true measure of control risk might be bimodal or skewed. Therefore, normality assump-

tion for control risk might suffer from the risk of misspecification. This misspecification

might not strongly affect the estimation of the regression coefficients but the estimation

of the residual variance and hence might make the inference of the coefficients unreliable

(Ghidey et al., 2007, Guolo, 2013). As a solution, the literature has proposed several

ways to increase the flexibility of the baseline risk distribution.

Reasoning that the control risk distribution could be a mixture of low- and high- risk

populations, Arends et al. (2000) assume a mixture of two normal distributions with

the same variance for the baseline risk, namely,

ξi ∼ pN
(
µξ1, σ

2
ξ

)
+ (1− p)N

(
µξ2, σ

2
ξ

)
,

where p denotes the mixture weight to be estimated. This choice covers a wide range

of distributions, including unimodal and bimodal distributions, symmetric as well as

very skewed distributions. Also, under this specification of control risk distribution and

exact measurement error models, Arends et al. (2000) perform inference according to

a Bayesian approach with uninformative priors since there is no closed-form expression

for the resulting likelihood functions.

A more general way to relax normality assumption for the control risk is suggested in

Ghidey et al. (2007) which considers a finite mixture of normal distributions with the

same prespecified variance

ξi ∼
J∑

j=1

exp(aj)∑
j exp(aj)

N
(
µξj, σ

2
ξ

)
,
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where exp(aj)/
∑J

j=1 exp(aj) are unknown mixture weights and J denotes the tuning

parameter. Means µξj are equally spaced on the range of possible values of the control

risk. The tuning parameter J controls the trade-off between the goodness of fit and the

smoothness of the control risk distribution. Large values of J make this distribution

better fit the data but less smooth, while small values may yield underfitting. To

optimize the smoothness and the goodness of fit, Ghidey et al. (2007) suggest to fix J

to a large value and consider a penalized likelihood function which has a closed-form

expression if being combined with the approximate measurement error model. Penalty

terms avoid the large variability in the mixture weights of adjacent normal distributions

and hence make the control risk distribution smooth. Given the penalty coefficient, the

estimation can be easily carried out with an EM algorithm since its estimation step

and maximization step are involved with two mutually independent objective functions.

The penalty coefficient controls the importance of the penalty terms and hence the

smoothness of the control risk distribution. This coefficient is optimized using Akaike

information criterion before estimation. Through simulation, Ghidey et al. (2007) show

that their proposed control risk distribution has slightly smaller mean squared errors

of the regression coefficients compared to the normal control risk distribution when the

within-study covariance matrix has small elements and the true distribution is heavily

tailed.

Since the choice of the number of component distributions in the mixture is complex

and still somewhat arbitrary, Lee and Thompson (2008) propose to consider a family of

skew normal distributions or Student t-distributions. Let t (γξ, ωξ, k) denote a Student t

variable with location parameter γξ, scale parameter ωξ and k degrees of freedom. Let f

denote the associated density function. A skew Student t-distribution has the following

density function

fξi =
2

αξ + 1/αξ

{
f

(
ξi
αξ

)
I[0,∞)(ξi) + f (αξξi) I(−∞,0](ξi)

}
,

where I[0,∞) denotes the indicator function of the interval [0,∞) and αξ denotes the

parameter which controls the mass on each side of zero. Since the resulting likelihood

function does not have a closed-form expression and continuous even derivatives as the

proposed distribution comprises of two half distributions, the Bayesian approach can

be applied. However, the proposed control risk distribution is parameterized in terms

of its mode, so its mean is a complex function of the other parameters and difficult to

explain (Fernandez and Steel, 1998).

An alternative way to introduce skewness to the normal control risk distribution is



38 Section 2.3 - Measurement error correction

proposed in Guolo (2013) based on the skew normal distribution in Azzalini (1985).

This distribution is denoted with SN (γξ, ωξ, αξ), where γξ is the location parameter,

ωξ is the scale parameter, and αξ is the skewness parameter. The associated density

function is, as follows,

fξi =
2

ωξ

ϕ

(
ξi − γξ
ωξ

)
Φ

{
αξ (ξi − γξ)

ωξ

}
,

where ϕ denotes the density function and Φ denotes the cumulative distribution function

of a normal distribution. As a result, the normal distribution is a special case of the

skew normal distribution where the skewness parameter is equal to zero. The associated

likelihood function can be derived by integrating the joint density of
(
η̂i, ξ̂i, ξi

)
with

respect to ξi (Guolo, 2013). Since there is no closed-form expression for the likelihood

function, it can be approximated by numerical integration such as Gaussian-Hermite

quadrature. For inference, (Guolo, 2013) suggests to use the sandwich estimator of the

standard error to account for the possible misspecification of the control risk distribution.

Through simulation, she shows that the proposed control risk distribution results in

better maximized likelihood values and Akaike information criterion compared to the

normal control risk distribution. She also shows that a skew normal distribution reduces

the MSE of the estimator of the residual variance, especially when the true control risk

distribution deviates much from normality assumption.

2.3.2 Functional approaches

Unlike structural measurement error correction, a functional approach for measure-

ment error correction considers the true measures of baseline risk as nuisance pa-

rameters in place of random variables. Accordingly, this approach results in infer-

ence that is robust to the misspecification of the control risk distribution. Under

the approximate measurement error model, the likelihood function for the parame-

ter θ = (β0, β1, τ
2, ξ1, · · · , ξn)⊤ can be derived by integrating the joint distribution of(

η̂i, ξ̂i, ηi

)⊤
with respect to ηi

L (θ) ∝
n∏

i=1

fη̂i,ξ̂i ∝
n∏

i=1

∫ ∞

−∞

fη̂i,ξ̂i,ηidηi ∝
n∏

i=1

∫ ∞

−∞

fη̂i,ξ̂i|ηifηidηi,
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where fη̂i,ξ̂i|ηi denotes the density function in the approximate measurement error model

(2.6). Since the treatment risk is normally distributed ηi ∼ N (β0 + β1ξi, τ
2), the ob-

served measures of risk have a bivariate normal distribution

(
η̂i

ξ̂i

)
∼ N2 (µi,Σ + Γi) ,

and the associated likelihood function can be simplified as

L (θ) ∝
n∏

i=1

{det (Σ + Γi)}
1

2 exp


−1

2

{(
η̂i

ξ̂i

)
− µi

}⊤

(Σ + Γi)
−1

{(
η̂i

ξ̂i

)
− µi

}
 ,

where

µi =

(
β0 + β1ξi

ξi

)
, Σ =

(
τ 2 0

0 0

)
.

A major disadvantage of the functional correction is that the number of parameters

is of the same order as the number of studies, which makes the maximum likelihood

estimators of (β0, β1, τ
2, ξ1, · · · , ξn)⊤ inconsistent and the associated standard errors go

wrong (Ghidey et al., 2013).

Under the approximate measurement error model, the profile log-likelihood function

for (β0, β1, τ
2)

⊤
is derived by maximizing the likelihood function with respect to the

nuisance parameters ξi, as follows,

ℓP
(
β0, β1, τ

2
)
∝ −1

2

n∑

i=1





(
η̂i − β0 − β1ξ̂i

)2

τ 2 + s2ηi + β2
1s

2
ξi

+ log
(
τ 2 + s2ηi

)
+ log s2ξi





.

The estimators of regression coefficients from the profile log-likelihood approach is con-

sistent if the residual variance is known (Ghidey et al., 2013).

Alternatively, the restricted likelihood function is obtained by integrating the likelihood

function with respect to the nuisance parameters

ℓREML

(
β0, β1, τ

2
)
∝ −1

2

n∑

i=1





(
η̂i − β0 − β1ξ̂i

)2

τ 2 + s2ηi + β2
1s

2
ξi

+ log
(
τ 2 + s2ηi + β2

1s
2
ξi

)




.

Although the REML estimator of the residual variance is consistent if regression coeffi-

cients are known, the estimators of regression coefficients are not consistent even if the
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residual variance is known (Ghidey et al., 2013).

Thompson et al. (1997) suggest a Bayesian approach with independent non-informative

priors. Specifically, they choose a normal prior distribution with the fixed mean and

large variance for the nuisance parameters. However, van Houwelingen and Senn (1999),

Arends et al. (2000) shows that this approach is not good since asymptotically the re-

sulting posterior of the parameters of interest (β0, β1, τ
2) is equivalent to the likelihood

of an incorrectly specified model.

Walter (1997) considers model (2.1), the approximate measurement error model, and

assumes no heterogeneity across studies, i.e., τ 2 = 0. The maximum likelihood estimates

of the regression coefficients can be simultaneously computed using iterative algorithms,

for example, the Newton-Raphson algorithm. When the group sizes are similar within

study and the true measure of treatment effect is small, he assumes s2ηi = s2ξi = s2i for

all i and obtains closed-form expressions for the estimators of the regression coefficients.

However, Bernsen et al. (1999) show that the asymptotic covariance matrix of the max-

imum likelihood estimators of the regression coefficients in Walter (1997) is not correct.

Also, Sharp and Thompson (2000) show that the proposed approach fails to account

for the residual variance and the assumption for the close-form solution may not hold

in practice.

Consider binary data and let a log odds of an event be the risk measure, Cook and

Walter (1997) assume model (2.2) without heterogeneity across studies and a exact

measurement error model similar to model (2.4). Specifically, their model is

η⋆i = β0 + β1ξi,

Yi|η⋆i ∼ Binomial {niT , expit(η
⋆
i + ξi)} ,

Xi|ξi ∼ Binomimal {niC , expit(ξi)} .

They obtain a likelihood function for (β0, β1, ξ1, · · · , ξn)⊤ which is a product of binomial

density functions. The maximum likelihood estimates can be computed using itera-

tive algorithms such as the Newton-Raphson method. Although an advantage of the

proposed method over the one in Walter (1997) is the ability to properly account for

within-study covariances, it still neither resolves the aforementioned inconsistency issue

nor accounts for the residual variance.

Under model (2.1) and the approximate measurement error model (2.6), Ghidey et al.

(2013) propose corrected score equations and conditional score equations which are

based on Carroll et al. (2006) to estimate parameter vector (β0, β1, τ
2)

⊤
. To derive

corrected score equations, they apply unbiased estimating equations in linear regression
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with additive measurement error in covariates (Carroll et al., 2006) to account for the

presence of measurement error in the control risk and then modify these equations to

consider the variation across within-study variances of the treatment risk. As an alter-

native to corrected score equations, they first construct a minimum variance unbiased

estimator of ξi based on its sufficient statistics. Then they develope conditional score

equations based on the first two conditional moments of η̂i given the obtained estima-

tor of ξi. The corrected score equations and conditional score equations are solved by

iterative algorithms such as the Newton-Raphson method. They both yield consistent

estimators of the parameters of interest since they are unbiased estimating equations.

A sandwich estimator can be used for the standard error to account for possible mis-

specification. Through simulation, while the two proposed methods perform similarly

when the within-study variance of the control risk is small, the conditional estimating

equations are more efficient when the within-variance is large and the number of studies

is small. However, the conditional estimating equations have multiple roots not all of

which are consistent (Stefanski and Carroll, 1987, Tsiatis and Davidian, 2001).

Under models (2.1) and (2.6), Guolo (2014) suggests adapting a simulation extrapolation

(SIMEX) approach which is a simulation-based approach to estimate the parameters of

interest and reduce bias due to measurement errors (Carroll et al., 2006). Although this

method is first derived in Cook and Stefanski (1994), Stefanski and Cook (1995) for

additive measurement errors, it can be well applied on any types of measurement error

which can be simulated via Monte Carlo approaches. The idea behind the method is

that the effect of measurement errors on an estimator can be determined experimentally

via simulation. SIMEX is carried out into two steps. In the first step, resampling-like

strategies are used to create additional datasets with increasing measurement error.

Each of the obtained datasets provides an estimate of the parameter vector by, for

example, using the naive approach. In the second step, the relationship between the

obtained estimates and the additional datasets is evaluated and used to extrapolate the

corrected (SIMEX) estimate to the case of no error. Since the idea behind SIMEX is

simple and its application is straightforward, this approach is widespread in application.

Nevertheless, the computational effort required by SIMEX is expected to increase in case

of multiple covariates. See the discussion in Guolo (2014) and Guolo et al. (2021).
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Control risk regression with

additional covariates

3.1 Error-free covariates

Suppose that all the included studies provide information about characteristics re-

lating to the studies’ design or patients, useful to explain heterogeneity. Boissel et al.

(2008) discuss the possibility to add characteristics which are not accounted in the base-

line risk to the control risk regression model. Let encode a characteristic of interest by

a covariate ζi.

If ζi is measured or observed without error and there is no risk of aggregation bias from

this covariate, model (2.1) can be extended to include ζi, as follows,

ηi = β0 + β1ξi + β2ζi + εi, ξi ∼ N
(
µξ, σ

2
ξ

)
, εi ∼ N

(
0, τ 2

)
. (3.1)

The error-free covariate can be continuous, e.g., the year when a study was conducted,

or discrete, e.g., the place where that study was conducted. The inclusion of ζi does not

lead to any modification of measurement error model (2.6). Therefore, the marginal dis-

tribution of the observed measures of risk is a bivariate normal distribution whose mean

vector is slightly different from the mean vector in the classical control risk regression

model, i.e.,

(
η̂i

ξ̂i

)
∼ N2

{(
β0 + β1µξ + β2ζi

µξ

)
,

(
s2ηi + β2

1σ
2
ξ + τ 2 β1σ

2
ξ

β1σ
2
ξ s2ξi + σ2

ξ

)}
.

In this case, the parameter vector if interest θ is
(
β0, β1, β2, µξ, τ

2, σ2
ξ

)⊤
. In the rest of

the chapter, the focus will be on error-affected covariates.
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3.2 Error-affected covariates

The additional covariate ζi is affected by measurement error when it represents ag-

gregated information from all the subjects included in each study, as, for example, the

summary information about the age of individuals. Consider ζi following a classical

measurement error model, or an additive measurement error model, according to the

terminology in Carroll et al. (2006). The erroneous measures of ξi and ζi require the

specification of the distributions of the true measures, which can be assumed normal

and independent for computational convenience and in analogy to what is commonly

done in the classical control risk regression model. The model of ηi, ξi and ζi is thus

ηi = β0 + β1ξi + β2ζi + εi, (3.2)

where

ξi ∼ N
(
µξ, σ

2
ξ

)
, ζi ∼ N

(
µζ , σ

2
ζ

)
, εi ∼ N

(
0, τ 2

)
.

In practice, the assumption of independence between ξi and ζi in model (3.2) may

be questionable. For example, consider a covariate reporting the mean age of patients

affected by a pathology that is known to mainly affect the elderly or a covariate reporting

the log odds of male among patients affected by a pathology that is known to mainly

affect men. Let Zi denote the outcome and ζ̂i denote the observed value of covariate

ζi. Model (3.2) can be accompanied by an extension of the approximate measurement

error model (2.6). Thus,




η̂i

ξ̂i

ζ̂i




∣∣∣∣∣




ηi

ξi

ζi


 ∼ N3








ηi

ξi

ζi


 ,Γi =




s2ηi 0 sηi,ζi

0 s2ξi sξi,ζi

sηi,ζi sξi,ζi s2ζi








, (3.3)

where s2ζi denotes the within-study variance of ζ̂i, sηi,ζi denotes the within-study covari-

ance between η̂i and ζ̂i, and sξi,ζi denotes the within-study covariance between ξ̂i and

ζ̂i.

Under the assumption of independence between ξi and ζi, the marginal distribution of

the observed measures of risk and the covariate
(
η̂i, ξ̂i, ζ̂i

)⊤
in study i is




η̂i

ξ̂i

ζ̂i


 ∼ N3 (µµµ,Σ + Γi) , (3.4)
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where

µµµ =




β0 + β1µξ + β2µζ

µξ

µζ


 , Σ =




β2
1σ

2
ξ + β2

2σ
2
ζ + τ 2 β1σ

2
ξ β2σ

2
ζ

β1σ
2
ξ σ2

ξ 0

β2σ
2
ζ 0 σ2

ζ


 .

In this case, the whole parameter vector becomes θ =
(
β0, β1, β2, µξ, µζ , τ

2, σ2
ξ , σ

2
ζ

)⊤
and

the associated likelihood function has a closed-form expression,

L (θ) ∝
n∏

i=1

fη̂i,ξ̂i,ζ̂i (3.5)

∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

fη̂i,ξ̂i,ζ̂i|ηi,ξi,ζi × fηi|ξi,ζi × fξi × fζidηidξidζi

∝
n∏

i=1

{det (Σ + Γi)}
1

2 ϕ3


(Σ + Γi)

− 1

2








η̂i

ξ̂i

ζ̂i


− µµµ






 ,

where ϕ3 denotes the density function of a three-dimensional standard normal variable.

As in the control risk regression model without additional covariates, the within-study

variance of ζ̂i, s
2
ζi
, can be assumed known and equal to its estimator v̂ar

(
ζ̂i|ζi

)
, pro-

vided that the sample size in every study is large enough. However, the within-study

variance might be unknown if the information about the additional covariate is only

given in terms of the mean of values at the individual level. In this case, this within-

study variance can be substituted with appropriate values based on prior or experts’

knowledge.

Within-study covariances sηi,ζi and sξi,ζi can be computed if the amount of information

about the additional covariate is sufficient, e.g., if individual participant data (IPD)

are available. Therefore, in this case, it is possible to compute the associated likeli-

hood function using the sample estimators of within-study covariances. While the case

of available IPD is not common, subgroup summary information is more likely to be

available and it still allows to estimate within-study covariances. Likelihood functions

based on subgroup summary information will be proposed in the following subsections.

Without loss of generality, in this chapter, let us assume Yi and Xi are the number of

subjects with event and the number of subjects without event, and the risk measure is

a log odds of an event.
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Treatment group Control group
Event Non-event Event Non-event

Male Female Male Female Male Female Male Female
ZiT1M ZiT1F ZiT0M ZiT0F ZiC1M ZiC1F ZiC0M ZiC0F

Table 3.1: Subgroup summary for covariate ζi expressed as a log odds.

3.2.1 Covariate ζi expressed as a log odds

Suppose that every study provides the number of subjects in subgroups specified

with the treatment/control group, an event of interest (e.g., death) and a category of

interest (e.g., male individuals). Therefore, subgroup summary information is given in

terms of the sizes of subgroups and is shown in Table 3.1, where the subscripts ‘M’

and ‘F’ indicate male and female, respectively, the subscripts ‘T’ and ‘C’ indicate the

treatment group and the control group, respectively, and the subscripts 1 and 0 indicate

‘with event’ and ‘without event’, respectively. For example, ZiT1M denotes the number

of treated male patients with event. Let Zi denote the number of male patients in

study i, so Zi = ZiT1M + ZiT0M + ZiC1M + ZiC0M . Assume that the male indicator

at the individual level is identically distributed as a Bernoulli variable with probability

expit (ζi), so Zi has a binomial distribution

Zi|ζi ∼ Binomial {ni, expit (ζi)} , (3.6)

where ni denotes the sample size in study i, i.e., ni = niT + niC . An estimator of ζi an

its within-study variance respectively are

ζ̂i = log

(
Zi

ni − Zi

)
, s2ζi =

1

Zi

+
1

ni − Zi

.
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In this case, it is possible to compute within-study covariances using the first-order

Taylor’s expansion around the means (Bagos, 2012). Thus,

sηi,ζi = cov
(
η̂i, ζ̂i

)

= cov

(
log

Yi

niT − Yi

, log
Zi

ni − Zi

)

= cov (log Yi, logZi)− cov {log(niT − Yi), logZi}
−cov {log Yi, log(ni − Zi)}+ cov {log(niT − Yi), log(ni − Zi)}

≈ 1

E (Yi)E (Zi)
cov (Yi, Zi)−

1

E(niT − Yi)E (Zi)
cov (niT − Yi, Zi)

− 1

E (Yi)E(ni − Zi)
cov (Yi, ni − Zi)

+
1

E(niT − Yi)E(ni − Zi)
cov (niT − Yi, ni − Zi) ,

where cov denotes ‘within-study covariance’ or ‘covariance given (ηi, ξi, ζi)
⊤’. The ex-

pected values of Yi and Zi can be estimated with their observed values. Let Uik and Vik,

k = 1, · · · , n denote the indicator of event and the indicator of male of subject k in the

treatment group of study i, respectively. The within-study covariance between Yi and

Zi can be estimated as

cov (Yi, Zi) = cov (Yi, ZiT1M + ZiT0M + ZiC1M + ZiC0M)

= cov (Yi, ZiT1M + ZiT0M)

=

niT∑

j=1

niT∑

k=1

cov (Uij, Vik)

=

niT∑

k=1

cov (Uik, Vik)

= niT cov (Ui1, Vi1)

= niT {E(Ui1Vi1)− E(Ui1)E(Vi1)}
= niT {Pr (a treated patient is male and with event)

− Pr(a treated patient is with event)Pr(a treated patient is male)}

≈ niT

{
ZiT1M

niT

− Yi

niT

× (ZiT1M + ZiT0M)

niT

}

= ZiT1M − Yi (ZiT1M + ZiT0M)

niT

.
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Treatment group Control group
Event Non-event Event Non-event
ZiT1 ZiT0 ZiC1 ZiC0

Table 3.2: Subgroup summary for covariate ζi expressed as a mean.

Other within-study covariances in the expansion of sηi,ζi can be estimated similarly,

cov (niT − Yi, Zi) ≈ ZiT0M − (niT − Yi) (ZiT1M + ZiT0M)

niT

,

cov (Yi, ni − Zi) ≈ ZiT1F − Yi (ZiT1F + ZiT0F )

niT

,

cov (niT − Yi, ni − Zi) ≈ ZiT0F − (niT − Yi) (ZiT1F + ZiT0F )

niT

.

Hence, the within-study covariance between η̂i and ζ̂i is

sηi,ζi ≈ 1

Zi

(
ZiT1M

Yi

− ZiT0M

niT − Yi

)
− 1

ni − Zi

(
ZiT1F

Yi

− ZiT0F

niT − Yi

)
,

and the within-study covariance between ξ̂i and ζ̂i is

sξi,ζi ≈ 1

Zi

(
ZiC1M

Xi

− ZiC0M

niC −Xi

)
− 1

ni − Zi

(
ZiC1F

Xi

− ZiC0F

niC −Xi

)
.

3.2.2 Covariate ζi expressed as the mean response of a charac-

teristic

Suppose that every study provides the mean response of a characteristic (e.g., the

mean age of patients) in subgroups specified with the treatment/control group and an

event of interest (e.g., death). Therefore, subgroup summary information can be given

in the form of Table 3.2 where the subscripts ‘T’ and ‘C’ indicate the treatment group

and the control group, respectively, and the subscripts 1 and 0 indicate ‘with event’ or

‘without event’. For example, ZiT1 denotes the mean age of treated patients with event.

Let Zi denote the mean age of patients in study i, so

Zi =
YiZiT1 + (niT − Yi)ZiT0 +XiZiC1 + (niC −Xi)ZiC0

ni

.
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Assume that the ages of individuals in study i are identically distributed as normal

variables with mean ζi and variance SD2
i , so Zi has a normal distribution

Zi|ζi ∼ N

(
ζi,

SD2
i

ni

)
. (3.7)

An estimator of ζi and its within-study variance respectively are

ζ̂i = Zi, s2ζi =
SD2

i

ni

.

Covariances between the observed measures of risk and covariate can be approximated

using the first-order Taylor’s expansion around the means (Bagos, 2012). Let ZiT and

ZiC denote the mean age in the treatment group and in the control group, respectively.

Thus,

sηi,ζi = cov
(
η̂i, ζ̂i

)

= cov

(
log

Yi

niT − Yi

, Zi

)

= cov

(
log

Yi

niT − Yi

,
niTZiT + niCZiC

ni

)

= cov

{
log Yi − log(niT − Yi),

niT

ni

ZiT

}

=
niT

ni

cov (log Yi, ZiT )−
niT

ni

cov {log(niT − Yi), ZiT}

≈ niT

ni

1

E (Yi)
cov (Yi, ZiT )−

niT

ni

1

E (niT − Yi)
cov (niT − Yi, ZiT ) ,

The expected value of Yi can be estimated with its observed value. Let Uik denote the

indicator of event and Vik denote the age of subject k in the treatment group of study

i. The covariance between Yi and ZiT can be estimated as

cov (Yi, ZiT ) =
1

niT

cov

(
niT∑

j=1

Uij,

niT∑

k=1

Vik

)

=
1

niT

niT∑

j=1

niT∑

k=1

cov (Uij, Vik)

=
1

niT

niT∑

k=1

cov (Uik, Vik)

=
1

niT

niT cov (Ui1, Vi1)

= E (Ui1Vi1)− E (Ui1)E (Vi1) .
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Since Ui1Vi1 is equal to Vi1 if treated patient 1 is with event and zero otherwise, its

expected value can be estimated by YiZiT1/niT , so that

cov (Yi, ZiT ) ≈ Yi

niT

(ZiT1 − ZiT ) .

The within-study covariance between niT − Yi and ZiT can be estimated similarly,

cov (niT − Yi, ZiT ) ≈
niT − Yi

niT

(ZiT0 − ZiT ) .

Therefore, the within-study covariance between η̂i and ζ̂i is

sηi,ζi ≈ 1

ni

(ZiT1 − ZiT0) ,

and the within-study covariance between ξ̂i and ζ̂i is

sξi,ζi ≈
1

ni

(ZiC1 − ZiC0) .

3.2.3 Pseudo-likelihood approach

As a typical problem of missing values in multivariate meta-analysis, within-study

covariances are expected not to be available in studies included in the meta-analysis.

As a result, inference can not be performed using the likelihood function (3.5). It is

hence desirable to base inference on a function which is derived from the reduction of

the complexity of the marginal distribution (3.4) and which maintains good likelihood

properties of the estimators of the parameters of interest. Such a function is referred

to as the pseudo-likelihood function (Besag, 1975). Our proposal in case of unavailable

covariances is a pseudo-likelihood function which sets within-study covariances to zero

pL (θ) ∝
n∏

i=1

{
det
(
Σ + Γ̃i

)} 1

2

ϕ3



(
Σ + Γ̃i

)− 1

2








η̂i

ξ̂i

ζ̂i


− µµµ






 ,

where Γ̃i = diag
{
s2ηi , s

2
ξi
, s2ζi
}
. In other words, this function is derived under a working

conditional independence assumption of η̂i, ξ̂i and ζ̂i. The pseudo-likelihood estimator

can be computed using iterative algorithms such as the Newton-Raphson algorithm.

Although the pseudo-likelihood approach reduces the complexity of the marginal distri-

bution, there might be the risk of misspecification from the reduced model assumed by

this approach, i.e., measures of risk might be correlated with the additional covariate
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within study. Therefore, the sandwich matrix can be used when performing inference

to account for possible misspecification (Kauermann and Carroll, 2001, Ghidey et al.,

2013, Guolo, 2012), which is defined as

G (θ) =
1

n
J−1(θ)I(θ)J−1(θ),

where

J (θ) =
1

n

∂2 log pL(θ)

∂θ∂θ⊤
, I(θ) =

1

n

n∑

i=1

∂ log pLi(θ)

∂θ

(
∂ log pLi(θ)

∂θ

)⊤

.

3.2.4 Exact measurement error models for additional covari-

ates

As for the classical control risk regression model without additional covariates, also

in case of study-specific covariates, the control risk regression model can be specified

using the exact measurement error description in place of the approximate version. For

example, when the additional covariate is a log odds and subgroup summary information

is given in terms of Table 3.1, the subgroup outcomes in Table 3.1 can be modeled using

a multinomial distribution

(ZiT1M , ZiT0M , ZiT1F , ZiT0F )
⊤
∣∣∣ (ηi, ζi)⊤ ∼ Multinomial4 (piT1M , piT0M , piT1F , piT0F ) ,

(3.8)

(ZiC1M , ZiC0M , ZiC1F , ZiC0F )
⊤
∣∣∣ (ξi, ζi)⊤ ∼ Multinomial4 (piC1M , piC0M , piC1F , piC0F ) ,

where vectors of probabilities (piT1M , piT0M , piT1F , piT0F )
⊤ and (piC1M , piC0M , piC1F , piC0F )

⊤

are functions of (ηi, ζi)
⊤ and (ξi, ζi)

⊤, respectively, as follows,

piT1M + piT1F = expit(ηi)

piT1M + piT0M = expit(ζi)

piT1M + piT0M + piT1F + piT0F = 1

piC1M + piC1F = expit(ξi)

piC1M + piC0M = expit(ζi)

piC1M + piC0M + piC1F + piC0F = 1.
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In this case, the likelihood function for θ has a more complex expression if compared to

the case of the approximate measurement error model, namely,

L(θ) =
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

fZiT1M ,ZiT0M ,ZiT1F ,ZiT0F |ηi,ζi

×fZiC1M ,ZiC0M ,ZiC1F ,ZiC0F |ξi,ζi × fηi|ξi,ζi × fξi × fζidηidξidζi

∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

pZiT1M

iT1M × pZiT0M

iT0M × pZiT1F

iT1F × pZiT0F

iT0F

×pZiC1M

iC1M × pZiC0M

iC0M × pZiC1F

iC1F × pZiC0F

iC0F × 1√
τ 2

× 1√
σ2
ξ

× 1√
σ2
ζ

×ϕ

(
ηi − β0 − β1ξi − β2ζi

τ

)
ϕ

(
ξi − µξ

σξ

)
ϕ

(
ζi − µζ

σζ

)
dηidξidζi.

Such a likelihood function does not have a closed-form expression and is very compu-

tational expensive to maximize, since every integrand in this function is a product of

many functions involving (ηi, ξi, ζi)
⊤.

When the additional covariate is the mean response of a characteristic and subgroup

summary information is given in terms of Table 3.2, the subgroup outcomes given Xi

and Yi can be modeled using bivariate normal distributions, i.e.,

(
ZiT1

ZiT0

)∣∣∣∣∣

(
Yi

ζi

)
∼ N2



(

ζi

ζi

)
,





SD2

i

Yi

ρiTSD2

i√
Yi(niT−Yi)

ρiTSD2

i√
Yi(niT−Yi)

SD2

i

niT−Yi






 , (3.9)

(
ZiC1

ZiC0

)∣∣∣∣∣

(
Xi

ζi

)
∼ N2



(

ζi

ζi

)
,





SD2

i

Xi

ρiCSD2

i√
Xi(niC−Xi)

ρiCSD2

i√
Xi(niC−Xi)

SD2

i

niC−Xi






 ,
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where ρiT and ρiC denote within-study correlations which are functions of Yi and Xi,

respectively. Again, the associated likelihood function has a complex form,

L(θ) =
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

fZiT1,ZiT0|Yi,ζi × fYi|ηi

×fZiC1,ZiC0|Xi,ζi × fXi|ξi × fηi|ξi,ζi × fξi × fζidηidξidζi

∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

ϕ2








SD2

i

Yi

ρiTSD2

i√
Yi(niT−Yi)

ρiTSD2

i√
Yi(niT−Yi)

SD2

i

niT−Yi





− 1

2 {(
ZiT1

ZiT0

)
−
(

ζi

ζi

)}


×ϕ2








SD2

i

Xi

ρiCSD2

i√
Xi(niC−Xi)

ρiCSD2

i√
Xi(niC−Xi)

SD2

i

niC−Xi





− 1

2 {(
ZiC1

ZiC0

)
−
(

ζi

ζi

)}


×{expit (ηi)}Yi {1− expit (ηi)}niT−Yi {expit (ξi)}Xi {1− expit (ξi)}niC−Xi

× 1√
τ 2

ϕ

(
ηi − β0 − β1ξi − β2ζi

τ

)
1√
σ2
ξ

ϕ

(
ξi − µξ

σξ

)
1√
σ2
ζ

ϕ

(
ζi − µζ

σζ

)
dηidξidζi,

where ϕ and ϕ2 denote the density functions of the univariate standard normal distri-

bution and the bivariate standard normal distribution, respectively.

When subgroup summary information is unavailable, the likelihood function for θ has

a general expression

L(θ) ∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

fYi,Xi,Zi|ηi,ξi,ζifηi|ξi,ζifξifζidηidξidζi,

where dependence of the functions in the integrand on the parameters of interest is

suppressed for convenience of notation. It is much more complex to specify a condi-

tional joint distribution of Yi, Xi and Zi, fYi,Xi,Zi|ηi,ξi,ζi , than to specify a conditional

distribution for each of these variables, namely, fYi|ηi , fXi|ξi and fZi|ζi . Therefore, in

analogy to the case of the approximate measurement error model, it is possible to use a

pseudo-likelihood function which assumes conditional independence between Yi, Xi and

Zi within each study. If ζi is expressed as a log odds, a pseudo-likelihood function can
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be derived using model (3.6),

pL(θ) ∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

fYi|ηifXi|ξifZi|ζifηi|ξi,ζifξifζidηidξidζi

∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

{expit (ηi)}Yi {1− expit (ηi)}niT−Yi

×{expit (ξi)}Xi {1− expit (ξi)}niC−Xi {expit (ζi)}Zi {1− expit (ζi)}ni−Zi

× 1√
τ 2

ϕ

(
ηi − β0 − β1ξi − β2ζi

τ

)
1√
σ2
ξ

ϕ

(
ξi − µξ

σξ

)
1√
σ2
ζ

ϕ

(
ζi − µζ

σζ

)
dηidξidζi.

In case of covariate expressed as the mean response of a characteristic, a pseudo-

likelihood function can be derived using model (3.7),

pL(θ) ∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

{expit (ηi)}Yi {1− expit (ηi)}niT−Yi

×{expit (ξi)}Xi {1− expit (ξi)}niC−Xi

×ϕ

(
Zi − ζi

SDi/
√
ni

)
× 1√

τ 2
ϕ

(
ηi − β0 − β1ξi − β2ζi

τ

)

1√
σ2
ξ

ϕ

(
ξi − µξ

σξ

)
1√
σ2
ζ

ϕ

(
ζi − µζ

σζ

)
dηidξidζi.

Since there is no closed-form expression for a pseudo-likelihood function when an exact

measurement error model is assumed, the pseudo-likelihood estimator can be computed

using numerical integration, as, for example, the Gaussian-Hermite quadrature. When

performing inference, the sandwich standard error can be used to make the approach

robust to model misspecification.

3.3 Simulation study

3.3.1 Set-up

In this section, a simulation study is carried out to evaluate the performance of

the likelihood approach and the pseudo-likelihood approach which were proposed in

the previous sections. These methods are used to fit the control risk regression model

with an additional covariate, ζi to data which are generated under each of the following

scenarios

Scenario 1 Model (3.1) with ζi ∼ N (0, 1) fixed;
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Scenario 2 Model (3.1) with ζi ∼ Bernoulli (0.5) fixed;

Scenario 3 Model (3.2) and model (3.8);

Scenario 4 Model (3.2) and model (3.9);

where (β0, β1, β2)
⊤ = (0, 1, 0.8)⊤, n ∈ {10, 20}, τ 2 ∈ {0.1, 0.5, 1}, ξi ∼ N (0, 1) and

ξi ∼ SN (0, 1,−5). In the last two scenarios,
(
µζ , σ

2
ζ

)⊤
is set to (0, 1)⊤. This simulation

follows three main steps, namely, generating the true measures of risk and covariate, gen-

erating outcomes, and computing the observed measures and the associated covariance

matrices. In the last two scenarios, outcomes are generated at the group level and the

subgroup level. In model (3.8), probabilities piT1M and piC1M are simulated from uni-

form distributions U [0,min {expit (ηi) , expit (ζi)}] and U [0,min {expit (ξi) , expit (ζi)}],
respectively. In model (3.9), within-study correlations ρiT and ρiC are generated from

a uniform distribution U (−1, 1). The simulation set-up considers 1, 000 replicates for

each scenario. The simulation is carried out using the R programming language (R Core

Team, 2021).

Assuming the approximate measurement error model, model (3.1) is fitted to data from

the first two scenarios using the likelihood approach, while the pseudo-likelihood ap-

proach is applied to fit model (3.2) to data from the last two scenarios. Furthermore, in

the last two scenarios, the pseudo-likelihood approach is compared with the likelihood

approach based on subgroup summary information. The performance of each of these

methods is evaluated using the bias, the standard error (se) and the standard deviation

(sd) of the estimator of
(
β0, β1, β2, µξ, µζ , τ

2, σ2
ξ , σ

2
ζ

)⊤
, and the number of convergent

solutions from that method (conv). Moreover, the empirical coverage probability is

computed for 95% confidence intervals of (β0, β1, β2)
⊤ using the Hessian standard error

and the sandwich standard error. Likelihood estimators and pseudo-likelihood estima-

tors are also compared to the naive analysis ignoring the measurement error based on

their empirical coverage probabilities.

3.3.2 Simulation results

Table 3.3 shows the bias, the standard errors and the standard deviations of the

maximum likelihood estimators of all parameters in model (3.1) when data are from

scenario 1. The likelihood approach underestimates β2 and τ 2. However, the estimators

of regression coefficients are satisfactory since they have very small bias. Furthermore,

the relative bias of the estimator of τ 2 decreases in magnitude with the number of stud-

ies and the residual variance. The standard errors of the estimators of (β0, β1, β2, τ
2)

⊤

decline when there are more studies. These standard errors are slightly different from
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the associated standard deviations and the discrepancies between them become smaller

when increasing n. Figure 3.1 shows that the empirical coverage probabilities of 95%

Wald-type confidence intervals for (β0, β1, β2)
⊤ from the likelihood approach are be-

low the nominal level and they approach this level when the number of studies grows.

Furthermore, the confidence interval for β1 from the likelihood approach has higher em-

pirical coverage probability compared to the naive analysis, especially when the residual

variance is small. The percentage of convergent solutions is satisfactory and it inclines

with n and τ 2. Similar results can be found for data from the skewed control risk distri-

bution or model (3.1) with ζi ∼ Bernoulli (0.5) fixed. See Tables A.1, A.2 and Figures

A.1, 3.2 and A.2 for further details.

Tables 3.5, A.8, and A.9 show the bias, the standard errors and the standard deviations

of the likelihood estimators and the pseudo-likelihood estimators of all parameters in

model (3.2) when data are from scenario 3. The pseudo-likelihood approach and the

likelihood approach based on subgroup summary have the similar and satisfactory per-

formance. Specifically, the estimators of the regression coefficients are nearly unbiased.

Although the residual variance is underestimated, the relative bias of its estimator de-

clines in magnitude with the number of studies and the residual variance. The standard

errors of the estimators of (β0, β1, β2, τ
2)

⊤
drop when increasing n. Moreover, the differ-

ences between the standard errors and the associated standard deviations are small and

they reduce when increasing number of studies included in the meta-analysis. However,

the difference between the standard error and the standard deviation of the estimator

of β1 is slightly large when n is small and τ 2 is sizable. The percentage of convergent

solutions is approximately 100%. Figure 3.3 shows that the empirical coverage probabil-

ities of 95% Wald-type confidence intervals for (β0, β1, β2)
⊤ from the pseudo-likelihood

approach are high and they approach the nominal level when the number of studies in-

creases. The confidence interval for β1 from the pseudo-likelihood approach has higher

empirical coverage probability compared to the naive analysis, especially when the resid-

ual variance is small. When data are from scenario 4, the results are similar, but the

difference between the standard error and the standard deviation of the estimator of β2

is slightly large if n is small and τ 2 is substantial. See Tables 3.6, A.3, and A.4 and

Figure 3.4 for more details.

Tables A.5, A.6, and A.7 show the bias, the standard errors and the standard deviations

of the likelihood estimators and the pseudo-likelihood estimators when data are from sce-

nario 4 with ξi ∼ SN (0, 1,−5). Although the results are less satisfactory compared to

scenarios of the normal control risk distribution, they tend to improve when the number

of studies increases. Both the likelihood approach and the pseudo-likelihood approach
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overestimate β1 when n is small and τ 2 is moderate. Furthermore, there are consider-

able differences between the standard errors and the associated standard deviations of

the estimator of β0 and β1 if the number of studies is small and the residual variance is

moderate to large, as expected. Moreover, the empirical coverage probabilities of 95%

confidence intervals for the regression coefficients from the likelihood approach and the

pseudo-likelihood approach are under the nominal level and they approach this level

when the number of studies grows. The confidence intervals for β0 and β1 from the

likelihood approach and the pseudo-likelihood approach has higher empirical coverage

probabilities compared to the naive analysis, especially when the residual variance is

small. The percentage of convergent solutions is still nearly 100% and it increases with

the number of studies and the residual variance. See Figure A.3. Similar results can

be found for data from scenario 3 with ξi ∼ SN (0, 1,−5). See Tables A.10, A.11, and

A.12 and Figure A.4 for more details. However, this scenario is slightly different from

the previous scenario. Specifically, the likelihood approach and the pseudo-likelihood

approach overestimate β0 and β1 when the number of studies is moderate and the resid-

ual variance is large. Furthermore, the pseudo-likelihood estimators of β0 and β1 have

much smaller standard errors compared to the likelihood estimators when n and τ 2 are

small.
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Figure 3.1: Empirical coverage probabilities of 95% Wald-type confidence intervals
for (β0, β1, β2, µξ)

⊤ for the uncorrected approach and the likelihood approach when
data follows scenario 1. Underlying risk distributed as a standard normal.
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Figure 3.2: Empirical coverage probabilities of 95% Wald-type confidence intervals
for (β0, β1, β2, µξ)

⊤ for the uncorrected approach and the likelihood approach when
data follows scenario 2. Underlying risk distributed as a standard normal.
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Figure 3.3: Empirical coverage probabilities of 95% Wald-type confidence intervals
for (β0, β1, β2, µξ, µζ)

⊤ for the uncorrected approach, the likelihood approach and
the pseudo-likelihood approach when data follows scenario 3. Underlying risk

distributed as a standard normal.
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Figure 3.4: Empirical coverage probabilities of 95% Wald-type confidence intervals
for (β0, β1, β2, µξ, µζ)

⊤ for the uncorrected approach, the likelihood approach and
the pseudo-likelihood approach when data follows scenario 4. Underlying risk

distributed as a standard normal.
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3.3.3 A simulation study for the exact pseudo-likelihood ap-

proach

The previous simulation study has been focused on the approximate measurement

error model, mainly for computational convenience. Under an exact measurement error

model, in fact, the likelihood function is very complex, as shown in Section 3.2.4.

In order to investigate the behavior of the pseudo-likelihood approach under an exact

measurement error model, a small simulation study has been performed. The simulation

study refers to data from scenario 3 with (n, τ 2)
⊤
= (10, 0.5)⊤. When evaluating the

pseudo-likelihood function using Gaussian-Hermite quadrature, the number of nodes in

each dimension is set equal to 10. Only 100 replicates of the simulation are considered,

for computational reasons, since the estimation process is time consuming, as it takes

more than 10 hours to run with HPE SuperDome Flex 280 server. Results are reported

in Table 3.7.

These results confirm the previous findings under the approximate measurement error

model. The pseudo-likelihood approach provides estimators of the parameters with

small bias, especially when focusing on regression coefficients. The slight differences

between standard errors and the associated standard deviations are expected since we are

adopting a pseudo-likelihood solution under a working independence assumption. The

empirical coverage probabilities associated to the regression coefficients estimators from

all the measurement error models are lower than the nominal level. Furthermore, the

approximate approach is preferable in this simulation because of its better performance.

The results from the exact approach may be affected by the small number of nodes as

well as the small sample size.

3.4 Examples

3.4.1 Schizophrenia dataset

Populations with older age, unhealthy lifestyle, physical comorbidities and psychiatric

diseases are easily affected by COVID-19 (Gold et al., 2020, Hariyanto and Kurniawan,

2021, Pardamean et al., 2022). There exist risk factors in schizophrenic patients which

are known to increase the risk of getting worse impacts of COVID-19 (Xiong et al.,

2020). For example, there exists a dysregulated immune response in schizophrenic pa-

tients which can increase the risk of mortality due to COVID-19 (Rodrigues-Amorim

et al., 2018, Kroken et al., 2019). Therefore, Pardamean et al. (2022) conducted a meta-

analysis of 10 studies to investigate the relationship between schizophrenia and mortality
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Table 3.7: Bias, standard errors (se), standard deviations (sd) of the maximum

likelihood estimators of
(
β0, β1, β2, µξ, µζ , τ

2, σ2
ξ , σ

2
ζ

)⊤
, empirical coverage

probabilities of 95% Wald-type confidence intervals for (β0, β1, β2, µξ, µζ)
⊤ and

number of convergent solutions over 100 replicates for the pseudo-likelihood

approach. Data follows scenario 3 and
(
n, τ2

)⊤
= (10, 0.5)⊤. Underlying risk

distributed as a standard normal.

par. m.e. model bias se sd emp. coverage prob. conv.
β0 exact -0.009 0.233 0.262 0.82 100

approx. -0.011 0.238 0.249 0.88 100
β1 exact -0.010 0.266 0.319 0.83 100

approx. -0.016 0.280 0.314 0.88 100
β2 exact 0.002 0.264 0.360 0.81 100

approx. -0.016 0.271 0.354 0.87 100
µξ exact 0.020 0.309 0.312 0.92 100

approx. 0.027 0.300 0.300 0.94 100
µζ exact -0.084 0.300 0.322 0.89 100

approx. -0.087 0.296 0.319 0.90 100
τ 2 exact -0.178 0.205 0.243 - 100

approx. -0.196 0.200 0.227 98
σ2
ξ exact -0.041 0.474 0.528 - 100

approx. -0.103 0.440 0.455 100
σ2
ζ exact -0.058 0.444 0.519 - 100

approx. -0.091 0.424 0.477 100

due to COVID-19. Their dataset is shown in Table 3.8, including the numbers of deaths

and the sizes of two groups, namely, a group with schizophrenia and a group without

schizophrenia. The mean age, the percentage of male patients, and the percentage of

diabetic patients are also reported in their meta-analysis. Figure 3.5 shows a forest

plot of this dataset, highlighting a substantial heterogeneity among studies since the

variability of effects expressed by the length of confidence intervals is evident. See, for

example, the heterogeneity between the effect estimates in Fond et al. (2020) and Rivas-

Ramı́rez et al. (2021). Pardamean et al. (2022) found that schizophrenic patients have

a higher risk of mortality due to COVID-19 compared to patients without schizophre-

nia (RR = 2.22; 95%CI: (1.54, 3.20)). Since the heterogeneity between studies is large

(I2 = 82%), they fit meta-regression models with several risk factors, namely, age, gen-

der, hypertension, diabetes, smoking, obesity, and mood disorders, to the dataset using

the restricted likelihood approach. Associations between mortality in schizophrenic pa-

tients and mean age
(
β̂age = −0.0334; 95%CI: (−0.0519,−0.0150)

)
and the percentage

of smokers
(
β̂smoker = 0.0269; 95%CI: (0.0082, 0.0456)

)
are statistically significant.

Let the log odds of mortality due to COVID-19 be the risk measure. In this section,
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we want to examine associations between the risk of mortality in schizophrenic patients

and the risk of mortality in patients without schizophrenia, the mean age, the log odds

of male and the log odds of diabetes. These associations are graphically shown in Figure

3.6. The scatter plots suggest linear relationships between the risk measures between

the two groups of patients, the mean age, the log odds of diabetes. A control risk re-

gression model (2.1) is fitted to the dataset using the likelihood approach. Furthermore,

control risk regression models with each of the covariates of interest are also fitted to

the dataset. The mean age is scaled or standardized in order to avoid computational

issues. Other study-specific characteristics such as the percentage of hypertension are

discarded because they have too many missing values. Since information about within-

study covariances between the additional covariates and the risk measures is unavailable,

the pseudo-likelihood approach developed in this chapter is applied when fitting model

(3.2). Results of the likelihood approach and the pseudo-likelihood approach are com-

pared with the results of the naive analysis.

Table 3.9 shows the estimates of regression coefficients and the residual variance from

the likelihood approach, the pseudo-likelihood approach and the naive analysis. Accord-

ing to all the approaches, the coefficient of ξi is positive and statistically different from

zero in model (2.1) and model (3.2). Therefore, there exists a significant association

between the risk measures in the group of patients with the pathology and the group

of patients without the pathology. In the classical model, β1 is smaller than 1, so there

is an indication of reduced risk of mortality for pathological patients. In the model

with the (scaled) mean age, the naive estimate and the pseudo-likelihood estimate of β1

are not significantly different from one, while the pseudo-likelihood finds a significant

association between the risk of mortality in the pathological group with the covariate.

As a consequence, the residual variance is very small. Therefore, given the results for

the model with an additional covariate given by age, the pseudo-likelihood approach

suggests that the difference between the risk of mortality for pathological patients and

patients in the control condition tends to decrease with age. However, these results are

based on a small number of studies. When inserting covariates results are similar using

pseudo-likelihood approach in place of the likelihood approach for log odds of male and

log odds of diabetes. Specifically, their estimates of β1 are smaller than one. Inserting

an additional covariate and accounting for the error in the summarized data reduce the

amount of the residual variance with respect ot the naive analysis.
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With schizophrenia Without schizophrenia Characteristics
Events Total Events Total Mean age % Male % Diabetes
20 984 632 127281 40.3± 20.8 48.4 4.6
22 649 7 709 51.5± 15.4 60.9 17.1
4 15 94 1077 63.1± 18.5 54.3 23.4
211 823 10854 49927 70.3± 19.2 56.8 27.8
6 159 49 2817 55.4± 16.2 41.7 15.1
20 75 701 6349 54± 18.6 47 25.7
11 40 760 4372 67.7± 20.7 41.2 11.9
2 18 3 69 51.5± 14.8 47.1 4.5
2 4 77 414 65.4± 16.6 56.9 23.6
5 6 70 144 77.6± 10.5 50 34

Table 3.8: Schizophrenia dataset (Pardamean et al., 2022).

Figure 3.5: Forest plot for schizophrenia dataset (Pardamean et al., 2022).
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Figure 3.6: Scatter plots of the risk measures in pathological group and
non-pathological group, the mean age, the log odds of male and the log odds of

diabetes. Schizophrenia dataset (Pardamean et al., 2022).
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3.4.2 Myocardial injury dataset

Nowadays, data are needed to well stratify COVID-19 patients based on clinical and

laboratory parameters to avoid serious COVID-19 outcomes (Sanz-Sánchez et al., 2021).

Myocardial involvements have been observed in COVID-19 patients and associated with

bad outcomes (see, e.g., Guo et al., 2020, Shi et al., 2020). Therefore, Sanz-Sánchez et al.

(2021) conducted a meta-analysis of 14 studies to evaluate the impact of myocardial

injury (MI) on all-cause mortality in COVID-19 patients. The dataset is shown in

Table 3.10, including the numbers of deaths and the sizes of the group of patients with

MI and the group without MI. The mean age, the percentage of males, the percentage

of diabetic patients, and the percentage of patients with hypertension are also reported.

A forest plot of the dataset is shown in Figure 3.7 and suggests the large heterogeneity

across studies. (Sanz-Sánchez et al., 2021) found that COVID-19 patients with MI

have a higher risk of all-cause mortality compared to COVID-19 patients without MI

(OR = 9.16; 95%CI: (5.30, 15.83)).

Figure 3.8 shows scatter plots of risk measures, the mean age, the log odds of male and

the log odds of hypertension, suggesting linear relationships between the risk of mortality

for pathological patients and non-pathological patients, the mean age, and the log odds

of hypertension. In this section, we want to fit model (2.1) and model (3.2) to the dataset

where the log odds of mortality is chosen as the risk measure. Consider the mean age,

the log odds of male, and log odds of hypertension as additional covariates in control

risk regression. The mean age is scaled or standardized in order to avoid computational

issues. While the classical model is fitted with the likelihood approach, models with
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additional covariates are fitted with the pseudo-likelihood approach. However, since we

have no information about the variances of the ages of patients in this meta-analysis,

we set the within-study variance of the mean ages to zero, which means that we assume

no variation within study for this covariate. We also remove studies whose values of the

additional covariates are missing.

Table 3.11 shows the estimates of the regression coefficients, the residual variance, and

their associated standard errors from the likelihood approach, the pseudo-likelihood

approach and the naive analysis. The estimates of the coefficient of the risk in the

control condition from all the approaches are much smaller than one. Furthermore, this

coefficient is significantly different from one, which is an indication of reduced risk of

mortality for patients with MI. However, the relationship between the risk measures in

the classical model is not statistically significant. According to the pseudo-likelihood

approach, β1 is significantly different from zero only in models with the scaled mean age

and the log odds of hypertension. Furthermore, the pseudo-likelihood approach results

in the negative and statistically significant coefficient of the log odds of hypertension.

In other words, the difference between the risk of mortality for pathological patients

and the risk of mortality for patients in the control conditions tends to decrease with

the risk of hypertension. This might be due to the fact that patients with hypertension

already followed therapies which take into account MI or COVID-19. Finally, the naive

estimate of the residual variance is much larger than the pseudo-likelihood estimate,

which shows that inserting an additional covariate and accounting for the error in the

summarized data reduce the amount of the residual variance with respect ot the naive

analysis.
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Table 3.10: Myocardial injury dataset (Sanz-Sánchez et al., 2021).

With MI Without MI Characteristics
Events Total Events Total Age % Male % Diabetes % Hypertension
68 94 15 109 62 62 17 34
13 21 28 158 58 54 18 32
50 123 18 209 67 71 21 54
12 23 16 105 64 57 NA NA
31 52 12 135 59 49 15 33
14 24 8 30 68 NA 15 24
46 112 26 112 67 57 25 75
504 914 302 1906 59 54 18 25
48 89 15 35 68 69 20 50
51 133 11 538 63 48 15 30
121 170 65 989 NA NA NA NA
0 10 1 125 47 53 9 10
3 16 0 85 49 54 14 21
23 50 1 95 56 62 19 30

Figure 3.7: Forest plot for myocardial injury dataset (Sanz-Sánchez et al., 2021).
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Figure 3.8: Scatter plot of the risk measures in pathological group and
non-pathological group, the mean age, the log odds of male and the log odds of

hypertension. Myocardial injury dataset (Sanz-Sánchez et al., 2021).
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Chapter 4

Quadratic relationship between risk

measures

The relationship between the control risk and the treatment risk is usually assumed

linear mainly due to empirical consideration and for computational convenience. As

an alternative, Arends et al. (2000) briefly mention the quadratic relationship between

the risk measures without reasoning in their discussion section. More sophisticatedly,

Boissel et al. (2008) simulate risk measures from models corresponding to the identified

modes of action and discover that the linear relationship only holds in a short range

of frequency of event. Because the number of studies is limited, the linear relationship

shows an incomplete understanding of the true relationship between the measures of

risk. The true relationship is usually more complex than the linear one, and considers

ηi = f (ξi, ζi) ,

where f denotes a general function whose form depends on the characteristics of par-

ticipants, the disease and the outcome under consideration, and ζi denotes a vector of

characteristics which are not accounted by the baseline risk (Boissel et al., 2008). As

an example, Wang et al. (2009) propose a model which accounts for a good effect and

a bad effect of treatments based on a logistic model and a sigmoidal Emax model. This

model characterized a U-shaped relationship between the absolute risk difference and

the frequency of event in the control group, which means patients with moderate risk

of disease benefits the most from the treatment and the effect is small for those with

too low or too high risk. However, both Boissel et al. (2008) and Wang et al. (2009)

choose the event frequency as their measure of risk. Furthermore, the model proposed

in Wang et al. (2009) becomes a linear control risk regression model if converting the

risk measures to log odds. Therefore, it is necessary to derive non-linear control risk

79
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regression models for various types of risk measure.

4.1 Quadratic control risk regression model

Consider negative events as outcomes. Consider model (2.1), where the control risk

measure can be centered for the ease of interpretation and to avoid numerical issues of

estimation, namely,

ηi = β0 + β1 (ξi − µξ) + εi, ξi ∼ N
(
µξ, σ

2
ξ

)
, εi ∼ N

(
0, τ 2

)
. (4.1)

Inspired by Arends et al. (2000), in order to account for a potential nonlinear relationship

between the treatment risk and control risk, we propose to extend model (4.1) to a

quadratic control risk regression model,

ηi = β0 + β1 (ξi − µξ) + β2 (ξi − µξ)
2 + εi, ξi ∼ N

(
µξ, σ

2
ξ

)
, εi ∼ N

(
0, τ 2

)
, (4.2)

where the vector of parameters of interest is θ =
(
β0, β1, β2, µξ, τ

2, σ2
ξ

)⊤
. The quadratic

term in model (4.2) describes a U-shaped relationship between the two measures of

risk and hence useful for treatments having a positive effect and a negative effect. A

negative value shows that the treatment risk increases until the control risk reaches a

certain point and then decreases. Conversely, a positive value of β2 shows the opposite

behavior. Model (4.2) reduces to the classical linear control risk regression model when

β2 is zero. Polynomials of degree higher than two, polynomials of non-integer degrees,

spline models, and the model suggested in Wang et al. (2009) can also result in U-shaped

relationships. However, their complex forms might reduce their applicability: the first

two families are not so common in practice because of their complexity in computation

and explanation, the spline family requires the choice of the location and the number

of knots, and the model suggested in Wang et al. (2009) can not be used for types of

risk measures which are defined on the real line. Furthermore, it is worth noting that

too complicated models may suffer from overfitting and that standard approaches for

inference, e.g., the likelihood approach, can not be a proper solution, when the number

of studies becomes small.

4.2 Likelihood function

Although ξ2i can be considered as an additional covariate, the likelihood approach

and the pseudo-likelihood approach derived in the previous chapter cannot be used to
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perform inference on θ, since ξ2i is not normally distributed. However, applying the same

technique as in case of the linear control risk regression model, a likelihood function in

the quadratic model can be derived by marginalizing the joint distribution of the true

measures of risk and the observed ones

L (θ) ∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

fη̂i|ηifξ̂i|ξifηi|ξifξidηidξi,

or the joint distribution of the true measures of risk and the observed ones or the

outcomes

L (θ) ∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

fYi|ηifXi|ξifηi|ξifξidηidξi,

where the measurement error models in the previous chapters remains unchanged. The

only difference or challenge here is from fηi|ξi , as the true measures of treatment risk

and control risk are not jointly normally distributed. Nevertheless, given ξi and the

normality of εi, the distribution of ηi is still normal. This is true even if the model for

true risk measures is more highly nonlinear or the baseline risk deviates from the normal

distribution. Formally,

ηi|ξi ∼ N
{
β0 + β1 (ξi − µξ) + β2 (ξi − µξ)

2 , τ 2
}
.

Without loss of generality, consider a meta-analysis of dichotomous outcomes. A likeli-

hood function for θ under the exact measurement model (2.4) is

L(θ) ∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

{expit (ηi)}Yi{1− expit (ηi)}niT−Yi{expit (ξi)}Xi{1− expit (ξi)}niC−Xi

(4.3)

× 1√
τ 2

ϕ

{
ηi − β0 − β1 (ξi − µξ)− β2 (ξi − µξ)

2

τ

}
× 1√

σ2
ξ

ϕ

(
ξi − µξ

σξ

)
dηidξi,
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and a likelihood function under the approximate measurement error model is

L(θ) ∝
n∏

i=1

∫ ∞

−∞

∫ ∞

−∞

ϕ

(
η̂i − ηi
sηi

)
ϕ

(
ξ̂i − ξi
sξi

)
(4.4)

× 1√
τ 2

ϕ

{
ηi − β0 − β1 (ξi − µξ)− β2 (ξi − µξ)

2

τ

}
× 1√

σ2
ξ

ϕ

(
ξi − µξ

σξ

)

≈
n∏

i=1

N∑

j=1

N∑

k=1

ωjωkgi(xj, yk; θ).

The likelihood function does not have any closed-form expression, so numerical inte-

gration is needed. For instance, using a Gaussian-Hermite quadrature, the likelihood

function can be approximated as

L(θ) ∝
n∏

i=1

N∑

j=1

N∑

k=1

ωjωkgi (uj, uk; θ) , (4.5)

with

gi (uj, uk; θ) = {expit (uj)}Yi{1− expit (uj)}niT−Yi{expit (uk)}Xi{1− expit (uk)}niC−Xi

× 1√
τ 2

ϕ

{
uj − β0 − β1 (uk − µξ)− β2 (uk − µξ)

2

τ

}
× 1√

σ2
ξ

ϕ

(
uk − µξ

σξ

)

× exp
(
u2
j

)
exp

(
u2
k

)
,

in (4.3) and

gi (uj, uk; θ) = ϕ

(
η̂i − uj

sηi

)
ϕ

(
ξ̂i − uk

sξi

)

× 1√
τ 2

ϕ

{
uj − β0 − β1 (uk − µξ)− β2 (uk − µξ)

2

τ

}
× 1√

σ2
ξ

ϕ

(
uk − µξ

σξ

)

× exp
(
u2
j

)
exp

(
u2
k

)
,

in (4.4), where N denotes the number of nodes in each dimension of the integration, uj

and uk denote the roots of the N -order Hermite polynomial, ωj and ωk, j, k = 1, · · · , N
denote the associated weights

ωj =
2N−1N !

√
π

N2 {HN−1 (uj)}
,
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where HN−1 denotes the N − 1-order Hermite polynomial. Then iterative algorithms

such as the Newton-Raphson method can be used to estimate θ.

4.3 Simulation study

A simulation study is carried out to evaluate the performance of the quadratic exact

likelihood approach (QEL) and the quadratic approximate likelihood approach (QAL)

and compare them to the quadratic naive analysis (QNA) which is based on ordinary

least squares ignoring measurement error. The quadratic approaches are also compared

to their linear counterpart, namely, the linear exact likelihood approach (LEL), the lin-

ear approximate likelihood approach (LAL) and the linear naive analysis. Simulations

are implemented in the R programming language (R Core Team, 2021).

Data simulation follows a two-step procedure. First, ηi and ξi are generated from the

quadratic model (4.2) for ηi|ξi combined with a normal control risk distribution for ξi.

Binary treatment and control responses are then generated by simulating from model

(2.4). The observed risk measures η̂i and ξ̂i with associated variances s2ηi and s2ξi are then

computed based on formulas (2.7) and (2.8), using a continuity correction if needed. We

consider a Binomial likelihood rather than a normal likelihood since we want to distin-

guish between the exact measurement error model and the approximate measurement

error model.

Simulation parameters include the the number of studies in the meta-analysis n ∈
{10, 20}, the between-study variance τ 2 ∈ {0, 0.5, 1}, and the regression coefficient of

the quadratic term β2 ∈ {0, 0.8}. A zero of β2 allows us to evaluate the performance

of the quadratic approaches when the true relationship is linear. Other parameters(
β0, β1, µξ, σ

2
ξ

)⊤
are set to (0, 1, 0, 1)⊤. Under every scenario, the number of patients

in the treatment group niT and the number of patients in the control group niC are

generated from a uniform distribution U (15, 200)). Each scenario is simulated 1,000

times and the performance of the approaches is evaluated using several metrics: bias,

average standard error (se), standard deviation (sd), frequency that the estimator con-

verges (conv), and empirical coverage probability (ecp) (Morris et al., 2019).

Likelihood functions are maximized with the Nelder-Mead algorithm (Nelder and Mead,

1965). Using Gaussian-Hermite quadrature to approximate likelihood functions, the

number of nodes in each dimension is set to 20. Estimates from the naive analysis is

used as an initial guess for applying the the likelihood approach.
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(a) (b)

(c) (d)

Figure 4.1: Bias from the quadratic naive analysis (QNA), the quadratic
approximate likelihood (QAL), the quadratic exact likelihood (QEL), the linear

naive analysis (LNA), the linear approximate likelihood (LAL), and the linear exact
likelihood (LEL). Panels a)-c): interest on β2, panel b): interest on β1 with β2 = 0.8;

panel d): interest on β1 when β2 = 0.

4.3.1 Results

Figure 4.1 shows the bias of the estimators of β2 and β1 from QNA, QAL, QEL,

LNA, LAL and LEL. There is almost no difference between bias of estimators from

QAL and QEL. They outperform the other approaches since their estimators have very

small absolute biases, while the linear likelihood approaches underestimate β1 when the

true relationship is quadratic. When the true relationship is linear, the biases of the

estimators of β1 from the quadratic likelihood approaches are approximately equal to

the ones from LAL and LEL. Moreover, not accounting for measurement errors in both

linear model and quadratic model also results in negative bias.

Figures 4.2–4.3 show the standard errors and the standard deviations of the estima-

tors of β2 and β1 from QNA, QAL, QEL, LNA, LAL and LEL. The quadratic likelihood

estimators have the largest standard errors because their associated models are the
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(a) (b)

(c) (d)

Figure 4.2: Standard errors (se) from the quadratic naive analysis (QNA), the
quadratic approximate likelihood (QAL), the quadratic exact likelihood (QEL), the
linear naive analysis (LNA), the linear approximate likelihood (LAL), and the linear
exact likelihood (LEL). Panels a)-c): interest on β2, panel b): interest on β1 with

β2 = 0.8; panel d): interest on β1 when β2 = 0.

most complicated. Furthermore, the standard errors increase when the residual vari-

ance grows or the number of studies falls. When the residual variance is small, the

standard errors of quadratic likelihood estimators of β2 are much smaller than the as-

sociated standard deviations. This is also true when the number of studies is small and

the residual variance is up to moderate. The standard deviations decrease when the

number of studies or the residual variance increases.

Panels (a)-(c) report the results for the empirical coverage probability of β2 when

the quadratic models are fitted under β2 = 0.8 (Panel (a)) and under β2 = 0 (Panel

(c)). Results show a satisfactory behavior of the QAL and QEL solutions with respect

to alternatives, with values closer to the target 95% level, especially for large τ 2. As

expected, correction solutions deeply outperform the quadratic naive analysis (QNA)

which does not improve empirical coverage probability when the sample size increases,

as a consequence of large bias of the estimators. When focusing on β1, the improvements
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(a) (b)

(c) (d)

Figure 4.3: Standard deviations (sd) from the quadratic naive analysis (QNA), the
quadratic approximate likelihood (QAL), the quadratic exact likelihood (QEL), the
linear naive analysis (LNA), the linear approximate likelihood (LAL), and the linear
exact likelihood (LEL). Panels a)-c): interest on β2, panel b): interest on β1 with

β2 = 0.8; panel d): interest on β1 when β2 = 0.

provided by the U-shaped model with respect to the linear counterpart are relevant, es-

pecially when β2 = 0.8 (Panel (b)). Increasing the sample size is an expected instrument

to make empirical coverage probability closer to the target level.

4.4 Examples

4.4.1 Parkinson’s disease dataset

Craft and Watson (2004) and Santiago and Potashkin (2013) have suggested a po-

tential biological association between diabetes mellitus and Parkinson’s disease because

of their similar pathogenic pathways. Although many systematic reviews and meta-

analyses (e.g., Cereda et al., 2011, 2013) have investigated whether having diabetes
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(a) (b)

(c) (d)

Figure 4.4: Empirical coverage probability (ecp) from the quadratic naive analysis
(QNA), the quadratic approximate likelihood (QAL), the quadratic exact likelihood
(QEL), the linear naive analysis (LNA), the linear approximate likelihood (LAL),

and the linear exact likelihood (LEL). Panels a)-c): interest on β2, panel b): interest
on β1 with β2 = 0.8; panel d): interest on β1 when β2 = 0.

increases the risk of future Parkinson’s disease, the purported relationship was still un-

proven. Most recently, Lu et al. (2014) conducted a meta-analysis of 14 case-control

studies. Table 4.1 reports the number of events, intended as diagnosis of Parkinson’s

disease, for subjects affected or not affected by type-2 diabetes. Lu et al. (2014) analyzed

the data using a classical meta-analysis model based on the log odds ratios, resulting

in diabetes less likely to occur in patients with Parkinson’s disease (overall OR = 0.75;

95% confidence interval = [0.58, 0.98]). However, they highlighted substantial hetero-

geneity among the studies. The association was different in different subgroups of pa-

tients stratified by gender, geographic location, source of control group, smoking, anti-

diabetes drug prescription and duration of diabetes mellitus. This means that control

risk regression can be an appropriate instrument for data analysis. Guolo (2022) con-

firmed the association by fitting a linear control risk regression model using likelihood

and non-likelihood based solutions. The likelihood results are shown in the fourth row
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of Table 4.2.

Table 4.1: Parkinson’s disease dataset (Lu et al., 2014).

Diabetes Non diabetes

Study Events Total Events Total

1 6 35 12 105

2 6 178 58 534

3 18 212 8 175

4 12 74 18 148

5 11 93 26 93

6 13 196 17 196

7 10 249 39 368

8 13 318 31 318

9 18 197 24 197

10 17 228 29 228

11 26 352 61 484

12 48 13695 223 68445

13 126 1931 482 9651

14 291 3637 308 3637

Here, the analysis in Guolo (2022) is extended by fitting quadratic models when

the risk measures in the case group and the control group are the log odds of getting

Parkinson’s disease in the case group and the control group, respectively. Results are

reported in Table 4.2 and they include the estimates of (β0, β1, β2, τ
2)

⊤
obtained from

different linear and quadratic models (QAL, QEL, QNA, LAL, LEL, LNA), and the

associated standard errors. There is one study whose risk measures are very different

from the ones of the others. Using Gaussian-Hermite quadrature, we set the number of

nodes to 20.

All the linear approaches provide no statistically significant association between dia-

betes and Parkinson’s disease as the estimate of β1 is not different from one, in this way

confirming previous results in Lu et al. (2014) and Guolo (2022). The estimates of β1

from the linear-based approaches are much different from those from the quadratic-based

counterparts. All the estimates of the intercept are very negative because of centering

the risk measure in the control condition. The intercept from all the approaches is

also significantly different from zero. Quadratic control risk models with specification

of measurement error result in smaller estimates of τ 2 and associated standard errors

compared to the ones from linear counterparts, in this way indicating that additional
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Table 4.2: Estimated parameters and the associated standard errors of linear and
quadratic naive analyses, linear and quadratic control risk regression models on

Parkinson’s disease dataset (Lu et al., 2014).

Approach β̂0 β̂1 β̂2 τ̂ 2

QAL -2.540 (0.162) 0.434 (0.196) -0.149 (0.063) 0.053 (0.072)
QEL -2.583 (0.164) 0.421 (0.213) -0.151 (0.069) 0.073 (0.070)
QNA -2.570 (0.182) 0.455 (0.255) -0.137 (0.094) 0.251 (0.084)
LAL -2.695 (0.252) 0.805 (0.112) - 0.133 (0.089)
LEL -2.730 (0.251) 0.795 (0.116) - 0.144 (0.092)
LNA -2.717 (0.158) 0.759 (0.153) - 0.299 (0.105)

between-study heterogeneity has been taken into account by the U-shaped relation-

ship. Negative estimates of β2 from QAL and QEL show that the risk of Parkinson’s

disease in the diabetic group increases when the risk in the group without diabetes

grows to a certain level and then decreases after reaching this level. Not surprisingly,

the quadratic control risk regression model ignoring the presence of measurement er-

ror results in much larger estimates of τ 2 and associated standard errors compared to

the alternatives. Moreover, QNA gives no significant association between diabetes and

Parkinson’s disease, see Table 4.2.

Figure 4.5 reports the graphs of models fitted with QAL, QEL, QNA, LAL, LEL

and LNA. The graph shows similar behaviors for the quadratic proposal and a slight

difference for the linear proposals as the control risk measure decreases.

4.4.2 Myocardial injury dataset

Re-consider the example of myocardial injury dataset (Sanz-Sánchez et al., 2021) an-

alyzed in Chapter 3 where the inclusion of additional covariates in the classical control

risk regression has been considered as a way to better explain between-study hetero-

geneity. In the previous analysis, associations were found between the treatment risk,

the control risk and the log odds of hypertension. Data can be re-analyzed with the

quadratic model to understand whether a U-shaped relationship between the treat-

ment risk and the control risk can properly explain heterogeneity across studies. The

quadratic control risk regression model is fitted to the dataset using QAL, QEL, and

QNA approaches. Furthermore, the linear model is re-fitted to the dataset using LEL

and LNA approaches. The number of nodes in Gaussian-Hermite quadrature is set to

20.

The estimates of regression coefficients, the residual variance and their associated stan-

dard errors are presented in Table 4.3. Except for the linear approximate likelihood
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Figure 4.5: Parkinson’s disease dataset (Lu et al., 2014). LAL (solid straight line),
LEL (dashed straight line), QAL (solid straight curve), QEL (dashed straight

curve), LNA (dotted line), and QNA (dotted curve).

approach, relationships between the risk measures suggested by other approaches are

statistically significant. Although the estimates of β2 and β1 from the quadratic ap-

proaches are slightly similar, the estimates of the residual variance are much smaller

when accounting for measurement error. These estimates are among the smallest and

only larger than the one from the linear control risk regression model with the log odds

of hypertension. Figure 4.6 shows the graphs of fitted control risk regression models

without additional covariates. As suggested by the negative estimates of β2 and the

associated graphs from the quadratic approaches, the treatment risk increases with the

control risk until the baseline risk is around -2 and then decreases. Table 4.3 also in-

cludes the AICs (Akaike information criterions) of the extended model and the model

fitted in Chapter 3 with the log odds of hypertension as a significant additional covari-

ate. From the table, the model providing the smallest AIC is the quadratic model QAL.
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Table 4.3: Myocardial injury dataset (Sanz-Sánchez et al., 2021). Estimates of(
β0, β1, β2, τ

2
)
, associated standard errors and AICs using QAL, QEL, QNA, LAL,

LEL and LNA approaches. Comparison to model with hypertension fitted with the
pseudo-likelihood approach. Significant coefficients are highlighted.

Approach β̂0 β̂1 β̂2 τ̂ 2 AIC
QAL 0.283 (0.194) 0.236 (0.199) -0.231 (0.111) 0.147 (0.087) 32.53
QEL 0.314 (0.204) 0.272 (0.219) -0.255 (0.086) 0.143 (0.083) 116.642
QNA 0.285 (0.287) 0.284 (0.152) -0.212 (0.101) 0.395 (0.132) -
LAL 0.045 (0.166) 0.229 (0.153) - 0.203 (0.110) 46.948
LEL -0.041 (0.201) 0.329 (0.137) - 0.256 (0.132) 117.454
LNA -0.168 (0.215) 0.451 (0.147) - 0.555 (0.194) -

LAL+Hypertension -0.016 (0.180) 0.329 (0.110) -0.354 (0.150) 0.038 (0.049) 104.053

Figure 4.6: Myocardial injury dataset (Sanz-Sánchez et al., 2021). LAL (solid
straight line), LEL (dashed straight line), QAL (solid straight curve), QEL (dashed

straight curve), LNA (dotted line), and QNA (dotted curve).





Conclusions

Discussion

This thesis considered extensions of the control risk regression model used in meta-

analysis to evaluate the effectiveness of a treatment in clinical trials comparing a treat-

ment group and a control group. The suggested extensions refer to the inclusion of

additional covariates in the classical model which only accounts for the control rate in

order to explain between-study heterogeneity.

When the additional study-specific covariates are affected by measurement error, likelihood-

based inference is carried out by adopting appropriate measurement error correction

solutions, which can result in several issues. The available information at the study

level does not provide within-study covariances between risk measures and the covari-

ates. The thesis illustrates how to recover such information exploiting subgroup study-

specific summary data. When they cannot be derived, the pseudo-likelihood approach

suggested in the thesis is a viable solution. The approach developed under a condi-

tional independence assumption between the observed measures of risk and covariates

gives rise to a pseudo-likelihood function with a closed-form expression under the ap-

proximate measurement error model. The proposed solutions perform satisfactorily in

a series of simulations under different conditions. The pseudo-likelihood approach has

the advantage of being less computationally demanding than the likelihood approach

based on subgroup summary information, when available, while maintaining small bias

of the estimators and empirical coverage probabilities close to the target level.

A second extension of the classical model considered the inclusion of a quadratic term

associated to the control rate as an additional covariate, in order to make the relation-

ship between the treatment risk and the control risk more flexible, able to handle more

complex, as U-shaped, situations. The likelihood approach, under both the approximate

within-study distribution and the exact within-study distribution, gives rise to a like-

lihood function without closed-form expression, which can be faced through numerical

integration.

The performance of the quadratic likelihood-based solutions has been investigated in a

93
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series of simulations, showing a satisfactory performance in terms of accuracy of infer-

ential results and with convergence problems rarely experienced.

The extensions of the classical control risk regression model examined in the thesis have

been applied to real meta-analyses of medical interest. Results are encouraging, sug-

gesting that accounting for additional study-specific information and/or more flexible

models can help in explaining the unobserved between-study heterogeneity. The R code

useful to run the analyses according to the approaches in Chapter 3 and in Chapter 4

is reported in the Appendix, Section B.

Future directions of research

The studies carried out in the thesis leave space for future different lines of research.

The considered likelihood-based approach to measurement error correction is a struc-

tural solution, that requires the specification of a model for the unobserved risk mea-

sures. Functional models developed in the measurement error literature can be con-

sidered as an interesting alternative, which do not require any assumptions for the

underlying quantities. For example, an interesting extension of the work might consider

the use of corrected scores and conditional scores, that have been previously applied

in the classical control risk regression in Ghidey et al. (2013). In addition, the use of

SIMEX (Carroll et al., 2006), a simulation-based approach for measurement error cor-

rection, can be a promising alternative, given previous results in Guolo (2014) in the

classical control risk regression, although the computation cost might be relevant when

the number of study-specific covariates increases.

When examining the quadratic relationship between the treatment risk and the control

risk, the present work has been carried out from a frequentist point of view. An in-

teresting future research may develop analysis from a Bayesian perspective, under an

uninformative prior on the term associated to the quadratic component. At the time

of writing, in fact, the literature in control risk regression considers Bayesian analysis

only in case of linear relationship between the risk measures (see, e.g., Arends et al.,

2000, Lee and Thompson, 2008). In addition, future developments can refer to two

drawbacks associated to the quadratic regression models, namely, poor extrapolation at

extreme values of predictors and inability to fit data with several thresholds, as noted in

Bagnardi et al. (2004). More complex and flexible relationships between the treatment

risk and the control risk can be considered rather than the quadratic one, in order to

better describe their relationship, as, for example, polynomial with fractional degree or

spline solutions. The choice, however, should be concerned with the small number of
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studies, which is a typical feature of meta-analysis, and that can be associated to the

risk of overfitting.





Appendix

Further simulation results of

chapter 3
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Figure A.1: Empirical coverage probabilities of 95% Wald-type confidence intervals
for (β0, β1, β2, µξ)

⊤ for the uncorrected approach and the likelihood approach when
data follows scenario 1. Underlying risk distributed as a skew normal SN (0, 1,−5).
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Figure A.2: Empirical coverage probabilities of 95% Wald-type confidence intervals
for (β0, β1, β2, µξ)

⊤ for the uncorrected approach and the likelihood approach when
data follows scenario 2. Underlying risk distributed as a skew normal SN (0, 1,−5).
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Figure A.3: Empirical coverage probabilities of 95% Wald-type confidence
intervals for (β0, β1, β2, µξ, µζ)

⊤ for the uncorrected approach, the likelihood
approach and the pseudo-likelihood approach when data follows scenario 4.

Underlying risk distributed as a skew normal SN(0, 1,−5).



Appendix 117



118 Appendix

T
a
b
l
e
A
.8
:
B
ia
s,

st
a
n
d
a
rd

er
ro
rs

(s
e)
,
st
an

d
ar
d
d
ev
ia
ti
on

s
(s
d
)
of

th
e
m
ax

im
u
m

li
ke
li
h
o
o
d
es
ti
m
at
or
s
of

( β
0
,β

1
,β

2
,µ

ξ
,µ

ζ
,τ

2
,σ

2 ξ
,σ

2 ζ

) ⊤
an

d
n
u
m
b
er
s
o
f
co
n
ve
rg
en
t
so
lu
ti
on

s
ov
er

1,
00

0
re
p
li
ca
te
s
fo
r
th
e
u
n
co
rr
ec
te
d
ap

p
ro
ac
h
,
th
e
li
k
el
ih
o
o
d

ap
p
ro
a
ch

an
d
th
e
p
se
u
d
o-
li
ke
li
h
o
o
d
ap

p
ro
a
ch

w
h
en

d
at
a
fo
ll
ow

s
sc
en

ar
io

3
an

d
τ
2
=

0.
5.

U
n
d
er
ly
in
g
ri
sk

d
is
tr
ib
u
te
d
as

a
st
an

d
ar
d

n
or
m
al
.

τ
2

p
ar
.

co
v

n
=

10
n
=

20
b
ia
s

se
sd

co
n
v
.

b
ia
s

se
sd

co
n
v
.

0.
5

β
0

li
k

0.
00
5

0.
23
6

0.
27
9

99
9

-0
.0
06

0.
16
9

0.
18
3

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

0.
00
4

0.
23
7

0.
28
1

10
00

-0
.0
06

0.
17
0

0.
18
4

10
00

n
ai
ve

0.
00
3

0.
27
3

0.
34
2

10
00

-0
.0
06

0.
18
9

0.
20
6

10
00

β
1

li
k

-0
.0
09

0.
28
6

0.
34
7

99
9

0.
00
1

0.
19
6

0.
20
8

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.0
09

0.
28
7

0.
34
7

10
00

0.
00
2

0.
19
6

0.
20
8

10
00

n
ai
ve

-0
.0
59

0.
29
1

0.
36
7

10
00

-0
.0
71

0.
18
6

0.
22
1

10
00

β
2

li
k

-0
.0
03

0.
27
2

0.
33
9

99
9

0.
00
1

0.
18
4

0.
20
0

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.0
04

0.
27
3

0.
33
7

10
00

0.
00
2

0.
18
4

0.
19
9

10
00

n
ai
ve

-0
.0
10

0.
30
6

0.
38
8

10
00

0.
00
1

0.
19
5

0.
22
0

10
00

µ
ξ

li
k

0.
01
3

0.
29
7

0.
32
3

99
9

0.
00
2

0.
21
8

0.
23
1

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

0.
01
2

0.
29
8

0.
32
4

10
00

0.
00
2

0.
21
9

0.
23
2

10
00

µ
ζ

li
k

-0
.0
04

0.
29
1

0.
30
5

99
9

-0
.0
03

0.
21
6

0.
21
1

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.0
03

0.
29
3

0.
30
8

10
00

-0
.0
02

0.
21
7

0.
21
2

10
00

τ
2

li
k

-0
.1
97

0.
19
9

0.
24
2

99
4

-0
.1
27

0.
16
5

0.
17
5

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.1
97

0.
20
1

0.
24
0

99
7

-0
.1
28

0.
16
6

0.
17
5

10
00

n
ai
ve

0.
08
2

0.
21
8

0.
35
5

10
00

0.
11
9

0.
18
0

0.
23
3

10
00

σ
2 ξ

li
k

-0
.1
22

0.
42
9

0.
45
2

99
9

-0
.0
89

0.
31
7

0.
30
4

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.1
13

0.
43
4

0.
45
9

10
00

-0
.0
82

0.
32
0

0.
30
5

10
00

σ
2 ζ

li
k

-0
.1
28

0.
40
8

0.
44
1

99
9

-0
.0
70

0.
30
8

0.
31
7

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.1
14

0.
41
4

0.
44
9

10
00

-0
.0
58

0.
31
1

0.
32
0

10
00



Appendix 119



120 Appendix



Appendix 121

T
a
b
l
e
A
.9
:
B
ia
s,

st
a
n
d
a
rd

er
ro
rs

(s
e)
,
st
an

d
ar
d
d
ev
ia
ti
on

s
(s
d
)
of

th
e
m
ax

im
u
m

li
ke
li
h
o
o
d
es
ti
m
at
or
s
of

( β
0
,β

1
,β

2
,µ

ξ
,µ

ζ
,τ

2
,σ

2 ξ
,σ

2 ζ

) ⊤
an

d
n
u
m
b
er
s
o
f
co
n
ve
rg
en
t
so
lu
ti
on

s
ov
er

1,
00

0
re
p
li
ca
te
s
fo
r
th
e
u
n
co
rr
ec
te
d
ap

p
ro
ac
h
,
th
e
li
k
el
ih
o
o
d

a
p
p
ro
ac
h
an

d
th
e
p
se
u
d
o-
li
ke
li
h
o
o
d
a
p
p
ro
ac
h
w
h
en

d
at
a
fo
ll
ow

s
sc
en

ar
io

3
an

d
τ
2
=

1.
U
n
d
er
ly
in
g
ri
sk

d
is
tr
ib
u
te
d
as

a
st
an

d
ar
d

n
or
m
al
.

τ
2

p
ar
.

co
v

n
=

10
n
=

20
b
ia
s

se
sd

co
n
v
.

b
ia
s

se
sd

co
n
v
.

1
β
0

li
k

-0
.0
02

0.
30
7

0.
37
6

99
9

-0
.0
02

0.
22
8

0.
25
2

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.0
03

0.
30
8

0.
37
8

99
9

-0
.0
02

0.
22
9

0.
25
3

10
00

n
ai
ve

-0
.0
07

0.
36
7

0.
45
1

10
00

-0
.0
04

0.
25
2

0.
30
7

10
00

β
1

li
k

0.
00
2

0.
36
8

0.
47
2

99
9

0.
00
7

0.
26
4

0.
29
9

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

0.
00
3

0.
36
8

0.
47
1

99
9

0.
00
9

0.
26
4

0.
29
8

10
00

n
ai
ve

-0
.0
44

0.
39
6

0.
51
4

10
00

-0
.0
51

0.
25
3

0.
32
1

10
00

β
2

li
k

-0
.0
15

0.
34
3

0.
43
1

99
9

-0
.0
21

0.
24
6

0.
26
7

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.0
14

0.
34
3

0.
43
4

99
9

-0
.0
21

0.
24
6

0.
26
7

10
00

n
ai
ve

-0
.0
00

0.
39
7

0.
49
5

10
00

-0
.0
07

0.
26
0

0.
31
8

10
00

µ
ξ

li
k

-0
.0
05

0.
29
5

0.
30
2

99
9

0.
00
3

0.
21
7

0.
22
9

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.0
04

0.
29
7

0.
30
3

99
9

0.
00
2

0.
21
8

0.
23
1

10
00

µ
ζ

li
k

-0
.0
02

0.
29
6

0.
31
8

99
9

-0
.0
01

0.
21
7

0.
22
4

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.0
02

0.
29
8

0.
31
9

99
9

-0
.0
02

0.
21
8

0.
22
4

10
00

τ
2

li
k

-0
.4
14

0.
34
7

0.
39
8

99
8

-0
.2
27

0.
30
6

0.
33
0

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.4
13

0.
34
9

0.
39
7

99
7

-0
.2
23

0.
30
8

0.
33
4

10
00

n
ai
ve

-0
.0
29

0.
36
3

0.
54
0

10
00

0.
14
2

0.
33
3

0.
44
5

10
00

σ
2 ξ

li
k

-0
.1
34

0.
42
4

0.
43
1

99
9

-0
.1
02

0.
31
4

0.
31
9

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.1
28

0.
42
7

0.
43
6

99
9

-0
.0
94

0.
31
6

0.
32
3

10
00

σ
2 ζ

li
k

-0
.1
00

0.
42
1

0.
43
3

99
9

-0
.0
60

0.
31
1

0.
30
9

10
00

p
se
u
d
o-
li
ke
li
h
o
o
d

-0
.0
88

0.
42
6

0.
44
0

99
9

-0
.0
47

0.
31
5

0.
31
3

10
00



122 Appendix



Appendix 123

T
a
b
l
e
A
.1
0
:
B
ia
s,

st
an

d
ar
d
er
ro
rs

(s
e)
,
st
an

d
ar
d
d
ev
ia
ti
on

s
(s
d
)
of

th
e
m
ax

im
u
m

li
ke
li
h
o
o
d
es
ti
m
at
or
s
of

( β
0
,β

1
,β

2
,µ

ξ
,µ

ζ
,τ

2
,σ

2 ξ
,σ

2 ζ

) ⊤
an

d
n
u
m
b
er
s
o
f
co
n
ve
rg
en
t
so
lu
ti
on

s
ov
er

1,
00

0
re
p
li
ca
te
s
fo
r
th
e
u
n
co
rr
ec
te
d
ap

p
ro
ac
h
,
th
e
li
k
el
ih
o
o
d

ap
p
ro
a
ch

an
d
th
e
p
se
u
d
o-
li
k
el
ih
o
o
d
ap

p
ro
a
ch

w
h
en

d
at
a
fo
ll
ow

s
sc
en
ar
io

3
an

d
τ
2
=

0.
1.

U
n
d
er
ly
in
g
ri
sk

d
is
tr
ib
u
te
d
as

a
sk
ew

n
or
m
al

S
N
(0
,1
,−

5)
.

τ
2

p
ar
.

co
v

n
=

10
n
=

20
b
ia
s

se
sd

co
n
v
.

b
ia
s

se
sd

co
n
v
.

0.
1

β
0

li
k

0.
03
8

3.
30
1

0.
34
1

99
4

0.
04
0

0.
20
7

0.
21
7

99
3

p
se
u
d
o-
li
k

0.
03
2

0.
27
5

0.
33
2

99
1

0.
03
6

0.
21
0

0.
21
8

99
4

β
1

li
k

0.
04
7

4.
81
5

0.
44
9

99
4

0.
06
1

0.
26
0

0.
27
8

99
3

p
se
u
d
o-
li
k

0.
03
9

0.
34
0

0.
42
6

99
2

0.
06
0

0.
26
1

0.
28
2

99
4

β
2

li
k

0.
00
1

0.
16
8

0.
19
5

99
4

-0
.0
10

0.
12
5

0.
13
4

99
4

p
se
u
d
o-
li
k

0.
00
3

0.
17
2

0.
19
2

99
3

-0
.0
08

0.
12
7

0.
13
4

99
6

µ
ξ

li
k

0.
02
2

0.
19
0

0.
20
0

99
4

0.
03
1

0.
13
8

0.
15
0

99
5

p
se
u
d
o-
li
k

0.
01
8

0.
19
1

0.
20
1

99
3

0.
02
5

0.
13
9

0.
14
9

99
6

µ
ζ

li
k

0.
01
0

0.
29
8

0.
32
5

99
4

0.
01
7

0.
21
7

0.
21
4

99
5

p
se
u
d
o-
li
k

0.
00
7

0.
30
0

0.
32
8

99
3

0.
02
0

0.
21
8

0.
21
8

99
6

τ
2

li
k

-0
.0
53

0.
05
6

0.
06
0

98
5

-0
.0
32

0.
06
2

0.
06
1

98
1

p
se
u
d
o-
li
k

-0
.0
54

0.
05
7

0.
06
2

98
0

-0
.0
37

0.
06
1

0.
06
0

98
6

σ
2 ξ

li
k

-0
.0
57

0.
17
9

0.
18
9

99
3

-0
.0
68

0.
13
1

0.
13
5

99
4

p
se
u
d
o-
li
k

-0
.0
55

0.
18
0

0.
18
9

99
3

-0
.0
64

0.
13
2

0.
14
0

99
5

σ
2 ζ

li
k

-0
.0
85

0.
42
9

0.
45
3

99
4

-0
.0
69

0.
31
3

0.
30
2

99
5

p
se
u
d
o-
li
k

-0
.0
71

0.
43
6

0.
46
6

99
3

-0
.0
60

0.
31
6

0.
30
3

99
6



124 Appendix



Appendix 125

T
a
b
l
e
A
.1
1
:
B
ia
s,

st
an

d
ar
d
er
ro
rs

(s
e)
,
st
an

d
ar
d
d
ev
ia
ti
on

s
(s
d
)
of

th
e
m
ax

im
u
m

li
ke
li
h
o
o
d
es
ti
m
at
or
s
of

( β
0
,β

1
,β

2
,µ

ξ
,µ

ζ
,τ

2
,σ

2 ξ
,σ

2 ζ

) ⊤
an

d
n
u
m
b
er
s
o
f
co
n
ve
rg
en
t
so
lu
ti
on

s
ov
er

1,
00

0
re
p
li
ca
te
s
fo
r
th
e
u
n
co
rr
ec
te
d
ap

p
ro
ac
h
,
th
e
li
k
el
ih
o
o
d

ap
p
ro
a
ch

an
d
th
e
p
se
u
d
o-
li
k
el
ih
o
o
d
ap

p
ro
a
ch

w
h
en

d
at
a
fo
ll
ow

s
sc
en
ar
io

3
an

d
τ
2
=

0.
5.

U
n
d
er
ly
in
g
ri
sk

d
is
tr
ib
u
te
d
as

a
sk
ew

n
or
m
al

S
N
(0
,1
,−

5)
.

τ
2

p
ar
.

co
v

n
=

10
n
=

20
b
ia
s

se
sd

co
n
v
.

b
ia
s

se
sd

co
n
v
.

0.
5

β
0

li
k

0.
06
4

0.
44
9

0.
56
4

99
8

0.
07
6

0.
32
9

0.
38
7

10
00

p
se
u
d
o-
li
k

0.
05
9

0.
45
4

0.
54
6

99
8

0.
07
2

0.
33
2

0.
38
2

99
9

β
1

li
k

0.
10
1

0.
56
1

0.
74
9

99
8

0.
09
2

0.
40
2

0.
47
7

10
00

p
se
u
d
o-
li
k

0.
09
1

0.
56
4

0.
69
0

99
8

0.
08
9

0.
40
3

0.
47
2

99
9

β
2

li
k

-0
.0
07

0.
26
7

0.
34
6

10
00

-0
.0
17

0.
19
1

0.
21
1

10
00

p
se
u
d
o-
li
k

-0
.0
07

0.
26
9

0.
34
6

99
9

-0
.0
16

0.
19
2

0.
21
1

10
00

µ
ξ

li
k

0.
02
5

0.
18
8

0.
19
8

10
00

0.
03
5

0.
13
7

0.
14
5

10
00

p
se
u
d
o-
li
k

0.
02
1

0.
18
9

0.
19
9

99
9

0.
03
0

0.
13
8

0.
14
6

10
00

µ
ζ

li
k

-0
.0
05

0.
29
4

0.
33
0

10
00

-0
.0
05

0.
21
7

0.
21
9

10
00

p
se
u
d
o-
li
k

-0
.0
03

0.
29
6

0.
33
1

99
9

-0
.0
03

0.
21
8

0.
22
2

10
00

τ
2

li
k

-0
.2
13

0.
19
7

0.
23
4

99
6

-0
.1
56

0.
17
6

0.
18
8

99
9

p
se
u
d
o-
li
k

-0
.2
13

0.
20
0

0.
23
5

99
7

-0
.1
54

0.
17
9

0.
19
1

99
8

σ
2 ξ

li
k

-0
.0
65

0.
17
6

0.
19
2

99
9

-0
.0
79

0.
12
8

0.
13
2

10
00

p
se
u
d
o-
li
k

-0
.0
62

0.
17
7

0.
19
4

99
8

-0
.0
75

0.
12
9

0.
13
4

99
9

σ
2 ζ

li
k

-0
.1
15

0.
41
5

0.
41
8

10
00

-0
.0
73

0.
31
1

0.
31
3

10
00

p
se
u
d
o-
li
k

-0
.1
05

0.
42
0

0.
42
3

99
9

-0
.0
57

0.
31
6

0.
31
8

10
00



126 Appendix



Appendix 127

T
a
b
l
e
A
.1
2
:
B
ia
s,

st
an

d
ar
d
er
ro
rs

(s
e)
,
st
an

d
ar
d
d
ev
ia
ti
on

s
(s
d
)
of

th
e
m
ax

im
u
m

li
ke
li
h
o
o
d
es
ti
m
at
or
s
of

( β
0
,β

1
,β

2
,µ

ξ
,µ

ζ
,τ

2
,σ

2 ξ
,σ

2 ζ

) ⊤
an

d
n
u
m
b
er
s
o
f
co
n
ve
rg
en
t
so
lu
ti
on

s
ov
er

1,
00

0
re
p
li
ca
te
s
fo
r
th
e
u
n
co
rr
ec
te
d
ap

p
ro
ac
h
,
th
e
li
k
el
ih
o
o
d

ap
p
ro
ac
h
an

d
th
e
p
se
u
d
o-
li
ke
li
h
o
o
d
ap

p
ro
a
ch

w
h
en

d
at
a
fo
ll
ow

s
sc
en

ar
io

3
an

d
τ
2
=

1.
U
n
d
er
ly
in
g
ri
sk

d
is
tr
ib
u
te
d
as

a
sk
ew

n
or
m
al

S
N
(0
,1
,−

5)
.

τ
2

p
ar
.

co
v

n
=

10
n
=

20
b
ia
s

se
sd

co
n
v
.

b
ia
s

se
sd

co
n
v
.

1
β
0

li
k

0.
05
1

0.
59
2

0.
73
7

10
00

0.
11
5

0.
42
7

0.
49
5

99
9

p
se
u
d
o-
li
k

0.
05
2

0.
58
6

0.
74
4

99
8

0.
11
5

0.
43
1

0.
51
9

99
9

β
1

li
k

0.
05
0

0.
72
8

0.
93
7

10
00

0.
11
3

0.
51
2

0.
60
5

99
9

p
se
u
d
o-
li
k

0.
05
1

0.
70
4

0.
93
7

99
8

0.
11
4

0.
51
5

0.
64
7

99
9

β
2

li
k

-0
.0
14

0.
34
6

0.
43
6

10
00

-0
.0
29

0.
24
8

0.
27
7

10
00

p
se
u
d
o-
li
k

-0
.0
16

0.
34
6

0.
43
3

10
00

-0
.0
30

0.
24
8

0.
27
5

10
00

µ
ξ

li
k

0.
01
4

0.
18
9

0.
20
1

10
00

0.
03
3

0.
13
8

0.
14
1

10
00

p
se
u
d
o-
li
k

0.
01
0

0.
19
0

0.
20
2

10
00

0.
02
8

0.
13
9

0.
14
1

10
00

µ
ζ

li
k

0.
00
3

0.
29
7

0.
32
1

10
00

-0
.0
04

0.
21
8

0.
22
0

10
00

p
se
u
d
o-
li
k

0.
00
4

0.
29
8

0.
32
2

10
00

-0
.0
03

0.
22
0

0.
22
2

10
00

τ
2

li
k

-0
.4
34

0.
34
6

0.
40
1

99
9

-0
.2
98

0.
30
9

0.
32
4

10
00

p
se
u
d
o-
li
k

-0
.4
32

0.
34
8

0.
40
6

99
8

-0
.2
97

0.
31
1

0.
32
8

10
00

σ
2 ξ

li
k

-0
.0
61

0.
17
9

0.
19
1

10
00

-0
.0
72

0.
13
0

0.
13
7

99
9

p
se
u
d
o-
li
k

-0
.0
59

0.
17
9

0.
19
1

99
9

-0
.0
69

0.
13
2

0.
13
8

99
9

σ
2 ζ

li
k

-0
.0
95

0.
42
4

0.
44
0

10
00

-0
.0
56

0.
31
7

0.
32
1

10
00

p
se
u
d
o-
li
k

-0
.0
85

0.
42
8

0.
44
8

10
00

-0
.0
42

0.
32
1

0.
32
4

10
00



128 Appendix

Figure A.4: Empirical coverage probabilities of 95% Wald-type confidence
intervals for (β0, β1, β2, µξ, µζ)

⊤ for the uncorrected approach, the likelihood
approach and the pseudo-likelihood approach when data follows scenario 3.

Underlying risk distributed as a skew normal SN (0, 1,−5).
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R code in myocardial injury

example

rm(list=ls())

set.seed(1)

library(mvtnorm)

library(nlme)

library(metafor)

library(meta)

library(dplyr)

library(statmod)

setwd("C:/Users/trant/Dropbox/Thien_Phuc_Tran/software/simulation")

## functions

basic.lik.approx <- function(theta, dati, center=TRUE){

n <- nrow(dati)

beta0 <- theta[1]

beta1 <- theta[2]

mu.xi <- theta[3]

sigma2.eta <- theta[4]

sigma2.xi <-theta[5]

if(theta[4] < 0 | theta[5] < 0){ ## check variances

return(NA)

}

mean.vector <- c(beta0, mu.xi)

if(center==FALSE){mean.vector <- c(beta0+beta1*mu.xi, mu.xi)}

lik <- 0.0

for(i in 1:n){

129
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S.matrix <- matrix(c(dati[i,3]+(beta1^2)*sigma2.xi+sigma2.eta, dati[i,4]+

beta1*sigma2.xi, dati[i,5]+beta1*sigma2.xi, dati[i,6]+sigma2.xi),

ncol=2, byrow=TRUE) ## S.matrix depends on i

lik <- lik + dmvnorm(dati[i,1:2], mean = mean.vector, sigma = S.matrix, log=TRUE)

}

return(lik)

}

basic.lik.GH3 <- function(theta, dati, n.node=10, model="approx", center=TRUE){

n <- nrow(dati)

beta0 <- theta[1]

beta1 <- theta[2]

mu.xi <- theta[3]

sigma2.eta <- theta[4]

sigma2.xi <-theta[5]

if(theta[4] < 0 | theta[5] < 0){ ## check variances

return(NA)

}

lik <- 0.0

## nodes and weights for Gauss-Hermite quadrature

objGH <- gauss.quad(n.node, "hermite")

w <- objGH$weights

w <- cbind(rep(w,rep(n.node,n.node)),rep(w,n.node))

w <- w[,1]*w[,2]

node <- objGH$nodes

node <- cbind(rep(node,rep(n.node,n.node)),rep(node,n.node))

if (model == "exact"){

for(i in 1:n){

g<-function(x){

xi <- sqrt(2*dati[i,6])*x[2]+dati[i,2]

eta <- sqrt(2*dati[i,3])*x[1]+dati[i,1]

p.eta <- exp(eta)/(1+exp(eta))

p.xi <- exp(xi)/(1+exp(xi))

return(dbinom(dati[i,7],dati[i,9],p.eta)*

dbinom(dati[i,8],dati[i,10],p.xi)*

dnorm(eta,beta0+beta1*(xi-mu.xi),sqrt(sigma2.eta))*
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dnorm(xi,mu.xi,sqrt(sigma2.xi))*exp(x[1]^2+x[2]^2))

}

h <- apply(node, MARGIN=1, FUN=g)

lik <- lik + log(sum(w*h))

}

}

if(center==FALSE){

if (model == "exact"){

for(i in 1:n){

g<-function(x){

xi <- sqrt(2*dati[i,6])*x[2]+dati[i,2]

eta <- sqrt(2*dati[i,3])*x[1]+dati[i,1]

p.eta <- exp(eta)/(1+exp(eta))

p.xi <- exp(xi)/(1+exp(xi))

return(dbinom(dati[i,7],dati[i,9],p.eta)*

dbinom(dati[i,8],dati[i,10],p.xi)*

dnorm(eta,beta0+beta1*(xi),sqrt(sigma2.eta))*

dnorm(xi,mu.xi,sqrt(sigma2.xi))*exp(x[1]^2+x[2]^2))

}

h <- apply(node, MARGIN=1, FUN=g)

lik <- lik + log(sum(w*h))

}

}

}

return(lik)

}

quad.lik.GH3 <- function(theta, dati, n.node=10, model="approx"){

n <- nrow(dati)

beta0 <- theta[1]

beta1 <- theta[2]

beta2 <- theta[3]

mu.xi <- theta[4]

sigma2.eta <- theta[5]

sigma2.xi <-theta[6]
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if(theta[5] < 0 | theta[6] < 0){ ## check variances

return(NA)

}

lik <- 0.0

## nodes and weights for Gauss-Hermite quadrature

objGH <- gauss.quad(n.node, "hermite")

w <- objGH$weights

w <- cbind(rep(w,rep(n.node,n.node)),rep(w,n.node))

w <- w[,1]*w[,2]

node <- objGH$nodes

node <- cbind(rep(node,rep(n.node,n.node)),rep(node,n.node))

if (model == "approx"){

for(i in 1:n){

g <- function(x){

xi <- sqrt(2*dati[i,7])*x[2]+dati[i,2]

eta <- sqrt(2*dati[i,4])*x[1]+dati[i,1]

return(dnorm(eta,beta0+beta1*(xi-mu.xi)+beta2*(xi-mu.xi)^2,sqrt(sigma2.eta))*

dnorm(xi,mu.xi,sqrt(sigma2.xi))/sqrt(pi*pi))

}

h <- apply(node, MARGIN=1, FUN=g)

lik <- lik + log(sum(w*h))

}

}

if (model == "exact"){

for(i in 1:n){

g<-function(x){

xi <- sqrt(2*dati[i,7])*x[2]+dati[i,2]

eta <- sqrt(2*dati[i,4])*x[1]+dati[i,1]

p.eta <- exp(eta)/(1+exp(eta))

p.xi <- exp(xi)/(1+exp(xi))

return(dbinom(dati[i,8],dati[i,10],p.eta)*dbinom(dati[i,9],dati[i,11],p.xi)*

dnorm(eta,beta0+beta1*(xi-mu.xi)+beta2*(xi-mu.xi)^2,sqrt(sigma2.eta))*

dnorm(xi,mu.xi,sqrt(sigma2.xi))*exp(x[1]^2+x[2]^2)*sqrt(2*dati[i,4]*2*dati[i,7]))

}

h <- apply(node, MARGIN=1, FUN=g)

lik <- lik + log(sum(w*h))
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}

}

return(lik)

}

error.affect.lik.approx.repa <- function(theta, dati, pseudo=TRUE){

n <- nrow(dati)

beta0 <- theta[1]

beta1 <- theta[2]

beta2 <- theta[3]

mu.xi <- theta[4]

log.sigma2.eta <- theta[6]

log.sigma2.xi <-theta[7]

mu.z <- theta[5]

log.sigma2.z <- theta[8]

lik <- 0.0

mean.vector <- c(beta0+beta1*mu.xi+beta2*mu.z, mu.xi, mu.z)

#mean.vector <- c(beta0, mu.xi, mu.z)

for(i in 1:n){

if(pseudo==TRUE)

S.matrix <- matrix(c(dati[i,4]+(beta1^2)*exp(log.sigma2.xi)+(beta2^2)*

exp(log.sigma2.z)+exp(log.sigma2.eta),

beta1*exp(log.sigma2.xi), beta2*exp(log.sigma2.z),

beta1*exp(log.sigma2.xi), dati[i,8]+exp(log.sigma2.xi), 0,

beta2*exp(log.sigma2.z), 0, exp(log.sigma2.z)+dati[i,12]),

ncol=3, byrow=TRUE) ## S.matrix depends on i

else

S.matrix <- matrix(c(dati[i,4]+(beta1^2)*exp(log.sigma2.xi)+(beta2^2)

*exp(log.sigma2.z)+exp(log.sigma2.eta),

dati[i,5]+beta1*exp(log.sigma2.xi), dati[i,6]+beta2*exp(log.sigma2.z),

dati[i,7]+beta1*exp(log.sigma2.xi), dati[i,8]+exp(log.sigma2.xi), dati[i,9],

dati[i,10]+beta2*exp(log.sigma2.z), dati[i,11], exp(log.sigma2.z)+dati[i,12]),

ncol=3, byrow=TRUE) ## S.matrix depends on i
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lik <- lik + dmvnorm(dati[i,1:3], mean = mean.vector, sigma = S.matrix, log=TRUE)

}

return(lik)

}

error.affect.lik.approx.repa.cen <- function(theta, dati, pseudo=TRUE){

n <- nrow(dati)

beta0 <- theta[1]

beta1 <- theta[2]

beta2 <- theta[3]

mu.xi <- theta[4]

log.sigma2.eta <- theta[6]

log.sigma2.xi <-theta[7]

mu.z <- theta[5]

log.sigma2.z <- theta[8]

lik <- 0.0

#mean.vector <- c(beta0+beta1*mu.xi+beta2*mu.z, mu.xi, mu.z)

mean.vector <- c(beta0, mu.xi, mu.z)

for(i in 1:n){

if(pseudo==TRUE)

S.matrix <- matrix(c(dati[i,4]+(beta1^2)*exp(log.sigma2.xi)+(beta2^2)*

exp(log.sigma2.z)+exp(log.sigma2.eta),

beta1*exp(log.sigma2.xi), beta2*exp(log.sigma2.z),

beta1*exp(log.sigma2.xi), dati[i,8]+exp(log.sigma2.xi), 0,

beta2*exp(log.sigma2.z), 0, exp(log.sigma2.z)+dati[i,12]), ncol=3, byrow=TRUE) ## S.matrix

else

S.matrix <- matrix(c(dati[i,4]+(beta1^2)*exp(log.sigma2.xi)+(beta2^2)*

exp(log.sigma2.z)+exp(log.sigma2.eta),

dati[i,5]+beta1*exp(log.sigma2.xi), dati[i,6]+beta2*exp(log.sigma2.z),

dati[i,7]+beta1*exp(log.sigma2.xi), dati[i,8]+exp(log.sigma2.xi), dati[i,9],

dati[i,10]+beta2*exp(log.sigma2.z), dati[i,11], exp(log.sigma2.z)+dati[i,12]), ncol=3,

byrow=TRUE) ## S.matrix depends on i



Appendix 135

lik <- lik + dmvnorm(dati[i,1:3], mean = mean.vector, sigma = S.matrix, log=TRUE)

}

return(lik)

}

## sanchez et al., 2021

y.i <- c(68,13,50,12,31,14,46,504,48,51,121,0,3,23)

x.i <- c(15,28,18,16,12,8,26,302,15,11,65,1,0,1)

ni.t <- c(94,21,123,23,52,24,112,914,89,133,170,10,16,50)

ni.c <- c(109,158,209,105,135,30,112,1906,35,538,989,125,85,95)

ni<-ni.t+ni.c

## create dataframe to generate forest plot

dat.fplot <- data.frame(tpos=y.i, tneg=ni.t-y.i, cpos=x.i, cneg=ni.c-x.i)

## calculate log risk ratios and corresponding sampling variances

dat.fplot <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg,

data=dat.fplot, slab=c("Chen et al",

"Du et al", "Ferrante et al", "Franks et al",

"Guo et al", "Hingwei et al", "Lorente-Ros et al", "Mikami et al",

"Pan et al", "Shi et al", "Si et al", "Wan et al", "Wei et al", "Zhou et al"))

## fit random-effects model

res <- rma(yi, vi, data=dat.fplot)

## forest plot with extra annotations

forest(res)

#######################################################################

eta.hat <- log((y.i)/(ni.t-y.i))

w.new <- 1/( 1/(y.i)+1/(ni.t-y.i))

id.eta <- which(eta.hat==Inf | eta.hat==-Inf)

if(length(id.eta)>0){

eta.hat[id.eta] <- log((y.i[id.eta]+0.5)/(ni.t[id.eta]-y.i[id.eta]+0.5))

w.new[id.eta] <- 1/(1/(y.i[id.eta]+0.5)+1/(ni.t[id.eta]-y.i[id.eta]+0.5))

}
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xi.hat <- log((x.i)/(ni.c-x.i))

id.xi <- which(xi.hat==Inf | xi.hat==-Inf)

if(length(id.xi)>0)

xi.hat[id.xi] <- log((x.i[id.xi]+0.5)/(ni.c[id.xi]-x.i[id.xi]+0.5))

var.eta <- 1/y.i+1/(ni.t-y.i)

var.xi <- 1/x.i+1/(ni.c-x.i)

id.eta <- which(var.eta==Inf)

if(length(id.eta)>0)

var.eta[id.eta] <- 1/(y.i[id.eta]+0.5)+1/(ni.t[id.eta]-y.i[id.eta]+0.5)

id.xi <- which(var.xi==Inf)

if(length(id.xi)>0)

var.xi[id.xi] <- 1/(x.i[id.xi]+0.5)+1/(ni.c[id.xi]-x.i[id.xi]+0.5)

#####################################################################

## fit basic crr model to the dataset

dati <- data.frame(eta.hat=eta.hat, xi.hat=xi.hat, var.eta=var.eta,

cov.etaxi=0, cov.xieta=0, var.xi=var.xi, y.i=y.i, x.i=x.i, ni.t=ni.t,

ni.c=ni.c, ni=ni)

colnames(dati) <- c(’y.obs’, ’x.obs’, ’var.y’, ’cov.yx’,

’cov.yx’, ’var.x’, ’y’, ’x’, ’ni.t’, ’ni.c’,’ni’)

## l’abbe plot

m <- metabin(y.i, ni.t, x.i, ni.c, data=dati, sm="OR", method="I",

backtransf=FALSE)

labbe(m, xlab="Control risk (log odds scale)", ylab="Treatment risk (log odds scale)")

abline(lm(y.obs ~ x.obs, data=dati, weights=1/dati$var.y)) ## WLS

abline(0, 1, lwd=2)

dati2 <- as_tibble(dati[,c(1,2,10)])

ggplot(dati2, aes(x=x.obs, y=y.obs, size=ni)) + geom_point() +

labs(y="treatment risk", x="control risk") + theme(legend.position="none")

n <- nrow(dati)

m.hat <- lm(y.obs ~ x.obs, data=dati) ## LS

est.naive <- c(coef(m.hat), mean(resid(m.hat)^2))

se.naive <- c(sqrt(diag(vcov(m.hat))), (sqrt( 2*(n-2)*est.naive[3]^2/n^2)))
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theta.start <- c(coef(m.hat), ## beta0, beta1

mean(dati[,2]), ## mux

log(mean(resid(m.hat)^2)), ## (tau^2)

log(sd(dati[,2])^2)) ## (sigmax^2)

model.approx <- optim(theta.start, basic.lik.approx.repa, dati=dati,

center=FALSE, control=list(fnscale=-1, maxit=5000), hessian=TRUE)

est <- model.approx$par

invH <- solve(model.approx$hessian)

se <- sqrt(diag(-diag(c(rep(1,3),exp(est[4:5])))%*%invH%*%diag(c(rep(1,3),

exp(est[4:5])))))

est[4:5]<-exp(est[4:5])

round(est, 3)

round(se, 3)

round(est.naive, 3)

round(se.naive,3)

################################################################################

## fit crr with Z as age

zi.obs <- c(62,58,67,64,59,68,67,59,68,63,NA,47,49,56)

dati <- data.frame(eta.hat=eta.hat, xi.hat=xi.hat, zi.obs=zi.obs,

var.eta=var.eta, cov.etaxi=0, cov.etaz=0, cov.xieta=0, var.xi=var.xi, cov.xiz=0,

cov.zeta=0, cov.zxi=0, var.z=0, y.i=y.i, x.i=x.i, zi.obs=zi.obs, ni.t=ni.t,

ni.c=ni.c, ni=ni)

colnames(dati) <- c(’y.obs’, ’x.obs’, ’zi.obs’, ’var.y’, ’cov.yx’, ’cov.yz’,

’cov.yx’, ’var.x’, ’cov.xz’, ’cov.yz’, ’cov.xz’, ’var.z’, ’y’, ’x’, ’zi’, ’ni.t’,

’ni.c’, ’ni’)

dati <- na.omit(dati) ## remove NAs

dati2 <- as_tibble(dati[,c(1,3,18)])

ggplot(dati2, aes(x=zi.obs, y=y.obs, size=ni)) + geom_point() +

labs(y="treatment risk", x="mean age") + theme(legend.position="none")

dati$zi.obs <- scale(dati$zi.obs, center=TRUE)

n <- nrow(dati)
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m.hat <- lm(y.obs ~ x.obs + zi.obs, data=dati) ## LS

coef.naive <- c(coef(m.hat), ## beta0, beta1, beta2

mean(dati[,2]), ## mu.xi

mean(dati[,3]), ## mu.z

(mean(resid(m.hat)^2))) ## (tau^2)

se.naive <- c(sqrt(diag(vcov(m.hat))), sd(dati[,2])^2/n, sd(dati[,3])^2/n,

(sqrt( 2*(n-3)*coef.naive[6]^2/n^2)))

theta.start <- c(coef(m.hat), ## beta0, beta1, beta2

mean(dati[,2]), ## mux

mean(dati[,3]), ## muz

log((mean(resid(m.hat)^2))), ## (tau^2)

log(sd(dati[,2])^2), ## (sigmax^2)

log(sd(dati[,3])^2)) ## (sigmaz^2)

model.approx <- optim(theta.start, error.affect.lik.approx.repa, dati=dati,

pseudo=TRUE, control=list(fnscale=-1, maxit=5000),hessian=TRUE)

est<-model.approx$par

invH <- solve(model.approx$hessian)

se <- sqrt(diag(-diag(c(rep(1,5),exp(est[6:8])))%*%invH%*%diag(c(rep(1,5),

exp(est[6:8])))))

G <- matrix(0,length(est),length(est))

for(i in 1:nrow(dati)){

a <- fdHess(est, error.affect.lik.approx.repa, dati=dati[i,], pseudo=TRUE) ## compute Hessian

values.gradient <- a$gradient

G <- G + values.gradient%*%t(values.gradient) ## compute J matrix

}

sand.se <- sqrt(diag(diag(c(rep(1,5),exp(est[6:8])))%*%invH%*%G%*%invH%*%

diag(c(rep(1,5),exp(est[6:8])))))

est[6:8] <- exp(est[6:8])

round(est, 3)

round(se, 3)

round(sand.se, 3)

round(coef.naive, 3)

round(se.naive, 3)
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################################################################################

## fit crr with Z as male

p.z <- c(62,54,71,57,49,NA,57,54,69,48,NA,53,54,62)/100 ##male

z.i <- p.z*ni

zi.obs <- log( (z.i)/(ni-z.i) )

id.zi <- which(zi.obs==Inf | zi.obs==-Inf)

if(length(id.zi)>0) ## check for infinite zi.obs and correct them

zi.obs[id.zi] <- log( (z.i[id.zi]+0.5)/(ni[id.zi]-z.i[id.zi]+0.5) )

var.z <- 1/z.i+1/(ni-z.i)

id.zi <- which(var.z==Inf)

if(length(id.zi)>0) ## check for infinite zi.obs variance and correct them

var.z[id.zi] <- 1/(z.i[id.zi]+0.5)+1/(ni[id.zi]-z.i[id.zi]+0.5)

dati <- data.frame(eta.hat=eta.hat, xi.hat=xi.hat, zi.obs=zi.obs, var.eta=var.eta,

cov.etaxi=0, cov.etaz=0, cov.xieta=0, var.xi=var.xi, cov.xiz=0,

cov.zeta=0, cov.zxi=0, var.z=var.z, y.i=y.i, x.i=x.i, ni=ni)

colnames(dati) <- c(’y.obs’, ’x.obs’, ’zi.obs’, ’var.y’, ’cov.yx’, ’cov.yz’,

’cov.yx’, ’var.x’, ’cov.xz’, ’cov.yz’, ’cov.xz’, ’var.z’, ’y’, ’x’, ’ni’)

dati <- na.omit(dati) ## remove NAs

dati2 <- as_tibble(dati[,c(1,3,15)])

ggplot(dati2, aes(x=zi.obs, y=y.obs, size=ni)) + geom_point() +

labs(y="treatment risk", x="log odds of male") + theme(legend.position="none")

n <- nrow(dati)

m.hat <- lm(y.obs ~ x.obs + zi.obs, data=dati) ## LS

coef.naive <- c(coef(m.hat), ## beta0, beta1, beta2

mean(dati[,2]), ## mu.xi

mean(dati[,3]), ## mu.z

(mean(resid(m.hat)^2))) ## (tau^2)

se.naive <- c(sqrt(diag(vcov(m.hat))), sd(dati[,2])^2/n,

sd(dati[,3])^2/n, (sqrt(2*(n-3)*coef.naive[6]^2/n^2)))

theta.start <- c(coef(m.hat), ## beta0, beta1, beta2

mean(dati[,2]), ## mux

mean(dati[,3]), ## muz

log((mean(resid(m.hat)^2))), ## (tau^2)
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log(sd(dati[,2])^2), ## (sigmax^2)

log(sd(dati[,3])^2)) ## (sigmaz^2)

model.approx <- optim(theta.start, error.affect.lik.approx.repa, dati=dati,

pseudo=TRUE, control=list(fnscale=-1, maxit=5000),hessian=TRUE)

est <- model.approx$par

invH <- solve(model.approx$hessian)

se <- sqrt(diag(-diag(c(rep(1,5),exp(est[6:8])))%*%invH%*%diag(c(rep(1,5),

exp(est[6:8])))))

G <- matrix(0, length(est), length(est))

for(i in 1:nrow(dati)){

a <- fdHess(est, error.affect.lik.approx.repa, dati=dati[i,], pseudo=TRUE) ## compute Hessian

values.gradient <- a$gradient

G <- G + values.gradient%*%t(values.gradient) ## compute J matrix

}

sand.se <- sqrt(diag(diag(c(rep(1,5),exp(est[6:8])))%*%invH%*%G%*%invH%*%

diag(c(rep(1,5),exp(est[6:8])))))

est[6:8] <- exp(est[6:8])

round(est, 3)

round(se, 3)

round(sand.se, 3)

round(coef.naive, 3)

round(se.naive, 3)

################################################################################

## fit crr with Z as hypertension

p.z <- c(34,32,54,NA,33,24,75,25,50,30,NA,10,21,30)/100 ##hypertension

z.i <- p.z*ni

zi.obs <- log( (z.i)/(ni-z.i) )

id.zi <- which(zi.obs==Inf | zi.obs==-Inf)

if(length(id.zi)>0) ## check for infinite zi.obs and correct them

zi.obs[id.zi] <- log( (z.i[id.zi]+0.5)/(ni[id.zi]-z.i[id.zi]+0.5) )

var.z <- 1/z.i+1/(ni-z.i)

id.zi <- which(var.z==Inf)
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if(length(id.zi)>0) ## check for infinite zi.obs variance and correct them

var.z[id.zi] <- 1/(z.i[id.zi]+0.5)+1/(ni[id.zi]-z.i[id.zi]+0.5)

dati <- data.frame(eta.hat=eta.hat, xi.hat=xi.hat, zi.obs=zi.obs,

var.eta=var.eta, cov.etaxi=0, cov.etaz=0, cov.xieta=0, var.xi=var.xi, cov.xiz=0,

cov.zeta=0, cov.zxi=0, var.z=var.z, y.i=y.i, x.i=x.i, ni=ni)

colnames(dati) <- c(’y.obs’, ’x.obs’, ’zi.obs’, ’var.y’, ’cov.yx’, ’cov.yz’,

’cov.yx’, ’var.x’, ’cov.xz’, ’cov.yz’, ’cov.xz’, ’var.z’, ’y’, ’x’, ’ni’)

dati <- na.omit(dati) ## remove NAs

dati2 <- as_tibble(dati[,c(1,3,15)])

ggplot(dati2, aes(x=zi.obs, y=y.obs, size=ni)) + geom_point() +

labs(y="treatment risk", x="log odds of hypertension")

n <- nrow(dati)

m.hat <- lm(y.obs ~ x.obs + zi.obs, data=dati) ## LS

coef.naive <- c(coef(m.hat), ## beta0, beta1, beta2

mean(dati[,2]), ## mu.xi

mean(dati[,3]), ## mu.z

(mean(resid(m.hat)^2))) ## (tau^2)

se.naive <- c(sqrt(diag(vcov(m.hat))), sd(dati[,2])^2/n, sd(dati[,3])^2/n,

(sqrt(2*(n-3)*coef.naive[6]^2/n^2)))

theta.start <- c(coef(m.hat), ## beta0, beta1, beta2

mean(dati[,2]), ## mux

mean(dati[,3]), ## muz

log((mean(resid(m.hat)^2))), ## (tau^2)

log(sd(dati[,2])^2), ## (sigmax^2)

log(sd(dati[,3])^2)) ## (sigmaz^2)

model.approx <- optim(theta.start, error.affect.lik.approx.repa, dati=dati,

pseudo=TRUE, control=list(fnscale=-1, maxit=5000),hessian=TRUE)

est<-model.approx$par

invH <- solve(model.approx$hessian)

se <- sqrt(diag(-diag(c(rep(1,5),exp(est[6:8])))%*%invH%*%

diag(c(rep(1,5),exp(est[6:8])))))

G <- matrix(0, length(est), length(est))
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for(i in 1:nrow(dati)){

a <- fdHess(est, error.affect.lik.approx.repa, dati=dati[i,], pseudo=TRUE) ## compute Hessian

values.gradient <- a$gradient

G <- G + values.gradient%*%t(values.gradient) ## compute J matrix

}

sand.se <- sqrt(diag(diag(c(rep(1,5),exp(est[6:8])))%*%invH%*%G%*%invH%*%

diag(c(rep(1,5),exp(est[6:8])))))

est[6:8] <- exp(est[6:8])

round(est, 3)

round(se, 3)

round(sand.se, 3)

round(coef.naive, 3)

round(se.naive, 3)

#####################################################################

## fit linear crr model

dati.basic <- data.frame(eta.hat=eta.hat, xi.hat=xi.hat, var.eta=var.eta,

cov.etaxi=0, cov.xieta=0, var.xi=var.xi, y.i=y.i, x.i=x.i, ni.t=ni.t, ni.c=ni.c)

colnames(dati.basic) <- c(’y.obs’, ’x.obs’, ’var.y’, ’cov.yx’,

’cov.yx’, ’var.x’, ’y’, ’x’, ’ni.t’, ’ni.c’)

dati.basic$x.obs.cen <- scale(dati.basic$x.obs, scale=FALSE)

m <- nrow(dati.basic)

## naive estimation

m.hat.basic <- lm(y.obs ~ x.obs.cen, data=dati.basic)

naive.est.basic <- c(coef(m.hat.basic), mean(resid(m.hat.basic)^2))

naive.se.basic <- c(sqrt(diag(vcov(m.hat.basic))), sd(dati.basic$x.obs)/sqrt(m),

(sqrt(2*(m-2)*naive.est.basic[3]^2/m^2)), var(dati.basic$x.obs)*sqrt(2/(m-1)))

theta.start.basic <- c(coef(m.hat.basic), ## beta0, beta1

mean(dati.basic$x.obs), ## mu.xi

mean(resid(m.hat.basic)^2), ## tau2

sd(dati.basic$x.obs)^2) ## sigma2.xi

round(theta.start.basic, 3) ## estimate

round(naive.se.basic, 3)
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round(theta.start.basic+1.96*naive.se.basic, 3) ## 95% wald-type confidence interval

round(theta.start.basic-1.96*naive.se.basic, 3) ## 95% wald-type confidence interval

## linear approximate model

model.approx.basic <- optim(theta.start.basic, basic.lik.approx, dati=dati.basic,

center=TRUE, control=list(fnscale=-1, maxit=5000), hessian=TRUE)

round(model.approx.basic$par,3) ## estimate

round(sqrt(diag(solve(-model.approx.basic$hessian))),3) ## hessian standard error

round(model.approx.basic$par+1.96*sqrt(diag(solve(-model.approx.basic$hessian))),

3) ## 95% wald-type confidence interval upper bound

round(model.approx.basic$par-1.96*sqrt(diag(solve(-model.approx.basic$hessian))),

3) ## 95% wald-type confidence interval lower bound

lal.max.lik<-model.approx.basic$value

round(2*5-lal.max.lik, 3)

## linear exact model

model.exactGH.basic <- optim(theta.start.basic, basic.lik.GH3, model="exact",

center=TRUE, dati=dati.basic, n.node=20, control=list(fnscale=-1, maxit=5000),

hessian=TRUE)

round(model.exactGH.basic$par, 3) ## estimate

round(sqrt(diag(solve(-model.exactGH.basic$hessian))), 3) ## hessian standard error

round(model.exactGH.basic$par+1.96*sqrt(diag(solve(-model.exactGH.basic$hessian))),

round(model.exactGH.basic$par-1.96*sqrt(diag(solve(-model.exactGH.basic$hessian))),

lel.max.lik<-model.exactGH.basic$value

lel.max.lik<-lel.max.lik+sum(log(sqrt(2*dati.basic[,3]*2*dati.basic[,6])))

round(2*5-lel.max.lik, 3)

## fit quadratic crr model

dati <- data.frame(eta.hat=eta.hat, xi.hat=xi.hat, xi.hat2=xi.hat^2,

var.eta=var.eta, cov.etaxi=0, cov.xieta=0, var.xi=var.xi, y.i=y.i, x.i=x.i,

ni.t=ni.t, ni.c=ni.c)

colnames(dati) <- c(’y.obs’, ’x.obs’, ’x.obs2’, ’var.y’, ’cov.yx’,

’cov.yx’, ’var.x’, ’y’, ’x’, ’ni.t’, ’ni.c’)

dati$x.obs.cen <- scale(dati$x.obs, scale=FALSE)
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dati$x.obs.cen2 <- dati$x.obs.cen^2

## naive estimation

m.hat <- lm(y.obs ~ x.obs.cen+x.obs.cen2, data=dati)

naive.est <- c(coef(m.hat), mean(resid(m.hat)^2))

theta.start <- c(coef(m.hat), ## beta0, beta1, beta2

mean(dati$x.obs), ## mu.xi

mean(resid(m.hat)^2), ## tau2

sd(dati$x.obs)^2) ## sigma2.xi

round(theta.start, 3) ## estimate

naive.se <- c(sqrt(diag(vcov(m.hat))), sd(dati$x.obs)/sqrt(m),

(sqrt(2*(m-3)*naive.est[4]^2/m^2)), var(dati$x.obs)*sqrt(2/(m-1))) ## standard error

round(naive.se, 3)

round(theta.start+1.96*naive.se, 3) ## 95% wald-type confidence interval upper bound

round(theta.start-1.96*naive.se, 3) ## 95% wald-type confidence interval lower bound

## quadratic approximate model

model.approxGH <- optim(theta.start, quad.lik.GH3, dati=dati, n.node=20,

model=’approx’, control=list(fnscale=-1, maxit=5000), hessian=TRUE)

round(model.approxGH$par,3)

round(sqrt(diag(solve(-model.approxGH$hessian))),3) ## hessian standard error

round(model.approxGH$par+1.96*sqrt(diag(solve(-model.approxGH$hessian))),3) ## 95% wald-type

round(model.approxGH$par-1.96*sqrt(diag(solve(-model.approxGH$hessian))),3) ## 95% wald-type

qal.max.lik<-model.approxGH$value

qal.max.lik<-qal.max.lik-log(sqrt(pi*pi))

round(2*6-qal.max.lik, 3)

## quadratic exact model

model.exactGH <- optim(theta.start, quad.lik.GH3, dati=dati, n.node=20, model=’exact’,

control=list(fnscale=-1, maxit=5000), hessian=TRUE)

round(model.exactGH$par,3) ## estimate

round(sqrt(diag(solve(-model.exactGH$hessian))), 3) ## hessian standard error
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round(model.exactGH$par+1.96*sqrt(diag(solve(-model.exactGH$hessian))), 3) ## 95%

round(model.exactGH$par-1.96*sqrt(diag(solve(-model.exactGH$hessian))), 3) ## 95%

qel.max.lik<-model.exactGH$value

qel.max.lik<-qel.max.lik+sum(log(sqrt(2*dati[,4]*2*dati[,7])))

round(2*6-qel.max.lik, 3)

## model visualization

plot(xi.hat, eta.hat, xlab="control risk", ylab="treatment risk")

## quadratic approximate model

lines(seq(min(xi.hat)-1, max(xi.hat)+1, 0.05), model.approxGH$par[1]

+model.approxGH$par[2]*(seq(min(xi.hat)-1, max(xi.hat)+1, 0.05)-

model.approxGH$par[4])

+model.approxGH$par[3]*(seq(min(xi.hat)-1, max(xi.hat)+1, 0.05)-

model.approxGH$par[4])^2,

lwd = 2, lty = 1)

## quadratic exact model

lines(seq(min(xi.hat)-1, max(xi.hat)+1, 0.05), model.exactGH$par[1]

+model.exactGH$par[2]*(seq(min(xi.hat)-1, max(xi.hat)+1, 0.05)-

model.approxGH$par[4])

+model.exactGH$par[3]*(seq(min(xi.hat)-1, max(xi.hat)+1, 0.05)-

model.approxGH$par[4])^2,

lwd = 2, lty = 2)

## quadratic naive model

lines(seq(min(xi.hat)-1, max(xi.hat)+1, 0.05), theta.start[1]+

theta.start[2]*(seq(min(xi.hat)-1, max(xi.hat)+1, 0.05)-theta.start[4])+

theta.start[3]*(seq(min(xi.hat)-1, max(xi.hat)+1, 0.05)-theta.start[4])^2,

lwd = 2, lty = 3)

## linear approximate model

abline(a=model.approx.basic$par[1]-model.approx.basic$par[2]*

model.approx.basic$par[3], b=model.approx.basic$par[2], lwd = 1, lty=1)

## linear exact model
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abline(a=model.exactGH.basic$par[1]-model.approx.basic$par[2]*

model.approx.basic$par[3], b=model.exactGH.basic$par[2], lwd = 1, lty = 2)

## linear regression model

abline(a=theta.start.basic[1]-theta.start.basic[2]*theta.start.basic[3],

b=theta.start.basic[2], lwd = 1, lty = 3)

## legend

legend("topleft", legend = c("QAL", "QEL", "QNA", "LAL", "LEL", "LNA"),

lwd = rep(c(2,1), c(3,3)), lty = c(1, 2, 3, 1, 2, 3), title=’Method’,

cex=0.5, ncol=2)

######################################################################

## refit model with hypertension

p.z <- c(34,32,54,NA,33,24,75,25,50,30,NA,10,21,30)/100 ##hypertension

z.i <- p.z*ni

zi.obs <- log( (z.i)/(ni-z.i) )

id.zi <- which(zi.obs==Inf | zi.obs==-Inf)

if(length(id.zi)>0) ## check for infinite zi.obs and correct them

zi.obs[id.zi] <- log( (z.i[id.zi]+0.5)/(ni[id.zi]-z.i[id.zi]+0.5) )

var.z <- 1/z.i+1/(ni-z.i)

id.zi <- which(var.z==Inf)

if(length(id.zi)>0) ## check for infinite zi.obs variance and correct them

var.z[id.zi] <- 1/(z.i[id.zi]+0.5)+1/(ni[id.zi]-z.i[id.zi]+0.5)

dati <- data.frame(eta.hat=eta.hat, xi.hat=xi.hat, zi.obs=zi.obs, var.eta=var.eta,

cov.etaxi=0, cov.etaz=0, cov.xieta=0, var.xi=var.xi, cov.xiz=0,

cov.zeta=0, cov.zxi=0, var.z=var.z, y.i=y.i, x.i=x.i, ni=ni)

colnames(dati) <- c(’y.obs’, ’x.obs’, ’zi.obs’, ’var.y’, ’cov.yx’, ’cov.yz’,

’cov.yx’, ’var.x’, ’cov.xz’, ’cov.yz’, ’cov.xz’, ’var.z’, ’y’, ’x’, ’ni’)
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dati <- na.omit(dati) ## remove NAs

dati$x.obs.cen <- scale(dati$x.obs, scale=FALSE)

dati$zi.obs.cen <- scale(dati$zi.obs, scale=FALSE)

n <- nrow(dati)

m.hat <- lm(y.obs ~ x.obs.cen + zi.obs.cen, data=dati) ## LS

theta.start <- c( coef(m.hat), ## beta0, beta1, beta2

mean(dati[,2]), ## mux

mean(dati[,3]), ## muz

log((mean(resid(m.hat)^2))), ## (tau^2)

log(sd(dati[,2])^2), ## (sigmax^2)

log(sd(dati[,3])^2)) ## (sigmaz^2)

model.approx <- optim(theta.start, error.affect.lik.approx.repa.cen, dati=dati,

pseudo=TRUE, control=list(fnscale=-1, maxit=5000),hessian=TRUE)

est<-model.approx$par

invH <- solve(model.approx$hessian)

se <- sqrt(diag(-diag(c(rep(1,5),exp(est[6:8])))%*%invH%*%diag(c(rep(1,5),

exp(est[6:8])))))

G <- matrix(0,length(est),length(est))

for(i in 1:nrow(dati)){

a <- fdHess(est, error.affect.lik.approx.repa, dati=dati[i,], pseudo=TRUE) ## compute

values.gradient <- a$gradient

G <- G + values.gradient%*%t(values.gradient) ## compute J matrix

}

sand.se <- sqrt(diag(diag(c(rep(1,5),exp(est[6:8])))%*%invH%*%G%*%invH%*%

diag(c(rep(1,5),exp(est[6:8])))))

est[6:8]<-exp(est[6:8])

round(est,3)

round(se,3)

round(sand.se,3)

round(2*8-2*model.approx$value,3)
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Sanchez-Meca, J. and Maŕın-Mart́ınez, F. (1997) Homogeneity tests in meta-analysis: A

Monte Carlo comparison of statistical power and Type I error. Quality and Quantity

31, 385–399.

Santiago, J. A. and Potashkin, J. A. (2013) Shared dysregulated pathways lead to

parkinson’s disease and diabetes. Trends in Molecular Medicine 19(3), 176–186.

Sanz-Sánchez, J., Vrachatis, D. A., Reimers, B., Deftereos, S. G., Kallikourdis, M.,

Vicenzi, M., Giannopoulos, G., Giotaki, S. G., Tousoulis, D., Ferrante, G., Condorelli,

G. and Stefanini, G. G. (2021) Impact of myocardial injury on mortality in patients

with COVID-19: A meta-analysis. Hellenic Journal of Cardiology 62(3), 253–255.

Schmid, C. H., Carlin, B. P. and Welton, N. J. (2021) Bayesian methods for meta-

analysis. In Handbook of Meta-Analysis, eds C. H. Schmid, T. Stijnen and I. R.

White. Boca Raton: Chapman andHall/CRC, first edition.

Schmid, C. H., Lau, J., McIntosh, M. W. and Cappelleri, J. C. (1998) An empirical study

of the effect of the control rate as a predictor of treatment efficacy in meta-analysis

of clinical trials. Statistics in Medicine 17(17), 1923–1942.

Schmid, C. H., Stark, P. C., Berlin, J. A., Landais, P. and Lau, J. (2004) Meta-regression

detected associations between heterogeneous treatment effects and study-level, but

not patient-level, factors. Journal of Clinical Epidemiology 57(7).

Schmidt, F. and Hunter, J. (2015) Methods of Meta-Analysis: Correcting Error and

Bias in Research Findings. Third edition. SAGE Publication.

Schmidt, F. L., Oh, I. and Hayes, T. L. (2009) Fixed- versus random-effects models in

meta-analysis: Model properties and an empirical comparison of differences in results.

British Journal of Mathematical and Statistical Psychology 62(1), 97–128.

Schulze, R. (2004) Meta-Analysis - A Comparison of Approaches. First edition. Boston:

Hogrefe & Huber Publishers.

Severini, T. A. (2000) Likelihood Methods in Statistics. Oxford: Oxford University Press.



160 Bibliography

Shadish, W. R. and Lecy, J. D. (2015) The meta-analytic big bang. Research Synthesis

Methods 6(3), 246–264.

Sharp, S. J. and Thompson, S. G. (2000) Analysing the relationship between treat-

ment effect and underlying risk in meta-analysis: Comparison and development of

approaches. Statistics in Medicine 19(23), 3251–3274.

Sharp, S. J., Thompson, S. G. and Altman, D. G. (1996) The relation between treat-

ment benefit and underlying risk in meta-analysis. BMJ: British Medical Journal

313(7059), 735–738.

Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., Gong, W., Liu, X., Liang, J.,

Zhao, Q., Huang, H., Yang, B. and Huang, C. (2020) Association of cardiac injury with

mortality in hospitalized patients with covid-19 in Wuhan, China. JAMA Cardiology

5(7), 802–810.

Sidik, K. and Jonkman, J. N. (2002) A simple confidence interval for meta-analysis.

Statistics in Medicine 21(21), 3153–3159.

Sidik, K. and Jonkman, J. N. (2005a) A note on variance estimation in random effects

meta-regression. Journal of Biopharmaceutical Statistics 15(5), 823–838.

Sidik, K. and Jonkman, J. N. (2005b) Simple heterogeneity variance estimation for

meta-analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics)

54(2), 367–384.

Simmonds, M. C. and Higgins, J. P. T. (2007) Covariate heterogeneity in meta-analysis:

Criteria for deciding between meta-regression and individual patient data. Statistics

in Medicine 26(15), 2982–2999.

Skovgaard, I. M. (1996) An explicit large-deviation approximation to one-parameter

tests. Bernoulli 2(2), 145–165.

Smith, T. C., Spiegelhalter, D. J. and Thomas, A. (1995) Bayesian approaches to

random-effects meta-analysis: A comparative study. Statistics in Medicine 14(24),

2685–2699.

Spiegelhalter, D. J., Abrams, K. R. and Myles, J. P. (2003) Bayesian Approaches to

Clinical Trials and Health-Care Evaluation. First edition. New Jersey: John Wiley &

Sons, Ltd.



Bibliography 161

Stefanski, L. A. and Carroll, R. J. (1987) Conditional scores and optimal scores for

generalized linear measurement-error models. Biometrika 74(4), 703–716.

Stefanski, L. A. and Cook, J. R. (1995) Simulation-extrapolation: The measurement

error jackknife. Journal of the American Statistical Association 90(432), 1247–1256.

Sterne, J. A. C. and Smith, G. D. (2001) Sifting the evidence-what’s wrong with signif-

icance tests? British Medical Journal 322(7280), 226–231.
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