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Abstract
Semiochemical-baited traps are a key component of post-border surveillance for detection of non-native and potentially 
invasive bark and wood-boring beetles (Buprestidae, Cerambycidae, Curculionidae: Scolytinae) at risk of introduction 
in untreated woody materials used in global trade. Because the particular species that may arrive with imported goods is 
unknown, plant protection agencies need trapping protocols that effectively survey all three taxa. Baiting traps with host 
volatiles and aggregation/sex pheromones of longhorn beetles increases efficacy of detecting Cerambycidae and Scolytinae, 
but its effect on detection of Agrilus species and other jewel beetles is unknown. In this multi-country trapping study we found 
that the addition of ethanol and common aggregation/sex pheromones of longhorn beetles to green multi-funnel traps placed 
in the mid-upper forest canopy had negative effects on abundance of Agrilus species and other jewel beetles collected but 
no effect on their species richness, and significant positive effects on species richness and abundance of Cerambycidae and 
Scolytinae. Baiting green canopy traps with longhorn beetle pheromones increased the efficacy of traps for detecting total 
target taxa of bark and wood-boring beetles at risk of international movement in untreated woody materials. This information 
is beneficial for the design of multi-taxa surveys, potentially saving money and resources without decreasing trapping efficacy.
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Introduction

The genus Agrilus (Coleoptera: Buprestidae) includes more 
than 3,300 species worldwide (Jendek 2016; Kelnarova et al. 
2019; Jendek and Grebennikov 2023), many of which feed 
during the larval stage in the phloem and wood of tree gen-
era common to urban and natural forests in North America, 
Europe and Asia. While phytosanitary measures like ISPM 
15 (Haack et al. 2014) are largely effective, the tremen-
dous volume of globally traded goods and the wood used to 
package them ensures that live wood borers will continue to 
arrive in new continents and habitats (Meurisse et al. 2019; 
Ruzzier et al. 2023). Some of these arrivals, especially Agri-
lus species that colonize economically important hardwood 

trees, may establish and become invasive forest pests like the 
emerald ash borer, Agrilus planipennis Fairmaire, which has 
caused massive ecological and economic damage in North 
America (Kovacs et al. 2010; Klooster et al. 2018). For 
these reasons, several tools (e.g., Poland and Rassati 2019; 
Kyei-Poku et al. 2020; Peterson et al. 2023a, b) have been 
developed for the early-detection of Agrilus species at entry 
points, among which traps have been adopted by several 
phytosanitary agencies worldwide.

Among the numerous trap types developed for Agrilus 
monitoring programs (e.g., Poland et al. 2019; Imrei et al. 
2020a; Kuhn et al. 2024), host volatile-baited or unbaited 
green glue-coated prism traps and green Fluon®-coated 
multi-funnel traps set up in the canopy are the most adopted 
and recommended types (Grant et al. 2010, 2011; Silk et al. 
2011, 2020; Evans et al. 2020; Santoiemma et al. 2024a, b). 
The adoption of the green version of these trap types stems 
from a number of both lab and field studies. Lab studies, 
mostly focused on A. planipennis, showed that the eyes of 
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adults of both sexes are sensitive to green, blue, red and 
ultraviolet specific wavelengths (Crook et al. 2009), and that 
specific shades of green (i.e., wavelength range 525–540 nm, 
and reflectance in the 49–67% range) are attractive to males 
(Francese et al. 2010; Domingue et al. 2012, 2013; Poland 
et al. 2019; Parker et al. 2020). Field studies further con-
firmed that green traps catch A. planipennis as well as many 
other Agrilus species (Crook et al. 2009; Francese et al. 
2010, 2011, 2013; Poland and McCullough 2014; Petrice 
and Haack 2015; Kim et al. 2016; Rhainds et al. 2017; 
Skvarla and Dowling 2017; Rassati et al. 2019; Cavaletto 
et al. 2020; Santoiemma et al. 2024a, b), even though other 
trap colors, such as purple or fluorescent yellow, can be more 
attractive than green for certain species (Imrei et al. 2020b; 
Kuhn et al. 2024).

Like Agrilus species, longhorn beetles (Cerambycidae) 
and bark and ambrosia beetles (Curculionidae: Scolytinae) 
are also commonly moved in wood packaging used in trade 
(Brockerhoff et al. 2006; Eyre and Haack 2017; Wu et al. 
2017) and are monitored at entry points using baited traps 
(e.g., Rassati et al. 2015a, b; Hoch et al. 2020; Mas et al. 
2023). For example, black multi-funnel or intercept-panel 
traps set up in the understory and baited with only etha-
nol and/or alpha-pinene, or with these host volatiles plus 
blends of longhorn beetle pheromones, are commonly used 
for generic surveillance of bark and ambrosia beetles and 
longhorn beetles, respectively (e.g., Fan et al. 2019; Raba-
glia et al. 2019; Roques et al. 2023; Dodds et al. 2024). Con-
sidering that surveillance activities can be expensive, and 
budgets are often limited, recent efforts have been made to 
develop trapping protocols that can be used to target multiple 
taxa simultaneously (Chase et al. 2018; Rassati et al. 2019; 
Marchioro et al. 2020). When primarily targeting Agrilus 
species, an option for simultaneously surveying longhorn 
beetle and bark and ambrosia beetle communities could be to 
bait green-canopy multi-funnel traps with ethanol and long-
horn beetle pheromones (Rassati et al. 2019; Marchioro et al. 
2020; Cavaletto et al. 2020, 2021; Santoiemma et al. 2024a). 
This approach would improve detection of those species of 
bark and ambrosia beetles and longhorn beetles active in the 
upper forest strata (e.g., Ulyshen and Hanula 2007; Magu-
ire et al. 2014; Rassati et al. 2019). However, the adoption 
of this protocol requires verification that these baits do not 
negatively affect catches of Agrilus jewel beetles. Adding 
a blend of longhorn beetle pheromones to ethanol-baited 
traps reduced the species richness of jewel beetles detected 
in green multi-funnel traps, though not significantly (Rassati 
et al. 2019).

The primary objective of this multi-country trapping 
study was to test whether catches of Agrilus species 
and other buprestids in green-canopy multi-funnel traps 
were negatively affected by the addition of either host 
volatiles or blends of host volatiles and longhorn beetle 

pheromones. We compared species richness and abun-
dance of Agrilus species and other buprestids in unbaited 
green-canopy multi-funnel traps vs. the same traps baited 
with (i) ethanol; (ii) ethanol plus a blend of longhorn bee-
tle pheromones known to be attractive primarily for spe-
cies in the subfamily Lamiinae; (iii) ethanol plus a blend 
of longhorn beetle pheromones known to be attractive 
primarily for species in the subfamily Cerambycinae. As 
a secondary objective, we determined the effects of lure 
treatments on catches of longhorn beetles as well as bark 
and ambrosia beetles to confirm their efficacy for generic 
surveillance of bark and wood-boring beetles.

Materials and methods

Study sites and general experimental methods

Trapping experiments were carried out in 2021 at seven 
sites located in six different countries in Europe, North 
America and Asia, namely Canada (New Brunswick), 
China (Jilin), Italy (Friuli-Venezia Giulia), Poland (Pod-
laskie Voivodeship), United Kingdom (UK, England) and 
United States of America (USA) (Table S1; Fig. S1). In the 
USA, trials were conducted in Massachusetts (MA) and 
Kentucky (KY). Traps were always set up in a complete 
randomized block design within an oak-dominated forest 
using a minimum of 6 to a maximum of 8 blocks per site 
(Table S1). Within each block, treatments were spaced 
20–30 m from each other and were set up following a lin-
ear transect (Fig. S1). Blocks were spaced 30–60 m from 
each other. In addition, traps were always suspended from 
a branch in the mid to upper canopy (i.e., 10–30 m above 
the ground) using a BigShot® throw weight launcher 
(SherillTree, Greensboro, NC, USA) (Hughes et al. 2014) 
or a hand-thrown weight, or by using a carbon-fiber tel-
escopic pole (Telsys Ltd., Liverpool, UK) (Williams and 
Jonusas 2019), because traps in the forest canopy catch 
more Agrilus species and individuals than traps in the 
understory (e.g., Francese et al. 2008; Crook et al. 2008, 
2009; Ryall et al. 2012; Rassati et al. 2019; Sallé et al. 
2020). For the same reason, traps were placed in open 
sunny spots corresponding to canopy gaps rather than 
shaded ones; these spots were identified visually while 
setting up traps (e.g., Francese et al. 2008; Lyons et al. 
2009). Traps operated for 8–13 weeks corresponding to 
the activity period of most Agrilus spp. and were emptied 
every 2–3 weeks. The dates of trap set-up and removal 
for each site were: Canada, 4 June–14 August; China, 5 
June–4 September; Italy, 26 May–11 August; Massachu-
setts, 27 May–17 August; Kentucky, 18 May–23 August; 
Poland, 24 May–19 July; and UK, 24 May–20 August.



Journal of Pest Science	

Trap type and lures

The green multi-funnel traps used in Canada, China, Italy, 
and Poland were sourced from Synergy Semiochemicals 
(Surrey, British Columbia, Canada; 525 nm, 55% reflec-
tance) and were treated with Fluon® (active ingredient pol-
ytetrafluoroethylene; Synergy’s EZ Fluon kit #5001) at 12% 
concentration in water, as suggested by the supplier. The 
traps used in the USA and United Kingdom were sourced 
from ChemTica Internacional (Santo Domingo, Costa Rica; 
530 nm, 57% reflectance), and came pre-treated with a 30% 
concentration of Fluon. Fluon treatment reduces friction on 
the trap surface and increases trap catches of wood-boring 
beetles (Graham and Poland 2012; Allison et al. 2016). Trap-
collecting cups (height: 11.5 cm; diameter: 9.5 cm) were 
filled with 150–200 ml of either a 50% propylene glycol 
solution in water or as a pre-mixed marine/RV antifreeze 
solution (USA, Italy, UK), 50% ethylene glycol in water 
(Poland), or a saturated solution of table salt in water (Can-
ada, China) with a drop or two of liquid dish detergent to 
reduce surface tension. Trapping solutions were replaced or 
replenished as required at each trap check.

There were three experimental lure treatments in addi-
tion to the unbaited control: (i) ultra-high release rate 
(UHR) ethanol, (ii) E/Z-fuscumol lure + E/Z-fuscumol 
acetate lure + UHR ethanol lure (hereafter referred to as 
FUSC blend); and (iii) racemic 3-hydroxyhexan-2-one 
lure + 3-hydroxyoctan-2-one lure + syn-2,3-hexanediols 
lure + UHR ethanol lure (hereafter referred to as KET 
blend) (see Table S2 for details on sources and release rates 
of lures). UHR ethanol was selected as it is one of the most 
adopted host volatile trap lures when targeting bark and 
ambrosia beetles (e.g., Miller and Rabaglia 2009; Rabaglia 
et al. 2019; Fiala et al. 2023) and enhances attraction of 
many cerambycids to their aggregation/sex pheromones 
(e.g., Hanks et al. 2012, 2018; Miller et al. 2015, 2017; 
Rice et al. 2024). The FUSC blend was selected because 
its components attract multiple species of longhorn beetles 
in the subfamilies Lamiinae (Fonseca et al. 2010; Mitchell 
et al. 2011; Hanks et al. 2018; Millar et al. 2018; Meier et al. 
2020) and Spondylidinae (e.g., Silk et al. 2007; Sweeney 
et al. 2010; Halloran et al. 2018; Žunič-Kosi et al. 2019; 
Kerr et al. 2024). The KET blend was selected because its 
components attract multiple species of longhorn beetles in 
the subfamily Cerambycinae (e.g., Fettköther et al. 1995; 
Lacey et al. 2007; Hanks and Millar 2013, 2016; Miller et al. 
2015; Hanks et al. 2018, 2019; Millar et al. 2018; Flaherty 
et al. 2019; Rassati et al. 2021).

Statistical analyses

Generalized linear mixed models were used for all the analy-
ses. Separate models were built for each response variable 

across all sites (global models), as well as for each site and 
response variable (local models). Data collected from each 
trap and pooled over the entire sampling period were treated 
as a distinct statistical unit. The response variables were the 
species richness (i.e., total number of species) and the total 
abundance (i.e., number of individuals pooled over all the 
species) of genus Agrilus, Buprestidae (excluding Agrilus 
species), Cerambycidae, and the subfamilies Cerambycinae, 
Lamiinae and Lepturinae, and Scolytinae (Curculionidae), 
and the abundance (i.e., number of individuals) of individual 
species. When testing the effect of trap treatments on the 
abundance of single species, only species represented by 
at least 50 individuals were considered. For all models, the 
categorical explanatory variable was the treatment (four lev-
els: unbaited control, UHR ethanol, FUSC blend, and KET 
blend). The site identity and the block identity within each 
site were included in global models as nested random fac-
tors. The block identity was included in local models as a 
random factor. Models were fitted using a Poisson distri-
bution with a natural logarithm (ln) link function for spe-
cies richness, and negative binomial distribution with a ln 
link function for abundance. The ln-transformed number of 
exposure days for the traps (from set-up to removal), vary-
ing by site, was included in global models as an offset. The 
unbaited control was used as a baseline for comparison with 
the other three baited traps. All the analyses were carried 
out in R (R Core Team 2021). Models were fitted using 
the ‘glmmTMB’ package (Brooks et al. 2017) and were 
checked for overdispersion and residual distribution using 
the ‘DHARMa’ package (Hartig 2021).

Results

General results

A total of 33,540 individuals from 353 species were caught 
(Table S3). Buprestidae were represented by 12,607 indi-
viduals and 85 species (Table S3). Among them, 7690 
individuals (50 species) belonged to the genus Agrilus. 
The European species, Agrilus sulcicollis Lacordaire, was 
the most abundant Agrilus species with 1845 individuals, 
followed by Agrilus laticornis (Illiger) (1060 individu-
als), and Agrilus angustulus (Illiger) (564 individuals). By 
contrast, 20 Agrilus species were represented by less than 
10 individuals. Ten of the species collected in China were 
new species records for Jilin province: Agrilus fareasten-
sis Jendek, Agrilus fissus Obenberger, Agrilus rudicollis 
Alexeev, Agrilus soudeki Obenberger, Agrilus truncatus 
Jendek, Meliboeus ohbayashii Kurosawa, Anthaxia con-
stricticollis Bílý, Anthaxia ungulata Bílý, Chrysobothris 
pulchripes Fairmaire, and Lamprodila virgata (Motschul-
sky) (Table S3). Among the other Buprestidae, L. virgata 
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was the most abundant species with 4035 individuals. Cer-
ambycidae were represented by 7860 individuals from 199 
species (Table S3). Cerambycinae, Lamiinae and Lepturinae 
were the most represented subfamilies with 5092 individuals 
from 65 species, 1733 individuals from 74 species, and 1026 
individuals from 56 species, respectively. Xylotrechus anti-
lope (Schönherr) was the most abundant species with 1368 
individuals, followed by Plagionotus detritus (Linnaeus) 
(1047 individuals), and Anelaphus villosus (Fabricius) (410 
individuals). By contrast, 123 longhorn beetle species were 
represented by less than 10 individuals. The lone specimen 
of Arhopalus rusticus (Linnaeus) collected in Massachusetts 
is the first documented record of that species for the state. 
Scolytinae were represented by 13,073 individuals from 69 
species (Table S3). Anisandrus maiche Kurentsov was the 
most abundant species with 4893 individuals, followed by 
Xyleborinus saxesenii (Ratzeburg) (2453 individuals), and 
Xylosandrus crassiusculus (Motschulsky) (2301 individu-
als). By contrast, 44 Scolytinae species were represented by 
less than 10 individuals. Twelve species were collected in 
countries in which they were not native: one buprestid [A. 
planipennis (USA)], four cerambycids [A. rusticus (USA), 
Neoclytus acuminatus (Fabricius) (Italy), Phymatodes testa-
ceus (Linnaeus) (USA, Canada), and Xylotrechus stebbingi 
Gahan (Italy)], and seven scolytines [A. maiche (USA), 
Cnestus mutilatus (Blandford) (USA), Scolytus multistria-
tus (Marsham) (USA), Xyleborinus attenuatus (Blandford) 
(Canada), X. saxesenii (USA, Canada), X. crassiusculus 
(USA, Italy), and Xylosandrus germanus (Blandford) (USA, 
Italy)] (Table S3) (Craighead 1950; Sama 2002; Schiefer 
and Bright 2004; Bousquet et al. 2013; Gomez et al. 2018; 
Jendek and Grebennikov 2023).

Effect of lure treatments on Agrilus species 
and other Buprestidae

Unbaited traps, traps baited with UHR ethanol, FUSC blend, 
and KET blend collected 43, 38, 40, and 41 Agrilus spe-
cies, respectively (Table S4). Lure treatment did not affect 
richness of Agrilus species neither globally nor at site level 
(Tables 1, S5, Fig. 1A–H), whereas significant differences 
between unbaited control traps and other lure treatments 
were observed for abundance globally, and in USA (MA) 
and China (Table S6, Fig. 1I, J, P). Globally, traps baited 
with KET blend collected significantly fewer individuals 
than the unbaited control (Fig. 1I, Table S6). Traps baited 
with KET blend and UHR ethanol collected significantly 
fewer individuals than the unbaited control in USA (MA) 
and China, respectively (Fig. 1J, P, Table S6). At the species 
level, lure treatment affected abundance of 5 of 21 analyzed 
Agrilus species (Tables 2, S7). Traps baited with FUSC 
blend collected significantly more individuals of Agrilus 
arcuatus (Say) than did the unbaited control in USA (KY), 

whereas traps baited with the same lure collected signifi-
cantly fewer Agrilus hastulifer (Ratzeburg) individuals than 
did the unbaited control in Poland (Tables 2, S7). In China, 
unbaited traps collected significantly more individuals of: 
(1) Agrilus alutaceicollis Obenberger than did traps baited 
with UHR ethanol; (2) Agrilus asiaticus Kerremans than did 
traps baited with KET blend; and (3) A. fissus than did traps 
baited with either UHR ethanol or KET blend (Tables 2, S7).  

Unbaited traps, traps baited with UHR ethanol, with 
FUSC blend, and with KET blend collected 24, 21, 17, and 
17 non-Agrilus species, respectively (Table S4). Lure treat-
ment did not affect non-Agrilus species richness neither 
globally nor at site level (Tables 1, S5), whereas significant 
differences between unbaited control traps and other lure 
treatments were observed for abundance globally and in 
China, where traps baited with FUSC, KET or UHR ethanol 
collected significantly fewer individuals than unbaited traps 
(Table S6). At the species level, lure treatment significantly 
affected abundance of two of the six analyzed species of 
non-Agrilus Buprestidae (Tables 2, S7). Unbaited traps col-
lected significantly more individuals of Anthaxia constric-
ticollis Bílý than did traps baited with FUSC or KET, and 
significantly more individuals of L. virgata than did traps 
baited with any other lure treatment (Tables 2, S7).

Effect of lure treatments on Cerambycidae at family 
and subfamily level

Unbaited traps, traps baited with UHR ethanol, FUSC blend, 
and KET blend collected 107, 128, 114, and 141 cerambycid 
species, respectively (Table S4). At the family level, signifi-
cant differences between unbaited control traps and other 
lure treatments were observed for species richness globally 
and at all sites except UK, Italy and Poland (Tables 1, S5, 
Fig. 2A–H), and at all sites except UK for total abundance 
(Tables 1, S6, Fig. 2I–P). Baited traps, especially with KET 
blend, collected significantly more species (Fig. 2A–D, H) 
and individuals (Fig. 2I–L, N–P) than did unbaited traps.

At the subfamily level, the same trend described above 
was observed for species richness and abundance of Cer-
ambycinae globally and at all sites, except for species rich-
ness in UK (Tables 1, S5, S6). For the subfamily Lamiinae, 
however, traps baited with the FUSC blend collected signifi-
cantly more species than did unbaited traps globally, in USA 
(KY) and Italy (Tables 1, S5), and significantly more indi-
viduals globally, in USA (MA and KY), Canada, Italy and 
China (Tables 1, S6). The subfamily Lepturinae was affected 
by lure treatment globally and in USA (MA and KY), where 
traps baited with UHR ethanol or KET collected signifi-
cantly more individuals than did unbaited traps (Tables 1, 
S6). At the species level, the effect of lure treatment on mean 
catch was significant for 20 of 27 analyzed species (Tables 2, 
S7). Mean catch of 14 Cerambycinae species was greater in 
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KET blend-baited traps than unbaited traps (Tables 2, S7). 
Mean catch of six Lamiinae species was greater in FUSC 
blend-baited traps than unbaited traps, but two of these spe-
cies [Hyperplatys maculata Haldeman and Mesosa myops 
(Dalman)] also had greater mean catches in traps baited with 
KET blend or UHR ethanol than in unbaited traps, suggest-
ing they were attracted by ethanol rather than E/Z-fuscumol 
or E/Z-fuscumol acetate (Tables 2, S7).

Effect of lure treatments on Scolytinae 
(Curculionidae)

Unbaited traps, traps baited with UHR ethanol, FUSC 
blend, and KET blend collected 31, 48, 47, and 47 species, 

respectively (Table S4). Lure treatment significantly affected 
either species richness or total abundance at all sites except 
for Poland (Table 1, Fig. 3, Tables S5, S6). Globally and at 
most sites, traps baited with any of the lure treatments col-
lected significantly more species (Fig. 3A–E, H) and individ-
uals (Fig. 3I–N, P) than did unbaited traps. Lure treatment 
affected trap catch of 11 of 13 analyzed species, and for most 
species, mean catch for all three lure treatments differed sig-
nificantly from that in unbaited trap, suggesting UHR etha-
nol was the common attractant (Tables 2, S7). However, 
there were two Scolytinae species for which mean catch in 
unbaited traps differed from traps baited with UHR etha-
nol plus cerambycid pheromones but not from traps baited 
with UHR ethanol alone. Mean catch of S. multistriatus in 

Table 1   Analysis of deviance table from the generalized linear mixed 
models testing the effect of different treatments on species richness 
(Poisson distribution; ln link function) and abundance (negative 
binomial distribution; ln link function) of Agrilus, other Buprestidae, 
Cerambycidae (including subfamilies Cerambycinae, Lamiinae and 

Lepturinae), and Scolytinae (Curculionidae) globally and at each site. 
Type II Wald chi-square tests with 3 degrees of freedom ( �2

3
 ) and p 

values (bolded if p < 0.05) are provided for all models. – = taxon not 
collected in the site

Species richness Global USA (MA) USA (KY) Canada UK Italy Poland China

Agrilus �
2

3
0.799 2.433 0.263 0.190 0.229 0.143 0.133 2.695

p value 0.850 0.487 0.967 0.979 0.973 0.986 0.988 0.441
Other Buprestidae �

2

3
1.161 0.908 0.597 1.184 – 1.538 0.153 2.704

p value 0.824 0.824 0.897 0.757 – 0.674 0.985 0.440
Cerambycidae �

2

3
72.330 17.935 20.097 49.786 3.946 2.630 4.547 6.443

p value < 0.001 < 0.001 < 0.001 < 0.001 0.267 0.452 0.208 0.092
Cerambycinae �

2

3
160.010 46.626 22.168 43.996 6.128 38.879 5.737 13.385

p value < 0.001 < 0.001 < 0.001 < 0.001 0.106 < 0.001 0.125 0.004
Lamiinae �

2

3
17.066 5.799 6.859 10.902 2.290 6.523 1.156 5.111

p value < 0.001 0.122 0.077 0.012 0.515 0.089 0.764 0.164
Lepturinae �

2

3
2.917 5.073 3.793 3.312 0.154 2.164 0.522 0.399

p value 0.405 0.167 0.285 0.346 0.985 0.539 0.914 0.941
Scolytinae �

2

3
48.946 24.422 6.987 9.572 11.709 4.231 1.039 7.707

p value < 0.001 < 0.001 0.072 0.023 0.008 0.238 0.792 0.052

Abundance

Agrilus �
2

3
6.361 9.281 0.652 0.325 1.886 0.716 1.293 5.035

p value 0.095 0.026 0.884 0.955 0.596 0.869 0.731 0.169
Other Buprestidae �

2

3
6.485 3.464 1.854 2.306 – 3.047 0.494 8.675

p value 0.090 0.326 0.603 0.511 – 0.384 0.920 0.034
Cerambycidae �

2

3
173.880 67.572 74.026 84.238 3.034 30.974 41.325 37.208

p value < 0.001 < 0.001 < 0.001 < 0.001 0.386 < 0.001 < 0.001 < 0.001
Cerambycinae �

2

3
413.380 203.240 143.710 79.862 13.977 118.390 46.857 71.451

p value < 0.001 < 0.001 < 0.001 < 0.001 0.003 < 0.001 < 0.001 < 0.001
Lamiinae �

2

3
44.736 17.213 7.701 32.403 8.161 12.825 1.548 21.446

p value < 0.001 < 0.001 0.053 < 0.001 0.043 0.005 0.671 < 0.001
Lepturinae �

2

3
7.875 6.283 12.825 3.673 0.838 4.662 3.254 2.590

p value 0.049 0.099 0.005 0.299 0.840 0.198 0.354 0.459
Scolytinae �

2

3
160.240 23.915 16.300 38.875 95.322 95.325 2.969 265.760

p value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.396 < 0.001
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Fig. 1   Mean species richness and abundance of Agrilus for each treat-
ment globally (A, I) and at each site (B–H, J–P). Error bars indicate 
the positive standard error. Asterisks over the bars indicate the sta-
tistical difference with the unbaited control from the generalized lin-
ear mixed models. P values: *0.01–0.05; **0.001–0.01; ***< 0.001. 
Grey plots = no statistical difference with the unbaited control. 

Orange plots = significant difference of at least one lure treatment 
with the unbaited control. C = unbaited control; ET = UHR ethanol; 
FUSC = E/Z-fuscumol + E/Z-fuscumol acetate + UHR ethanol (FUSC 
blend); KET = racemic 3-hydroxyhexan-2-one + 3-hydroxyoctan-
2-one + syn-2,3-hexanediols + UHR ethanol (KET blend). Model 
details are provided in Tables 1, S5, S6
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Table 2   Mean (± standard error) number of individuals collected per 
trap by treatment at each site, over the entire sampling period. Only 
species with catches that significantly differed from the unbaited con-
trol (based on generalized linear mixed models) are reported. Bold 
values indicate a significant difference from the unbaited control (p 
value < 0.05). C = unbaited control; ET = UHR ethanol; FUSC = E/Z-

fuscumol + E/Z-fuscumol acetate + UHR ethanol (FUSC blend); 
KET = racemic 3-hydroxyhexan-2-one + 3-hydroxyoctan-2-one + syn-
2,3-hexanediols + UHR ethanol (KET blend). Species within each 
family and subfamily are listed in alphabetical order. Statistical sig-
nificance levels are reported in Table S7

Buprestidae C ET FUSC KET Country

Agrilinae
 Agrilus alutaceicollis 3.88 ± 1.98 0.25 ± 0.16 1.38 ± 1.30 1.25 ± 1.17 China
 Agrilus arcuatus 2.00 ± 0.82 3.86 ± 1.52 12.71 ± 7.78 6.43 ± 3.21 USA (KY)
 Agrilus asiaticus 3.25 ± 1.18 2.13 ± 1.23 1.50 ± 0.54 0.88 ± 0.58 China
 Agrilus fissus 7.13 ± 2.66 2.13 ± 1.43 2.75 ± 1.53 2.00 ± 0.57 China
 Agrilus hastulifer 8.33 ± 7.74 1.17 ± 0.75 0.17 ± 0.17 4.17 ± 3.58 Poland

Buprestinae
 Anthaxia constricticollis 5.25 ± 1.46 4.00 ± 2.80 0.75 ± 0.25 1.13 ± 0.55 China

Chrysochroinae
 Lamprodila virgata 248.38 ± 57.01 87.75 ± 33.04 78.25 ± 32.05 90.00 ± 26.49 China

Cerambycidae
Cerambycinae
 Anelaphus pumilus 0.71 ± 0.36 3.14 ± 0.86 1.71 ± 0.64 46.57 ± 16.68 USA (KY)
 Anelaphus villosus 0.88 ± 0.35 7.75 ± 2.58 4.00 ± 1.10 30.38 ± 3.46 USA (MA)

0.43 ± 0.30 3.14 ± 0.67 1.14 ± 0.51 2.86 ± 0.96 USA (KY)
 Clytus tropicus 2.83 ± 0.87 3.17 ± 0.87 2.00 ± 0.52 11.50 ± 2.29 Poland
 Neoclytus acuminatus 0.00 ± 0.00 0.13 ± 0.13 0.13 ± 0.13 10.38 ± 2.15 USA (MA)
 Neoclytus mucronatus 0.14 ± 0.14 0.00 ± 0.00 0.71 ± 0.29 23.71 ± 4.62 USA (KY)
 Phymatodes aereus 0.00 ± 0.00 0.00 ± 0.00 0.13 ± 0.13 8.25 ± 2.57 USA (MA)
 Phymatodes alni 2.00 ± 0.82 2.67 ± 1.09 5.17 ± 2.11 10.33 ± 4.22 Poland
 Phymatodes testaceus 0.83 ± 0.83 1.67 ± 0.76 0.50 ± 0.34 27.00 ± 5.72 Poland
 Plagionotus detritus 3.17 ± 2.06 5.33 ± 1.94 1.83 ± 0.60 162.00 ± 7.90 Poland
 Plagionotus pulcher 0.13 ± 0.13 0.75 ± 0.62 0.63 ± 0.18 29.50 ± 4.75 China
 Rhaphuma gracilipes 1.38 ± 0.32 0.88 ± 0.48 2.00 ± 0.68 3.63 ± 1.10 China
 Xylotrechus antilope 42.17 ± 39.59 41.33 ± 27.77 7.00 ± 4.04 134.67 ± 52.85 Poland
 Xylotrechus colonus 0.00 ± 0.00 0.57 ± 0.43 0.00 ± 0.00 8.00 ± 2.39 USA (KY)
 Xylotrechus stebbingi 0.17 ± 0.17 0.50 ± 0.22 0.83 ± 0.31 13.00 ± 1.61 Italy

Lamiinae
 Ecyrus dasycerus 1.00 ± 0.50 1.50 ± 0.46 5.63 ± 1.94 5.25 ± 1.13 USA (MA)
 Graphisurus fasciatus 3.50 ± 1.04 2.75 ± 0.82 12.25 ± 6.43 3.63 ± 0.93 USA (MA)

0.71 ± 0.36 1.43 ± 0.97 4.29 ± 2.15 1.14 ± 0.63 USA (KY)
 Hyperplatys maculata 0.00 ± 0.00 2.75 ± 0.45 1.25 ± 0.45 3.38 ± 0.26 Canada
 Mesosa myops 1.75 ± 0.53 7.00 ± 1.04 4.75 ± 0.98 3.75 ± 0.62 China
 Neacanista tuberculipennis 0.38 ± 0.13 4.88 ± 1.72 0.88 ± 0.31 1.88 ± 0.66 China
 Sternidius alpha 1.00 ± 0.38 1.38 ± 0.42 3.88 ± 1.47 0.75 ± 0.25 USA (MA)

Curculionidae
Scolytinae
 Anisandrus dispar 0.00 ± 0.00 5.33 ± 2.06 4.50 ± 0.99 3.50 ± 1.20 UK

1.33 ± 0.62 10.17 ± 3.57 14.17 ± 2.93 13.17 ± 4.77 Italy
 Anisandrus maiche 0.14 ± 0.14 5.57 ± 1.38 3.29 ± 1.57 7.00 ± 2.48 USA (KY)

14.75 ± 2.01 188.88 ± 35.51 121.63 ± 22.67 272.38 ± 41.11 China
 Anisandrus sayi 0.13 ± 0.13 6.63 ± 3.34 5.25 ± 1.03 4.00 ± 1.64 USA (MA)

0.00 ± 0.00 2.88 ± 0.35 3.75 ± 0.31 3.75 ± 0.25 Canada
 Hypothenemus eruditus 4.83 ± 1.20 14.17 ± 3.06 30.33 ± 15.47 4.83 ± 2.09 Italy
 Pseudopityophthorus minutissimus 1.00 ± 0.27 3.13 ± 0.52 3.13 ± 0.35 3.88 ± 0.30 Canada
 Pityogenes chalcographus 0.00 ± 0.00 0.83 ± 0.40 5.17 ± 3.98 4.83 ± 2.02 Poland
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Italy was greater in FUSC-baited traps than unbaited traps, 
and mean catch of Pityogenes chalcographus (Linnaeus) in 
Poland was greater in both FUSC- and KET-baited traps 
than unbaited traps (Tables 2, S7).

Discussion

Semiochemical-baited traps are a key component of post-
border surveillance for invasive bark and wood-boring bee-
tles (Dodds et al. 2024). Budget limitations require plant 
protection agencies to use trapping protocols that survey 
for multiple target taxa both effectively and efficiently. The 
goal of these surveys is to detect the presence of non-native, 
potentially invasive species of bark and wood-boring beetles 
as early as possible, because the smaller the area of infesta-
tion, the easier it is to contain or eradicate (Brockerhoff et al. 
2010; Liebhold et al. 2016). Trapping protocols that increase 
the species richness of target taxa collected are more likely 
to detect the presence of non-native species in the same 
taxa (Dodds et al. 2024). In this multi-country study, we 
have shown that species richness of Agrilus spp. and other 
jewel beetles detected in green-canopy multi-funnel traps 
was not affected by baiting traps with ethanol and longhorn 
beetle aggregation/sex pheromones. At the same time, our 
results confirmed the positive effects of these semiochemical 
lures on the species richness of Cerambycidae and Scolyti-
nae detected in traps. This information is beneficial for the 
design of multi-taxa surveys, potentially saving money and 
resources without decreasing trapping efficacy.

There were, however, some negative effects of lure treat-
ments on the abundance of some Agrilus species and non-
Agrilus buprestids collected in traps. When data were pooled 
across all sites, green canopy traps baited with ethanol plus 
the KET blend captured significantly fewer specimens of 
Agrilus and other buprestids than did unbaited traps, sug-
gesting that this trap-blend combination may be relatively 
less effective at detecting jewel beetles present at low popu-
lation densities. There is evidence that the probability of 
detecting non-native species of longhorn beetles in traps is 
greater for species captured in high abundance in the same 

kinds of trap in their native range (Roques et al. 2023). Thus, 
if the objective of trapping surveys in a particular year or site 
was exclusively the detection of Agrilus species, then our 
data suggest that unbaited traps should be preferred to traps 
baited with the semiochemical treatments evaluated in this 
study, both for greater efficacy and lower costs. However, 
most trapping surveys at ports of entry target non-native 
cerambycids and scolytines in addition to buprestids (Ras-
sati et al. 2014, 2015a, b; Rabaglia et al. 2019; Thurston 
et al. 2022). Our results show that baiting traps with ethanol 
and longhorn beetle pheromones increased the abundance of 
some Scolytinae and Cerambycidae in traps without reduc-
ing the numbers of species of jewel beetles detected, and 
thus had an overall positive effect on the efficacy of traps 
for detecting non-native species of beetles at risk of inter-
national transport in wood packaging.

Compared to Scolytinae and Cerambycidae, little is 
known about the chemical ecology of jewel beetles, but 
there is evidence that adults of some species of Agrilus and 
Coraebus respond to volatiles emitted from host foliage and 
cortical tissues when foraging for food and suitable brood 
hosts (Dunn et al. 1986; Rodriguez-Saona et al. 2006; de 
Groot et al. 2008; Crook and Mastro 2010; Fürstenau et al. 
2012; Coleman et al. 2014; Silk and Ryall 2015; Vuts et al. 
2016). Attraction to stressed host trees or to blends of vola-
tiles emitted from stressed host trees has been observed in 
Agrilus bilineatus (Weber) (Dunn et al. 1986), A. planipen-
nis (Crook et al. 2008; Grant et al. 2010; McCullough et al. 
2009a, b), and A. anxius Gory (Silk et al. 2019). The com-
mon green leaf volatile, Z-3-hexenol, increased trap catches 
of A. planipennis (de Groot et al. 2008; Grant et al. 2010, 
2011; Ryall et al. 2012), A. auroguttatus Schäffer (Coleman 
et al. 2014), and A. sulcicollis (Domingue et al. 2013), but 
had no effect on trap catches of Agrilus anxius (Silk et al. 
2019), Agrilus angustulus (Illiger), Agrilus graminis Keisen-
wetter, Agrilus laticornis, Agrilus obscuricollis Keisenwet-
ter (Domingue et al. 2013) or more than 20 other Agrilus 
species (Santoiemma et al. 2024b). Unlike many species of 
bark and ambrosia beetles (Miller and Rabaglia 2009), jewel 
beetles do not appear to be attracted to ethanol (Montgomery 
and Wargo 1983; Dunn et al. 1986; Chénier and Philogène 

Table 2   (continued)

Buprestidae C ET FUSC KET Country

 Scolytus multistriatus 5.83 ± 2.07 26.50 ± 14.93 121.00 ± 113.28 4.83 ± 2.01 Italy
 Trypodendron domesticum 0.00 ± 0.00 4.67 ± 0.84 4.50 ± 1.73 2.50 ± 0.92 UK
 Xyleborinus saxesenii 0.17 ± 0.17 46.50 ± 9.20 38.67 ± 4.78 26.00 ± 4.28 UK

3.33 ± 0.49 101.17 ± 7.60 110.67 ± 24.96 52.00 ± 13.01 Italy
0.13 ± 0.13 3.13 ± 1.19 2.88 ± 0.77 2.25 ± 0.59 China

 Xylosandrus crassiusculus 34.71 ± 5.32 110.29 ± 15.01 83.86 ± 15.17 91.86 ± 25.34 USA (KY)
 Xylosandrus germanus 1.71 ± 0.99 8.71 ± 2.59 3.71 ± 1.86 12.29 ± 6.23 USA (KY)
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Fig. 2   Mean species richness and abundance of Cerambycidae for 
each treatment globally (A, I) and at each site (B–H, J–P). Error bars 
indicate the positive standard error. Asterisks over the bars indicate 
the statistical difference with the unbaited control from the gener-
alized linear mixed models. P values: *0.01–0.05; **0.001–0.01; 
***< 0.001. Grey plots = no statistical difference with the unbaited 

control. Green plots = significant difference of at least one lure treat-
ment with the unbaited control. C = unbaited control; ET = UHR etha-
nol; FUSC = E/Z-fuscumol + E/Z-fuscumol acetate + UHR ethanol 
(FUSC blend); KET = racemic 3-hydroxyhexan-2-one + 3-hydroxyoc-
tan-2-one + syn-2,3-hexanediols + UHR ethanol (KET blend). Model 
details are provided in Tables 1, S5, S6
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Fig. 3   Mean species richness and abundance of Scolytinae (Curcu-
lionidae) for each treatment globally (A, I) and at each site (B–H, 
J–P). Error bars indicate the positive standard error. Asterisks over 
the bars indicate the statistical difference with the unbaited control 
from the generalized linear mixed models. P values: *0.01–0.05; 
**0.001–0.01; ***< 0.001. Grey plots = no statistical difference 

with the unbaited control. Blue plots = significant difference of at 
least one lure treatment with the unbaited control. C = unbaited con-
trol; ET = UHR ethanol; FUSC = E/Z-fuscumol + E/Z-fuscumol ace-
tate + UHR ethanol (FUSC blend); KET = racemic 3-hydroxyhexan-
2-one + 3-hydroxyoctan-2-one + syn-2,3-hexanediols + UHR ethanol 
(KET blend). Model details are provided in Tables 1, S5, S6
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1989; Miller 2006, 2020). Similarly, the presence of the 
same longhorn beetle sex/aggregation pheromones present 
in the KET and FUSC blends did not significantly affect 
trap catches of jewel beetles (Flaherty et al. 2019; Rassati 
et al. 2019). The repellent effects of UHR ethanol and/or 
the combinations of UHR ethanol and common longhorn 
beetle pheromones that we observed on trap catches of A. 
alutaceicollis, A. asiaticus, A. hastulifer, A. fissus, A. con-
stricticollis, and L. virgata suggest that these and some other 
buprestid species may avoid host trees emitting high rates of 
ethanol [e.g., resulting from tree stress (Kelsey and Westlind 
2017)] or trees at risk of colonization by longhorn beetles, 
either because the substrate is not suitable for larval estab-
lishment or growth, or to avoid competition for resources. 
Only one species of jewel beetles, A. arcuatus, was captured 
in significantly greater numbers in baited traps than unbaited 
traps, with about six times the abundance in FUSC blend-
baited traps than unbaited traps. It is possible this species 
seeks hosts of a similar type or condition as those used by a 
longhorn beetle species whose aggregation/sex pheromone 
contains fuscumol or fuscumol acetate and uses one or more 
of the components in the FUSC lure as kairomones. Disen-
tangling these mechanisms would require more specific stud-
ies and a better knowledge on the chemical ecology of jewel 
beetles, which has been so far explored only for relatively 
few species (Dunn and Potter 1988; Crook and Mastro 2010; 
Fürstenau et al. 2012; Silk et al. 2019; López et al. 2021).

For longhorn beetles, we found a clear positive effect 
of lure treatments on species richness and abundance at 
the family level and on both Cerambycinae and Lamiinae 
at the subfamily level. Traps baited with KET and FUSC 
blends collected more species and individuals of Ceramby-
cinae and Lamiinae, respectively, than did unbaited traps. 
This was not surprising and agrees with numerous studies 
showing that the aggregation/sex pheromones in our lure 
treatments are highly conserved in the Cerambycidae (e.g., 
Hanks and Millar 2013, 2016; Sweeney et al. 2014; Ras-
sati et al. 2019; Silva et al. 2024) and that combining these 
pheromones with ethanol on traps enhances catches of 
many cerambycid species (Hanks et al. 2012, 2018; Miller 
et al 2015, 2017; Rice et al. 2024). For example, (R)-3-hy-
droxyhexan-2-one, present in racemic 3-hydroxyhexan-
2-one, one of the three components of the KET blend, is 
a known or suspected pheromone component for numer-
ous species within at least 25 genera and 12 tribes in the 
Cerambycinae (Hanks and Millar 2016; Silva et al. 2024). 
Similarly, fuscumol and fuscumol acetate are aggregation/
sex-pheromone components for many species in the sub-
family Spondylidinae and Lamiinae (Mitchell et al. 2011; 
Hanks and Millar 2016). Most of the cerambycid species 
significantly attracted to the KET or FUSC blends in our 
study have been previously shown to be attracted to one or 
more of the aggregation/sex pheromones in those blends 

(Lacey et al. 2007, 2009; Hanks and Millar 2013; Miller 
et al. 2017; Millar et al. 2018; Flaherty et al. 2019; Molan-
der et al. 2019a, b, c; Rassati et al. 2021). However, we 
report the first evidence that the Cerambycinae species, 
Plagionotus pulcher (Blessig), and Rhaphuma gracilipes 
(Faldermann), are attracted to one or more of the aggrega-
tion/sex pheromones in the KET blend, and the Lamiinae 
species, Mesosa myops (Dalman) and Neacanista tuber-
culipennis Gressitt are attracted to ethanol. Pheromones 
identified in the Lepturinae are female-produced, attract 
only males, and differ in structure from those used by Cer-
ambycinae and Lamiinae (Ray et al. 2011, 2014). This 
likely explains why Lepturinae species richness and abun-
dance differed little between unbaited and baited traps.

A positive effect of lure treatments on species richness 
and abundance was also observed for Scolytinae and was 
due to the presence of UHR ethanol. Ethanol is emitted by 
trees in response to a variety of stressors and represents 
an important olfactory cue for many species of bark and 
ambrosia beetles for locating suitable brood hosts (Mont-
gomery and Wargo 1983; Kelsey et al. 2014; Ranger et al. 
2021; Yilmaz et al. 2024). Ethanol is always included in 
trapping protocols targeting these taxa because it attracts 
many xylophagous species (e.g., Miller and Rabaglia 2009; 
Rassati et al. 2014, 2015a, b; Rabaglia et al. 2019; Hartshorn 
et al. 2021). However, traps baited with the FUSC blend 
caught more Scolytus multistriatus and fewer Xylosandrus 
germanus than did unbaited traps. Significant attraction of 
some species of Scolytinae to racemic 3-hydroxyhexan-
2-one or racemic 3-hydroxyoctan-2-one has previously been 
reported, suggesting these species may use particular aggre-
gation/sex pheromones of longhorn beetles as kairomones 
when searching for suitable hosts, as many species of long-
horn beetles and bark and ambrosia beetles infest stressed or 
recently dead trees (Miller et al. 2015; Sweeney et al. 2016). 
The negative effects of the FUSC blend on trap catches of 
X. germanus or of racemic 3-hydroxyoctan-2-one on trap 
catches of Dryoxylon onoharaense (Murayama) (Miller et al. 
2015), Anisandrus maiche, Xyleborinus attenuatus, and Try-
podendron lineatum (Linnaeus) (Sweeney et al. 2016) sug-
gest these species use these cerambycid pheromones as cues 
that signal host unsuitability, possibly due to the potential 
for interspecific competition. Our finding that A. maiche 
was significantly attracted to traps baited with UHR ethanol 
regardless of the presence of pheromones in the KET blend 
differs from that of Sweeney et al. (2016) who observed a 
significant reduction in catches of this species when race-
mic 3-hydroxyoctan-2-one was added to ethanol-baited 
traps; it is possible that the additional presence of racemic 
3-hydroxyhexan-2-one and syn-2-3-hexanediols in the KET 
blend accounts for the difference. The presence of longhorn 
beetle pheromones on ethanol-baited traps had no effect on 
catches of most Scolytinae species, as observed in previous 
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studies (Miller et al. 2015, 2022; Sweeney et al. 2016; Mar-
chioro et al. 2020).

In conclusion, the addition of ethanol and common aggre-
gation/sex pheromones of longhorn beetles to green multi-
funnel traps placed in the mid-upper forest canopy had sig-
nificant positive effects on species richness and abundance of 
Cerambycidae and Scolytinae, negative effects on abundance 
of jewel beetles, but no effects on species richness of Agri-
lus species or other jewel beetles collected. Baiting green 
canopy traps with longhorn beetle pheromones increased 
the efficacy of traps for detecting total target taxa of bark 
and wood-boring beetles (i.e., Cerambycidae, Buprestidae, 
Scolytinae) at risk of international movement in untreated 
wood or wood packaging. Nonetheless, as shown in this and 
previous studies, plant protection agencies and phytosanitary 
personnel must be aware that the use of certain longhorn 
beetle aggregation/sex pheromones and ethanol may reduce 
catches of certain species in each of the targeted families. 
One limitation of our study was the lack of traps baited with 
ethanol and both FUSC and KET blends, as we cannot state 
whether it might be possible to save further resources by 
baiting the same trap with all lures together without decreas-
ing overall trapping efficacy. Similarly, future work could 
test the effects of more complex blends of cerambycid phero-
mones (e.g., Roques et al. 2023) on the efficacy of detecting 
jewel beetles in traps. In addition, it might be worth testing 
whether the same trends can be observed when using other 
trap colors that could be used to target other important jewel 
beetle species (e.g., purple or yellow).
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