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Abstract

The temporal dynamics of resting-state networks may represent an intrinsic func-

tional repertoire supporting cognitive control performance across the lifespan. How-

ever, little is known about brain dynamics during the preschool period, which is a

sensitive time window for cognitive control development. The fast timescale of syn-

chronization and switching characterizing cortical network functional organization

gives rise to quasi-stable patterns (i.e., brain states) that recur over time. These can

be inferred at the whole-brain level using hidden Markov models (HMMs), an unsu-

pervised machine learning technique that allows the identification of rapid oscillatory

patterns at the macroscale of cortical networks. The present study used an HMM

technique to investigate dynamic neural reconfigurations and their associations with

behavioral (i.e., parental questionnaires) and cognitive (i.e., neuropsychological tests)

measures in typically developing preschoolers (4–6 years old). We used high-density

EEG to better capture the fast reconfiguration patterns of the HMM-derived metrics

(i.e., switching rates, entropy rates, transition probabilities and fractional occupan-

cies). Our results revealed that the HMM-derived metrics were reliable indices of

individual neural variability and differed between boys and girls. However, only brain

state transition patterns toward prefrontal and default-mode brain states, predicted

differences on parental-report questionnaire scores. Overall, these findings support

the importance of resting-state brain dynamics as functional scaffolds for behavior

and cognition. Brain state transitions may be crucial markers of individual differences

in cognitive control development in preschoolers.
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Practitioner Points
• Hidden Markov model-derived metrics are reliable hallmarks of individual neural variability

and show sex-related differences.

• Brain state transition patterns toward prefrontal and default-mode brain states predict differ-

ences on parental-report questionnaires scores.

• Brain state transitions may be crucial markers of individual differences in cognitive control

development in preschoolers.

1 | INTRODUCTION

Resting-state brain activity can be defined as an intrinsic functional

repertoire of spontaneously active fluctuations with specific spatio-

temporal patterns (Baker et al., 2014). These endogenous dynamics

provide the functional substrate for exogenous and/or task-evoked

activations, and are related to behavioral and cognitive outcomes

(Avery et al., 2020; Barnes et al., 2016; Cai et al., 2018; Jones

et al., 2022; Poole et al., 2016). The brain's functional organization has

largely been investigated across the lifespan using a variety of neuro-

imaging techniques, such as fMRI (Smith et al., 2013; Smitha

et al., 2017), MEG (Brookes et al., 2011; Wens et al., 2014) and EEG

(Duma et al., 2021, 2022; Yuan et al., 2016). These studies have

yielded novel insights highlighting a diffuse-to-local developmental

shift in activation patterns accompanied by the strengthening of long-

range connectivity at the expense of local connectivity (Fair et al.,

2007; Uddin et al., 2010). Crucially, the capability of networks to

dynamically modulate their functional organization stands as a scaf-

folding property, enabling adaptive responses to environmental

demands through goal-directed forms of behavior (Bassett

et al., 2006; Braun et al., 2015). Put simply, if functional networks are

to be a meaningful scaffold for cognition, then they must have the

capacity to organize and reorganize at a subsecond timescale. This is

particularly relevant for dynamic and flexible processes subsumed

under the banner of cognitive control (CC; Diamond, 2013; Braem &

Egner, 2018). CC, also known as Executive Function, refers to the

mental processes that enable individuals in everyday life to regulate

thoughts, emotions and behaviors based on current demands and

social context. It involves several key components, such as self-

regulation and inhibition, working memory and cognitive flexibility

(Miyake & Friedman, 2012).

However, the relationship between resting-state network (RSN)

reconfiguration and CC remains unclear. Many studies suggest that

CC relies on the flexible interplay between the CC network (CCN)—a

distributed circuit of regions (including fronto-parietal areas)—and the

default-mode network (DMN) (Alvarez & Emory, 2006; Dwyer

et al., 2014; Mansouri et al., 2017; Niendam et al., 2012; Rottschy

et al., 2012; Satterthwaite et al., 2013). The CCN activates in task-

positive conditions (i.e., when participants are actively engaged in a

task), when CC is required to achieve a goal or resolve a conflict,

whereas the DMN activates in task-negative, resting-state conditions

and has been associated with self-referential processing and states of

mind-wandering (Raichle, 2015). The progressive segregation between

these two networks across development supports cognitive and

behavioral refinement over time (Breukelaar et al., 2020). As develop-

ment progresses, the energetic costs associated with transitioning

toward CCN regions decrease, possibly due to structural white matter

maturation (Cui et al., 2020; Tang et al., 2017).

As it has been shown that the interplay between CCN and DMN

is crucial for task-related CC, their intrinsic dynamic interaction as

measured during resting state may be used as a proxy for understand-

ing CC efficiency across the lifespan (Hutchison & Morton, 2016;

Kupis et al., 2021; Nomi et al., 2017). Cortical networks are character-

ized by a fast timescale of synchronization and switching, resulting in

quasi-stable brain state patterns that recur over time (Allen

et al., 2014; Liu & Duyn, 2013), which provides fundamental scaffold-

ing for cognitive processes (Bressler & Tognoli, 2006; Brookes

et al., 2014; Hutchison et al., 2013). However, the majority of studies

inspecting these phenomena have used methods (e.g., sliding window

approaches, clustering techniques) that do not track millisecond-scale

temporal dynamics of latent brain processes (Taghia et al., 2018).

Methods that are able to capture finer timescales may be necessary

to investigate the dynamic nature of activity across the whole brain.

Individual differences in neural dynamics might be particularly rele-

vant during early childhood, which is a sensitive window for CC devel-

opment (Diamond, 2013). During this age period, improved inhibition,

flexibility and working memory are supported by functional changes

in CCNs, but little is known about their underlying fine-grained

dynamics. A promising computational approach that is able to track

rapid oscillations within cortical networks is hidden Markov model

(HMM), an unsupervised machine learning technique that allows the

identification of mutually exclusive discrete patterns of whole-brain

spontaneous activity that recur over time (Vidaurre et al., 2018).

Importantly, HMMs allow the characterization of whole-brain transi-

tions between discrete states of stable and coordinated activity.

HMMs have been used to infer resting-state and task-related dynamic

properties from a range of different neuroimaging techniques, such as

fMRI (Dang et al., 2017; Goucher-Lambert & McComb, 2019; Hussain

et al., 2023), MEG (Baker et al., 2014; Hawkins et al., 2020; Quinn

et al., 2018; Vidaurre et al., 2018) and EEG (Dash et al., 2020;
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Marzetti, 2023; Obermaier et al., 2001; Williams et al., 2018). Previ-

ous studies have revealed that the dynamic properties of RSNs are

related to a variety of cognitive and behavioral outcomes (Cabral

et al., 2017; Taghia et al., 2018; Vidaurre et al., 2017). Interestingly,

neural dynamics may be related to individual differences across neu-

rodevelopment, including neurodevelopmental conditions like

attention-deficit hyperactivity disorder (ADHD) and autism (Dammu &

Bapi, 2019; Maya Piedrahita, 2021; Scofield et al., 2019). However,

the majority of studies that have inferred HMMs from neuroimaging

data have only included adult participants, and there has been a rela-

tively limited focus on childhood development. A recent study used

HMMs to investigate spontaneous neural dynamics in a transdiagnos-

tic sample of 8–13 year old children (Zdorovtsova et al., 2023) and

revealed a positive association between the complexity of individuals'

transitions (i.e., entropy) among RSNs and general cognitive ability

(as measured using the Wechsler Abbreviated Scales of Intelligence

II—Matrix Reasoning Subtest). Additionally, the specific pattern of

between-state transitions and time spent in each state further

explained individual variations in cognitive ability: transitioning into or

spending time within DMN-like and fronto-parietal/sensory states

was associated with decreased and increased cognitive ability, respec-

tively. Examining the fine-grained dynamics of RSNs at different

developmental timepoints may yield further insights into how the

relationships between neural dynamics, cognition, and behavior

change throughout early life.

Given the importance of the preschool-age period for CC devel-

opment, the present study investigated the relationships between

neural dynamics and measures of cognition and behavior in a sample

of preschool-aged children (4–6 years). We used high-density EEG

(hdEEG) to better capture fast reconfiguration patterns of HMM-

derived metrics. These included switching rates (SRs; i.e., rate of

switching between brain states), entropy rates (i.e., complexity of indi-

viduals' transitions), transition probabilities (i.e., the probability of

switching from each brain state to all the others) and fractional occu-

pancies (i.e., the overall proportion of time spent in each state).

As a first step, we checked the within-subject reliability of our

HMM-derived metrics. This holds significant importance in assessing

the validity of these metrics before correlating them with behavior

and cognition. For this purpose, we recorded hdEEG during two sepa-

rate resting-state sessions per subject, from which we derived HMM-

based indices. The brain states allocation was purposely performed

over the EEG-derived source activation. In fact, we aimed at charac-

terizing the spatial configuration of functional organization patterns of

cortical dynamics, allowing inference regarding co-activations across

brain regions (Ding et al., 2022; Eickhoff et al., 2011). Additionally,

source-based connectivity provides more accurate and localized mea-

sures of brain activity compared to scalp-based methods, as it miti-

gates the effects of volume conduction and reference choice, leading

to improved interpretation of neural interactions (Hauk, 2004;

Michel & Murray, 2012). Moreover, we assessed the effect of age and

sex on these indices as prior studies suggested that both these factors

may impact brain dynamics in older populations (Kupis et al., 2021;

Scofield et al., 2019). Then, as the main goal we investigated the

relationship between HMM-derived indices with broader measures of

behavior (parental questionnaires) and cognition (cognitive tests

assessing non-verbal reasoning, verbal working memory, self-

regulation and inhibition). Again, previous studies present divergent

findings; some indicate positive associations (Taghia et al., 2018;

Zdorovtsova et al., 2023) while others report negative relationships

(Cabral et al., 2017) between SRs and cognitive performance. We

expected positive relationships between CCN-like state transitions,

fractional occupancies and cognitive ability, and negative associations

between DMN-like state indices and cognitive ability (Zdorovtsova

et al., 2023).

2 | MATERIALS AND METHODS

2.1 | Participants

Fifty-nine participants were initially enrolled. Children (4–6 years old)

were recruited from a local kindergarten in the Venetian Region of

Italy. Nonverbal reasoning was assessed using the colored progressive

matrices (CPMs; Raven & Court, 1938) and children with a CPM score

2 or more standard deviations below the population mean were

excluded (N = 1). Moreover, we excluded children for whom at least

one of the two at-rest hdEEG recording sessions was discarded due

to excessive noise/movement artifacts (N = 19). Participants had no

known or diagnosed sensory, neurological or neuropsychiatric disor-

ders and normal or corrected-to-normal vision. The final sample

included 39 children (18 girls; 4–6 years, M = 4.8; sd = 0.7). The

demographic characteristics of the sample are described in Figure 1.

2.2 | Ethics statement

Children's parents provided written consent for their children's partici-

pation. All experimental procedures were approved by the Ethics

F IGURE 1 Raincloud plot depicting the distribution of age
(months) across boys (light green) and girls (dark green). The box plots
represent the interquartile range (IQR) with the median marked by a
vertical bold line. The “cloud” portions display the probability density
of the data, providing insights into its distribution. Each data point is
also shown to highlight individual observations.
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Committee of the School of Psychology of the University of Padua

(protocol No. 4751) and were conducted according to the principles

expressed in the Declaration of Helsinki.

2.3 | Experimental procedure

Children and their families were welcomed to the University's hdEEG

lab. Children were given time to familiarize themselves with the envi-

ronment and with the experimenters while all experimental procedures

were explained to parents, who provided written consent for their chil-

dren's participation. After assessing children's oral assent to participate

in the activities, an hdEEG 128-channel sensor net was applied.

The protocol included three main activities in the following order:

(1) resting-state session 1 (7 min), (2) resting-state session 2 (7 min),

and (3) neuropsychological tests (!10 min). Between each activity,

children watched !5 min of an entertaining cartoon (The House of

Mickey Mouse, Walt Disney). In the meantime, parents filled in a

series of questionnaires assessing children's behavioral and emotional

profiles. Parental questionnaires were administered through the

online platform Qualtrics Survey (Qualtrics, n.d., Provo, UT).

2.4 | Cognitive measures

Nonverbal reasoning was assessed using the CPMs, in which children

are required to complete a series of geometrical patterns and shapes

(CPM, series A, B, AB; Raven & Court, 1938). Moreover, in order to

obtain a wide descriptive profile of children's CC abilities, we collected

both neuropsychological measures (see Table 1) and parental ques-

tionnaires assessing everyday behavior, executive functioning, and

emotion regulation (see Table 2).

2.4.1 | Neuropsychological measures

Phonological fluency was assessed as a measure of lexical access

based on phonological cues and required children to say all the words

they knew starting with a specific letter in 1 min (BVN 5–11, Bisiacchi

et al., 2005). Backward digit span (BDS) was assessed as a measure of

verbal working memory and required children to retrieve a series

of numbers in reverse order (BVN 5–11, Bisiacchi et al., 2005). Finally,

gift wrap and gift wait (FE-PS 2–6, Usai et al., 2017) were adminis-

tered to assess children's levels of self-regulation and inhibition. Here,

children were asked to wait with their eyes closed while the experi-

menter was wrapping a gift for them (total duration 1 min); afterward,

the wrapped gift was placed in front of them and they were told that

they could open it, but the longer they waited before opening (maxi-

mum waiting time 4 min), the bigger the gift would be.

2.4.2 | Behavioral questionnaires

The behavioral and emotional profile of children was assessed using

the Conners revised scales for parents (CPRS; Conners et al., 1998;

Italian adaptation by Nobile et al., 2007), a parental questionnaire that

comprises a series of statements about children's behavior in every-

day life. Children's executive functioning in ecological contexts

(e.g., home) was assessed using the Behavior Rating Inventory of

Executive Function Preschool version (BRIEF-P; Gioia et al., 1996;

Italian adaptation by Marano et al., 2014), a parental questionnaire

TABLE 1 Cognitive tests. Here, we report means, standard
deviations and range values calculated for the neuropsychological tests
across our sample. To derive a measure of phonological fluency, we
calculated the mean number of words per category (total number of
words/number of categories) per participant; for gift wrap and gift
time, we calculated the total time in seconds per participant. The
sample's scores were within the Italian normative range in all the
reported measures.

Test Score mean ± sd (range)

Colored progressive matrices 20.0 ± 5.0 (10–34)

Phonological fluency 2.3 ± 1.5 (0.7–7.3)

Backward digit span 2.1 ± 1.2 (0–4)

Gift wrap (time in s) 46.9 ± 18.0 (1–60)

Gift wait (time in s) 98.6 ± 99.2 (0–240)

TABLE 2 Parental questionnaire scores. Here, we report means,
standard deviations, and range values calculated for the parental
questionnaires across our sample. For each questionnaire, only total
scales (highlighted in bold) entered subsequent statistical analyses.
The sample's scores were within the Italian normative range in all the
reported questionnaires' subscales.

Test Score mean ± sd (range)

Conners (Oppositivity) 2.1 ± 1.3 (0–5)

Conners (Cognitive problems and
disattention)

4.5 ± 2.3 (0–9)

Conners (Hyperactivity) 3.4 ± 2.2 (0–10)

Conners (Anxiety and shyness) 2.4 ± 1.5 (0–6)

Conners (Perfectionism) 2.4 ± 2.1 (0–8)

Conners (Social problems) 2.1 ± 1.5 (0–6)

Conners (Psychosomatic problems) 0.2 ± 0.7 (0–4)

Conners (ADHD index) 3.4 ± 3.1 (0–12)

Conners (DSM-IV total scale) 9.6 ± 5.3 (0–19)

BRIEF (Inhibition) 21.8 ± 3.3 (16–28)

BRIEF (Shifting) 12.5 ± 2.6 (10–21)

BRIEF (Emotion regulation) 13.9 ± 2.3 (10–18)

BRIEF (Working memory) 21.0 ± 3.8 (17–31)

BRIEF (Planification-organization) 13.7 ± 2.1 (11–19)

BRIEF (Global Executive Composite) 82.8 ± 9.5 (69–111)

ERC (Emotional regulation) 27.0 ± 5.6 (0–32)

ERC (Lability/negativity) 53.7 ± 9.7 (0–62)

ERC (total scale) 80.7 ± 14.8 (0–94)

IUS-C (total scale) 23.3 ± 8.1 (0–42)
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that comprises a series of statements about children's executive func-

tioning in everyday life. Children's emotion regulation was assessed

using the Emotion Regulation CheckList (ERC; Molina et al., 2014), a

parental questionnaire that comprises a series of statements assessing

emotionality and regulation in children (e.g., affective lability, inten-

sity). Finally, the Intolerance of Uncertainty scale for children (IUS-C,

Comer et al., 2009; Italian adaptation by Bottesi et al., in prep.) was

administered as a measure of cognitive adaptability in unpredictable

contexts. Indeed, this parental questionnaire assesses the disposi-

tional inability to tolerate the aversive reactions triggered by a per-

ceived lack of sufficient and/or salient information.

2.5 | hdEEG recording

The high spatial resolution EEG signal was recorded through a

128-channel Geodesic hdEEG System (EGI GES-300), with electrical

reference to the vertex. A sampling rate of 500 Hz was used and

impedance was kept below 60 kΩ for each electrode. Preprocessing

was performed through EEGLAB v2022.0 (Delorme & Makeig, 2004).

Importantly, hdEEG was recorded during a resting-state session

with eyes-open. Meanwhile, children watched the abstract video

Inscapes, which was purposely designed to improve compliance while

minimizing motion and cognitive load during neural data acquisition

(Vanderwal et al., 2015). We only recorded eyes-open resting-state

EEG activity to avoid an excessive data drop out given the young age

of participants. To note, previous studies revealed substantial differ-

ences in fMRI- but not in EEG-derived brain states metrics between

eyes-open and eyes-closed resting state (Ingram et al., 2024).

3 | DATA ANALYSIS

3.1 | hdEEG source reconstruction

3.1.1 | Preprocessing and co-registration

The continuous EEG signal was first downsampled at 250 Hz and then

band-pass-filtered (1–30 Hz) using a Hamming windowed-sinc finite

impulse response filter. After filtering, the continuous EEG was visu-

ally inspected and bad segments (e.g., gross motor artifacts) were

manually removed. Independent component analysis (ICA;

Stone, 2002) using the Infomax algorithm (Bell & Sejnowski, 1995)

was used to perform data cleaning. Independent components were

visually inspected in topography and time-series, and those clearly

related to eye blinks, eye movements, muscle artifacts, and heartbeat

were discarded. The remaining components were then projected back

to the electrode space to obtain a cleaner EEG signal. Finally, flat and

bad channels were reconstructed with the spherical spline interpola-

tion method (Perrin et al., 1989). The data were then rereferenced to

the average of all electrodes. Participants' hdEEG data were co-

registered using a natural (asymmetric) NIHPD Objective 1 scan tem-

plate intended for preschool-aged children (4.5–8.5 years; Fonov

et al., 2011). Co-registration was performed using the digitized scalp

locations and fiducial markers using an iterative closest point algo-

rithm in SPM12 (Ashburner et al., 2014). A forward model was fitted

using the boundary element method (Hall & Hall, 1994).

3.1.2 | Source-localization and parcellation

Final preprocessing steps were implemented using the OHBA Soft-

ware Library (OSL v2.0.3; Oxford Centre for Human Brain Activity

[OHBA] Analysis Group, 2017) and OHBA's HMM Library (HMM-

MAR; Vidaurre et al., 2016). First, a covariance matrix was computed

across the whole-time course for each participant and PCA rank

reduction allowed regularization of the obtained matrix to 50 dimen-

sions. Then, a linearly constrained minimum variance beamformer was

used to estimate whole-brain source-space activity for points in an

8 mm grid (Van Veen et al., 1997). Data dimensionality was reduced

so that each individual brain activity was estimated as a series of

time-courses for 3559 source locations across the brain using signal-

space separation algorithm (Woolrich et al., 2011). Afterward, hdEEG

data were further reduced into a 38-node cortical parcellation follow-

ing the method proposed in Quinn et al. (2018). Finally, the parcella-

tion was binarized to estimate a single time-course per node from the

first principal components across voxels; crucially, this resulted in

the reduction of individual time-courses to 38 parcels instead of 3559

voxels, enabling additional corrections for signal leakage.

3.1.3 | Additional preprocessing steps

Following OHBA's HMM-MAR library, additional preprocessing

steps were taken prior to the HMM initialization: detrending, signal

standardization, and corrections for signal leakage. First, detrending

removed linear trends in the data for each channel separately; second,

participants' concatenated time-courses were standardized. Next, sig-

nal leakage introduced by source reconstruction with zero temporal

lag was corrected using multivariate orthogonalization (Colclough

et al., 2015). Then, the Hilbert transform allowed absolute signal

amplitude estimation for each source at each timepoint (see Figure 2

for a visual schematic representation of the preprocessing procedure).

3.2 | Hidden Markov modeling

In the present study, we used the HMM-MAR toolbox (Vidaurre

et al., 2016), developed by the OHBA to infer an HMM from resting-

state hdEEG time-series data. HMM refer to a set of unsupervised

machine learning techniques that allow the segmentation of observed

time-series data into a set of discrete hidden functional states (HMM

states). These HMM states recur over millisecond timescales and are

mutually exclusive in time. A single model infers HMM states assum-

ing they all have the same probabilistic distributions but with different

parameterizations (Figure 2). In the present study, we employed the
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same formal definitions as in Zdorovtsova et al. (2023) (see Supple-

mentary Section 1). Importantly, the aim was to investigate whether

differences in behavioral and cognitive measures can be tracked by a

parsimonious number of brain states. Given that HMM computation

requires an a priori specification of the number of states (k), we

exploratory run separate HMMs with prespecified states (i.e., k = 4 to

k = 10). After visual inspection, we selected the solution revealing dis-

tinct spatiotemporal activity patterns while mitigating the redundancy

associated with higher-state solutions. To note, in the current study,

we did not use free energy metrics. Indeed, even if they allow an

objective basis for selecting the number of states (i.e., the lower the

free energy, the better the k solution), it is debatable whether it truly

promotes parsimony and theoretical coherence. In this regard, free

energy often increases monotonically up to 15 states, implying that a

Bayes-optimal solution would need an even higher number of states

(Baker et al., 2014). Similarly, when using traditional dimensionality

reduction techniques (e.g., ICA), fewer predefined components typi-

cally identifies canonical RSNs, while using more components can only

reveal finer distinctions in activity patterns (Smith et al., 2011; Smitha

et al., 2017).

The HMM-MAR toolbox computes a range of outputs that are

useful in estimating different HMM states' features. First, each state's

temporal characteristics were quantified in terms of state fractional

occupancies (i.e., the fraction of the total time spent in a state). Sec-

ond, a SR (i.e., the frequency of state switching across an individual

time-course) was calculated for each participant, providing a measure

of individual network stability. The joint probabilities of transitions

between pairs of states contained in the HMM output also allowed to

compute state transition probability matrices for each participant, as

well as for the entire concatenated time-course. Moreover, these

allowed us to calculate an entropy rate estimate (i.e., a measure of

average uncertainty generated by a transition within a sequence) per

participant following the method employed by Zdorovtsova

et al. (2023).

To note, we run HMM on both resting-state sessions together in

order to (1) get more data and derive more representative states and

(2) get the possibility to correlate the two recordings. This could not

have been achieved if running two HMM separately per resting-state

session, as we would have lost the identical correspondence between

brain states. All subsequent analyses were performed on the HMM-

metrics of the first resting-state session, as this was prior to our

experimental session and should be considered the baseline (although

we report the same analyses on the HMM-metrics averaged across

the two resting-state sessions in the Supplementary Section 7).

3.3 | Statistical analysis

Here, we provide a brief description of our research questions and the

analyses we conducted to address them. Statistical analysis was per-

formed using R (R Core Team, 2021; version 4.3.2). A Bayesian frame-

work was used when fitting linear, generalized or multivariate linear

models (R package: “brms”; Bürkner, 2017). Models' specifications

(i.e., number of chains, samples, burn-in, family distribution, custom, or

default priors) are specified in the supplementary materials. Conver-

gence was assessed by examining the R-hat values (with a maximum

accepted value for satisfactory convergence of 1.05 as suggested by

Vehtari, Gelman, Simpson, et al., 2021), and by visual inspection of

traces and the posterior predictive check. We employed leave-one

out cross-validation to evaluate the model performance and identify

potential influential observations using k-Pareto diagnostics

(R package: “loo”; Vehtari, Gelman, Gabry, & Yao, 2021). Based on the

F IGURE 2 Data preprocessing pipeline and graphical representation of the HMM. On the left is a visual representation of each step of our
hdEEG data preprocessing pipeline, in addition to the software packages and toolboxes used to complete each step of the pipeline. On the right is
presented the HMM: (a) the basic principle assumes that a time-series can be described using a hidden sequence of a finite number of states.
Here, the time-series is partitioned into three states denoted by the blue, yellow and pink slabs. The model assumes that the probability (p) of
each state at time point t depends on which state was active at time point t " 1, as represented by the brown arrows. (b) The model then
assumes that the data observed in each state are drawn from a probabilistic observation model.
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k-Pareto diagnostic plot, we considered observations with a Pareto

shape parameter exceeding 0.7 as potentially influential. For each

model, we report the estimated parameter value β, with an 89% high-

est density interval (HDI) [lower limit, upper limit]. The use of an 89%

HDI provides a narrower interval compared to traditional 95% inter-

vals, thus allowing for a more focused estimate while still maintaining

a high level of confidence. This choice of interval reflects a balance

between precision and robustness in our inference (Makowski

et al., 2019). Moreover, we report standardized betas (βs), computed

as the ratio of the unstandardized beta coefficient to the standard

deviation of the predictor variable (sigma), in order to offer a consis-

tent measure of the relative impact of predictors on the outcome.

For hypothesis testing, we used the region of practical equiva-

lence (ROPE; Kruschke, 2018; R package: “bayestestR,” Makowski

et al., 2019). The ROPE is defined as a region corresponding to the

null value and the bulk of the posterior of a given parameter is com-

pared with this region of values. If the HDI is completely outside the

ROPE, the null hypothesis is “rejected,” while if the HDI overlaps with

the ROPE the null hypothesis is “accepted.” For descriptive purposes,

we consider less than 5% strong evidence of a relevant effect. We

would like to point out that our observed variables are often very

small, on a scale of thousandths; consequently, ROPE ranges tend to

be generally narrow.

3.4 | Individual neural variability

First, two linear models were fitted separately for SR and entropy

rates (see Supplementary Table S1); specifically, each model com-

prised values of SR (standardized) or entropy (standardized) during the

second resting-state session as dependent variables and the values of

SR or entropy during the first resting-state session as independent

variables. The models included a total of 39 observations (see Supple-

mentary Sections 2.1 and 2.2 for models' specifications). Here, we

used an ROPE range = ["0.2, 0.2] for equivalence testing.

Second, for fractional occupancies (N# states $ N#subjects) and

state transition probabilities (N#states^2 $ N#subjects) we computed

both within- and between-subjects Spearman correlations across the

two resting-state sessions. For both fractional occupancies and state

transition probabilities, within-subjects correlations were computed as

the correlation of each subjects' measures between resting state

1 and resting state 2 (i.e., for each subject, 6 $ 6 fractional occupan-

cies and 36 $ 36 transition probabilities; output = N#subjects $ 1

correlation coefficient). Between-subjects correlations were com-

puted as the correlation of each subject's measures with the measures

of each other subject at resting state 2 (i.e., for each subject, 6 $ 6 $
(N#subjects-1) fractional occupancies and 36 $ 36 $ (N#subjects-1)

transition probabilities; output = N#subjects $ (N#subjects-1) correla-

tion coefficients). Afterward, two separated generalized linear models

were fitted for fractional occupancy and transition probabilities (see

Supplementary Table S1) with Spearman's correlation coefficients as

dependent variables, the type of correlation (within vs. between)

as independent variables and with a random intercept per subject.

The model included a total of N#subjects $ within correlation (one

per subject) + N#subjects $ between correlation (38 per subject) (see

Supplementary Sections 2.3 and 2.4 for model specifications). Here,

we used an ROPE range = ["0.01, 0.01] for equivalence testing.

3.5 | Age- and sex-related differences

In the following analysis, we evaluated the effect of age (standardized,

in months) and sex on the HMM indices computed for the first set of

resting-state recordings: (1) SR, (2) entropy rates, (3) states' fractional

occupancies, and (4) probabilities of transitioning into each state

(i.e., computed as the mean of transition probabilities toward each

state, excluding self-transitions: all transition probabilities toward the

same state were averaged). This latter measure reduced data dimen-

sionality (from 36 to 6 transitions) and allowed us to formulate more

precise hypotheses. We fitted two separate linear models for SR and

entropy rates and one multivariate linear model for transition proba-

bilities. For fractional occupancies, we run separate linear models for

each state (see Supplementary Table S2). The models included a total

of 39 observations. Here, we used a default ROPE range for equiva-

lence testing (see Supplementary Sections 3.1–3.4 for models'

specification).

3.6 | Individual neural variability and CC

In the following analysis, for each subject we used HMM indices com-

puted for the first set of resting-state recordings (see above). To

assess the relationship between cognitive and behavioral measures

with HMM-derived indices, we fitted two multivariate linear models

for each HMM index (each index was standardized) entering as

dependent variables either (1) neuropsychological (NPS) measures

(i.e., phonological fluency mean score, Gift wrap time and CPM score)

or (2) questionnaires total scales (i.e., CPRS DSM-IV, BRIEF Global

Executive Composite [GEC], ERC, and IUS). BDS and Gift wait were

excluded from NPS models due to their non-normal distribution in

order to maintain the assumption of normality necessary for reliable

estimation. Age (standardized, in months) and sex entered as covari-

ates in all the models (see Supplementary Table S7). NPS models

included a total of 39 observations, questionnaires' models included a

total of 38 observations due to missing data for one participant. Here,

we used a default ROPE range for equivalence testing (see Supple-

mentary Sections 4.1 and 4.2 for models' specification).

4 | RESULTS

4.1 | State characteristics for the six-state HMM

A six-state HMM solution was selected as it revealed distinct spatio-

temporal activity patterns while mitigating the redundancy associated

with higher-state solutions (Figure 3; see Supplementary Figure S1 for
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parcel activation). Each state-map displays the average activation

profile of each parcel for the concatenated hdEEG dataset (for each

subject, resting state 1 and resting state 2). State-specific activations

are plotted as yellow/red. State 1 involves activations over prefrontal

and temporo-parietal areas, resembling a prominent anterior DMN-

like state. State 2 involves a lateralized pattern of activation in

temporo-parietal regions of the cortex including the precuneus, and

can be configured as a posterior DMN-like state. State 3 and 4 involve

posterior regions including somatomotor areas and, respectively,

occipito-temporal and occipito-parietal areas. Finally, state 5 and 6 dis-

play, respectively, prominent prefrontal and fronto-temporal

activations.

Temporal features of each HMM state were derived from state

time-courses (Figure 4). In terms of fractional occupancies (FO;

F IGURE 3 Six-state HMM. Here, we
present the visual representations of the
six-state HMM. For each state, the top 60%
of positive activations were plotted on a
cortical surface using the HCP Workbench
GUI. State labels correspond to our
descriptions of the macroscopic features of
the cortical activation pattern.

F IGURE 4 Temporal characteristics of the HMM states during both resting-state sessions. (a) The first 1000 timesteps (4 s sampled at
250 Hz) of the Viterbi path (i.e., maximum a posteriori sequence of states in an HMM) and state time courses are presented. (b) Fractional
occupancy (FO) of the states in our k = 6 HMM.
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i.e., the total average time spent in each state), state 4 displays the

lowest FO and state 5 the greatest variability. Means and standard

deviations of LTs, ITs, and FOs are summarized in Table 3.

Finally, state transition probabilities between and across partic-

ipants were computed. The dominant type of timepoint-

to-timepoint transition was “self-transition,” forming the diagonal

of the state transition probability matrix. Therefore, the diagonal

was zeroed out to visualize state-to-state transition probabilities

(Figure 5).

4.2 | Individual SR, entropy, fractional
occupancies, and brain state transitions are reliable
hallmarks of individual neural variability

To assess whether SR, entropy rates, fractional occupancies and

brain state transitions are reliable hallmarks of individual neural

variability, we ran separate linear and generalized linear models

(see Supplementary Table S1). For SR (see Supplementary

Table S1, 1_M1), the estimated regression coefficient (β) was .82

(89% HDI: [0.68, 0.98], βs = 1.46) and the percentage of β inside

the ROPE was smaller than 5% (i.e., <1%). Similarly, for entropy

(see Supplementary Table S1, 1_M2), the estimated regression

coefficient (β) was .82 (89% HDI: [0.66, 0.97], βs = 1.49) and the

percentage of β inside the ROPE was less than 5% (i.e., <1%).

Therefore, we concluded that both SR and entropy rates correlated

between the two resting-state sessions, suggesting that the

dynamics of these states are relatively stable measures of individ-

ual differences.

For fractional occupancies (see Supplementary Table S1, 1_M3),

the estimated regression coefficient (β) was .08 (89% HDI: [0.04,

0.12], βs = .53) and the percentage of β inside the ROPE was less

than 5% (i.e., <1%). Regarding transition probabilities (see Supplemen-

tary Table S1, 1_M4), before computing within- and between-subjects

Spearman correlations, for computational reasons we removed low-

probability transitions (<1 $ 10–5) (N = 4, S2 ! S4, S2 ! S9,

S3 ! S1, S3 ! S6). Indeed, nonzero variability is required to calculate

correlations accurately. The estimated regression coefficient (β) was

.03 (89% HDI: [0.02, 0.04], βs = .75) and the percentage of β inside

the ROPE was less than 5% (i.e., <1%). Therefore, for both fractional

occupancies and transition probabilities, results indicate greater corre-

lation coefficients in the within-subjects compared to the between-

subjects correlations (see Figure 6 for visual representation of the

results).

Overall, these results confirm within-subjects correlation of

HMM-derived indices (i.e., SR, entropy rates, fractional occupancies,

and transition probabilities), supporting these as reliable hallmarks of

individual neural variability.

TABLE 3 Means and standard deviations for state fractional
occupancy during both resting-state sessions. Note that no
thresholding was applied in the calculation of these metrics.

State
Fractional occupancy
(proportion) mean ± sd

State 1 (anterior DMN like) 0.157 ± 0.026

State 2 (posterior DMN like) 0.187 ± 0.037

State 3 (OT, SM) 0.190 ± 0.032

State 4 (OP, SM) 0.047 ± 0.018

State 5 (PF) 0.284 ± 0.077

State 6 (FT) 0.136 ± 0.016

F IGURE 5 (a) Joint posterior probabilities of state transitions for each subject were computed. (b, c) Average transition probabilities across
the entire sample during both resting-state sessions (n = 78). Self-transitions were intentionally excluded for the purpose of plotting state-
to-state transitions. No thresholds were applied. The node sizes in (c) reflect each state's fractional occupancy.
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4.3 | Individual neural variability differs between
boys and girls

To assess the effects of age and sex on HMM-derived individual neu-

ral variability indices we used separate linear and multivariate linear

models (see Supplementary Table S2). For both SR (see Supplemen-

tary Table S2, 2_M1) and entropy rates (see Supplementary Table S2,

2_M2), we found a main effect of sex, with boys displaying overall

higher rates than girls (respectively, β = .01, 89% HDI: [0.00, 0.01], %

inside ROPE <1%, βs = 1 and β = .13, 89% HDI: [0.02, 0.23], % inside

ROPE <1%, βs = .65). Regarding transition probabilities (see

Supplementary Table S2, 2_M3), we found that boys have higher

probability of switching into state 2 (β = .002, 89% HDI: [0.000,

0.005], % inside ROPE <3%, βs = .5) and a lower probability of

switching into state 5 (β = ".003, 89% HDI: ["0.005, "0.000], %

inside ROPE <1%, βs = ".6) compared to girls. Regarding fractional

occupancies (see Supplementary Table S2, 2_M4–2_M9), we found a

main effect of sex in all the states, with boys spending overall more

time in state 1 (β = .02, 89% HDI: [0.00, 0.03], % inside ROPE <1%,

βs = 1), state 2 (β = .02, 89% HDI: [0.01, 0.04], % inside ROPE <1%,

βs = .5), state 3 (β = .03, 89% HDI: [0.01, 0.05], % inside ROPE <1%,

βs = 1) and state 6 (β = .02, 89% HDI: [0.01, 0.02], % inside ROPE

F IGURE 6 Panel (a): The two figures display SR (left) and entropy (right) correlations between the two resting-state sessions. On the X-axis
are displayed expected values of SR/entropy in the first resting-state session (RS1), on the Y-axis are displayed expected values of SR/entropy in
the second resting-state session (RS2). Panel (b): The two figures display, for fractional occupancies (left) and transition probabilities (right),
posterior density distributions (Y-axis) of Spearman's correlation coefficients between the two resting-state sessions (X-axis) for within (purple)
and between (blue) correlations.
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<1%, βs = 2), and girls spending more time in state 4 (β = ".02, 89%

HDI: ["0.02, "0.01], % inside ROPE <1%, βs = "1) and state

5 (β = ".07, 89% HDI: ["0.11, "0.03], % inside ROPE <1%, βs = "1).

See Supplementary Tables S3–S6 for all the results, and Figure 7 for

visual representation of the reported results. Overall, these results

suggest the presence of sex-based but not age-based differences in

individual neural variability, at least within this relatively narrow

age band.

4.4 | Brain state transitions are related to
preschoolers' CC

To unravel the relationship between individual neural variability and

CC we used separate multivariate models (see Supplementary

Table S7). For transition probabilities (see Supplementary Table S7,

3_M8), we found that transitioning into brain state 2 is generally asso-

ciated with worse behavioral and emotional profiles on the parental

questionnaires: reduced ERC scores (β = "3.29, 89% HDI: ["5.96,

"0.65], % inside ROPE <1%, βs = ".57), increased BRIEF-P GEC

scores (β = 5.78, 89% HDI: [1.52, 9.76], % inside ROPE <1%, βs = .65)

and increased Conners DSM-IV total scale (CPRS DSM-IV) scores

(β = 3.82, 89% HDI: [1.51, 6.12], % inside ROPE <1%, βs = .79). Con-

versely, transitioning into brain state 3 was associated with better

emotional regulation profiles as indicated by increased ERC scores

(β = 3.01, 89% HDI: [0.53, 5.55], % inside ROPE <1%, βs = .53), and

transitioning into brain state 6 was associated with better emotional

regulation and behavioral profiles as indicated by increased ERC

scores (β = 2.83, 89% HDI: [0.98, 4.81], % inside ROPE <1%,

βs = .49), reduced GEC (β = "2.91, 89% HDI: ["5.73, "0.01], %

inside ROPE <10%, βs = ".33) and CPRS DSM (β = "2.07, 89% HDI:

["3.68, "0.43], % inside ROPE <2%, βs = ".43) scores. Fractional

occupancies (see Supplementary Table S7, 3_M7), SR (see Supplemen-

tary Table S7, 3_M5), and entropy rates (see Supplementary Table S7,

3_M6) did not predict differences on any of the questionnaires' scales

(see Supplementary Tables S8–S11 for all the results, and Figure 8 for

visual representation of the reported results). Finally, none of the indi-

vidual neural variability indices predicted NPS measures (see Supple-

mentary Table S7, 3_M1–3_M4; see Supplementary Tables S12–S15

for all the results).

Overall, results only partly confirm that transitioning toward

CCN-like states predicts better behavioral and emotional regulation

profiles as assessed using parental questionnaires. Importantly, these

results do not depend on baseline differences between boys and girls

on neuropsychological measures (see Supplementary Section 9).

5 | DISCUSSION

In the present study, we investigated preschoolers' resting-state neu-

ral dynamics by inferring a six-state HMM from hdEEG data. Our

model identified discrete spatiotemporal patterns mimicking well-

known RSNs, including the anterior and posterior default-mode,

temporo-parietal, occipital, sensorimotor, frontal, and fronto-temporal

networks. The states were characterized by short (<150 ms) time

courses, supporting the idea of RSNs as a system of rapid synchroni-

zation and switching dynamics. Individual SR, entropy rates, fractional

occupancies and state transition probabilities were reliable across

F IGURE 7 Sex-related differences in the HMM-derived indices. Panel (a): The figures show on the y-axis expected values of SR (upper figure)
and entropy (lower figure) rates, in boys (B; light green) and girls (G; dark green). Panel (b): The figures show on the y-axis expected values of
fractional occupancy (indicated symbolically by the hourglass) in brain state 1 (upper left), brain state 2 (upper center), brain state 3 (upper right),
brain state 4 (bottom left), brain state 5 (bottom center) and brain state 6 (bottom right), in boys (B; light green) and girls (G; dark green). Panel (c):
The figures show on the y-axis expected values of transition probabilities (indicated symbolically by an arrow) of switching toward brain state
2 (upper figure) and state 5 (bottom figure), in boys (B; light green) and girls (G; dark green).
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different recording sessions, supporting HMM inference as a robust

methodology to investigate individual neural variability in the devel-

oping brain. This is particularly relevant considering the well-known

difficulties in collecting good-quality neural data from young popula-

tions. Assessing the reliability of these neural indices is a fundamental

step to study how they relate to individual differences in cognitive

functioning. Our analyses served as an attempt to describe how dif-

ferent neural indices of brain dynamics are intrinsically related to

broader measures of behavior and cognition in preschoolers. Overall,

our results indicate that HMM-derived metrics show sex-related dif-

ferences and predict CC measures. We discuss these results further in

the following sections.

6 | SEX, BUT NOT AGE, EXPLAINS
DIFFERENCES IN INDIVIDUAL NEURAL
HALLMARKS

We observed sex-related differences in almost all the HMM-derived

indices. This is in line with previous studies that found differences in

static (Ritchie et al., 2018) and dynamic (Scofield et al., 2019) func-

tional connectivity between girls and boys. For instance, Scofield et al.

(2019) found that school-aged boys show greater dwell time in states

related to the ventral attention network, DMN and somatomotor net-

work, before switching to another state. In a similar vein, our analysis

revealed that, compared to girls, boys tend to switch more frequently

between states, especially toward states that might be considered

task-negative or default-mode like (state 2 involves activations over

the precuneus, which is reminiscent of a posterior default-mode acti-

vation; Raichle, 2015) and spend on average more time in almost all

the states including state 1 (anterior default-mode like). Conversely,

girls switch less frequently between states but mostly toward CCN-

like states, where they spend more time: state 5 (prefrontal) and state

4 (occipito-parietal, somatomotor). Interestingly, both prefrontal and

parietal areas have been proposed as two core hubs underlying high-

order cognitive functioning. For instance, individual differences in rea-

soning and working memory abilities might rely on the interplay

between parietal and frontal association cortices, as well as other

structural and functional parameters like their volume, gray matter

density and mean diffusivity (Gur et al., 2021; Jung & Haier, 2007;

Li & Tian, 2014). Additionally, the fronto-parietal network is consid-

ered a modal controllability hub, which is the ability of a given net-

work to drive the whole brain into states that are difficult to reach,

such as those entered under high cognitive demand (Gu et al., 2015).

Greater engagement (fractional occupancy) of these states in girls

might explain their reduced SR and entropy rates compared to boys.

Therefore, we speculate that these sex-related differences in brain

dynamics may heighten boys' neurobiological risk of atypical develop-

mental trajectories associated with compromised CC (Bölte

et al., 2023). Contrary to our expectations (Kupis et al., 2021) we did

F IGURE 8 Transitions toward each state and questionnaire scores. The figures reported in the panel show on x-axis the expected values
(standardized) of brain state transitions (indicated symbolically by an arrow) toward a certain brain state (i.e., BS2 = brain state 2, BS3 = brain
state 3, BS6 = brain state 6) and on the y-axis the expected values of the questionnaires' scales (GEC = global executive composite [BRIEF-P],
ERC_tot = emotion regulation checkList total scale, CPRS_DSM_tot = conners DSM-IV total scale) scores.
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not find age-related differences in the HMM-derived indices. This

could be due to the restricted age-range considered in the present

study (i.e., 4–6 years).

6.1 | Brain state transitions are associated with CC

The preschool period is a sensitive window for the development of

CC, particularly due to increasing patterns of connectivity between

the prefrontal cortex, the anterior cingulate cortex, and the parietal

cortex (Fiske & Holmboe, 2019). In the present study, we found that

specific resting-state patterns of brain state transitions are associated

with CC, as assessed using parental questionnaires. More specifically,

we found that a higher probability of transitioning into state

6 (fronto-temporal) was associated with better scores in question-

naires assessing executive functioning in everyday life (BRIEF-P; Gioia

et al., 1996), behavioral difficulties (CPRS; Conners et al., 1998) and

emotion regulation abilities (ERC; Molina et al., 2014). On the con-

trary, we found that a higher probability of transitioning into state

2 (posterior default-mode like) was associated with worse scores in

the same measures. Overall, these findings build on previous studies

supporting the important role of the prefrontal cortex for CC develop-

ment (Friedman & Robbins, 2022). Moreover, it confirms and extends

previous findings suggesting the relevance of brain dynamics for CC

within the preschooler period (Cabral et al., 2017; Kupis et al., 2021).

Specifically, previous evidence showed that adults performing differ-

ently in CC tasks displayed different brain state transitions (Cabral

et al., 2017) and that, generally, brain state transitions relate to

subject-specific cognitive traits (Vidaurre et al., 2017). Within this

framework, our findings suggest that a higher tendency to enter pre-

frontal states might favor the engagement of CC abilities in response

to external demands (Emili Balaguer-Ballester et al., 2011).

Interestingly, we also found that a higher probability of transition-

ing into state 3 (occipito-temporal, somatomotor), was associated with

better emotional regulation (ERC; Molina et al., 2014). State 3 activa-

tion involves areas associated with the ventral circuit (fusiform area,

occipital extrastriate and superior temporal sulcus) along with right

frontal areas and might overlap with the social pathway recently pro-

posed by Pitcher and Ungerleider (2021). This latter network is spe-

cialized for processing dynamic aspects of social perception.

Therefore, we can hypothesize a relationship between the at-rest

functional activation of this network and the way young children man-

age their emotion regulation in social contexts. Nevertheless, this

hypothesis is speculative and would require further investigation.

As a general note, the transition probabilities between brain

states offer valuable insights into the behavior of cognitive networks,

reflecting in turn the fluidity and adaptability of cognitive processes.

Frequent and predictable transitions between specific states may sug-

gest a flexible and adaptive cognitive system, indicative of efficient

CC (e.g., Dosenbach et al., 2007). Conversely, lower transition proba-

bilities might point to a more rigid or specialized network behavior,

potentially reflecting difficulties in cognitive flexibility or control

(Sporns, 2013). For typically developing preschoolers, our findings

indicate that higher transitions toward brain states involving fronto-

parietal–temporal areas are associated with more efficient CC, with

this effect being more pronounced in girls than in boys. Importantly,

deviations from typical state transitions could signal less efficient CC

even in the absence of formal clinical diagnoses (Petersen &

Posner, 2012). In this regard, we observed that higher transition prob-

abilities toward a DMN-like state are more frequent in boys and asso-

ciated with lower CC. In populations with CC difficulties, such as

those with ADHD or schizophrenia, the states' temporal dynamics

might exhibit prolonged dwell times in certain states or reduced flexi-

bility in transitions. These patterns can manifest as difficulties in main-

taining attention or switching tasks, which are central to altered CC

(Anticevic et al., 2014; Fair et al., 2010).

Overall, it is interesting to note that we found relationships

between state transition probabilities and parental questionnaires

scores, but no relationship with direct cognitive measures. This might

depend on the highly contextual-dependent performance of young

children and, in turn, on the low test–retest reliability of such neuro-

psychological measures, which may not be sensitive enough to indi-

vidual differences (Karalunas et al., 2020). Consequently, upcoming

studies should aim to find more sensitive measures for assessing cog-

nitive abilities in preschoolers.

Notably, in contrast to previous studies on adults (Nomi

et al., 2017; Taghia et al., 2018; Vidaurre et al., 2017), and older

school-aged children (Zdorovtsova et al., 2023), we only found state

transition probabilities to be associated with CC, while we found no

relationship with other HMM-derived neural indices (SR, entropy

rates, and fractional occupancies). One potential explanation is that

state transition patterns might represent a prominent and more sensi-

tive feature of CC development during the preschool-age period com-

pared to other neural indices. Indeed, during this time the brain

undergoes substantial functional modifications, including changes in

interregional activity (Brown & Jernigan, 2012), that may be better

captured by state transitions rather than the other HMM indices.

Future studies should address this point using different CC measures.

Finally, task-evoked HMM-derived indices might provide a comple-

mentary view (Medaglia et al., 2018).

6.2 | Limitations and future directions

The present study has some potential limitations. First, the first-order

Markovian assumption of our HMM estimation implies that the future

state depends on the current state. However, this assumption is

potentially restricting. For instance, it ignores the potential influence

of past states on future behavior and fails to capture non-Markovian

dynamics (Trujillo-Barreto et al., 2024). This can lead to inaccurate

predictions in systems where past interactions impact future out-

comes. To circumvent these issues, future studies could adopt more

flexible approaches such as higher-order HMM to incorporate

more complex temporal dependencies. In this vein, a prominent solu-

tion is generalized hidden semi-Markov models that allow explicit

specification of the duration model (Trujillo-Barreto et al., 2024).
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Second, reliability of the HMM-derived metrics was tested using

two resting-state sessions recorded on the same day. This is justified

since the measures we focus on are dynamic and fluctuate in the

range of milliseconds, but future studies should confirm our results by

recording the resting-state sessions on different days.

Finally, future studies should include children at-risk for neurode-

velopmental conditions such as ADHD, in order to better understand

if and how deviations from typical state transitions could represent a

potential marker of poor CC.

7 | CONCLUSIONS

We inferred a six-state Multivariate Gaussian HMM using resting-state

hdEEG brain activity in a developmental, preschool-aged sample (4–

6 years). These brain state characteristics derived from the HMM were

reliable across different recording sessions, allowing their use as individ-

ual neural hallmarks, and differed between boys and girls. Moreover,

transition patterns between states were predictive of individual differ-

ences on CC measures (parental questionnaires scores). In line with pre-

vious evidence, the current study supports the importance of resting-

state brain dynamics as an important scaffold for behavior and cognition.

Moreover, for the first time, we extend these findings to the preschool

period and suggest that brain state transitions might be particularly

salient during this developmental window. Therefore, brain state transi-

tions should be targeted by future studies investigating neurodevelop-

mental trajectories and early markers of neurodivergent development.
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