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19 A condition for scattered linearized

polynomials involving Dickson matrices

Corrado Zanella

Abstract

A linearized polynomial over Fqn is called scattered when for any
t, x ∈ Fqn , the condition xf(t) − tf(x) = 0 holds if and only if x

and t are Fq-linearly dependent. General conditions for linearized
polynomials over Fqn to be scattered can be deduced from the recent
results in [4, 7, 15, 19]. Some of them are based on the Dickson
matrix associated with a linearized polynomial. Here a new condition
involving Dickson matrices is stated. This condition is then applied to
the Lunardon-Polverino binomial xq

s

+ δxq
n−s

, allowing to prove that
for any n and s, if Nqn/q(δ) = 1, then the binomial is not scattered.

Also, a necessary and sufficient condition for xq
s

+bxq
2s

to be scattered
is shown which is stated in terms of a special plane algebraic curve.

AMS subject classification: 51E20, 05B25, 51E22

Keywords: Linear set, linearized polynomial, q-polynomial, finite projec-
tive line, scattered linear set, Dickson matrix

1 Introduction

A point P of the projective space PG(d−1, qn) is a one-dimensional subspace
of the vector space Fd

qn; that is, P = 〈v〉Fqn
= {cv : c ∈ Fqn} for some nonzero

v ∈ F
d
qn .

Let U be an r-dimensional Fq-subspace of Fd
qn. Then

LU := {〈v〉Fqn
: v ∈ U, v 6= 0}
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is an Fq-linear set (or just linear set) of rank r in PG(d−1, qn). Let u, v ∈ U .
If u = cv, c ∈ Fq, then clearly 〈u〉Fqn

= 〈v〉Fqn
. If this is the only case in

which two vectors of U determine the same point of PG(d − 1, q), that is,
〈v〉Fqn

= 〈u〉Fqn
if and only if 〈v〉Fq

= 〈u〉Fq
, then LU is called a scattered

linear set. Equivalently, LU is scattered if and only if it has maximum size
(qr−1)/(q−1) with respect to r. The linear sets are related to combinatorial
objects, such as blocking sets, two-intersection sets, finite semifields, rank-
distance codes, and many others. The interested reader is referred to the
survey by O. Polverino [18] and to [20], where J. Sheekey builds a bridge
with the rank-distance codes.

Assume that in particular U is an Fq-subspace of F2
qn, dimFq

U = n. In
this case LU := {〈v〉Fqn

: v ∈ U, v 6= 0} ⊆ PG(1, qn), is called a maximum
linear set of PG(1, qn), since by the dimension formula any linear set of rank
greater than n equals PG(1, qn). Up to projectivities of PG(1, qn) it may be
assumed that 〈(0, 1)〉Fqn

6∈ LU . Hence

LU = Lf = {〈(x, f(x))〉Fqn
: x ∈ F

∗

qn}

where f(x) is a suitable Fq-linear map, that is a linearized polynomial:

f(x) =
n−1
∑

i=0

aix
qi , ai ∈ Fqn, i = 0, 1, . . . , n− 1. (1)

If Lf is scattered, then f(x) is called a scattered linearized polynomial, or
scattered q-polynomial with respect to n. A property characterizing the scat-
tered q-polynomials is that for any x, y ∈ F

∗

qn , f(x)/x = f(y)/y if and only
if 〈x〉Fq

= 〈y〉Fq
.

A first example of scattered q-polynomial is f(x) = xq [3], with respect to
any n. Indeed, for any x, y ∈ F

∗

qn , f(x)/x = f(y)/y, is equivalent to xq−1 =
yq−1, hence to x/y ∈ F

∗

q. A derived example is f(x) = xqs , gcd(n, s) = 1.
Indeed (x/y)q

s
−1 = 1 implies x/y ∈ Fqs ∩ F

∗

qn = F
∗

q. In both cases above,
Lf = {〈(x, f(x))〉Fqn

: x ∈ F
∗

qn} = {〈(1, z)〉Fqn
: z ∈ Fqn, Nqn/q(z) = 1}, where

Nqn/q(z) = z(q
n
−1)/(q−1) denotes the norm over Fq of z ∈ Fqn. The related

linear set is called a linear set of pseudoregulus type.
The next example has been given by G. Lunardon and O. Polverino [12]

and generalized in [11, 20]:

f(x) = xqs + δxqn−s

, n ≥ 4, gcd(n, s) = 1, Nqn/q(δ) 6= 1.
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In particular cases, the condition Nqn/q(δ) 6= 1 has been proved to be nec-
essary for f(x) to be scattered [2, 10, 11, 22]. In section 3 it will proved
that actually it is necessary for any n and s. Further examples of scattered
q-polynomials are given in [6, 5, 14, 22]. All of them are with respect to
n = 6 or n = 8. D. Bartoli, M. Giulietti, G. Marino, and O. Polverino [1]
proved that if f̂(x) is the adjoint of f(x) with respect to the bilinear form
〈x, y〉 = Trqn/q(xy) in F

2
qn , where Trqn/q(z) =

∑n−1
i=0 zq

i

denotes the trace over
Fq of z ∈ Fqn, then Lf = Lf̂ . This implies that if the polynomial f(x) in

(1) is scattered, then also f̂(x) =
∑n−1

i=0 aq
n−i

i xqn−i

is. Up to the knowledge
of the author of this paper, no more examples of scattered q-polynomials are
known. So, it would seem that scattered q-polynomials are rare. D. Bartoli
and Y. Zhou [2] formalized such an idea of scarcity by proving that the pseu-
doregulus and Lunardon-Polverino polynomials are, roughly speaking, the
only q-polynomials of a certain type which are scattered for infinitely many
n.

Recently, a great deal of effort has been put in finding conditions for q-
polynomials to be scattered [4, 7, 15, 19]. Some of them are based on the
Dickson matrix associated with the q-polynomial in (1), that is, the n × n
matrix

Mq,f =















a0 a1 a2 · · · an−1

aqn−1 aq0 aq1 · · · aqn−2

aq
2

n−2 aq
2

n−1 aq
2

0 · · · aq
2

n−3
...

...

aq
n−1

1 aq
n−1

2 aq
n−1

3 · · · aq
n−1

0















.

It is well-known that the rank ofMq,f equals the rank of f(x), see for example
[21, Proposition 4.4]. This rank can be computed by applying the following
result by B. Csajbók:

Theorem 1.1 ([4, Theorem 3.4]). Let Mq,f be the Dickson matrix associ-

ated with the q-polynomial in (1). Denote by M
(r)
q,f the r × r submatrix of

Mq,f obtained by considering the last r columns and the first r rows of Mq,f .

Then the rank of f(x) is t if and only if det(M
(n)
q,f ) = det(M

(n−1)
q,f ) = · · · =

det(M
(t+1)
q,f ) = 0, and det(M

(t)
q,f) 6= 0.

A q-polynomial f(x) ∈ Fqn[x] is scattered if and only if for any m ∈ Fqn

the dimension of the kernel of fm(x) = mx + f(x) is at most one. So, by
Theorem 1.1 a necessary and sufficient condition for f(x) to be scattered is

3



that the system of two equations

det(M
(n)
q,fm

) = det(M
(n−1)
q,fm

) = 0

has no solution in the variable m ∈ Fqn.
In this paper a condition consisting of one equation (Proposition 2.2)

is proved, and applied to two binomials. It would seem that one equation
is better than two in order to prove that a given q-polynomial f(x) is not
scattered, while two equations will usually be more helpful in the proof that
f(x) is. As a matter of fact, here the condition Nqn/q(δ) 6= 1 is proved to be
necessary for the Lunardon-Polverino binomial to be scattered (cf. Theorem
3.4). Furthermore, two necessary and sufficient conditions for xqs + bxq2s

(where gcd(s, n) = 1) to be scattered are stated in Propositions 3.5 and 3.10.
This leads to the fact that the polynomial xq + bxq2 , b 6= 0, is never scattered
if n ≥ 5 (cf. Proposition 3.8 and Remark 3.11).

2 A condition for scattered linearized poly-

nomials

In this paper s, n, q and σ will always denote natural numbers such that
n ≥ 3, gcd(s, n) = 1, q is the power of a prime and σ = qs. Any Fq-linear
endomorphism of Fqn can be represented in the form

f(x) = a0x+ a1x
σ + a2x

σ2

+ · · ·+ an−1x
σn−1

∈ Fqn[x]. (2)

As a matter of fact, if τ is the permutation i 7→ is of Z/(n), then f(x) is the
same function of f̃(x) =

∑n−1
i=0 aτ−1(i)x

qi . Generalizing the notion of Dickson
matrix given in the previous section, the σ-matrix of Dickson associated with
the linearized polynomial g(t) =

∑n−1
i=0 ait

σi

is

Mσ,g =















a0 a1 a2 · · · an−1

aσn−1 aσ0 aσ1 · · · aσn−2

aσ
2

n−2 aσ
2

n−1 aσ
2

0 · · · aσ
2

n−3
...

...

aσ
n−1

1 aσ
n−1

2 aσ
n−1

3 · · · aσ
n−1

0















.

This is just the Dickson matrix Mq,g̃ associated with g̃(t) after a permutation
of the row and columns. Indeed, the element in row r and column c of Mq,g̃,
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r, c ∈ {0, 1, . . . , n − 1}, is mrc = aq
r

τ−1(c−r) = aq
r

τ−1(c)−τ−1(r). By applying τ to

both the row and column index, mτ(r)τ(c) = aσ
r

c−r follows. Therefore, the rank
of Mσ,g equals the rank of g(t).

Remark 2.1. Each row of an n-order σ-matrix of Dickson is obtained from
the previous one (cyclically) by the map

φ : (X0, X1, . . . , Xn−1) 7→ (Xn−1, X0, . . . , Xn−2)
σ

which is an invertible semilinear map of Fn
qn into itself.

The polynomial (2) is scattered if and only if f1(x) =
∑n−1

i=1 aix
σi

is.
Hence in the following a0 will always be zero.

Proposition 2.2. Let f(x) =
∑n−1

i=1 aix
σi

be a linearized polynomial over
Fqn, and

g(t) = gx(t) = −f(x)t +
n−1
∑

i=1

aix
σi

tσ
i

= −f(x)t + f(xt).

Then the following conditions are equivalent:

(i) the polynomial f(x) is scattered;

(ii) for any x ∈ F
∗

qn, a nonsingular (n− 1)-order minor of Mσ,g exists;

(iii) for any x ∈ F
∗

qn, all (n− 1)-order minors of Mσ,g are nonsingular.

Proof. The polynomial f(x) is scattered if and only if for any x ∈ F
∗

qn the
rank of h(t) = xf(t)− tf(x) is n− 1, that is, the rank of

Mσ,h =















−f(x) a1x a2x . . . an−1x
aσn−1x

σ −f(x)σ aσ1x
σ . . . aσn−2x

σ

aσ
2

n−2x
σ2

aσ
2

n−1x
σ2

−f(x)σ
2

. . . aσ
2

n−3x
σ2

...
...

aσ
n−1

1 xσn−1

aσ
n−1

2 xσn−1

aσ
n−1

3 xσn−1

. . . −f(x)σ
n−1















is always n − 1. By dividing the rows of Mσ,h by x, xσ, xσ2

, . . ., xσn−1

,
respectively, and then multiplying the columns for that same elements, one
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obtains














−f(x) a1x
σ a2x

σ2

. . . an−1x
σn−1

aσn−1x −f(x)σ aσ1x
σ2

. . . aσn−2x
σn−1

aσ
2

n−2x aσ
2

n−1x
σ −f(x)σ

2

. . . aσ
2

n−3x
σn−1

...
...

aσ
n−1

1 x aσ
n−1

2 xσ aσ
n−1

3 xσ2

. . . −f(x)σ
n−1















,

that is, the matrix Mσ,g. By Remark 2.1, if a σ-matrix of Dickson is singular,
then any row is a linear combination of the remaining ones. Hence the rank
of Mσ,g equals the rank of any (n−1)×n matrix obtained from it by deleting
a row. Furthermore, since the sum of the columns of Mσ,g is zero, all (n−1)-
order minors have the same rank of Mσ,g.

3 Two linearized binomials

Definition 3.1. For any δ ∈ Fqn,

fσ,δ(x) = xσ + δxσn−1

is the Lunardon-Polverino binomial.

If Nqn/q(δ) 6= 1, then fσ,δ is scattered [11, 12, 13, 20].

Proposition 3.2. The polynomial fσ,δ(x) is scattered if only if there is no
x ∈ F

∗

qn such that
n−1
∑

i=0

z(σ
i
−1)/(σ−1) = 0, (3)

where z = δxσn−1
−σ.

Proof. The (n − 1)-th order North-West principal minor of the σ-matrix of
Dickson associated with the polynomial

g(t) = −fσ,δ(x)t +

n−1
∑

i=1

aix
σi

tσ
i

= −fσ,δ(x)t+ xσtσ + δxσn−1

tσ
n−1

,
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further normalized row by row, is

B(z) =



















−(1 + z) 1 0 0 · · · 0 0
zσ −(1 + z)σ 1 0 · · · 0 0

0 zσ
2

−(1 + z)σ
2

1 · · · 0 0
...

...

0 0 0 0 · · · −(1 + z)σ
n−3

1

0 0 0 0 · · · zσ
n−2

−(1 + z)σ
n−2



















.

(4)
By Laplace expansion along the last column and induction on n, the deter-
minant of B(z) can be computed as (−1)n+1

∑n−1
i=0 z(σ

i
−1)/(σ−1).

The following can be useful in understanding the role of δ:

Proposition 3.3. Let z ∈ Fqn. Then (3) holds if and only if there exists a
y ∈ F

∗

qn such that z = yσ−1 and Trqn/q(y) = 0.

Proof. Any solution of (3) is nonzero. Raising
∑n−1

i=0 z(σ
i
−1)/(σ−1) to the σ,

multiplying by z and then subtracting to the original equation yields 1 −
Nqn/q(z) = 0. So, z is a solution of (3) if and only if z = yσ−1 for some y ∈ F

∗

qn ,

and
∑n−1

i=0 yσ
i
−1 = 0. The latter equation is equivalent to Trqn/q(y) = 0.

Propositions 3.2 and 3.3 together show that, if fσ,δ is not scattered, then
there is an x ∈ Fqn such that Nqn/q(δx

σn−1
−σ) = Nqn/q(δ) Nqn/q(x

σn−1
−σ) =

1. On the other hand, q − 1 divides σn−1 − σ, hence Nqn/q(x
σn−1

−σ) =
1. Summarizing, if Nqn/q(δ) 6= 1, then the Lunardon-Polverino binomial is
scattered, as is known.

Theorem 3.4. If Nqn/q(δ) = 1, then the Lunardon-Polverino binomial fσ,δ(x)
is not scattered.

Proof. Case odd n. Since

xσn−1
−σ = (xσ)σ

n−2
−1

and gcd(s(n−2), n) = 1, the expression xσn−1
−σ takes all values in Fqn whose

norm over Fq is equal to one. This allows the substitution δxσn−1
−σ = wσ−1

into (3). So, fσ,δ(x) is not scattered if and only if Trqn/q(w) = 0 for some
nonzero w and this is trivial.
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Case even n. Since gcd(σn−2−1, σn−1) = σ2−1, the set of all powers of
elements in Fqn with exponent σn−2 − 1 coincides with the set of all powers
with exponent σ2 − 1. Hence for any x ∈ Fqn there exists u ∈ Fqn such that
xσn−1

−σ = uσ2
−1, and conversely. This allows the substitution z = δuσ2

−1 in
(3), meaning that if there is u such that

n−1
∑

i=0

(

δuσ2
−1
)(σi

−1)/(σ−1)

= 0, (5)

then fσ,δ(x) is not scattered. So, taking δ = dσ−1, (5) is equivalent to
Trqn/q(du

σ+1) = 0, u 6= 0. This is a quadratic form in u in a vector space over
Fq of dimension greater than two which has at least one nontrivial zero.

The theorem above has been proved in the particular cases n = 4 in [10],
s = 1 in [2], both n and q odd in [11], and odd n in [22].

Proposition 3.5. The polynomial f(x) = xσ + bxσ2

is scattered if only if
there is no x ∈ F

∗

qn such that

n−1
∑

i=0

w(σi
−1)/(σ−1) = 0, where w = −(1 + b−1xσ−σ2

). (6)

Proof. The σ-matrix of Dickson associated with the polynomial

g(t) = −f(x)t + xσtσ + bxσ2

tσ
2

,

further normalized by dividing the rows by bxσ2

, bσxσ3

, . . . is

A =



















w −(1 + w) 1 · · · 0 0
0 wσ −(1 + w)σ · · · 0 0

0 0 wσ2

· · · 0 0
...

...

1 0 0 · · · wσn−2

−(1 + w)σ
n−2

−(1 + w)σ
n−1

1 0 · · · 0 wσn−1



















.

The matrix obtained by deleting the last row and first column is B(w)
(cf. (4)).

Corollary 3.6. Assume b1, b2 ∈ Fqn and Nqn/q(b1) = Nqn/q(b2). Then the

polynomials fi(x) = xσ + bix
σ2

, i = 1, 2, are either both scattered, or both
non-scattered.

8



Proof. If the norm of b1 is zero then the statement is trivial, so assume that
it is not. Define wi(x) = −(1+ b−1

i xσ−σ2

) for i = 1, 2, and note that w1(x) =
w2(y) is equivalent to b1/b2 = ((x/y)σ)σ−1, that is, ((x/y)σ)σ−1 = cσ−1 for
some c ∈ F

∗

qn. This equation can be always solved in both x and y, whence
w1(x) and w2(y) take the same set of values.

Remark 3.7. Corollary 3.6 allows to look at only q−1 linearized polynomials,
given s, n, and q. This makes a computer search easier. Computations with
GAP1 show that there are no scattered linearized polynomials of the form
lb(x) = xq + bxq2 , b 6= 0, for any q < 223 if n = 5. In [17] it is proved that
for n = 5 and q ≥ 223 the linearized polynomial lb(x) is not scattered for any
b 6= 0. The next proposition summarizes this.

Proposition 3.8. If n = 5 and b ∈ F
∗

q5, then the q-polynomial lb(x) =

xq + bxq2 ∈ Fq5[x] is non-scattered.

Remark 3.9. For n = 4 there are scattered polynomials of type lb(x), b 6= 0.
By the results in [9, 10], all the related linear sets are of Lunardon-Polverino
type, up to collineations.

Proposition 3.10. Let b ∈ F
∗

qn. The polynomial xσ + bxσ2

∈ Fqn [x] is not
scattered if and only if the algebraic curve b−1Xq−1+Y σ−1+1 = 0 in AG(2, qn)
has a point (x0, y0) with coordinates in F

∗

qn, such that Trqn/q(y0) = 0.

Proof. By Proposition 3.3, the first equation in (6) is equivalent to the
existence of y ∈ F

∗

qn such that w = yσ−1, Trqn/q(y) = 0. The second

equation yσ−1 + 1 + b−1xq−q2 = 0 has solutions with x 6= 0 if and only if
b−1xq−1 + yσ−1 + 1 = 0 does.

Remark 3.11. Very recently, M. Montanucci [16] proved that if n > 5, then
for any q the algebraic curve b−1Xq−1 + Y q−1 + 1 = 0 has a point with the
properties above. Together with Propositions 3.8 and 3.10 this implies that
for n ≥ 5 no q-polynomial of type lb(x) = xq + bxq2 , b 6= 0, is scattered.
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