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Glossary 

Term Definition 

INT Intrinsic Neural Timescale. Temporal duration of spontaneous neural activity. 

IIT Integrated Information Theory of consciousness.  

TTC Temporospatial Theory of Consciousness.  

GNWT Global Neuronal Workspace Theory of consciousness.  

ACW Autocorrelation Window. Based on the computation of the signal’s 
Autocorrelation Function (ACF), it’s originally formalized as the time lag at which 
the ACF reaches its full width at half maximum (FWHM), but other variants exist. 

DoCs Disorders of consciousness. Clinical states characterized by partial or full loss of 
consciousness acquired after severe brain injuries. 

CRS-R Coma Recovery Scale – Revised. The gold-standard neurobehavioral scale for the 
clinical assessment of DoCs, consisting of the evaluation of six subscales. 

GCS Glasgow Coma Scale. The first behavioral scale for the clinical assessment of DoCs, 
consisting of the evaluation  of three subscales.  

PE Permutation Entropy. Entropy measure based on a symbolization procedure. 

PE-TD  Permutation Entropy Time Delay estimation. Based on PE, it is defined as the 
absolute minimum of the PE vs tau function. Detailed in Chapter 3. 
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Abstract 

 

The long-standing quest for consciousness is gathering more and more interest in the scientific 

community. As the investigation of the nature of subjective experiences reaches unparalleled 

levels of refinement, the stakes become higher and higher, such that novel perspectives on the 

neuroscientific basis of consciousness are needed. Recently, it has been proposed that the 

temporal structure of the brain’s spontaneous activity might be key for consciousness, despite 

having been overlooked by most current theoretical frameworks. We refer to this inquiry as the 

investigation of the “temporal dimension of consciousness”. On the neuronal side, this temporal 

dimension can be approached by probing Intrinsic Neural Timescales (INTs) – defined as the 

intrinsic temporal durations of neural activity – and their properties, such as their spatial 

organization across the scalp. In this work, we aimed to deepen the current understanding of the 

role of INTs in the emergence of consciousness. Our work was carried out especially within the 

context of the clinical challenges posed by the differential diagnosis of disorders of consciousness 

(DoCs), which currently suffers from very high rates of error. We here present three studies that we 

have led as part of our research program. In the first study, we investigated the spatial relation 

between INTs and the average oscillatory speed in the alpha frequency range (7-13 Hz). Both, in 

fact, are measures that have been related to the temporal resolution of sensory processing, but 

their exact relation is far from clear. We hypothesized a clear correlative pattern between the two 

measures in the fully conscious state; further, we hypothesized that this relation would be 

disrupted together with loss of consciousness. We showed a significantly negative correlation, at 

the channel level, between INT lengths probed with the Autocorrelation Window – 0 (ACW – 0) 

and Alpha Peak Frequencies (APF) in the resting state hd-EEG recordings of our conscious 

population; additionally, we observed a total disruption of this correlation across different 

unconscious states – e.g. anesthetic induction (with two different agents) and in individuals with 

DoCs. These first findings indicate that the relation at different time scales between different 

measures of temporal processing are key for consciousness. In the second study, we advanced our 

current methodological arsenal to infer the duration of INTs, by validating a new tool based on 

Permutation Entropy (PE), which is specifically developed to avoid the confounding effects of the 

nonstationary and nonlinear nature of the neural signal. We first show, in  simulated data, that this 

measure (which we named Permutation Entropy Time Delay estimation – PE-TD) is indeed less 

sensitive to nonstationarities and nonlinearities in a neural signal. Second, we observe a high 

topographic similarity between PE-TD and ACW-0, validating this approach in healthy awake 

volunteers; surprisingly, this spatial similarity was less evident in DoC data, which might hint at the 

differential effects of nonstationarity and nonlinearity in these two different states of 

consciousness. In the third and last study, the objective was to test for the presence of non-

random dynamic transitions between different topographies of INTs, supporting claims of a 

dynamic repertoire of INTs. Leveraging two different datasets (MEG and hd-EEG), we employ a 

data-driven approach to identify "dynamic INT states." In MEG, we found 10 dynamic INT 
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topographic states, with four maps displaying a significant correlation with myelination maps, 

indicating a cortical hierarchy. The dynamic transition time series showed intermediate 

randomness. In EEG, with 7 recurrent topographic states, we show higher randomness in 

unconscious individuals. Further, when consciousness is lost, dynamic INT transitions display less 

memory, indicating a less complex and thus a poorer dynamic INT repertoire. These findings 

extend our understanding of the temporal organization of the resting brain, linking it to 

consciousness as proposed by the Temporospatial Theory of Consciousness (TTC). Taken together, 

our results clearly indicate that INTs are involved in the emergence of consciousness, suggesting a 

clear potential in investigating the temporal dimension of consciousness, especially for the 

development of an objective index of consciousness, with clear implications for its clinical 

application. 
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Chapter 1. Introduction 

 

 

1.1.1 Theories of consciousness: brief overview and the introduction of the temporal dimension 

of consciousness 

 

The last 30 years have seen increasing interest in the study of consciousness, encompassing all 

fields of neuroscience. Even if the mystery of the nature of consciousness is now considered one of 

the biggest questions faced by science (Kennedy and Norman, 2005), it was not well-received and 

even not encouraged by the academic world (Sutherland, 1989) - especially in the psychological 

and neuroscientific scholarly circles - arguably due to its elusive nature and to the limitations 

imposed by the lack of advanced methods of investigation (Seth, 2018). In retrospective, 

neuroscientists seem to agree (Seth, 2018; Storm et al., 2017) that the turning point from the 

almost complete lost interest in consciousness, which was prevalent especially among the 

behaviorist academic circles, to a dignified and respected research coincides with the pioneering 

work of Crick and Koch (Crick, 1998; Crick and Koch, 1990). In fact, it is in the last decade of the 

20th century (with a few notable exceptions that date before this “symbolic” date (Baars, 1988)) 

that we can observe an increased amount of efforts directed at the investigation of the “neural 

correlates of consciousness” (NCCs) - a concept introduced in the aforementioned seminal works 

of Crick and Koch - which were then defined as “the minimal neuronal mechanisms jointly 

sufficient for any one conscious percept” (Crick, 1998). Initially, the race to finding a putative 

neural substrate of consciousness has been fueled by the search for NCCs: this, in turn, caused the 

accumulation of empirical evidence that needed to fit coherently in a solid theoretical framework 

in order to be fairly interpretable. 

Eventually, an unprecedented and almost “Cambrian” explosion of theories of consciousness has 

characterized the last two decades, which stands antithetical to the initial skepticism surrounding 

the “major unsolved problem in biology” (Crick, 2004). Considering the methodological and 

theoretical challenges posed by consciousness to date, the fact that current theories of 

consciousness diverge greatly in their proposed explananda (e.g. the neural mechanisms targeted 

by each theory) comes with no surprise. Because of this remarkable divergence, several review 

articles and textbooks have proposed different strategies and taxonomies to navigate the vast 

array of theories and their proposed neural measures of consciousness (Boly et al., 2017; Cavanna 

and Nani, 2014; Gazzaniga and Mangun, 2014; Northoff and Lamme, 2020; Revonsuo, 2010; Storm 

et al., 2017). 

Unfortunately, there is no definitive taxonomy that can easily explain the diversity of the landscape 

composed by all current theories of consciousness; however, the reader might find useful to know 

where the most popular approaches are located on different theoretical spectrums. To this aim, 

several axes of variation have been proposed in the last years, which will be now introduced in no 

particular order. 
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A major distinction, established at the beginning of this century, regards the difference between 

“access consciousness” and “phenomenal consciousness” (Block, 2005). Access consciousness is 

related to the contents of consciousness that are readily available to higher order cognition (hence 

the term “access”). The most striking feature of access consciousness is that, since this information 

is broadcasted to virtually all cognitive systems, individuals are able to self-report their subjective 

experience, which is then communicable to the experimenter. The most known theory on this end 

of the A-P (access-phenomenal) spectrum is the Global Neuronal Workspace Theory (GNWT) of 

consciousness (Mashour et al., 2020). Proponents of this theory claim that consciousness arises 

when information that is initially only represented locally becomes available to a higher-order 

network, that in turn allows it to be broadcasted globally to every other “specialized processors” 

(Mashour et al., 2020). A similar cognitive approach is followed by Higher-Order Theories (HOT) of 

consciousness (Brown et al., 2019). On the other hand, phenomenal consciousness is more about 

the features of subjective experience related to the state of “what if feels like” (Nagel, 1974) to be 

conscious. In its latest formulation, the Integrated Information Theory (IIT) of consciousness 

(Albantakis et al., 2023) proceeds from a set of phenomenal features of the subjective experience 

(axioms) to infer the necessary and sufficient associated properties (postulates) of the physical 

substrate able to give rise to consciousness. IIT proposes that consciousness is understood as the 

cause-effect power of the conscious system is unfolded: the higher the intrinsic cause-effect power 

of a system, reducible to a balance between “information” (the degree to which uncertainty can be 

reduced intrinsically by the system) and “integration” (quantifying the irreducibility of the system 

as a whole), the higher its quality of consciousness. The A-P distinction already uncovers the 

divergence of mechanisms between different theories. For example, the GNWT theorists claim that 

the hallmark of consciousness is a “global ignition” of a large-scale network supported by re-

entrant activity, with frontal networks as a major hub sustaining this ignition mechanism; IIT, 

instead, proposes that integrated information converges towards a “hot zone” network, located 

roughly in posterior areas, that is irreducible to its smaller components. This localization 

controversy forms the argument of a second distinction between “back” and “front” of the brain 

theorists (Boly et al., 2017). Other diverging points between theories of consciousness concern 

methodologies and the focus on either stimulus-related activity and spontaneous activity (resting-

state) (Northoff and Lamme, 2020). The latter, we argue, indicates that despite it might appear 

that there are irreconcilable differences between these theories, there is actually a great potential 

for convergence, as theories might be targeting different aspects of the same phenomenon – 

consciousness. Using the aforementioned : it is not logically impossible to reconcile the interplay 

between resting state activity, which molds the way the brain reacts to incoming inputs (Carhart-

Harris, 2018), unlocking richer and less stereotyped activity in response to its surroundings. The 

richness/flexibility argument is arguably one evolutionary trait enabled by the appearance of 

consciousness, thus indicating great potential for convergence.  

 

Consciousness is not easily accessible with current methodologies 

Consciousness, however, is elusive to most current methodologies available to neuroscientists, 

irrespectively of the theoretical framework. A major problem contributing to this evasiveness is 

how challenging it is to disentangle neural activity strictly related to consciousness from its mere 

consequences – related events, but not directly necessary for consciousness. Cognitive confounds 
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are a major example related to this conundrum. One does not need to factor in consciousness to 

explain attention, memory, and other cognitive functions (Mnih et al., 2015), even if they 

supposedly work with the information provided by conscious contents: therefore, there is no 

guarantee to observe the real neural underpinnings of consciousness, if the right experimental 

precautions are not taken. To this end, no-report paradigms (Tsuchiya et al., 2015) overcome the 

main confounds related to reporting one’s own experience, which are connected to post-

perceptual decision-making processes and language; however, it doesn’t assure that only “raw” 

consciousness is isolated from these confounding factors, which has led to recent proposals of “no-

cognition” paradigms (Block, 2019). Nevertheless, controversy still surrounds the debate on 

consciousness paradigms (Phillips and Morales, 2020), and no-cognition proposals do not 

represent a conclusive solution to this problem. For this reason, perhaps a tentative solution 

should be searched elsewhere: rather than working on methodological issues, can we obtain even 

better results by rethinking consciousness theories in terms of a unifying framework? 

Therefore, to improve current efforts towards a unifying framework, we argue that a fundamental 

and cohesive set of coordinates needs to be developed. To this aim, the temporal dimension of 

consciousness has been proposed as a possible candidate (Kent et al., 2019; Kent and Wittmann, 

2021). The rationale behind this research program, which justifies the working hypotheses 

elaborated in this work, is described in the next section. 

 

 

1.1.2 The temporal dimension of consciousness: towards a unifying framework 

 

 A renowned statement by Nobel laureate Ilya Prigogine, one of the pioneers of chaos theory, 

asserts: "Time precedes existence." (Prigogine et al., 1997; Stengers, 1997). Before the growth of 

chaos theory and dynamical systems theory (DST), the prevailing knowledge of time was that of 

nothing more than an illusion, which only we humans, imperfect beings, had to deal with. With 

this popular phrase, Prigogine reasserted the importance of the temporal dimension in physics, 

which holds especially for self-organized systems: adaptive systems that maintain their internal 

organization without external control (Hesse and Gross, 2014). The brain is also thought to adhere 

to these principles of self-organization (Krohn et al., 2023), and general consensus bestows 

extended temporal properties to consciousness (Kent and Wittmann, 2021). 

 

From phenomenology to quantification: the importance of considering multiple time scales 

Surprisingly, most theories of consciousness often overlook time as one of its main explanatory 

elements. Often, theories of consciousness restrict their interest in time at the timescales that 

correspond to their explananda. Take the example of IIT: as there is evidence that the timescale at 

which the maximal irreducibility of a neural-like system falls into a short timescale of 100-300 ms 

(Hoel et al., 2016), which corresponds to a maximal variability in the temporal fluctuations of 

phenomenal contents (Tononi et al., 2016), IIT predictions are usually confined in this temporal 

range. 
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But the phenomenology of subjective experiences tells us differently. Consciousness is a unitary 

experience that rarely feels as a succession of discrete states – phenomenal contents. William 

James’s “flow of consciousness” (James, 1890) and Husserl’s “extended present” (Husserl, 2019), 

phenomenological accounts of that particular feeling of seamless continuity in which subjective 

experiences progress one after the other, which is inherent to consciousness, are nevertheless 

supported by modern neuroscientific studies (Petitot, 1999; Pöppel, 1989; Zahavi, 2005).  In this 

sense, caution is prescribed and is very important to distinguish conscious contents (units) from 

consciousness itself (the continuous phenomenon). While it’s true that evidence hints at the 

partitioning of experience into discrete units (Kornmeier et al., 2019; Nakajima et al., 1980; 

Poeppel and Logothetis, 1986; VanRullen and Koch, 2003), experience is also temporally integrated 

into a cohesive unit (Hasson et al., 2008; Lerner et al., 2011), at different timescales (slower and 

faster ones). Here, with timescales we define both the temporal duration of the physical stimuli 

which become conscious and the temporal duration of neural activity itself. 

An important caveat: one has to be particularly cautious when inferring a 1:1 correspondence 

between the phenomenological features of the conscious experience in time – the extended 

present and the temporal continuity of subjective experiences - with neural mechanisms related to 

integrative processes. While we might be tempted by inducing this simplistic identity, temporal 

integration processes are also involved in other cognitive processes, such as working memory 

(Kent et al., 2019), and therefore the right experimental precautions need to be taken to 

disentangle the differential contribution of computational strategies employed by the brain to 

cognition and consciousness. 

If the gap between slower and faster timescales of consciousness is not closed, there is a high risk 

of leaving out of the frame a critical phenomenal feature of subjective experience: the feeling of 

temporal unity.  

Therefore, a rigorous theoretical framework for the scientific study of the subjective experience we 

colloquially refer to as consciousness can’t be complete as long as its temporal dimension is not 

taken into account. 

 

The temporo-spatial theory of consciousness (TTC)  

The gap between the operational timescales of consciousness, which might appear an irresolvable 

problem at first, forms instead the first stepping-stone towards a unifying theory of consciousness 

for the Temporospatial Theory of Consciousness (Northoff and Zilio, 2022a). TTC’s perspective on 

consciousness is that of a constructionist theory: its foremost assumption is that the brain actively 

shapes – constructs – its own inner temporal and spatial coordinates. More specifically to the 

scope of this work, in TTC’s framework the brain’s intrinsic time is not merely the neural correlate 

of the perception of time or the timing of neural events (Di Lernia et al., 2018; Paton and 

Buonomano, 2018), but rather the temporal dimension onto which its activity is embedded: its 

duration, related to the oscillatory and non-oscillatory components of neural activity (He et al., 

2010), and its dynamics relative to the external environment’s temporal fluctuations. The use of 

the term “intrinsic” also indicates that TTC shifts in the direction of a more significant role of the 

spontaneous brain’s activity in the search for neural measures of consciousness, rather than the 

stimulus-related activity correlates proposed by most current approaches (Northoff and Lamme, 
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2020). Concerning its time coordinates, the brain’s spontaneous activity is highly coordinated, 

showing a characteristic scale-free (He, 2014; Sorrentino et al., 2023) component which is 

strikingly discernable in electroencephalographic (EEG) signals. This fractal activity is associated 

with long-range temporal correlations (LRTC) (Palva and Palva, 2018): typical features of systems 

operating at the edge of chaos, they index its capacity for information processing. In practice, a 

system displaying LRTC possesses the capacity to retain memory over longer periods of time and 

therefore assists the integration of information over multiple timescales. This notion is popular in 

modern physics - especially in the field of DST – and, according to TTC, applies well to the scientific 

study of consciousness. 

TTC starts with these assumptions briefly described here and elaborates on four putative 

mechanisms for consciousness (Northoff and Huang, 2017): a) expansion; b) globalization; c) 

alignment; d) nestedness. TTC overtly proposes a multidimensional framework for consciousness, 

avoiding the full identity of consciousness with a single neural marker as the “full NCC” (Koch et al., 

2016), different states of consciousness can be characterized by how they vary along a 

multidimensional space. A detailed discussion of all four mechanisms goes beyond the scope of 

this piece of work; rather, we will enunciate the fundamentals of only one of such mechanisms - 

temporo-spatial alignment - before introducing the relevance of intrinsic temporal fluctuations in 

this theoretical framework. 

Contents are not perceived per se, but are always part of a more extended scene. TTC starts from 

this phenomenological observation to posit that the brain “encodes the context by adapting (and 

thereby aligning) its own neural activity to the various inputs/stimuli that shape the context” 

(Northoff and Zilio, 2022a). Incoming inputs from the external environment are dynamically 

changing their statistical features; each of these features has its own characteristic timescale of 

variability – i.e. the rate of change of the luminance of a visual stimulus is more predictable at a 

shorter timescale than, for instance, the information about its trajectory in space. Therefore, we 

can speak of a multi-scale temporality of the world. The brain, according to TTC, is able to process 

and “put in context” conscious contents by aligning to the temporal structure of its own 

environment. Thus, temporo-spatial alignment is a key mechanism accounting for the “form” of 

consciousness. TTC predicts that, in the presence of a mismatch between the brain’s own 

timescales and the environment, the individual can no longer distinguish between contents, not 

only because temporality (the sense of time) is lost, but also because contents are no longer 

embedded in the appropriate general background formed by healthy consciousness.  

In conclusion, one key advantage of TTC is that, as a consequence of the assumption that multiple 

timescales are relevant for consciousness, it proposes a novel framework with great convergence 

potential. In this sense, current theories do not lose their scientific grounds, but instead their 

different predictions are understood as relative explananda of different mechanisms happening at 

different levels of investigation. Thus, we argue that taking into account the temporal dimension of 

consciousness is not only beneficial to TTC, but has the potential to improve the overall 

understanding of consciousness. In the next section, the state of the art on what is known about 

the brain’s intrinsic timescales is presented. 
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1.2 Timescales and consciousness: temporal mechanisms of subjective experience 

 

Gaining knowledge of a system’s temporal dimension means to unveil one of the characteristic 

dimensions at which it operates. Take, for instance, a simple example of a RLC (Resistor-Inductor-

Capacitor) circuit, which are circuits that populate a lot of modern electronic devices. Without 

getting too much into the details, energy is constantly exchanged between the circuit’s subparts at 

a certain rate, parametrized as a time constant τ; when the circuit is working without interacting 

with other systems, knowing τ allows us to understand what is its dominant time scale. Gaining 

knowledge of the circuit’s temporal dimension is instrumental to knowing the rate at which it will 

respond to inputs, to predict its oscillatory behavior and other related phenomena. This simple 

example explicates that modelling a physical system often requires acquiring knowledge of the 

temporal scale at which it operates. Unfortunately, biological systems are often more intricate than 

electrical circuits, and operate on many different time scales: however, their knowledge becomes 

even more valuable in these cases, as it reveals important information about their temporal 

dynamics. 

The brain, being simultaneously a physical object and a biological system, makes no exception to 

the laws of physics and is known to operate too at different time scales (for a review, see 

(Golesorkhi et al., 2021b; Wolff et al., 2022)). 

The work of Hasson and colleagues (Chen et al., 2017, 2015; Hasson et al., 2008) is probably one of 

the first modern examples in introducing the notion of time scales into cognitive neuroscience. 

They define “temporal receptive windows” (TRW) (Hasson et al., 2008) as “the length of time 

before a response during which sensory information may affect that response”. The term 

references the better-known concept of spatial receptive fields (Sherrington, 1911), and mirrors it 

in the temporal domain. A single input, for instance, can influence a sensory system for a time that 

is longer than the input’s own duration: the longer the temporal extent of this influence on a 

neural system, the larger (or longer) the temporal receptive field of that particular system. In turn, 

the brain’s own durations should then reflect the ability to retain information about past events. 

These durations were originally quantified on the basis of task-evoked activity (Hasson et al., 

2008). In this study, subjects were shown snippets of a silent movie which were alternatively 

temporally scrambled, progressively altering the temporal information of these visual stimuli. Brain 

areas reacted differently to the progressive amount of temporal scrambling of the visual stimuli: 

unimodal areas, which are more sensitive to the rapidly changing features of perceptual objects, 

were less sensitive to temporal scrambling, while higher order areas, devoted to the integration of 

information coming from multiple sensory modalities, were more sensitive to the temporal 

scrambling. Therefore, this simple yet elegant experiment demonstrates that the brain has two 

important input processing properties: not only it exhibits remarkable heterogeneity in the time 

scales of its own activity across the cortex, but this heterogeneity follows a hierarchical 

organization - with longer timescales in multimodal areas and shorter timescales in unimodal areas 

- which suggests functional significance. The hierarchical organization of the brain’s time scales was 

later confirmed by a considerable number of other studies (Baldassano et al., 2017; Chen et al., 

2017; Honey et al., 2012; Lerner et al., 2011; Simony et al., 2016; Stephens et al., 2013; Watanabe 

et al., 2019; Yeshurun et al., 2021). Yet, while this description is backed by strong evidence at its 
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support, it is as equally strongly reliant on task-evoked activity. These findings do indeed 

demonstrate that neural time scales exist and that they are related to the time scales of the 

external environment, but view is arguably limited and it neglects the temporospatial organization 

of the brain’s spontaneous activity. As a matter of fact, the brain displays highly structured 

dynamics, even when it is not explicitly meeting instantaneous environmental demands, as it 

happens while executing a task (Fox et al., 2005; Pezzulo et al., 2021; Raichle, 2015). Therefore, 

given the proposed significance of neural time scales for processing the statistical features of 

incoming inputs, and given the evidence showing that the intrinsic organization of resting activity 

“reverberates” in evoked activity (Arieli et al., 1996; Berkes et al., 2011; Kenet et al., 2003; Luczak 

et al., 2009), the possibility of hierarchically organized “intrinsic” neural time scales could not be 

ignored. 

 

Inner time coordinates: Intrinsic Neural Timescales 

The growing interest in this possibility led to the formulation of Intrinsic Neural Timescales (INTs), 

which is a hypernym (i.e. a blanket term) encompassing every instance of temporal durations of 

neural activity recorded at rest. In this general overview, three core points regarding INTs will be 

presented: a) the existence of a hierarchy of timescales even at rest; b) its relation to other basic 

organizational principles of the brain; c) evidence of rest-task modulation of these properties. The 

three aforementioned core points amount to the assumption which will underlie the rest of this 

thesis: INTs, and their topographic and dynamic properties, are at the basis of the way the brain 

performs input processing.  

The level of investigation on INTs, similarly to TRWs, spans across different degrees of granularity 

and modality (Wolff et al., 2022). At the cellular level, temporal windows of activity during pre-

stimulus activity – a state with no explicit task instructions, comparably to resting-state -  of single-

cell primate recordings follow the same hierarchy: shorter in primary sensory regions and longer in 

integrative regions (Murray et al., 2014). Similar cellular studies explored the relevance of this 

hierarchy: the topographic distribution of timescales across the scalps overlaps with 

cytoarchitectonic gradients of ion channels directly related to excitation/inhibition and with 

gradients of gray matter myelination (T1w/T2w ratio) (Gao et al., 2020), and their absolute values 

generally increase following a posterior-to-anterior axis (Dotson et al., 2018; Murray et al., 2014; 

Runyan et al., 2017; Wasmuht et al., 2018).  

Does the human brain follow the same organizational principles? EEG and fMRI studies uphold the 

existence of a hierarchy of timescales at rest. In humans, the unimodal-multimodal gradient has 

been also anatomically codified along a so-called “core-periphery” architecture (Ji et al., 2019; 

Margulies et al., 2016; Schaefer et al., 2018). The principle of the core-periphery macroscale lies in 

the local-global gradients of connectivity that has been characterizing most recent brain 

parcellation schemes (Schaefer et al., 2018). These parcellation schemes can be further clustered 

into several networks that stand at the two polar opposites of a spatial gradient. At one end, core 

regions form hubs with high interregional functional connectivity, and include integrative regions 

such as the default-mode network, the fronto-parietal network (FPN), and the dorsal attention 

network (DAN), etc…; on the other extreme of this spectrum, periphery regions show more 

intraregional connectivity in spite of fewer connections between nodes outside of their networks, 
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and is mainly constituted by sensory primary regions. INTs follow this gradient as well, with core 

regions showing higher INT values and periphery exhibiting shorter time scales overall (Golesorkhi 

et al., 2021a; Ito et al., 2020; Ryan V. Raut et al., 2020). It’s worth underlining the fact that a similar 

distribution can be observed at different frequency ranges (fMRI records activity that ranges 

between 0.01 and 0.1 Hz – the infraslow frequencies – while EEG conventionally consists of 1 to 

60-70 Hz data), which further supports the idea that INTs play a basic role in the way the brain 

understands its surroundings. This intuition is also one of the basic assumptions of the studies 

presented in this thesis. 

Further, thanks to the advantage of the very fine-grained spatial analysis allowed by single-unit and 

neuroimaging data, researchers have also discovered that the hierarchical spatial arrangement of 

timescales is not an exclusive property of the whole cortex, but it’s present in single regions as well 

(Badre and D’Esposito, 2009; Sarafyazd and Jazayeri, 2019; Voytek et al., 2015), hinting at a more 

basic dynamic principle of the brain. Considering this intriguing observation, emerging evidence 

seems to indicate that a gradient of temporal dynamics flows naturally from the landscape of 

structural organization of the brain, at the microscopic level (Duarte et al., 2017; Huang and 

Doiron, 2017; Huntenburg et al., 2018; Wang, 2020), and at the macroscopic level as well. 

However, the exact relation between, say, patterns of connectivity and INT hierarchy remains 

unknown and is still an active field of research. 

Additionally, there is also growing evidence about INTs undergoing rest-task modulation. First, the 

overall core-periphery topography of INTs seems to be relatively stable across conditions, as 

demonstrated by the high spatial correlation between resting conditions and a heterogeneous pool 

of task states (Golesorkhi et al., 2021a). Nevertheless, task and region-specific changes, such as the 

shortening of INTs in core/multimodal regions during the execution of a story-math task 

(Golesorkhi et al., 2021a), are visible when subtracting task-specific activity from the resting state 

baseline. Furthermore, EEG data shows that INTs seem to intervene directly in the interaction 

between the spectral content of EEG and the temporal structure of an auditory task (Sancristóbal 

et al., 2022) and an overall modulation of cognitive resources employed during task execution 

(Gollo, 2019; Gollo et al., 2017; Klar et al., 2023; Sarracino et al., 2020). Although sparse, evidence 

accumulated so far points out that INTs shape cognition in multiple ways. 

How are researchers able to probe timescales directly from neural activity? To test hypotheses as 

primary as the ones regarding the fundamental processing principles of the brain, the sharpest 

tools are required. In the next paragraph, different methodologies that are used to delve into the 

temporal dimension of neural systems are reviewed. 

 

How can we measure INTs? 

The standard method to infer the duration of timescales of a dynamic system from time series data 

requires, first and foremost, understanding the temporal relation between different time points at 

increasing lags. The rationale is the same guiding the already mentioned theoretical assumptions 

on timescales: patterns of neural activity that persist in time will result in a time series that is 

characterized by temporal correlations that show their maximal value at the same time as their 

dominant timescale. In other words: if there are timescales in a system, the time series will be 

more similar to a copy of itself when the observation is adjusted at a time lag matching the 
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dominant timescale. Classically, this estimate is obtained through autocorrelation functions (ACF) 

(Park, 2018). Computing the ACF of a signal requires performing a linear correlation between the 

signal and a copy of itself, as a function of increasing time lags (i.e. sliding off the two identical 

time series on top of each other at equal steps). At time lag 0, the correlation of the signal with 

itself will be maximal, and will decrease as a function of time: the resulting function will display a 

characteristic shape that reveals the temporal structure of the signal under exam. Systems with 

dominant timescales possess a peculiar ACF, which decays at an exponential rate immediately after 

time lag 0 (Otto et al., 2019).  

Neural signals follow the same logic (Honey et al., 2012; Palva and Palva, 2018); hence, the brain’s 

INTs can be estimated by parametrizing its signal’s ACF. Honey and colleagues first introduced the 

Autocorrelation Window (ACW) (Honey et al., 2012), which was then operationalized as the time 

lag at which the ACF reaches its full width at half maximum (FWHM). The choice of 

parametrization of the ACF, in this case, is justified since the FWHM is a robust metric for the width 

of a symmetric function, which is the case of the ACF. Since then, other ACW metrics have been 

developed with the same methodological considerations but with varying parametrization choices: 

the better characterized versions of ACW are the ACW-50, which is defined as the time lag at which 

the ACF falls at it 50% value, and the ACW-0 at its 0% value (Wolff et al., 2022). Very recently, the 

ACW has been also parametrized with decreasing percentages, from 40% to 10% of its ACF 

(Wolman et al., 2023). Different “flavors” of ACW are consistent with a framework that allows 

multiple timescales for spontaneous brain activity, in agreement with theories that link emergent 

properties of the brain with its criticality (Dürschmid et al., 2020; Fekete et al., 2018; Fuscà et al., 

2023; Palva and Palva, 2018). It should be noted that, however popular the ACW approach, other 

methods have been developed for the same sake, based on autoregressive models of the neural 

signal (Ryan V. Raut et al., 2020; Spitmaan et al., 2020): these methods allow for the estimation of 

multiple timescales at once, and can be used interchangeably with the parametrized ACW.  

ACW is a simple and efficient metric, which does not require particular computational power, but it 

has raised some concerns regarding its inherent limitations. A non-parametric alternative 

represented by the autoinformation function (AIF) – which substitutes linear correlation with 

mutual information - (Von Wegner et al., 2017) has not, to date, been used explicitly for the sake of 

estimating INTs. The assumption of a linear relation between successive timepoints is often 

violated in complex system’s time-series data (Zunino et al., 2010), and therefore ACW estimates 

can, at least in principle, suffer from consistent measurement error. This methodological limitation 

is addressed in chapter 3, with the introduction of a novel methodology which does not assume 

collinearity between consecutive time points. 

 

Temporal input processing: how does the brain use INTs? 

So far, we have reviewed the main findings that link INTs to input processing and the current 

methodologies needed to test these hypotheses. However, without a mechanistic model of how 

INTs are able to support the way the brain processes information, these hypotheses would only 

remain circumstantial. Which are, then, the computational mechanisms supported by INTs and 

their hierarchical organization? 
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Picture the schematic example of an input, with its own temporal duration, of which its features 

are progressively sampled by different populations of neurons. The underlying assumption of this 

example is that increasingly complex features of the input will be processed in a hierarchical 

sequence by these populations – i.e. simplest features will be the first ones to be extracted, as in 

the case of computational models of visual object recognition (Yamins and DiCarlo, 2016). The 

input’s features are processed in sequence until a coherent and stable representation of the visual 

input – an object – is obtained. INTs allegedly allow the same kind of operations, but instead on 

the temporal domain, by segmenting the input’s features based on their different durations – 

temporal windows of input processing, as defined earlier in the works of Hasson and colleagues 

(Hasson et al., 2008), in the same way this thesis can be segmented into letters, words, sentences, 

paragraphs, etc… 

The mechanisms that guide temporal segmentation of the incoming inputs are two: temporal 

integration and temporal segregation (Golesorkhi et al., 2021b; Himberger et al., 2018). Temporal 

integration is the process by which information at consecutive time points is pooled together by 

neural populations into one stable response; the temporal window that defines the borders of this 

mechanism is roughly equal to the system’s dominant timescale. Treating the input’s features as a 

point-like phenomenon, inputs that arrive at consecutive times but are still confined to the 

threshold imposed by the population’s timescale will be “kept in memory”, integrated and treated 

as if it were multiple manifestations of a single input. The opposite mechanism is what defines 

temporal segregation: shorter processing timescales allow for more temporal precision, but it also 

results in higher sensitivity to change. Within this temporal model, temporal features of the input 

are progressively processed by populations with increasingly longer dominant timescales, 

orchestrating the temporal dynamics of the brain as a response to the ever-changing input 

landscape of the environment, and the hierarchical organization of INTs fits perfectly with this 

description: in unimodal regions, where the ACW values are shorter, responses are faster in order 

to adapt to the constant fluctuations of the environment’s statistics, while in multimodal regions 

longer timescales accommodate for the integration of multiple sensory evidence into one stable 

response. This view translates the role of INTs and their hierarchy from a simple organizational 

principle that arises from anatomical constraints to a basic mechanism which allows for maximal 

information gain. Modeling studies bring further support to these claims (Chaudhuri et al., 2015; 

Demirtaş et al., 2019). However, more needs to be done in order to unveil the exact 

correspondence between the input temporal structure and the computational advantages granted 

by INTs. More mechanistic explanations of this behavior are needed to understand better the 

environment-brain correspondence. Moreover, it can be argued (and rightfully so) that this 

particular ecological theory of input processing should be supported by more causal evidence of a 

direct link with the external environment. Implementing this view with a Bayesian framework – as 

in the case of “deep temporal models” (Friston et al., 2017) might be useful to understand why 

“sensing” the environment’s temporal structure is key to producing efficient inferential behavior. 

 

Relevance for consciousness: TTC  

So far, INTs have been related to the basic principles that underlie the way the brain performs 

input processing. As already mentioned earlier in the previous chapter, the temporospatial 

structure of the brain’s spontaneous activity is fundamental for consciousness, at least in the 
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framework of TTC. Is there evidence in support of this claim, especially in the context of the 

temporal dynamics of the brain? Most importantly: do INTs play a role in allowing, sustaining 

and/or maintaining consciousness? 

In a first attempt to draw the connection between INTs and consciousness, subjects undergoing 

fMRI recording sessions during sedation with propofol (Huang et al., 2018) displayed an average 

prolongation of their INTs. Additionally, Huang and colleagues observed that along with prolonged 

ACW values, the sedated subjects’ BOLD signals shifted towards a slower regimen of overall 

activity, signaled by decreased global functional connectivity (Huang et al., 2021), which could 

arguably be the underlying cause of abnormally long INTs: weaker interactions may be the cause of 

slower temporal dynamics as well. However, more consistent evidence comes from an EEG study 

which investigated the change in ACW values in three different populations (anesthetized 

voluntary subjects, subjects undergoing sleep recordings and disorders of consciousness patients) 

during resting state (Zilio et al., 2021). These three states, while being very different from one 

another, are all characterized by a reduction in consciousness levels – i.e. they are all assumed to 

represent unconscious states. Comparing the trend of a single measure across different states of 

unconsciousness is indeed a good practice in consciousness studies, as it reveals consciousness-

specific mechanisms rather than general dysfunctions in brain activity (Lau, 2022). An abnormal 

prolongation of INTs was consistent across all states of unconsciousness, in agreement with the 

group’s hypothesis. As an additional control, another sample consisting of locked-in syndrome (LIS) 

and amyotrophic lateral sclerosis (ALS) patients was not statistically discernable from healthy 

controls; both ALS and LIS are purely motor syndromes, which don’t affect consciousness levels 

and are not expected to show changes in their temporal dynamics if the assumption of INTs playing 

a role for consciousness is correct. Therefore, this study draws very important conclusions: INTs 

are, at least to some degree, involved in consciousness-specific mechanisms, which is coherent 

with the theoretical framework of TTC. Even further, ACW values were shown to be differently 

sensitive to auditory stimulation during different levels of sleep, which shows a non-trivial 

interaction between consciousness levels and the brain’s intrinsic timescales. However, it still 

remains unclear whether the consistent observed slowing down of the intrinsic temporal 

dimension of the brain is an after-effect of the loss of consciousness or if they are truly necessary 

for its existence – i.e. the cause-effect relation between INTs and consciousness is still not known. 

While TTC, as already mentioned, is the only theory of consciousness that formulates the necessity 

of INTs - which follows directly from its core constructivist assumptions – it’s still not known which 

of the temporal features of spontaneous brain activity is truly fundamental. The maximal efficiency 

of information gain from the perceptual environment earned through temporospatial alignment is 

a tempting solution to this problem, but it fails to provide a clear and rigorous correspondence to 

the phenomenon of consciousness. For this reason, it is suggested to postpone the details of this 

particular problem until more evidence is collected. 

In conclusion, while empirical support for the significance of Intrinsic Neural Timescales (INTs) in 

consciousness remains limited, its potential is very promising. This prospect holds particular value 

as it addresses a notable gap in consciousness studies—the lack of a comprehensive account of the 

temporal variable.  

The main objective of this thesis is to dig deeper into this overarching question. We harnessed this 

conceptual framework to address a very urgent concern, particularly pressing in clinical settings: 
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the differential diagnosis of disorders of consciousness (DoCs). The following subchapter will 

provide a general introduction to the challenges associated with assigning diagnostic labels to 

these patients. 

 

1.3 Disorders of consciousness: a categorization challenge 

 

When questioned about the matter, we are all very aware of the fundamental reality of 

consciousness: the intimate, subjective feeling that goes with our experience. Even more 

intuitively, we know exactly what our conscious experience is not: this happens to us every night, 

falling into the nothingness of NREM sleep, and transitioning into the ability to experience things 

once awake. This account is inevitably true when we refer to the first-person perspective of 

consciousness, but the same can’t be said for the 2nd (or even 3rd) person perspective: that is, to 

judge with certainty whether another person is conscious is ultimately mind-boggling. In fact, 

there is even a popular philosophical argument often used in favor of the “hard problem of 

consciousness” (Chalmers, 2010) which argues for the existence of “philosophical zombies” 

(Chalmers, 1997): living beings that are physically indistinguishable from us, behaving in the exact 

same way as a conscious person would, but with the exception of the total absence of any degree 

conscious experience. Even if solipsist accounts of consciousness will not be the focus of this 

thesis, the investment in this philosophical argument reveals one very important challenge: how is 

it possible to judge with absolute certainty the presence/absence of consciousness, based only on 

external and concurrent factors, such as the observation of purposeful behavior? 

 

Does complex behavior equate with consciousness? 

The most important assumption that stands behind this question is that, while consciousness 

might allow the brain to perform very complex behavior – e.g. a necessary condition – it does not 

strictly mean that complex behavior is necessarily “backed up” by consciousness – consciousness, 

consequently, is not a “sufficient” condition for it. A popular argument formulated in the early 

2000s infers this dissociation by indicating how the neurophysiological correlates of conscious 

processing are qualitatively different from those observable in the presence of complex but 

unconscious perception (Lamme, 2003). A more intuitive example of a subjective state where this 

dissociation might be more palpable to the reader is represented by the presence of phenomenal 

consciousness without attention (Vandenbroucke et al., 2012): in this study, authors found that 

sensory memory representations received a boost from an illusory visual effect (the popular 

Kanizsa illusion) which could not be explained by the sole interaction with working memory, 

suggesting a qualitative difference between phenomenology and higher cognition. 

On the other hand, a different example backing up this apparently contradictory reasoning which 

underlines the inadequacy of the identity between consciousness and overt behavior comes from 

a condition known as “complex partial seizures”: abrupt and transient losses of consciousness, 

with an epileptiform activity originating from a single epileptic focus, resulting in staring and 

unresponsiveness for the usual period of two minutes (Salpekar, 2019). Even if the dissociation 
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from the external environment is evident, and a crucial diagnostic factor of this condition, there is 

extensive evidence of “automatisms” (semi-automatic and repetitive movements) (Escueta et al., 

1977; Hoffmann et al., 2008; Penfield, 1952), preservation of goal-oriented behavior (McPherson 

et al., 2012) and, even in the presence of selective cognitive deficits, a relative sparing of the level 

of responsivity (Ali et al., 2012; Heydrich et al., 2010; Picard and Craig, 2009). Even if the case of 

complex partial seizures does not correspond entirely to a complete dissociation of consciousness 

and behavior, these confounding factors hinder the use of consciousness as a clear indicator of 

partial seizures (Berg et al., 2010) and leaves unanswered questions on the presence of 

consciousness even during these neural events. Taken together, these observations indicate that 

the lack of externally oriented responses does not necessarily imply the absence of consciousness 

during seizures (Gloor, 1986) and furthermore, that there is a clear possibility of a dissociation 

between consciousness and behavioral responsiveness.  

In summary, these examples lead to a different but very important observation: consciousness can 

not only dissociate from volitional behavior, but it can also exist with no inputs from the external 

environment.  

Before going further, there is an important caveat to be made here for the reader: this view is not 

agreed upon by the entirety of the consciousness community. Popular accounts of consciousness, 

such as the global workspace theory (Dehaene, 2014), require at least a certain amount of 

involvement of cognitive processing for consciousness. Therefore, the reader has to be aware that, 

by starting from the assumption of a dissociation between consciousness and cognition, we are 

not representing fully the ongoing debate on consciousness. 

The absence of a clear definition of consciousness (Zeman, 2001) also stems from this ambiguity: 

how is it possible to produce unequivocal evidence of a phenomenon which is a) extremely hard to 

link to its physical nature (Chalmers, 1997) and b) without a set of common methodological tools? 

This discussion is far from being restricted to philosophical and epistemological matters, and often 

has a very tangible impact on the lives of people with severe brain injury. This is the case, for 

instance, of disorders of consciousness (DoCs), which is the focus of the following paragraph. 

 

Disorders of consciousness. A clinical challenge 

DoCs are a clinical condition, acquired after severe brain injury, which leads to total or partial loss 

of consciousness (Giacino et al., 2014). In clinical practice, consciousness has been traditionally 

gauged by deconstructing it into two constructs accessible to clinical assessment: wakefulness 

(sometimes cited as “arousal” in the scientific literature) and awareness (Plum and Posner ’ s 

diagnosis of stupor and coma 2007). Wakefulness levels are very practical to assess, and it is done 

based on eye opening: if the patient’s eyes are spontaneously opened for a reasonable period, one 

can infer wakefulness in the patient under examination. However, the same can’t be said for the 

assessment of awareness (even when not considering that “awareness” and “consciousness” are 

terminologies easily confused in our daily language). Since, in this context, awareness is related to 

the individual’s own ability to connect and react to its surroundings (its levels of “connection” to 

the environment), its assessment is mainly based on the patient’s ability to respond to either 

simple commands or to non-trivial behavior which is assumed to be possible only in the presence 

of consciousness.  
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These are practical considerations which originate from the fact that, in healthy people, 

wakefulness and awareness usually follow a linear relation: for instance, when we gradually fall 

into sleep, the level of awareness follows accordingly, while we become more and more 

disconnected from our environment. But matters are much more complicated than that and, in the 

clinical context, it is very difficult to assign a correct diagnosis because of many other confounding 

factors. A not thorough list of these confounding factors would include, in no particular order: 

consciousness is known to wax and wane on an unpredictable period (Candelieri et al., 2011; 

Giacino et al., 2002), the pathophysiology of DoC is currently not well understood (Kondziella et al., 

2020; McClenathan et al., 2013), current clinical standards require that the patient, at the same 

time is awake, cooperative, and that motor function is at least minimally preserved (Kondziella et 

al., 2016). The list could even get longer when taking into account the ethical implications of the 

heterogeneity in weight that different clinicians give to each of these alleged signs of 

consciousness (Demertzi et al., 2013) (a brief overview of the impact of these biases on the quality 

of life of people with disorders of consciousness is presented later on – at page ). 

Clinical literature has historically benefited from taxonomies: they are helpful when the task at 

hand involves merging uncertain and fuzzy evidence into a simple and effective diagnostic label, 

which then guides the appropriate treatment choice – similarly to a divide-and-conquer algorithm. 

The challenge of DoCs fits perfectly into this category. 

A patient admitted into the Intensive Care Unit (ICU) following severe damage to the brain, which 

may have been caused coarsely by stroke, anoxia or traumatic damage (Kondziella et al., 2020), 

might fall into the category of coma. Coma constitutes an “absolute zero” of both wakefulness and 

awareness (Plum and Posner, 1972), featured by no evidence of a sleep-wake cycle from the EEG 

signal, closed eyes and total absence of communication or command-following. Coma is generally 

thought to underlie a drastic malfunctioning of either the subcortical ascending reticular activating 

system (ARAS), which has been known as an enabling factor for consciousness for decades (Saladin 

et al., 2018) or more generally to any etiology that results in a downregulation of excitatory activity 

across the cortex – disfacilitation (Gold and Lauritzen, 2002). Coma is almost never a definitive 

state, with an established (but arbitrary) acute window of 28 days (Giacino et al., 2018).  

Thereafter, one possible outcome is brain death, which is usually diagnosed following the 

guidelines outlined in (Wijdicks et al., 2010). In accordance with international guidelines, brain 

death is synonymous with an irreversible loss of brain functionality; however, there is a worldwide 

flexibility of the criteria to establish brain death which makes the diagnosis at least controversial, 

depending on the country’s official guidelines/legislation (Aboubakr et al., 2023). 

On the other hand, comatose patients can transition into states that fulfill the conditions for partial 

or total recovery of consciousness. A brief overview on the current state of the art is presented in 

the next paragraphs. 

 

Diagnostic labeling 

In Unresponsive Wakefulness Syndrome (UWS) (the European Task Force on Disorders of 

Consciousness et al., 2010), wake-sleep cycles and spontaneous eye opening are restored, 

indicating a partial recovery of the functionality of the ARAS, but with no discernable signs of 
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awareness: a first-order dissociation of wakefulness and awareness, as anticipated a few 

paragraphs earlier. UWS, depending on the etiology of the disorder, might be labeled as 

“persistent” when the condition is stable for a period ranging from 3 to 12 months (Giacino et al., 

2014).  The Minimally Conscious State (MCS) (Giacino et al., 2002), instead, is associated with 

minimal behavioral evidence of awareness of the self or of the environment. From the clinician’s 

point of view, observing the signs of behavior with purpose include: a) intelligible communication 

(verbal or gestural); b) response to nontrivial motor commands such as reaching and grasping and 

manipulating objects according to shape and size; c) affective behavior. Perhaps, the most 

significant characteristic of MCS patients is the constant fluctuation in responsiveness, which 

means that these signs of awareness are not always available to the clinician in charge of the 

examination. Therefore, it is crucial to perform several assessments to avoid failure to miss the 

evidence of volitional behavior (Giacino et al., 2014). MCS can be further subdivided into two 

different subgroups, depending on what authors have proposed to represent the “complexity of 

observed behavioral responses” (Bruno et al., 2011). Patients showing signs of minimal 

preservation of language functionality fall into the MCS PLUS (MCS+) subcategory, while its 

absence denotes, even in the presence of non-reflexive behavior, a “less” complex behavior, which 

characterizes the MCS MINUS (MCS-) subcategory. This subdivision is backed by recent 

neuroimaging evidence, which shows that these differences originate from differences in 

functional connectivity related to cortical networks controlling language execution (Aubinet et al., 

2018). However, in the same work, differences in the ability to verbalize are not sufficiently 

explained by differences in functional connectivity in other cortical networks that support 

functions of crucial importance to the sustainment of consciousness (such as internal awareness, 

auditory processing, input processing, etc…) which suggests that the MCS+/MCS- 

subcategorization might only be helpful to predict future levels of disability (Thibaut et al., 2020) 

rather than related to “true” levels of consciousness. 

Lastly, patients regaining even higher levels of communication on a more constant basis are 

classified in the Emergence from MCS (EMCS) diagnostic class. 

A complete schematic diagram that accounts for the progression from coma-inducing brain insults 

to one of the clinical outcomes discussed so far should also include the locked-in syndrome (LIS), a 

condition caused by a specific damage to the corticospinal and corticobulbar pathways which 

mainly results in quadriplegia, aphonia and absence of horizontal eye movements, but leaves 

cognitive functions and consciousness intact (Laureys et al., 2005). As consciousness is spared, LIS 

patients do not fall into the category of DoCs: however, in the acute stage, LIS patients could be 

misdiagnosed as UWS or MCS (Giacino et al., 2014), and is therefore very important to be aware of 

the difference between these conditions. 

Now that the diagnostic picture of DoCs has been described in broad strokes, it’s time for the 

reader to gain knowledge of the current diagnostic tools available to date. First of all, we will focus 

on the existing behavioral scales, which all aim at inferring consciousness from the patient’s 

behavioral responsiveness. Following, neuroimaging and electrophysiological evidence of 

dissonance between behavior and consciousness in DoCs, which shatters the exact relation 

between the two is presented. Concluding this section, a series of reasons to support the role of 

EEG in the establishment of an objective index of consciousness are presented. 
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Neurobehavioral scales 

Several neurobehavioral scales have been developed to address the clinical challenge of the 

bedside evaluation of DoCs – more than a dozen (Seel et al., 2010). Even if diagnostic criteria for 

UWS, MCS and other subcategories have been laid out on a consensus-based process, the actual 

assessment process is another matter of discussion: hence, the variability of these behavioral 

scales. 

Historically, the first behavioral scale developed specifically to detect awareness in post-comatose 

patients has been the Glasgow Coma Scale (GCS) (Teasdale and Jennett, 1974). GCS has gained 

immense popularity since its publication and it is still used nowadays in ICUs all over the world, 

especially at the admission in the clinical facilities. It probes consciousness based on three 

subscales – each composed of different subitems – that capture different aspects of 

responsiveness: eye-opening, motor and verbal. For each item in the scale, a subtotal score is 

given which is eventually aggregated into a total GCS score. Although clearly indicative of a 

patient’s outcome, as shown in (Gennarelli et al., 1994; Reith et al., 2017), it is internationally 

discouraged to use GCS scores as the only feature when predicting a patient’s outcome (Steyerberg 

et al., 2008). In retrospect, it’s easy to recognize the GSC as a precursor, because it encapsulates all 

of the most important features that are now featured in modern-day’s scales: among others, the 

subdivision of the behavioral signs of consciousness into different items, a separate scoring system 

for each subitem and the repetition of assessment. However, GCS’s power to correctly assess 

consciousness is actually very limited (Giacino et al., 1991), and “second generation” scales have 

since then populated the tools available to the clinical community (the reader can find a list of the 

now-available scales at (Seel et al., 2010)). Currently available scales vary in the time required for 

the assessment procedure, the clinical items included, and the interpretability of the scale itself, 

but the current gold standard is represented by the Coma Recovery Scale – Revised (CRS-R) 

(Giacino et al., 2004). The CRS-R consists of 23 subitems, grouped into 6 different subscales: 

auditory, visual, motor, oromotor, communication and arousal functions. In every subscale, items 

are assessed separately with their own methods and are arranged in a hierarchical fashion: in 

other words, clinicians start with the evaluation of the lowest ranking item and proceed upwards in 

the hierarchy, where  the behavioral sign of evidence becomes more and more significant if the 

patient responds correctly to the procedure. Then, the highest score obtained is assigned to that 

particular subscale, and the examination proceeds accordingly for every remaining subscale. As 

with the GCS, an aggregate score is used as an indicative diagnostic factor as well. Two important 

directions are also given to whom performs the examination. First, it is mandatory to perform 

several assessments with the CRS-R, in order to avoid missing signs of consciousness as the result 

of the fluctuating behavior of especially the MCS population; second, before any administration, 

the examiner should ensure the highest possible levels of arousal in the patient, which is obtained 

with a standardized Arousal Facilitation Protocol (AFP).  

 

The misdiagnosis problem: consciousness dissociates from overt behavior. The case of cognitive-

motor dissociation 

Despite growing evidence that confirms the CRS-R as the gold standard in clinical practice (Giacino 

et al., 2014; Seel et al., 2010), the dissociation between behavior and consciousness remains a true 
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obstacle to using these scales as a single source of information for the differential diagnosis of 

DoCs. In fact, the diagnostic accuracy of these scales has been challenged empirically. Alarmingly, 

the UWS cohorts usually show a ~40% misdiagnosis rate (Schnakers et al., 2009), even considering 

that the introduction of CRS-R has had a positive impact and increased the chances of 

differentiating MCS patients that had been misdiagnosed as UWS based on clinical consensus, 

identifying an estimated 41% of such “false negative” cases (Schnakers, 2020; Schnakers et al., 

2009). Additionally, recent studies confirm that the proportion of MCS misdiagnosis stands at a 

~40% rate (Wang et al., 2020), further corroborating the thesis that the signs of consciousness are 

insufficiently summarized by overt behavior. 

Supporting this thesis leads to a logical consequence: there is a substantial amount of patients that 

don’t show any unequivocal sign of consciousness, but who in reality have retained their cognitive 

capacities associated with consciousness and can’t (or won’t) respond meaningfully when probed 

behaviorally. In this case, it’s not trivial to remember that the greatest pitfall, when using 

neurobehavioral scales, is that they presuppose that motor functionality is preserved to a certain 

degree – which is a gamble at least when dealing with severely brain injured individuals. Hence, it’s 

perfectly plausible to indicate the dissociation between motor and cognitive function as an 

important contributing factor to the high misidentification rate of DoCs. This condition is now 

recognized as “cognitive motor dissociation” (CMD) (Schiff, 2015). 

It's unanimously recognized that Owen and colleagues (Owen et al., 2006) have laid a cornerstone 

of the identification of covert cognition in behaviorally unresponsive DoC patients. This group was 

the first to identify covert awareness of a 23 year old patient, which was then diagnosed as UWS, 

providing strong neuroimaging evidence of neural activity perfectly comparable to a healthy 

individual’s through the administration of a mental imagery task during a fMRI recording session. 

In the task, the patient was instructed to visualize two different scenarios: one in which they were 

playing tennis and another in which they were navigating their own house – two scenarios that 

were very familiar to the patient. Picturing ourselves in these two situations causes changes in two 

separate brain areas: respectively, the supplementary motor area and the parahippocampal gyrus 

(Boly et al., 2007). Leveraging this notion, the ongoing activity can reveal which of the two 

alternative scenarios the patient is imagining and can be practically decoded solely based on 

neuroimaging evidence. In this seminal study, the activity decoded from the BOLD data was 

indistinguishable from that of healthy subjects performing the same task, suggesting the presence 

of reproducible awareness in a patient with no observable meaningful behavior – at least, based 

on their fMRI activity. A following study by Monti and colleagues (Monti et al., 2010) applied 

similar reasoning, aiming at guessing a yes/no answer, which was bound to either one of the two 

mental imagery scenarios previously described, based only on the decoding of the fMRI activity of 

a heterogeneous sample of UWS patients. This technique revealed evidence of covert awareness in 

17% of the sample, suggesting again the inefficacy of behavioral assessment of consciousness. 

Since then, a considerable number of neuroimaging (Bardin et al., 2011; Naci et al., 2013; Naci and 

Owen, 2013) and EEG studies (Cruse et al., 2012, 2011; Goldfine et al., 2011; Lulé et al., 2013) have 

provided further evidence of the dissociative phenomenon of CMD, with different variations on 

the same theme of “active paradigms”: command following tasks used as a proxy to behavior, 

when behavior is inaccessible with other methods. However, please note that even active 

paradigms have attracted criticisms from the scientific community, mainly due to the bias induced 
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by the statistical methods necessary to test these hypotheses (Peterson et al., 2015). Hence, 

international guidelines nowadays do not recommend the use of these neuroimaging tools as the 

only source of information and strongly indicate the use of multiple sources, integrating for 

instance clinical consensus and neurobehavioral assessments in the diagnostic process (Kondziella 

et al., 2020). 

Recently, two meta-analyses have collected converging evidence of CMD (even if the nomenclature 

is still inconsistent in the literature (Schnakers et al., 2022)): very closely to the first estimates, 

around 14–17% of “behavioral” UWS may be included in this subpopulation (Kondziella et al., 

2016; Schnakers, 2020), confirming its relevance in the landscape of DoCs. 

 

Levels of consciousness: is a single dimension sufficient? 

Now that we have a clearer picture of the ever-evolving taxonomy of DoCs, we have also gained an 

important insight: consciousness comes in different degrees, or “levels”. The clinical compromise 

of assigning a diagnostic label to DoCs necessarily implied that there is a graded, mono-

dimensional spectrum which encompasses the total absence of consciousness and full 

consciousness, including every dysfunctional state that’s in between. However convenient for 

clinical work, this notion has spread to the field of consciousness as a whole, with examples not 

only in the description of reduced consciousness, such in anesthesia (Sanders et al., 2012), sleep 

(Brown et al., 2010), epilepsy (Cavanna et al., 2008), but also for other kinds of altered 

consciousness (Carhart-Harris and Friston, 2019), where its level is assumed to be even higher than 

during normal wakefulness. This theoretical leakage has urged scholars to rethink the assumption 

that global states of consciousness can be reduced to a single analytic dimension (Bayne et al., 

2016). In fact, the notion of graded consciousness does not fit very well with the first-person 

perspective that is inherent of every scientific account of consciousness, which is very hard to 

imagine to not exist in an all-or-none fashion. But later in their review, the authors put forward one 

of the most convincing arguments against lining up consciousness on a single scale, which 

descends from evidence on conscious states themselves. The authors compare two very different 

states: light sedation and REM sleep. A mono-dimensional level of analysis would reveal that one 

condition has higher consciousness overall: however, both are associated with a dissociation from 

the external environment, retained awareness of the self, etc.. and there is (rightfully) no reason to 

claim superiority of, for instance, REM sleep over light sedation. The alternative is that multiple 

dimensions are to be accounted for when dealing with global states of consciousness: following 

their example, REM sleep might display higher consciousness in some dimensions, and the same 

for light sedation.  

In harmony with the view proposed by Bayne and colleagues, the constructionist approach of TTC 

(Northoff and Zilio, 2022a) approaches the problem of the diagnosis of DoCs on similar grounds. As 

a result of the descriptive partition of consciousness of four temporo-spatial mechanisms relevant 

to consciousness, TTC distinguishes four related dimensions of consciousness. Even if in its most 

recent formulation, TTC poses a particular focus on one of these dimensions (temporo-spatial 

nestedness) (Northoff and Zilio, 2022a) to explain global states of consciousness, it imposes no 

strict boundaries on where a single state of consciousness can be represented in the 

multidimensional grid of its four dimensions/mechanisms. In this thesis, we will only deal with the 
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temporal dimension of consciousness in DoCs as elaborated in TTC, because the novelty of this 

paradigm imposes a cautious approach to the question; however, we don’t argue that the 

temporal dimension of consciousness by itself will represent a sufficient parameter of global states 

of consciousness, as we align ourselves with a multidimensional view proposed earlier in this 

paragraph. 

In conclusion, as already stressed in the first chapter of this introductory section, there are only a 

few basic assumptions upon which researchers agree when dealing with the intricate reality of 

approaching consciousness from a scientific point of view. One of these starting points is that 

consciousness is generated from within the brain, which clearly indicates why researchers are 

pursuing the goal of an “objective” index of the level of consciousness, independently of 

behavioral assessments: if complex behavior does not necessarily descend from consciousness - 

and the existence of CMD is a crystalline example of such dissociation – only an empirical, theory-

driven index of consciousness independent of behavioral confounds can solve this major 

conundrum and improve the well-being of post-comatose patients.  A multidimensional approach 

has been recently proposed as a solution to the high misdiagnosis rate of DoCs in clinics. TTC fits 

and expands this framework, offering a multidimensional view of the problem of identifying 

consciousness. Here, we deepen our understanding of one of the proposed 

mechanisms/dimensions, the temporal dimension of consciousness, operationalized as intrinsic 

neural timescales (INTs) derived from the EEG signal of these patients. Furthermore, we argue that 

an additional advantage of this approach is that measuring INTs only requires the recording of 

resting-state activity, which provides unparalleled cost-effectiveness if compared to neuroimaging 

techniques and also avoids the technical problems of inferring consciousness with the aid of active 

paradigms. 
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Experimental hypotheses 

 

The general aim of this thesis is to explore the role of the temporal dynamics of the brain’s 

spontaneous activity, and more specifically how Intrinsic Neural Timescales (INTs) are involved in 

forming adequate consciousness states. This aim is directed at improving the quality of the 

differential diagnosis of disorders of consciousness (DoC), which currently suffers from very high 

error rates. 

In the first study, which we report in the next chapter, we hypothesized a negative correlation at 

the channel level between INTs and the speed of oscillations in the alpha frequency range (7-13 

Hz), which is known to be involved in temporal mechanisms of sensory processing, similarly to 

INTs. Further, we hypothesized, as posited by TTC, a disruption of this relation in loss of 

consciousness. To test these predictions, we correlated these two measures in different states of 

consciousness, including DoCs and two anesthesia datasets. 

In the next study, we improve current methodologies for the estimation of INTs by introducing 

Permutation Time Delay estimation (PE-TD), an approach inspired by information theory which we 

applied for the first time in neural time series data. PE-TD detects the time scale at which neural 

time series data displays more predictability, which corresponds to the characteristic time scale at 

which the signal is more similar to itself. We demonstrate, with simulated data, the differential 

effects of non-stationarity and non-linearity regimes when using PE-TD or ACW-0, and we test for 

the validity of this novel measure by probing the similarity in the topographies obtained with the 

two methods. Further, we hypothesized increased differences in the INTs detected with PE-TD in 

DoCs, due to differences in non-stationarity and non-linearity in loss of consciousness. 

In the third and last study, we investigate on the presence of a dynamic repertoire of INT 

topographies, as posited by TTC. We inferred the dynamic topographic states composing the 

alleged dynamic repertoire of INTs explored by the brain at rest by employing a data-driven 

approach, applying a clustering algorithm to the dynamic ACW-0 time series in both MEG and hd-

EEG datasets. First, we used source-reconstructed resting-state MEG data to ensure the validity of 

the method and to compare the obtained dynamic INT states with current knowledge of the 

spatial gradients of INTs across the cortex. In a second step, since TTC explicitly predicts that loss of 

consciousness is accompanied by a poorer dynamic repertoire of INTs, we tested for the 

randomness in the behavior of the time series describing the dynamic transition between different 

INT states and on its memory properties as a proxy to the richness of the dynamic INT repertoire; 

we proceeded to test these hypotheses on a hd-EEG sample consisting of individuals with DoCs. 

 

Datasets 

The three studies presented in the following chapters have been led thanks to a research 

collaboration with the Huashan Hospital of Shanghai, China. The institution has provided us with a 

hd-EEG dataset composed of resting-state recordings of individuals with DoC. We will overview the 

dataset briefly in the following paragraph; a more thorough description of the dataset can be 

found in the Methods sections of chapters 2, 3 and 4. 



21 
 

The DoC sample of the dataset consisted of eighty-one participants with DOC (39 UWS and 42 

MCS; mean age = 46.65 ± 15.89 years; sex-ratio = 2.24) with varying etiology (stroke = 43; anoxia = 

7; traumatic brain injury = 31). Subjects were record in resting-state conditions with a hd-EEG (256 

channels) system for a minimum of 5 min, using a 256-channel system (GES 300, Electrical 

Geodesics, Inc., USA). The diagnostic labels were assigned by trained clinicians by the JFK Coma 

Recovery Scale–Revised (CRS-R) (Giacino et al., 2004).  

The same experimental conditions were applied to two healthy awake control populations: a 

sample of twenty participants (age 37.15 ± 11.29 years) and another sample of forty-four 

participants (age 31.3 ± 16.1 years). 
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Chapter 2 

The contents of this study have been already published in Neuroimage (Buccellato et al., 2023). 

Andrea Buccellato, Di Zang, Federico Zilio, Javier Gomez-Pilar, Zhe Wang, Zengxin Qi, Ruizhe Zheng, Zeyu Xu, Xuehai 

Wu, Patrizia Bisiacchi, Alessandra Del Felice, Ying Mao, Georg Northoff, 

Disrupted relationship between intrinsic neural timescales and alpha peak frequency during unconscious states – A 

high-density EEG study, NeuroImage, Volume 265, 2023, 119802, ISSN 1053-

8119,https://doi.org/10.1016/j.neuroimage.2022.119802. 

(https://www.sciencedirect.com/science/article/pii/S1053811922009235) 

 

2. Disrupted relationship between intrinsic neural timescales and alpha 

peak frequency during unconscious states –A high-density EEG study 

 

Abstract 

 

Our brain processes the different timescales of our environment’s temporal input stochastics. Is 

such a temporal input processing mechanism key for consciousness? To address this research 

question, we calculated measures of input processing on shorter (alpha peak frequency, APF) and 

longer (autocorrelation window, ACW) timescales on resting-state high-density EEG (256 channels) 

recordings and compared them across different consciousness levels (awake/conscious, ketamine 

and sevoflurane anesthesia, unresponsive wakefulness, minimally conscious state). We replicate 

and extend previous findings of: (i) significantly longer ACW values, consistently over all states of 

unconsciousness, as measured with ACW-0 (an unprecedented longer version of the well-known 

ACW- 50); (ii) significantly slower APF values, as measured with frequency sliding, in all four 

unconscious states. Most importantly, we report a highly significant correlation of ACW-0 and APF 

in the conscious state, while their relationship is disrupted in the unconscious states. In sum, we 

demonstrate the relevance of the brain’s capacity for input processing on shorter (APF) and longer 

(ACW) timescales - including their relationship - for consciousness. Albeit indirectly, e.g., through 

the analysis of electrophysiological activity at rest, this supports the mechanism of temporo-spatial 

alignment to the environment’s temporal input stochastics, through relating different neural 

timescales, as one key predisposing factor of consciousness. 
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2.1 Introduction 

 

Our conscious experience is naturally extended in time: a conscious experience progresses 

seamlessly through the direction defined by the “arrow of time ”and integrates (seemingly) 

without effort a vast array of temporal scales that range from millisecond to seconds (Kent and 

Wittmann, 2021). In fact, we are part of a complex environment which is not only spatially 

structured (e.g., point correlations between two or more points in the visual field), but produces 

also time-varying inputs: this results in an input space which is characterized by a variety of 

different timescales, ranging from shorter to longer ones (Golesorkhi et al., 2021b). Recently, it has 

been proposed that the exploration of the neural mechanisms behind the interaction between 

these different timescales are crucial to close the gap between current theories of consciousness 

(for a review, see (Northoff and Lamme, 2020)): however, the implications of these processes for 

the development of a reliable index of consciousness remain to be investigated. It is generally 

accepted that the brain has adapted to “align” to the stochastics of our spatial perceptual space 

(e.g., the statistics associated to spatial information in our input environment) to maximize 

computational efficiency (Simoncelli and Olshausen, 2001; Sterling and Laughlin, 2015; Tesileanu 

et al., 2020). Similarly, in order to properly encode and align to the different temporal regularities 

(timescales) of the external inputs, the brain itself shows different preferential timescales in its 

spontaneous activity: the so-called Intrinsic neural timescales (INTs) (Golesorkhi et al., 2021b; 

Hasson et al., 2015; Wolff et al., 2022). Recent studies show that INTs are key for processing and 

encoding inputs with a complex statistical structure like music, human language, and others 

(Hasson et al., 2015; Himberger et al., 2018; Yeshurun et al., 2021): INTs seem to exert their 

influence on input processing through temporal processing mechanisms such as temporal 

integration and segregation – that is, when brain regions either pool together or distinguish two 

consecutive inputs based on a preferential temporal window (Golesorkhi et al., 2021b; Wolff et al., 

2022). Do INTs have a role in yielding and maintaining consciousness? Indeed, whether differences 

in the degree of temporal integration - including deficits affecting this specific mechanism – 

correspond to differences in the degree of the brain’s capacity for consciousness is still an open 

question. Recent studies using fMRI (Huang et al., 2018) and EEG (Zilio et al., 2021) show abnormal 

prolongation of INTs in various unconscious states such as anesthesia, sleep, and unresponsive 

wakefulness state (UWS). These studies, albeit indirectly, draw a suggestive link between the 

breakdown of temporal input processing and loss of consciousness. Another index of temporal 

input processing is alpha peak frequency (APF), commonly measured as the peak in power in the 

alpha frequency range (7–13 Hz) (Angelakis et al., 2004). APF is linked specifically to the 

mechanism of temporal precision and temporal resolution of sensory input processing (see 

(Mierau et al., 2017) for a review): in fact, APF has been demonstrated to be systematically 

accelerated as a function of task demands across several cognitive domains (Haegens et al., 2014; 

Hülsdünker et al., 2016), as a function of cortical engagement/disengagement at systems level 

(Mierau et al., 2017), or more generally to a self-regulated dependence on input stochastics 

(Lefebvre et al., 2015). Additionally, APF displays a fluctuating behavior at very short timescales, in 

the range of milliseconds (Cohen, 2014): being a state-dependent signature of sensory input 

processing at many different levels of abstraction, it is only logical that alpha rhythms will display a 

high temporal variability. This temporal property of APF can be measured by an analysis method 
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first developed in (Cohen, 2014) called “frequency sliding ”, which involves the computation of the 

first temporal derivative of the range-restricted phase time series of the neural signal: as a result, 

one can obtain a time series of instantaneous frequencies in the selected range, which is useful to 

capture its variability at a fine-grained temporal resolution. Recent studies report a role for alpha 

frequency sliding in temporal processing of incoming inputs, similarly to what has been put for- 

ward for INTs: the speed of alpha frequency sliding predicts the temporal resolution of visual 

perception (Samaha and Postle, 2015), regulates event-related desynchronization during a visual 

perception task (Noguchi et al., 2019), tracks the insurgence of on- and off-thoughts (Hua et al., 

2022) and predicts more general temporal integration mechanisms (Shen et al., 2019). These 

results support the hypothesis that the duration of alpha cycles organizes the gating of incoming 

inputs. If that is the case, one may hypothesize that the APF, based on alpha phase cycles, is 

related to the temporal windows measured by ACW: but this remains to be demonstrated on 

empirical grounds. This is further hinted by the fact that both ACW and APF are related to input 

processing albeit on different timescales, e.g., shorter/single inputs (Golesorkhi et al., 2021b; Wolff 

et al., 2022; Zilio et al., 2021) and longer/input stochastics (Hua et al., 2022; Mierau et al., 2017). 

Given the supposed relevance of the interaction at different temporal processing neural 

mechanisms as key mechanisms of consciousness (Northoff and Zilio, 2022a) and that both ACW 

and input processing are altered during the loss of consciousness (Zilio et al., 2021), one would 

expect that its relationship with APF is also altered, if not disrupted, in unconscious states (Hight et 

al., 2014; Lechinger et al., 2013). Based on the theoretical assumption that the interaction 

between different neural mechanisms at shorter and longer timescales are crucial for 

consciousness, we assumed that an APF-ACW relationship in the conscious brain would be evident: 

however, their relationship in the unconscious states remains unclear. The goal of the present high-

density (256 channel) EEG study is to investigate the relationship between longer and shorter 

neural timescales that are related to temporal input processing, as operationalized by the 

autocorrelation window (ACW) (Fallon et al., 2020; Honey et al., 2012; Ryan V. Raut et al., 2020; 

Smith et al., 2022), and APF, respectively, in the spontaneous activity of both awake/conscious and 

unconscious. For this purpose, we used resting-state EEG data recorded during induction with two 

different anesthetic agents (sevoflurane and ketamine) and patients with disorders of 

consciousness (DoC) (Giacino, 1997), which include unresponsive wakefulness state (UWS) and 

minimally conscious state (MCS) (Giacino and Schiff, 2009). This allowed us to specify the relevance 

of the intrinsic brain activity’s capacity for temporal input processing on different timescales - 

including longer (ACW) and shorter (APF) ones – and how this relates to consciousness, e.g., as 

predicted by the temporo-spatial alignment mechanism postulated by the Temporo-Spatial Theory 

of Consciousness (TTC) (Northoff and Huang, 2017; Northoff and Zilio, 2022a). We hypothesized 

that ACW and APF to be negatively related with each other in the awake/conscious state, whereas 

we assume a disrupted relationship during loss of consciousness. Our approach can be sketched in 

three different points: i) to investigate INTs using ACW during awake and unconscious states. 

Applying a recently introduced longer version of the ACW, e.g., ACW-0 (Golesorkhi et al., 2021a; 

Smith et al., 2022), we hypothesized abnormal ACW-0 prolongation in all unconscious states (UWS, 

MCS (Giacino and Schiff, 2009), ketamine anesthesia, sevoflurane anesthesia) compared to the 

fully awake or conscious state. ii) probing APF ( “frequency sliding ”) in awake and unconscious 

states. A shift towards slower resting-state EEG activity is well documented in unconscious states, 

with prevailing power in the delta (0–4 Hz) band at the expenses of the power in the alpha and 

theta (4–7 Hz) bands (Chennu et al., 2014; Engemann et al., 2018; Schiff et al., 2014; Wutzl et al., 
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2021; Zilio et al., 2021). For this reason, we hypothesized a group level shift towards the slower 

end of peak alpha oscillations in unconscious states, as measured with APF, which to our 

knowledge hasn’t been used yet to investigate consciousness. iii to investigate the relationship of 

ACW and APF in both awake and unconscious states. In this study, we were interested specifically 

in the intrinsic relationship between these two variables. In other words, we are particularly 

interested in the covariation of the INTs with respect to the oscillatory alpha component that is 

intrinsic to the brain: for this reason, we used a channel-wise approach. A channel-wise correlation 

is more akin to the observation of a general mechanism on a group level (Golesorkhi et al., 2021a; 

He, 2013; Huang et al., 2015), distinguishing it from the more common approach of subject-wise 

correlations, for which its source of variance is to be found in the interindividual variability (which 

is not the aim of this study). We hypothesized a significant correlation in the awake state while, on 

the other hand, we hypothesized that ACW and APF would no longer relate (e.g., correlate) in the 

different unconscious states. 

 

 

2.2 Methods 

 

2.2.1 Participants  

 

2.2.1.1 Anaesthesia datasets  

 

Ketamine  

Before the anaesthetic administration, 5 min resting-state EEG recordings of 10 right-handed 

subjects undergoing general surgery (age 32.90 ± 9.48 years, 4 women), were collected in awake 

condition (eyes-closed). A Geodesics system (Ges300, EGI, USA) and a 256-channels electrode cap 

(HydroCel 130) (following 10–20 international systems) were used to collect the data. 

Subsequently, the same 10 subjects received a 1 mg/kg ketamine infusion, diluted in 10 ml of 0.9% 

normal saline for a 2 min period, until they reached an OAA/S (Observer’s Assessment of 

Alertness/Sedation) score of 1. An ultrashort-acting opioid remifentanil (1 𝜇g/kg) and neuro- 

muscular relaxant rocuronium (0.6 mg/kg) were given for endotracheal intubation. After having 

confirmed the anesthetic induction, diluted ketamine was infused again for a 20 min period (1 

mg/kg/h). Starting from 15 min after the loss of consciousness, the resting-state EEG signal was 

acquired again for another 5 min. Earplugs were provided to the subjects to avoid disturbance 

from environmental noise. For both conditions, the EEG was acquired at a sampling rate of 1000 Hz 

and the electrode impedance kept under 5 K Ω. All channels were referenced online to Cz. 

 

Sevoflurane 
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For the sevoflurane dataset, a similar protocol to the one described in the previous ketamine 

subsection was followed for 10 different participants (age = 41.4 ± 13.10 years, 2 women), and 

their EEG signal was recorded with the same equipment already described in the previous section. 

8% sevoflurane was initially administered in 6 L/min 100% oxygen until the subjects’ OAA/S score 

reached 1; then, remifentanil (1 𝜇g/kg) and rocuronium (0.6 mg/kg) were administered for the 

endotracheal intubation. After this induction step, the end-tidal concentration of sevoflurane was 

kept at 1.3 MAC (2.6%). For both anesthetic agents, the electrocardiogram, non-invasive blood 

pressure and pulse oximetry were monitored for the whole du- ration of the experiment period. 

More clinical information about the anaesthetized subjects can be found in (Zilio et al., 2021) ( Zilio 

et al., 2021 ) (see Table 2).  

 

2.2.1.2 Disorders of consciousness dataset  

Eighty-one participants with DOC (39 UWS and 42 MCS; mean age = 46.65 ± 15.89 years; sex-ratio 

= 2.24; etiology: stroke = 43; anoxia = 7; traumatic brain injury = 31) underwent a recording session 

of resting-state hd-EEG for a minimum of 5 min, using a 256-channel system (GES 300, Electrical 

Geodesics, Inc., USA). EEG recording was performed at bedside: before the recording, examiners 

performed standard systematic procedures, such as the Arousal Facilitation Protocol (Giacino et al., 

2004), to induce wakefulness. To avoid the artifactual effects of altered arousal levels on 

spontaneous brain activity, no sedative agent (mostly midazolam) was administered in the 24 h 

period that preceded the recording session. Any source of electronic noise was inspected and 

reduced at the source by the experimenter/physician who performed the EEG experiment; 

furthermore, to reduce environmental noise, participants wore an additional pair of sound-

shielding ear- muffs (3 M Company). The severity of the disturbance of consciousness was assessed 

on admission with the Glasgow Coma Scale (GCS) (Teasdale and Jennett, 1974), while the 

differential diagnosis was per- formed by trained clinicians by repeated behavioral assessments 

using the JFK Coma Recovery Scale–Revised (CRS-R) (Giacino et al., 2004). Through the CRS-R, the 

clinicians evaluate 6 hierarchical items (testing auditory, visual, motor, oro-motor, communication, 

and arousal functionality), which results in a score that ranges from 0 to 23: systematic evidence of 

behavioral responsiveness displayed in at least one of these items was sufficient to include a 

patient in the MCS category. A control sample of 20 healthy participants (age 37.15 ± 11.29 years) 

also underwent a 5 min resting-state hd-EEG recording session. The same aforementioned 256-

channel system (GES 300, Electrical Geodesics, Inc., USA) was used to record the healthy 

participants’ EEG signals. Participants were asked to lay on the bed and try to keep their eyes open, 

in order to mimic the experience of EEG recordings in DOC patients. EEG data was re-referenced 

online to Cz and acquired at a sampling rate of 1000 Hz, while impedance of all electrodes was 

kept below 20 K Ω. Additional information about both datasets is summarized in Table 1 and Table 

2 .  
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Dataset n 
(subjects) 

recording 
length 
(minutes) 

mean age 
(years) + SD 

sex 
(m/f 
ratio) 

n 
(channels) 

sampling 
rate (Hz) 

UWS 39 5 48,6 (15,7) 2,8 256 1000 

MCS 42 5 44,7 (16,1) 1,8 256 1000 

Ketamine 10 5 32,9 (9,4) 1,5 256 1000 

Sevoflurane 10 5 41,4 (13.1) 4 256 1000 

 

Table 1. Summary statistics of the unconscious state EEG datasets used in this study. Pre- and post-induction 

clinical information about both anaesthesia datasets are included in (Zilio et al., 2021). 

 

Dataset mean delay (days) + SD anoxia (%) TBI (%) stroke (%) 

UWS 345 (402) 10,3 30,8 58,9 

MCS 428 (431) 7 45,3 47,7 

 

Table 2. Additional information specific to the DoC dataset. Please note that “mean delay” refers to the 

average number of days that separates the day of the electroencephalographic recording from the acute 

event (in the DoC cohort). 

 

2.2.2 Ethics statement  

Informed written consent before participation was obtained from all participants (or from their 

caregivers). This research was approved by the Ethical Committee of the Huashan Hospital of 

Fudan University (approval number HIRB-2014–281) and conducted in accordance with the 

Declaration of Helsinki guidelines.  

 

2.2.3 Pre-processing 

 Pre-processing and data analysis, including statistical analysis, were carried on using in-house 

MATLAB software (The MathWorks, 2019b) and the EEGLAB toolbox (Delorme and Makeig, 2004). 

For both anesthesia and UWS/MCS datasets, we proceeded with an identical pre-processing 

procedure. First, the data was resampled to 250 Hz to reduce the computational cost of data 

analysis. Then, a band-pass finite impulse response (FIR) filter between 0.5 and 40 Hz (Hamming 

window) was applied to the EEG channel data. Noisy channels were identified and excluded from 

further analysis through a semi-automatic procedure. The criteria for the rejection procedure were 

as follows: we removed flatline channels (channels which showed no activity for more than 5 s), 

correlated channels (with a correlation thresh- old at 0.8), low-frequency drifts, noisy channels and 

short-timed bursts not related to neural activity (threshold at sd = 5 for data portions relative to 

baseline). Next, bad channels were interpolated with a spherical method and channel activity was 

re-referenced to the common average reference. Stationary artifacts, such as those related to eye 
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movements, muscular noise and interferences from heart activity were dealt with by re moving 

those components identified by independent component analysis (ICA). 

 

 2.2.4 Estimating intrinsic neural timescales –The Auto-Correlation Window - 0 

(ACW-0)  

The length (in ms) of the INTs can be probed by the Auto-Correlation Window. This metric has 

been defined in many different ways in the literature, and different methodological approaches 

can be pursued. For this study, we chose to probe INTs at the channel level by computing the ACW-

0 on the broadband preprocessed signal. Here, the ACW-0 is defined as the first zero-crossing of 

the temporal auto-correlation function (ACF) of the EEG time series (Golesorkhi et al., 2021a): in 

simpler terms, it is the exact time lag after which the ACF crosses its 0% value. Likewise, the ACW-

50 is defined as the full-width length of the time lag after which the ACF crosses its 50%. We 

computed the temporal autocorrelation with a lag of 0.5 s, with a sliding window approach (20 s 

windows with a 50% overlap, which equals to a 10 s step size), in concordance with (Golesorkhi et 

al., 2021a; Honey et al., 2012; Zilio et al., 2021). It is worth underlining that regardless of the 

methodological choices one can make when computing these measures, its core topographical 

properties remain unchanged (Golesorkhi et al., 2021a).  

 

2.2.5 Instantaneous alpha peak frequency (APF) 

 As our hypothesis centered on the relationship between the INTs and the spectral content in the 

alpha frequency range (7–13 Hz), we measured the dynamics of the peak alpha frequency 

oscillations with the “frequency sliding ”method developed by MX Cohen (Cohen, 2014). Here, we 

will briefly describe the procedure we implemented; for a complete account of this procedure, we 

refer the reader to (Cohen, 2014; Gulbinaite et al., 2017; Samaha and Postle, 2015). For each 

channel, the previously preprocessed broadband EEG data was bandpass filtered with a FIR filter, 

with 15% filter transition width. Then, the analytic signal of the EEG data was obtained through the 

Hilbert transform, from which the phase angle time series were extracted for the phase angle at 

each timepoint is defined as the angle between the vector of the analytic representation of the 

time series with the real axis. The instantaneous frequency is thus computed as the first derivative 

of the phase angle time series obtained with the procedure described so far. A median filter (filter 

order 10) was applied to the instantaneous frequency time series in order to attenuate the noise 

effects due to brief “jumps ”in the phase angle time series, which are relevant especially when 

computing instantaneous frequencies in a range with relatively low power (as is often the case 

during unconscious states). 

 

2.2.6 Statistical analysis  

We tested whether significant differences in the medians of our metrics, when contrasting 

conscious vs unconscious populations, were present: since data did not meet parametric 

assumptions, we resorted to the non-parametric Wilcoxon rank-sum test. The threshold level for 

the rejection of the null hypothesis was set to 5%. Levene’s test was used to test for significant 
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differences in the variance of the ACW-0 against the ACW-50 values. The Benjamini-Hochberg 

procedure was used throughout this study to correct for false discovery rate (Benjamini and 

Hochberg, 1995). Correlation coefficients between variables like ACW-0 and APF were computed 

using Spearman’s rho test; this choice was driven by the fact that we did not have a priori 

hypothesis on whether the interaction be- tween variables is purely linear or nonlinear. P-values 

for Spearman’s rho were computed using permutation distributions of the samples. To test for 

significant differences between Spearman’s rho coefficients between populations, we developed a 

non-parametric permutation test. Particularly, to produce a null distribution of correlation 

coefficients for this permutation test, channel-level variables were randomly re-shuffled between 

subjects for 10,000 iterations. At each iteration, the Spearman’s rho was computed for the 

reshuffled data for both variables and conditions, obtaining two coefficients; the difference 

between these two variables was computed and assigned to the ith permutation distribution 

position. Eventually, for each pairwise comparison, a p-value was computed as the number of 

times the permutation distribution showed values more extreme than the difference in the test 

correlation coefficient. The significance level threshold was set to 5%. 

 

 2.2.7 Data/code availability statement 

Data used in this article are subjected to sharing restrictions due to privacy issues regarding 

sensitive clinical data. MATLAB (R2019a release) was used for this study. Most of the data analysis 

was conducted using the EEGLAB ( http://sccn. ucsd.edu/eeglab/ ) toolbox, an open-source 

MATLAB package. Custom MATLAB scripts used in this study are available upon reasonable 

request. Relevant code to replicate our analysis is freely available at http:// 

www.georgnorthoff.com/code . 

 

 

2.3 Results 

 

2.3.1 Prolongation of ACW-0 during anaesthesia with ketamine and sevoflurane 

Following previous studies, which highlight that ACW-0 contains higher information content than 

ACW-50 (Golesorkhi et al., 2021a; Smith et al., 2022), we tested if we could replicate similar results 

in our healthy sample. ACW-0 showed a significantly wider distribution than that of ACW-50 

(Levene's W = 20.0752; p < 0.001), which implies a higher informative content of ACW-0 and 

supposedly a better inter-individual discrimination. For this reason, we chose ACW-0 over ACW-50 

to test our hypotheses. 

 

We next investigated ACW-0 in the subjects under anesthesia. A previous study showed longer 

ACW-50 in anesthesia (and other disorders of consciousness) (Zilio et al., 2021); this leaves open 

whether they also show changes in ACW-0. Group-wise, ACW-0 was significantly longer during the 
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anaesthetized condition compared to awake states, in both sevoflurane (mean(Ans) = 0.2069s, 

mean(Aw) = 0.1477s; p < 0.05) and ketamine (mean(Ans) = 0.2804s, mean(Aw) = 0.2105s; p < 0.05) 

(Fig. 1, a-b). These findings suggest that the anesthetic state lengthens the average intrinsic neural 

timescales. It should also be noted that while ACW-0 showed large inter-subject variability in the 

awake state, this was no longer the case in ketamine, where subjects showed a more similar 

distribution in their ACW-0. Together, our findings show a general prolongation of INTs in both 

pharmacologically-induced unconscious states and less inter-individual differences of ACW-0 in 

ketamine. 

 

 

Fig. 2.1. ACW-0 values in ketamine and sevoflurane. (a-b) Swarm charts for the subject-wise average length 

of ACW-0 in sevoflurane and ketamine, compared to values of the same cohort during wakefulness. ACW-0 

is measured in seconds. In all swarm charts presented in this study, * represent p < 0.05, ** represents p < 

0.01 and *** represents p < 0.001. n.s., when shown, stands for “non-significant” (p > 0.05). (c-d). Topoplots 

for the channel-wise difference in ACW-0 values between anaesthetized and wakeful states. The colormap 

shows, at each channel, the difference in ACW-0 between the two groups (anaesthetized – awake). Non-

significant channels (p > 0.05 after FDR correction) are greyed out from the topoplot. 
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2.3.2 Decreased alpha peak frequency in anesthetic states 

We next investigated alpha peak frequency (APF), that is frequency sliding, in both awake and 

anesthetic state. We obtained alpha peak frequency values in the awake state and compared them 

to the values observed in the anaesthetized state. Here, the average APF showed significantly 

lower values than during awake states: this applied to both sevoflurane (mean (Ans) = 8.7151 Hz, 

mean (Aw) = 9.9429 Hz; p < 0.01) and ketamine (mean(Ans) = 8.2676 Hz, mean (Aw) = 9.641 Hz; p 

< 0.001) (Fig. 2a). Together, these findings clearly indicate generally slower APFs in both ketamine 

and sevoflurane. 

 

 

Fig. 2.2. Instantaneous frequency in the alpha frequency range (7–13 Hz) in ketamine and sevoflurane. (a-

b) Swarm charts for the subject-wise average speed of APF in sevoflurane and ketamine, compared to 

values of the same sample during wakefulness. APF is measured in Hz. In all swarm charts presented in this 

study, * represent p < 0.05, ** represents p < 0.01 and *** represents p < 0.001. (c-d). Topoplots for the 

channel-wise difference in APF values between anaesthetized and wakeful states. The colormap shows, at 

each channel, the difference in APF between the two groups (anaesthetized – awake). Non-significant 

channels (p > 0.05 after FDR correction are greyed out from the topoplot. 
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2.3.3 Relationship of autocorrelation window and alpha peak frequency in awake 

and anesthetic states 

How are the temporal windows, measured by ACW-0, related to the input processing indexed by 

APF? To explore their relationship, we carried out a channel-wise analysis (i.e., averaging values 

across subjects in order to obtain a single value for each electrode, instead of grand-averaging 

across electrodes to obtain a subject's statistical summary for that particular measure (Gutiérrez-

Tobal et al., 2021)). We first computed ACW-0 and APF in a channel-based way (rather than 

subject-based way). These channel-based results (not shown here) generally agree with the above 

described subject-wise analyses for both sevoflurane (ACW-0: mean(Ans) = 0.2069s, mean (Aw) = 

0.1477s; p < 0.001; instantaneous alpha frequency: mean(Ans) = 8.7151 Hz, mean (Aw) = 9.9429 

Hz; p < 0.01) and ketamine (ACW-0: mean(Ans) = 0.2471s, mean (Aw) = 0.2105s; instantaneous 

alpha frequency: mean(Ans) = 8.2676, mean (Aw) = 9.6410; p < 0.001). 

 

Second, we searched for topographic effects by comparing the topographic patterns of ACW-0 and 

APF (Fig. 1, c-d; Fig. 2, c-d). We observe that a main effect for ACW-0 for both anesthetic agents 

was over occipital channels, with more electrodes being significantly different in sevoflurane with 

respect to ketamine. On the other hand, all channels were significantly slower in the alpha 

frequency range for both ketamine and sevoflurane. 

 

Third, to investigate the relationship between these two measures, i.e., ACW-0 and APF, in the 

awake state, we correlated their channel-wise results described in the first two steps. In the awake 

condition, as expected, the correlation was moderate and highly significant (Fig. 3, a-b), being 

negative in the awake states of both subject groups (Spearman's rho (sevoflurane) = - 0.44, p < 

0.001; Spearman's rho (ketamine) = - 0.41, p < 0.001): a longer ACW-0 value, which signified a 

longer decay of the signal's autocorrelation function, is related to slower oscillatory activity in the 

alpha frequency range. Hence, longer temporal windows, i.e., longer ACW-0, decrease and thus 

slow down alpha frequency. 
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Fig. 2.3. Relationship of ACW-0 and mean instantaneous alpha frequency in awake and anesthetic state. 

State-dependency of the correlation between ACW-0 and APF: a negative channel-wise correlation in the 

awake subjects (p < 0.001) (a) and a slightly positive one in the same subjects after sevoflurane 

administration (p < 0.001) (c). Same within-subjects change of direction from a negative (p < 0.001) (b) to a 

non-significant correlation (p > 0.05) (d) in ketamine. Please note that here, the linear fit is only shown for 

visualization purposes and does not represent a linear relationship between the two variables (since 

Spearman's rank correlation does not assume linearity). 

 

Fourth, when probing the same relationship during anaesthetized states, the correlation analysis 

between ACW-0 and instantaneous alpha frequency on the same subjects yielded a weak 

correlation (Fig. 3, c-d) in the sevoflurane condition (Spearman's rho = 0.26, p < 0.001) while in 

ketamine the correlation was not significant at all (Spearman's rho = - 0.02, p > 0.05). Finally, a 

permutation test was carried out to make sure the difference in the correlation coefficients 

between awake and anesthetic states was not spurious: with this method, the difference was 

significant for sevoflurane (p < 0.05) but not for ketamine (p = 0.0559). 

 

Together, these findings show a negative relationship between the length of the ACW-0 and the 

alpha peak frequency in the awake state. Longer ACW-0 is related to lower alpha peak frequency. 

This was observed only in the awake state whereas this relationship was no longer present or 

disrupted during loss of consciousness caused by sevoflurane induction, as confirmed by our rather 

stringent statistical test. On the other hand, even if we observed the same effect for ketamine (at 

least qualitatively speaking), this effect did not meet our strict statistical requirements for 

significance: however, we do not exclude that this might well be due to our small sample size and 

to the present poor understanding of subjective experiences during ketamine induction (Vlisides et 

al., 2018), and we warrant that further studies are needed to clarify this distinction. 
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2.3.4 Relationship of autocorrelation window and alpha peak frequency in 

unresponsive wakefulness (UWS) and minimally conscious state (MCS) 

Is the loss of the relationship of ACW-0 and instantaneous alpha frequency specific to anesthesia, 

or can its disruption also be observed in other altered states of consciousness (as in UWS and 

MCS)? To show that our results were consistently related to a general characteristic of loss of 

consciousness (rather than reflecting drug-related effects), we applied the same pipeline 

previously described to an EEG dataset of 81 DoC subjects including both UWS and MCS. 

 

First, group-wise and channel-wise, both UWS and MCS groups showed significantly longer ACW-0 

values when compared to healthy controls (Healthy Controls - HC mean = 0.18394s; UWS mean = 

0.32004 s; MCS mean = 0.30513 s; HC vs UWS: p < 0.001; HC vs MCS: p< 0.001), validating and 

extending previous results (Zilio et al., 2021). No significant differences in ACW-0 were observed 

when comparing UWS and MCS subjects (p > 0.05) (Fig. 4a). 
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Fig. 2.4. ACW-0 and average speed of alpha oscillations in disorders of consciousness (DoC). (a) Swarm 

charts showing the subject-wise average length of ACW-0 across UWS, MCS subjects and healthy controls. 

(b) Same visualization but for the average instantaneous alpha frequency. (c-e) Topoplots for the channel-

wise statistical comparison of the ACW-0 length between healthy and UWS subjects (c), healthy and MCS 

(d), UWS and MCS (e). (f-h) Topoplots for the channel-wise statistical comparison of the average 

instantaneous alpha frequency between healthy and UWS subjects (f), healthy and MCS (g), UWS and MCS 

(h). The colormap shows, at each channel and for each measure, the differences between the respective 

groups compared. Non-significant channels (p > 0.05 after FDR correction) are greyed out from the 

topoplot. 

 

Second, the mean instantaneous alpha peak frequency was significantly lower in both UWS and 

MCS compared to healthy controls (HC mean = 9.8589 Hz; UWS mean = 8.9334 Hz; MCS mean = 

8.9483 Hz; HC vs UWS: p < 0.001; HC vs MCS: p < 0.001). As in the case of ACW-0, no significant 

difference in instantaneous alpha frequency was observed between the two patients’ groups, i.e., 

UWS and MCS (p > 0.05) (Fig. 4b). 

 

Third, based on the finding that both ACW-0 and APF are altered in UWS and MCS, we investigated 

their relationship. We correlated these two variables at the channel level, as we did in the 

anesthesia dataset. Replicating our results in the awake subjects of the anesthesia datasets, we 

again show negative correlation of ACW-0 and APF in the healthy control group (Fig. 5a) 

(Spearman's rho = - 0.42, p < 0.001). As in the anesthetic states, we did not observe significant 

correlation of ACW-0 and APF in the UWS group (Fig. 5, c) (Spearman's rho = 0.11, p < 0.05), while 

the MCS group showed significant correlation but in a positive - rather than negative – direction 

(Fig. 5, c) (Spearman's rho = 0.40, p < 0.001) (Fig. 5). The permutation test confirmed that the 

difference between the correlation coefficients yielded by the healthy subjects and the DoC group 

was not spurious (UWS vs. HC: p < 0.001; MCS vs HC: p < 0.001) while the difference was not 

significant between UWS and MCS (p > 0.05). 
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Fig. 2.5. Relationship of ACW-0 and mean instantaneous alpha frequency in the DoC cohort. Channel-wise 

correlations in the DoC cohort. A state-dependent correlation between the two variables is observed: from 

a negative correlation in healthy subjects, (p < 0.001) (a) and a moderately positive one in MCS patients (p < 

0.001) (b) to a very weak correlation (p < 0.05) (c) in UWS. Please note that the linear fit is only shown for 

visualization purposes (as in Fig. 3). 

 

Together, these findings show that ACW-0 and APF negatively correlate in the healthy subjects, 

which confirms the findings related to conscious subjects shown in Section 2.3.3. In contrast, their 

correlation is disrupted in both MCS and UWS, again consistent with the disruption of their 

relationship observed during loss of consciousness caused by anesthetic induction (Section 2.3.4). 

 

2.3.5 Power does not drive the relationship between INTs and the speed of alpha 

oscillations 

Through the Hilbert transform, it is possible to obtain two features from the resulting EEG analytic 

signal: its phase angle and power time series. This raises the question of whether the correlations 

of ACW and APF in our data are driven by the phase angle or the power contained in the signal of 

APF. Following a slight modification of the method by (Cohen, 2014), we therefore conducted 

additional analyses to isolate these two components in the APF. 

 

To ensure that the negative APF-ACW correlation in the healthy sample was driven by the phase-

based frequency content of the signal, and not by its power – as the power in the alpha frequency 

range differs consistently between different states of consciousness – we calculated the 



37 
 

instantaneous power by itself (i.e., independent of the phase-related processes) in the same 

frequency range (7–13 Hz), in a similar fashion to the frequency sliding method implemented here: 

the only exception is that, after applying the Hilbert transform, the power was obtained (which is 

obtained by squaring the amplitude of the analytic signal) instead of the phase angle driving the 

instantaneous frequency, for which its computation - unlike that of pure power - relies on the 

phase signal component (Cohen, 2014). 

 

Correlating the average instantaneous power in the alpha range with ACW-0 yields a very weak 

correlation (Spearman's rho = −0.18; p < 0.001, see Supplementary Mat.) in the healthy control 

group. The significant correlation was absent also in the other unconscious state samples (see 

Supplementary Mat.): this suggests that the contribution of the power itself to our previous APF-

ACW correlation was minimal to absent – at least with our analysis method. 

 

Together, these data strongly suggest that the observed difference between conscious and 

unconscious states - with regard to the ACW-0/APF relationship - is mainly driven by their 

differences in the phase-based instantaneous alpha frequency component, whose effect 

dissociates from that of the instantaneous power in the same frequency range. This hints at the 

possibility of a phase-related process in mediating the relationship of APF and ACW. 

 

2.4 Discussion 

We here investigated the relationship of intrinsic neural timescales (INTs) and the alpha peak 

frequency (APF) in conscious and unconscious states. We show that INTs, as measured by ACW-0, 

and the dynamic behavior of APF, are significantly related to each other in the awake state. In 

contrast, such correlation is no longer present in our four different unconscious state EEG datasets. 

Given that both ACW and APF are known to mediate input processing, our findings support the 

relevance - although indirectly - of the brain's intrinsic capacity for temporal processing across 

different timescales, e.g., longer and shorter, for consciousness; this lends further support to the 

importance of the brain's temporo-spatial alignment to external environmental inputs for 

consciousness as postulated by the TTC (Northoff and Huang, 2017; Northoff and Zilio, 2022a). 

 

Since here we dealt with indices of temporal processing that span across different timescales (the 

shorter ones of APF and longer ones represented by ACW-0), our working hypothesis is also in line 

with the theoretical frameworks that put forward a key role for the interaction of different neural 

timescales in predisposing adequate states/levels of consciousness (Kent and Wittmann, 2021; 

Northoff and Zilio, 2022b). In fact, many theories of consciousness operationalize consciousness by 

the analysis of discrete snippets of “functional” times (Northoff and Lamme, 2020), but often the 

continuous temporal nature of consciousness is underrated – including the interaction of neural 

mechanisms at different timescales. Therefore, the exploration of this continuous nature of the 

conscious experience represents the rationale of this present study. 
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2.4.1 Prolongation of intrinsic neural timescales in unconscious states 

Our results show that an abnormal prolongation of the INTs matches loss of consciousness in the 

EEG signal of subjects across different unconscious states (i.e., two different anesthetic agents and 

DoC); this is in line with previous studies in EEG (Zilio et al., 2021) and fMRI (Huang et al., 2018). 

We extend these prior findings by using a different proxy metric for the assessment of INTs, e.g., 

ACW-0 rather than ACW-50, which was not yet computed on these unconscious states. It is 

important to underline that, in (Zilio et al., 2021), ACW-50 was used instead of ACW-0: we argue 

that this is further confirmation for the fact that the ACW, regardless of which of the slightly 

different methodologies available in the literature (ACW-0 vs. ACW-50), consistently yields longer 

values when consciousness is lost, either partially or totally. In fact, the difference between the 

two ACW metrics lies only in the observed time-lag after the computation of the autocorrelation 

function (ACF) of the neural signal (the time at which the autocorrelation function (ACF) reaches its 

0% value for the ACW-0, as opposed to its 50% value for the ACW-50): hence, they measure 

distinct degrees of autocorrelative patterns of the neural activity - that is, shorter and longer ones. 

 

Our results further support and confirm the key role of ACW in highlighting fundamental 

mechanisms of consciousness, including its capacity for input processing (Zilio et al., 2021). 

Specifically, the abnormally long windows in the unconscious state suggest abnormally high 

temporal integration of inputs across different time points (Golesorkhi et al., 2021b; Wolff et al., 

2022) while, unlike in healthy subjects, there is minimal temporal segregation of inputs – this may 

lead to rather blurry and undifferentiated perception and cognition of the inputs without their 

differentiation from each other (Northoff and Zilio, 2022a). Additionally, we report a suppression 

of the inter-subject variability of average ACW-0 values in ketamine with respect to the awake 

condition, while this was not the case for sevoflurane. Hence, at least qualitatively, it seems that 

ketamine abolishes inter-individual differences, contrary to what can be observed in the 

sevoflurane subjects, which hints at a possible differential response of INTs mechanism to different 

anesthetic agents. 

 

2.4.2 Slowing down of alpha peak frequency in unconscious states 

In addition to ACW, we also investigated dynamic phase angle-based APF, i.e., frequency sliding, for 

the first time in unconscious states. We show a significant slowing of the speed of oscillations in 

the alpha (7–13 Hz) range, in line with previous studies showing changes in static power-based APF 

(Klimesch, 2012; Labonte et al., 2023; Lechinger et al., 2013). Like ACW, APF has been linked to 

input processing, albeit on a much shorter timescale. Specifically, APF is involved in crucial 

perceptual mechanisms such as cognitive control (Hülsdünker et al., 2016), gating of information 

(Benwell et al., 2019; Cecere et al., 2015; Gulbinaite et al., 2017) and perceptual temporal 

resolution (Noguchi et al., 2019; Samaha and Postle, 2015; Shen et al., 2019): it has been proposed 

that the duration of an alpha cycle works as an internal “clock” that is aligned to the statistical 

temporalities and the demands coming from the perceptual environment, which is constantly 

updated - as is shown by its fluctuating behavior and its covariation with overt perceptual 
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temporal resolution (Cecere et al., 2015; Samaha and Postle, 2015). Furthermore, in the context of 

DoC, matters are more complicated: models of recovery of consciousness based on corticothalamic 

integrity outline a series of intermediate spectral phenotypes between the prevalence of delta 

activity, that is normally associated to behavioral unresponsiveness, and the recovery of “healthy” 

alpha peaks (Forgacs et al., 2017). However, the nature of this dataset – which does not contain 

multiple recordings from the same subject - prevents us from following the trajectory of the 

participant's recovery of consciousness, which makes it harder to locate group level differences 

that arise from different levels of corticothalamic pathway integrity. However, a general slowing of 

activity restricted to the alpha frequency range can be expected: in fact, previous literature reports 

significantly slower alpha oscillations during loss of consciousness, which also covaries with 

behavioral responsiveness (Fingelkurts et al., 2012; Klimesch, 2012; Labonte et al., 2023; Lechinger 

et al., 2013). We extend these findings by applying the “frequency sliding” method to unconscious 

state EEG datasets which, to our knowledge, was not explored yet in the literature. 

 

In this study, we did not observe any meaningful difference between the length of the INTs in the 

UWS and MCS groups: this might be interpreted as a limiting factor in our methodology. Recently, 

the assumption that the contrast of these two clinical conditions serves as a minimal contrast for 

consciousness has been challenged (see (Hermann et al., 2021) for a deeper analysis on these 

matters). Current clinical methods for the assessment of consciousness (through the detection of 

significant signs of behavioral responsiveness from the patient) may, in restricted occasions, limit 

the statistical power of measures that don't specifically target neural correlates of behavioral 

responsiveness, because of the impossibility of detecting covert consciousness with such 

diagnostic scales (Kondziella et al., 2020): for this reason, the relative lack of predictive power in 

the “raw” values of INTs in distinguishing UWS and MCS is to be expected. Instead, the consistency 

of our results across DoC and anesthesia indicate that the abnormal prolongation of ACW-0 values 

is ultimately related to loss of consciousness. 

 

 

2.4.3 State-dependency of the correlation of longer (ACW-0) and shorter (APF) 

timescales in conscious and unconscious states 

Our key finding is that, as we hypothesized, the regular relationship that exists at rest between 

INTs and the instantaneous speed of alpha oscillations during awake conscious states is disrupted 

during loss of consciousness: this is observed in at least three different unconscious states (UWS, 

MCS and sevoflurane anesthesia). The negative correlation shown in the healthy awake subjects 

suits expectations, since a general slowing down of intrinsic oscillations is logically compatible with 

longer timescales of neural activity: this, to our knowledge, was never assessed empirically until 

now. We argue that this points out the importance of the relationship between longer (ACW-0) 

and shorter (APF) timescales in the conscious brain, which seems to provide an intrinsic cross-scale 

temporal organization or structure of neural activity. 
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Furthermore, the disruption of this negative relationship is far from trivial, since the direction of 

change of ACW-0 and APF values is preserved in unconscious states (ACW-0 gets longer and APF 

gets slower even during these states). The intrinsic dynamic relationship between neural 

oscillations and the preferential timescales of neural activity is regarded as a crucial factor that can 

be observed in the search for the neural predisposing factors of consciousness (NPC) according to 

the TTC framework (Northoff and Huang, 2017; Northoff and Zilio, 2022a). Here, we observed a 

correspondence between the abolishment of consciousness and the loss of these intrinsic dynamic 

ACW-APF relationship, which may alter the dynamic background or context of our subjective 

experience, i.e., phenomenal consciousness (Northoff and Zilio, 2022a). Hence, our findings on 

ACW-0, APF and their relationship are consistent over the DoC and the anesthesia samples; this 

strongly suggests that they are related to the state of consciousness rather than the underlying 

cause, e.g., anesthetic agent or brain lesion. 

 

Most importantly, a remark is needed to interpret the lack of statistical significance in our 

ketamine sample. Unlike most anesthetic agents, ketamine is known to induce a “dissociative” 

state (Domino and Warner, 2010) even at sub-anesthetic doses: patients are - at least behaviorally 

- not responsive to environmental inputs, but preserve a dose-dependent degree of awareness, 

which sometimes results in reports of conscious, dream-like experiences (Collier, 1972) after the 

anesthetic’s effects wear out. In fact, recent studies have produced evidence of spatio-temporal 

patterns of neural activity comparable to those observed in awake subjects (Sarasso et al., 2015) - 

or even more complex than in wakefulness (Li and Mashour, 2019) - which makes a case for the 

presence of covert, but rich, internal conscious experiences during ketamine, despite of the 

complete observed unresponsiveness. Our correlational results are not dissonant with such 

interpretations, since we do not observe a statistically significant change in the relationship 

between ACW and APF during ketamine-induced loss of consciousness. In light of this 

interpretation, the prolongation of INTs and the average slowing down in the alpha frequency 

range dynamics could be more related to the predisposition for adequate levels/states of 

consciousness; on the other hand, their relationship, similarly to neural complexity measures such 

as the perturbational complexity index (PCI), could be related to the actual realization of a 

conscious experience. Alternatively, one might also interpret the lack of significance in our 

ketamine sample as resulting from the combination of unfavorable factors, such as our stringent 

statistical testing and a current poor understanding of subjective experiences during ketamine-

induced loss of consciousness. 

 

In view of what has been discussed so far, it is also crucial to elaborate on the mathematical 

relationship between ACW-0 and APF, in order for a better understanding of our correlation 

results. In fact, it is stated in the Wiener-Khinchin theorem (Chatfield, 2003) that, under a few 

assumptions (such as that of wide-sense stationarity of the time series), the power spectral density 

of a signal is equal to the spectral decomposition (usually in the form of a Fourier transform) of its 

autocorrelation function. This observation would lead to a sort of “trivialization” of our correlation 

results in our healthy population. 
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However, the sole fact that the correlation is disrupted in different states of unconsciousness 

works as a preliminary hint, suggesting that the relationship between these two exact measures is 

far from stereotypical. Speculating on the variables that could mediate this atypical relationship, 

we argue that the clear contribution of the slope of the 1/f spectral aperiodic component of the 

EEG signal (He, 2014), to the resulting ACW values has shown in a recent study (Zilio et al., 2021), 

hints at the possibility that these scale-free dynamics may serve as a shared background for both 

the ACW and APF of a neural signal, thus contributing to a modulation of their relationship 

(Wainio-Theberge et al., 2022). We suggest that future studies, especially simulation analyses that 

take into account the oscillatory dynamics and the network structure of the brain – for instance, 

oscillator models such as the Kuramoto model (Bick et al., 2020; Cabral et al., 2014) or 

computational frameworks like The Virtual Brain software (Sanz-Leon et al., 2015) – will shed a 

light on the mathematical relationship between these two measures and eventually inform on 

which parameters can modulate this relationship. 

 

2.4.4 Relation to theories of consciousness 

Our study aligns well with theories of current consciousness, most notably the TTC. Temporo-

spatial alignment is a key mechanism which targets the brain's input processing, namely, how it 

adapts and thereby aligns its own dynamic to the stochastics of the environmental (and bodily) 

inputs at different timescales. We show that two measures of input processing, ACW and APF 

operating at distinct timescales, are related in the awake state whereas they are prolonged, slowed 

down and disrupted in the unconscious state. Albeit indirectly, this suggests a key role of the 

dynamic of input processing at different timescales for consciousness, thus supporting the 

assumption of temporo-spatial alignment. However, our findings may also be related (and 

reconciled) to theories of consciousness that associate the sustained and integrative brain activity 

that is generated after an input is consciously processed (Dehaene and Changeux, 2011; Mashour 

et al., 2020): by integrating notions from these different theories of consciousness, conscious 

cognition may well be facilitated or even sustained by the right balance between the different 

intrinsic computational timescales at which the brain preferentially works during conscious states. 

 

Moreover, our findings support the recent claim of the need to consider and integrate different 

timescales on both neural and phenomenal levels (Kent and Wittmann, 2021; Northoff and Zilio, 

2022b). We therefore advocate for the importance, as stated in the first paragraph of this 

discussion, of a methodological approach that integrates the investigation of consciousness over 

different timescales, as we tentatively pursued in this study. This has been proposed as an 

important step to reconcile various theories of consciousness (Northoff and Zilio, 2022a), including 

the Integrated Information Theory (IIT) (Oizumi et al., 2014; Tononi et al., 2016): this is a promising 

approach since, for instance, IIT shares with TTC the assumption of integrative spatiotemporal 

mechanisms of neural activity as key for consciousness. 
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2.4.5 Limitations 

Thus far, we have underlined the relevance of one's capacity for temporal input processing as a 

necessary (but not sufficient, coherent with the concept of NPC) condition for adequate levels of 

consciousness; however, we need to emphasize how resting-state studies, such as this one, 

although useful to assess levels of consciousness (Kondziella et al., 2020; Qin et al., 2015) can only 

link indirectly these two aspects of the human brain. Only with task data can this relationship be 

properly investigated, especially on how phase-related processes are involved and to eventually 

quantify how it actually impacts the phenomenology of subjective experience. 

 

Another limitation is related to the pioneering stage at which this study has been developed. 

Consciousness research has only recently started to involve intrinsic brain activity in its theoretical 

frameworks and it has been argued that even so, its temporal dimension is often neglected in 

many popular theories - apart from some exceptions (Kent and Wittmann, 2021) - and thus there is 

still room for improvement for its practical diagnostic/prognostic use in clinical settings; future 

studies will need to synthesized these findings in a quantitative way, such that physicians could use 

it in their clinical practice. 

 

Lastly, in this study we use all of the sensor space information that is contained in the hd-EEG data 

of our samples. It is well known how both of our measures have a particular topography, especially 

regarding the prominent occipital distribution of alpha oscillations (Mantini et al., 2007; Mierau et 

al., 2017) and the postero-anterior spatial gradient of alpha peak frequencies (Mahjoory et al., 

2020) which are well known features of the EEG signal. For this reason, sensor data may not be 

enough to capture the spatial topography of the relationship between INTs and APF, which may be 

very important in understanding the underlying circuitry behind these temporal mechanisms: 

source-level analysis will be crucial in solving this issue and may yield more accurate information, 

which in turn could prove resourceful to improve on the diagnostic and prognostic issues that 

affect people with DoCs. 

 

 

2.5 Conclusions 

Our brain allows us to process environmental inputs, including their temporal stochastics, across 

different timescales. Taken together, our results show how two measures of input processing 

operating on shorter (APF) and longer (ACW) timescales are related to each other in the awake 

fully conscious state. In contrast, when we lose consciousness (as in anesthesia and UWS/MCS), 

their relationship deviates from the negative correlation shown in healthy awake states: we 

suggest that this might be due to the abnormal ACW prolongation and slowing-down of APF, which 

we have shown is characteristic of unconscious states, but future studies are needed to clarify the 

implications of this deviation. These findings further support the key role of the brain's capacity of 

input processing on different timescales for consciousness. This is well in line with the assumption 
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of temporo-spatial alignment, i.e., our capacity to process and connect to external environmental 

inputs, being one of the four key mechanisms of consciousness as postulated in the Temporo-

spatial Theory of Consciousness (TTC). Future studies combining ACW and APF with specific 

psychological tasks and phenomenological reports are warranted to substantiate the neuro-

phenomenal implications of temporo-spatial alignment. 
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Abstract 

Time delays are a signature of many physical systems, including the brain, and considerably shape 

their dynamics; moreover, they play a key role in consciousness, as postulated by the temporo-

spatial theory of consciousness (TTC). However, they are often not known a priori and need to be 

estimated from time series. In this study, we propose the use of permutation entropy (PE) to 

estimate time delays from neural time series as a more robust alternative to the widely used 

autocorrelation window (ACW). In the first part, we demonstrate the validity of this approach on 

synthetic neural data, and we show its resistance to regimes of nonstationarity in time series. 

Mirroring yet another example of comparable behavior between different nonlinear systems, 

permutation entropy–time delay estimation (PE-TD) is also able to measure intrinsic neural 

timescales (INTs) (temporal windows of neural activity at rest) from hd-EEG human data; 

additionally, this replication extends to the abnormal prolongation of INT values in disorders of 

consciousness (DoCs). Surprisingly, the correlation between ACW-0 and PE-TD decreases in a state-

dependent manner when consciousness is lost, hinting at potential different regimes of 

nonstationarity and nonlinearity in conscious/unconscious states, consistent with many current 

theoretical frameworks on consciousness. In summary, we demonstrate the validity of PE-TD as a 

tool to extract relevant time scales from neural data; furthermore, given the divergence between 

ACW and PE-TD specific to DoC subjects, we hint at its potential use for the characterization of 

conscious states. 

 

 

 

 

 

3.1 Introduction 

 

Complex physical systems are characterized by their own intrinsic temporal and spatial dimensions. 

It follows that a deeper understanding of such dimensions is required to capture the complexity 

and predict the future behaviors of such systems. 

In particular, this temporal dimension might be influenced by one or more sources of delay, which 

contribute significantly to the system’s temporal structure by generating dominant time scales of 

activity (Otto et al., 2019). Therefore, capturing the essential features of a complex system also 

requires the inference of these time delays directly from time series data. This task is of utmost 

relevance, as intrinsic temporal dependence structures characterize many dynamical processes 
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with a vast range of examples, ranging from optics to biology, astronomy, and many others 

(Erneux, 2009). 

Immersed in an environment characterized by a diverse set of time scales, the brain is no 

exception. Growing evidence has shown that the brain displays different preferential temporal 

durations in both its spontaneous and its task-evoked activities (Golesorkhi et al., 2021b; Hasson et 

al., 2015; Northoff et al., 2023), likely adapting to the temporal durations of external 

environmental inputs (Simoncelli and Olshausen, 2001; Sterling and Laughlin, 2015). These 

concepts are summarized in the notion of intrinsic neural timescales (INTs), which are defined as 

“temporal windows of neural spontaneous activity during which neural activity is strongly 

correlated with itself” (Wolff et al., 2022). Time delays, such as (but not restricted to) INTs, are 

ubiquitous features of self-organizing dynamic systems such as the brain. However, INTs are not 

only a signature of self-organized complexity: an additional functional role for processes such as 

temporal integration and segregation has been recently proposed (Golesorkhi et al., 2021b; Honey 

et al., 2012; Wolff et al., 2022). Therefore, accurate estimation of the temporal dependences of 

neural spontaneous activity—specifically in the form of INTs—might also improve the 

understanding of behavior and cognition. 

Starting with the introduction of the notion of INTs, the dominant timescales of neural activity 

have been probed by means of different methodologies. The majority of studies of these issues 

have leveraged the property of autocorrelation function (ACF) to estimate the timescale over a 

signal that shows periodic patterns (Park, 2018): thus the auto-correlation window (ACW) 

approach, which involves computing the ACF of the signal of interest and the later estimating its 

fall to its 50% or 0% value (Golesorkhi et al., 2021a; Honey et al., 2012; Smith et al., 2022; Wolff et 

al., 2022). With ACW, various groups have successfully found coherent results across different 

modalities, such as fMRI, M/EEG, and single-cell recordings (Hasson et al., 2015; Honey et al., 

2012; Huang et al., 2018; Zilio et al., 2021), and that the relevance of INTs extends to perception 

and cognition (see (Wolff et al., 2022) for a review). 

ACF is a valuable tool that is not exclusive to neuroscience: it is widely used to estimate time delays 

in complex systems across several academic disciplines (Otto et al., 2019). However, one 

alternative solution to this standard has been recently proposed, which relies on the popular 

information-theory quantifier developed in (Bandt and Pompe, 2002): permutation entropy (PE). 

PE belongs to a larger family of measures that quantify the informational content of an observable 

phenomenon, which are all rooted in the original formulation Shannon’s entropy (Shannon, 1948). 

Given the probability distribution 𝑃={𝑝𝑖;𝑖=1,…,𝑘} 

𝑆(𝑃) =  − ∑ 𝑝𝑖

𝑘

𝑡=1

𝑙𝑛𝑝𝑖  

S quantifies the degree of uncertainty associated with the probability distribution of the observed 

phenomenon. The members of this family of information–theoretical measures usually differ from 

one another with respect to how the process’ probability distribution is inferred from empirical 

data. Importantly, estimation of the probability distribution of a time-series is problematic. 

Counting the relative frequency of events (Rosso et al., 2009) (for example, via coarse-graining 

values and placing them in bins) assumes ergodicity, which is rarely true for systems that have 

memory (e.g., biological systems (West et al., 2008)). In this way, the ordering of events in the 
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direction of the arrow of time is lost. PE solves these issues with a “symbolization” procedure, 

which involves decomposing the continuous signal of interest into a series of “motifs”—signal 

partitions that are ranked into ordinal patterns; based on the relative occurrence of these motifs, a 

probability distribution is inferred, onto which the Shannon entropy formula can be applied. A 

brief description of the method is provided in the Methods section (Section 3.2.1); for a thorough 

description of PE, which is not the focus of this study, please refer to (Bandt and Pompe, 2002). 

In this sense, PE is particularly suited to inferring temporal relations in a time series since its 

symbolization technique considers temporal patterns. How can PE support the estimation of time 

delays from time series? Symbolization requires two parameters: the embedding dimension D, 

which controls how many consecutive time points are needed to “build” a symbol/ordinal pattern; 

and the embedding delay tau, which controls the temporal distance between the consecutive time 

points of a single symbol. If PE is computed multiple times with an increasing tau—which is equal 

to increasing the temporal granularity of the investigation—a particular graph is obtained, which 

might display one or multiple local minima. Those minima should then correspond to the time 

delays of the time series: the intuition is that the entropy associated with the observed 

phenomenon should be minimal when the temporal granularity (tau) matches its dominant time 

scale. An alternative way of conceptualizing this method is that it is directed at capturing the 

complete duration of events. If tau is equal to the period, then each symbol encompasses the 

whole period, and every symbol is the same. This process results in a probability distribution with 

maximum precision and therefore minimum entropy. 

A series of studies of model systems and real-world systems have confirmed that PE exhibits a 

minimum value at a tau corresponding to the system’s own time scale (Soriano et al., 2011; Wu et 

al., 2012; Zunino et al., 2010); however, despite evidence of the efficacy of PE in recovering time 

scales from time series, this method has yet to be used in a neuroscientific context, in which the 

estimation of time scales—and particularly the estimation of INTs—is a relevant matter. 

The importance of INTs is not restricted to temporal input processing (Kolvoort et al., 2020; 

Northoff et al., 2023; Sancristóbal et al., 2022). In fact, recent evidence has shown that loss of 

consciousness is consistently followed by an anomalous alteration of INT values (Buccellato et al., 

2023; Huang et al., 2018; Zilio et al., 2021), compared to the range of values typically displayed by 

healthy conscious populations; that this peculiar alteration is observed across different 

unconscious states (sleep, anesthesia, and disorders of consciousness—DoC (Giacino, 1997)) 

suggest a strong relation to consciousness (Hermann et al., 2021). In this sense, the temporospatial 

theory of consciousness (TTC) (Northoff and Huang, 2017; Northoff and Zilio, 2022a) postulates an 

important role for the temporal dynamics of the brain’s spontaneous activity in shaping the 

form/context of conscious states. Hence, in the framework of TTC, the estimation of INTs goes 

even beyond the experimental need to predict future behaviors of a complex system such as the 

brain and is therefore an important prerequisite to investigating different states of consciousness. 

Testing for hypotheses that relate INTs to conscious states requires the cleanest experimental 

contrast possible. However, unconscious states are notoriously characterized by different regimes 

of nonstationarity (Galadí et al., 2021; Kaplan et al., 2005) and nonlinearity (Casali et al., 2013; 

Tononi, 1998): this fact might hinder the experimental methods used to uncover differences 

exclusively related to consciousness, which often rely on strong assumptions of the nonstationarity 

and/or nonlinearity of the analyzed signal. 
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Hence, given the important challenges that neural data—and especially EEG data—pose for the 

identification of time delays, permutation entropy–time delay estimation (PE-TD) is a promising 

approach that could aid the advance of many neuroscientific disciplines and is well suited to test 

for hypotheses relevant to consciousness research. 

Our aim for this study is two-fold: (i) the validation and exploration of the use of PE-TD for the 

estimation of neural time scales, with the aid of synthetic data (when the ground truth is known) 

and real-world EEG data; and (ii) providing evidence for a parallel role of these measures in 

exploring the properties of EEG recordings from people with clinical loss of consciousness. 

 

 

3.2 Methods 

 

3.2.1 Estimation of EEG Time Scales through Permutation Entropy—PE-TD 

Permutation entropy (PE) calculation requires a symbolization procedure: a series of steps that 

map ordinal patterns into permutation patterns directly from time series data. The symbolization 

procedure is briefly recapitulated here. 

Given a time series X = {Xt:t = 1, ⋯, N}, symbolization involves the careful choice of two 

parameters: the embedding dimension D and the embedding delay tau (τ). The first step involves 

producing vectors of length D, consisting of consecutive time-ordered values: for instance, at D = 3, 

each vector will consist of three consecutive time points. The embedding delay tau controls the 

temporal distance that separates each consecutive value in the vector: at tau = 1, the original time 

granularity will be preserved; while at tau = 2, vectors will consist of every other time point from 

the original time points, and so on. 

Thus, the symbol S is constructed as: 

𝑆𝑖 = {𝑋𝑖 , 𝑋𝑖+𝑡 , 𝑋𝑖+2𝑡 , … , 𝑋𝑖+𝐷−1}   

for i = 1, 2, …, N 

Next, the values in each of vector Si are ranked in ascending order, and their vector entries are 

substituted by their rank order, eventually resulting in the formation of an ordinal pattern. Every 

ordinal pattern will then correspond to a permutation pattern (a “symbol”). The last step involves 

computing the Shannon entropy of the probability distribution P, of which its pi units are the 

frequencies associated with all the possible permutation patterns extracted with the symbolization 

procedure: 

𝑃𝐸 = − ∑ 𝑝𝑖

𝐷!

𝑡=1

𝑙𝑛𝑝𝑖  
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PE-TD 

Fixing the parameter D and measuring PE values as functions of the embedding delay tau, one can 

easily visualize how tau influences the resulting PE values. The most important assumption is that 

the signal will be more “predictable” if tau matches the timing of the intrinsic time delays of the 

system: a system that has an intrinsic time delay will have a narrower probability distribution at 

that particular time scale/tau (and thus, more predictability) since events that happen periodically 

in a time series will result in the same permutation pattern at that particular temporal grain. This 

phenomenon, in turn, is associated with the observation of a clear minimum in the PE vs. time 

delay graph. 

We extracted the absolute minimum of the PE vs. time-delay graph for each time series that we 

analyzed. Time series data, in the particular case of this study, were represented by either 

synthetic signals or EEG channel data. Hence, we defined the permutation entropy–time delay (PE-

TD) estimation of the intrinsic time scale as the corresponding minimum of the PE vs. time delay 

graph, multiplied by the sampling rate, to convert this estimation into seconds. 

One important step when applying this method is the choice of an appropriate upper limit for tau: 

setting a low upper limit would probably neglect the effects of higher intrinsic time scales, while an 

excessively high number would unnecessarily slow the computational time (as PE values are 

computed iteratively at each tau). After careful consideration, we decided to proceed with 100 as 

the maximum delay to apply on our resting-state hd-EEG data, based on two considerations: (i) the 

range of INT values shown in previous studies were comparable to those empirically observed at 

this threshold; and (ii) PE values do not considerably fluctuate well before our threshold. 

Embedding dimension D was set to 5 to balance the computational speed and the higher 

prediction accuracy, which is usually accomplished with higher D values (Soriano and Zunino, 

2021). 

In this study, we used the algorithmic implementation shown in (Unakafova and Keller, 2013) to 

calculate PE values, providing a fast computation time without sacrificing accuracy. 

An example of the PE vs. tau graph and its associated minimum in an EEG channel is provided in 

Figure 1a. 
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Figure 3.1. Time delay estimation through permutation entropy (PE) in a neural environment. (a) PE 

values as a function of increasing time embedding tau for a single channel hd-EEG recording. Estimating 

time delays in a physical system through PE relies on the notion that, when the tau parameter matches the 

time delay of the system, PE values are expected to dip significantly. The distribution of permutation 

patterns obtained with a tau matching the system’s dominating temporal scale is narrower; therefore, the 

system becomes more “predictable”: thus the dip in PE values. (Red star indicates the minimum of the PE vs 

time-delay graph.) (b) An example of a stationary integrate and fire (IAF) neuron signal. (c) Concatenating 

multiple (8) IAF stationary segments to obtain a simple case of a synthetic nonstationary signal allowed us 

to investigate the effects of nonstationarity on PE-TD. 

 

3.2.2 ACW-0 

The auto-correlation window (ACW) is an established method used to probe INTs (Golesorkhi et al., 

2021b; Honey et al., 2012; Wolff et al., 2022). It is based on the autocorrelation function r, which is 

defined as a signal x’s correlation with itself on different time lags: 

𝑟𝑙 =
𝑐𝑙

𝑐0
 

 



50 
 

𝑐𝑙 =  
1

𝑁
∑(

𝑇−𝑙

𝑡=1

𝑥𝜏 − 𝑥̅)(𝑥𝜏−1 − 𝑥̅) 

 

where l denotes lag, and 𝑥 ̲ denotes the mean of x. 

Here, we computed the ACW-0, which is defined as the first zero-crossing of the temporal auto-

correlation function (ACF) of the EEG time series (Golesorkhi et al., 2021a); ACW-0 might also be 

understood as the time lag after which the ACF crosses its 0% value. To this end, we computed a 

temporal autocorrelation with a lag of 0.5 with sliding windows of 20 s and a 50% overlap (10 s 

step size). Further details about ACW can be found in (Golesorkhi et al., 2021b; Honey et al., 2012; 

Zilio et al., 2021). 

 

3.2.3 Simulations 

Nonstationarity refers to a general property of signals with statistical moments (usually the mean 

or variance) that are not constant in time but vary to a certain degree; it is a property that 

biological signals, especially those recorded from the brain, display consistently (Kaplan et al., 

2005). 

Nonstationarity potentially affects the accuracy of time delay estimation. In (Huang et al., 2022), a 

simple method to assess the impact of nonstationarity on time-delay estimation with the use of 

synthetic signals is provided, building on a process originally described in (Mikosch and Stărică, 

2004) for financial time series. In this study, we have adapted the aforementioned method to test 

for the behavior of PE-TD in regimes of nonstationarity in a neuroscientific context: to this end, we 

integrate the process illustrated in (Mikosch and Stărică, 2004) with a biologically plausible 

neuronal model, such as integrate-and-fire (IAF) models, to generate a simple case of in silico 

nonstationarity in the firing pattern of a single neuron. Integrate-and-fire neuron models (Burkitt, 

2006; Gerstner and Kistler, 2002) describe the behavior of a single neuron from the point of view 

of its membrane potential. An IAF neuron possesses its own resting membrane potential Vrest: 

after it receives a series of inputs (inhibitory or excitatory), which can be modeled separately, it 

produces a spike only after its membrane potential surpasses a threshold Vth. The potential is 

reset immediately after a spike is produced. 

Parameters used for the IAF models used in this study are listed in Table 1. 
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Parameter Value 

Vrest -70 mV 
Vreset -75 mV 
Vth -50 mV 
Sampling rate 10 kHz 
Resistance 10 MΩs 
Decay time constant 10 ms 

 

Table 3.1. Model parameters for the integrate-and-fire (IAF) neuron used in this study. 

 

The procedure can be broken down into a few consecutive steps. 

First, we generated a series of “stationary” IAF time series of equal length (40,000 time points); 

Then, we obtained a nonstationary IAF signal by concatenating the previously synthetized 

stationary signals into a single signal; 

Eventually, by comparing the time scales measured in the synthetic nonstationary signal and the 

average of the time scale estimated on the stationary segments, one can assess the resilience of 

the tested measure to nonstationarity. 

The rationale is rather straightforward: since the temporal structure of the concatenated 

nonstationary signal depends on the contribution of the temporal structure of its composing 

segments, a small distance between the time scales extracted from these two indicates high 

resistance of the tested measure. 

Eight IAF segments of 4 s (40,000 time points) were generated with the parameters illustrated in 

Table 1. The input structure fed into the model varied randomly between each iteration to avoid 

repeating a particular stationary regime: inputs were randomly—but equally—distributed into 

either a DC input component (mean = 4 A, std = 1) or white noise with fixed mean (mean = 0) and 

variance = 1, effectively creating a simple case of a plausible nonstationary neuron: the input 

structure is known to affect IAF firing rate (Salinas and Sejnowski, 2002) and therefore its statistical 

properties. To compare signals of comparable length, we truncated the original stationary 

segments before concatenating them into the new nonstationary signal; in this way, we obtained a 

nonstationary signal of equal length (4 s). The procedure was repeated 500 times to avoid spurious 

results caused by sampling. 

To characterize PE-TD’s behavior in a non-linear dynamic system model, we carried a parameter 

search over a very well-known model for non-linear feedback systems with intrinsic time delays: 

the Mackey–Glass oscillator (Mackey and Glass, 1977). In a Mackey–Glass system, a variable of 

interest x is under the control of a feedback system that, like in many biological systems (Bélair et 

al., 1995), acts within a certain time lag, creating the conditions for the emergence of intrinsic time 

scales on its time series. In this study, the models were implemented by the following differential 

equation described in (Zunino et al., 2010): 
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𝑑𝑥/𝑑𝑡 =  −𝑥 +  
𝑎𝑥(𝑡 − 𝜏𝑠)

1 + 𝑥𝑐(𝑡 − 𝜏𝑠)
 

 

with t as a time index, 𝜏𝑠 as the time delay feedback, a as the feedback strength, and c describing 

the degree of nonlinearity. The Mackey–Glass differential equation was integrated via Euler’s 

method with time step Δ𝑡 = 0.001; simulations lasted 5 s. A parameter search with a fixed c over a 

and tau was conducted by iterating one of the two parameters while fixing the other over the 

following range of values: a = 1 to 46 and tau = 50 to 300 with steps of 1. 

 

3.2.4 Experimental Data (EEG) 

Eighty-one participants with DoCs (39 UWS and 42 MCS; mean age = 46.65 ± 15.89 years old; sex-

ratio = 2.24; etiology: stroke = 43; anoxia = 7; traumatic brain injury = 31) were recorded in resting 

state—at bedside—for 5 min using a Geodesics system (Ges300, EGI, Eugene, OR, USA) and a 256-

channel electrode cap (HydroCel 130, EGI, Eugene, OR, USA) (following 10–20 international 

systems). Before the EEG recording session, the experimenters performed standard systematic 

procedures, such as the Arousal Facilitation Protocol (Giacino et al., 2004), to ensure high 

wakefulness and arousal levels in the participants. No sedative agents were administered in the 24-

h period that preceded the recording session to avoid drug-induced interference in the 

spontaneous brain activity’s signal. The severity of the disturbance of consciousness was assessed 

by administering, on admission, the Glasgow Coma Scale (GCS) (Teasdale and Jennett, 1974), while 

the differential diagnosis was performed by trained clinicians by repeated behavioral assessments 

using the JFK Coma Recovery Scale–Revised (CRS-R) (Giacino et al., 2004). Additionally, a control 

sample of 44 healthy participants (age ± years) underwent a 5-min resting-state hd-EEG recording 

session; an additional sample of 20 healthy participants (age ± years) was used for further 

validation. The same aforementioned 256-channel system (GES 300, Electrical Geodesics, Inc., 

USA) was used to record both the datasets from the healthy participants. Healthy participants 

were asked to lie on the bed and keep their eyes open to mimic the experience of EEG recording in 

DoC patients. EEG data were re-referenced online to Cz and acquired at a sampling rate of 1000 Hz, 

while the impedance of all electrodes was kept to less than 20 KΩ. Further details about the 

datasets used in this study can be found in (Buccellato et al., 2023; Zilio et al., 2021). 

 

3.2.5 Pre-Processing 

Pre-processing and data analysis, including statistical analysis, were carried out using in-house 

MATLAB software (The MathWorks, 2019b) and the EEGLAB toolbox (Delorme and Makeig, 2004). 

The same pre-processing pipeline was used on all of the EEG datasets used in this study. First, the 

data were resampled to 250 Hz; then, a band-pass finite impulse response (FIR) filter between 0.5 

and 40 Hz (Hamming window) was applied to the EEG channel data. Noisy channels were identified 

and rejected through a semi-automatic procedure. The rejection criteria used in our procedure 

were: removal of flatline channels (channels inactive for more than 5 s); correlated channels (with 

a correlation threshold of 0.8); low-frequency drifts; noisy channels; and short-timed bursts not 
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related to neural activity (threshold at sd = 5 for data portions, relative to baseline). Next, bad 

channels were interpolated with a spherical method, and channel activity was re-referenced to the 

common average reference. 

Artifacts related to eye movements, muscular noise, and heart activity were identified by 

independent component analysis (ICA), and their related independent components were removed 

from the signal. 

 

 

3.2.6 Statistics 

Root mean square error (RMSE) was used to assess the performance of PE-TD under nonstationary 

regimes in a series of LIF simulations. 

To test for significant differences in the PE-TD values of the HC and UWS samples, Wilcoxon’s non-

parametric rank-sum test was used, with the threshold level for the rejection of the null hypothesis 

set to 5%. 

Spearman’s rank correlation coefficient was assessed to characterize the channel-wise relation 

between ACW-0 and PE-TD in both the conscious and unconscious groups. Furthermore, a 

bootstrap distribution test, with 10,000 iterations, was performed to assess the significance in the 

difference between Spearman’s correlation coefficients in conscious/unconscious states. The 

threshold for rejecting the null hypothesis was set to 5%. To further validate the state-dependent 

differences between correlation coefficients in different conditions, we assessed significance with 

Fisher’s z transform (Kotz and Johnson, 1992) as well. 

 

3.3 Results 

 

3.3.1 Simulations 

In this section, we use synthetic signals to show how the estimation of time delays from time 

series data through PE-TD might be affected by: (i) nonstationarity; and (ii) parameter choice of 

model non-linear systems. 

 

The Effect of Nonstationarity on the Accuracy of PE-TD 

An important a priori condition, when assessing the impact of nonstationarity on time delay 

estimation with the methodology described in Section 3.2.1, goes beyond the sheer comparison of 

stationary vs. nonstationary regimes. In fact, it is important to know that the model’s true time 

scale—the ground truth—can be recovered through the tested measure in the first place; if this 

condition is not met, the risk of spurious positive observations is not negligible. For what concerns 

an IAF neuron model, PE-TD is surprisingly accurate at recovering the average time delay between 
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one spike and another, which involves simple recovery of time intervals from the spike rate (RMSE 

= 0.00015 s); this fact suggests that employing an IAF model is an appropriate choice. 

A series of IAF stationary segments (see Figure 1b for an example) were concatenated into a single 

nonstationary signal (see Figure 1c for an example of such a signal) for 500 iterations to produce 

the testing substrate. The average error between the average PE-TD values obtained on stationary 

segments and on the nonstationary concatenated signals was very low (RMSE = 0.0011 s), 

suggesting that the impact of nonstationarity for the estimation of IAF time scales was minimal to 

null—at least for the time scales related to spike production in simplified model neurons. 

 

PE-TD Behavior as a Function of Parametrization Choice in a Non-Linear Delay System 

As a first step, we evaluated the optimal parameter choice for c (the degree of non-linearity) in our 

Mackey–Glass oscillator for both auto-correlation window 0 (ACW-0) and PE-TD; we proceeded in 

this order since c was not a variable of interest in this study. 

Figure 2a shows the error (computed as a simple algebraic subtraction) between the model’s time 

scale—which was fixed at tau = 160—and the time scale estimated with ACW-0, plotted against the 

parameter c; Figure 2b shows the same plot for PE-TD. For both measures, qualitatively similar 

results indicate that, for low c values, the estimation is quite unstable; however, beyond c = 10, the 

error becomes negligible, with an optimum for both measures reached at c = 16. However, PE-TD 

shows a peculiar steady decrease in accuracy after the dip reached at c = 16. Therefore, c was fixed 

at this value for the next round of simulations. 
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Figure 3.2. Differential behavior of autocorrelation window (ACW-0) and PE-TD in model parameters for a 

model nonlinear delay system to perform the interpretation of estimated time delays. (a) Estimation error 

(in seconds) as a function of parameter c (degree of nonlinearity) when using ACW-0 to estimate the time 

delay of a Mackey–Glass oscillator. Stable performance is reached at c = 16. (b) Same graph for PE-TD. PE-TD 

behaves similarly to ACW-0, as the performance reaches an optimal accuracy around c = 16. However, after 

this increase in accuracy, the performance of PE-TD decreases steadily as a function of c. (c) Third plot of 

the estimation error as a function of both a (feedback strength) and tau (time delay) when using ACW-0. (d) 

Same graph for PE-TD. PE-TD seems to perform stably at earlier timescales and with weaker feedback 

strength than ACW-0. 

In the subsequent part of the study, we engaged in a parameter search—with a fixed c—over two 

parameters of interest, which are known to influence the state in which the Mackey–Glass 

oscillator is found (Zunino et al., 2010): the time scale tau and the feedback strength a. 

Figure 2c shows the time scale estimation error plotted as a function of increasing tau (shown on 

the x axis) and a (shown as different colored lines) for ACW-0. With increasing values of tau, ACW-0 

performance reaches stable accuracy only after the time delay feedback approaches tau = 160; this 

point is true for most feedback strength values beyond a = 6. We observed a similar pattern for 

feedback strength: at very low a values, it takes longer taus for the estimation to become more 

accurate compared with higher values. 
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PE-TD shows a similar behavior, as shown in Figure 2d. In fact, regardless of feedback strength, PE-

TD seems to perform accurately when tau reaches a threshold of tau = 100. At shorter time scales, 

feedback strength seems to influence whether PE-TD overestimates the real underlying time scale. 

 

3.3.2 PE-TD in EEG and DoC 

 

PE-TD Values Converge with INTs Probed with ACW-0 

To be able to confirm the appropriateness of PE-TD for testing hypotheses relevant to the brain, we 

need to assess the degree to which this measure convergences and/or diverges with ACW-0, which 

has reinforced its position as the benchmark measure of INTs. 

One of the most recognizable features of INTs is their hierarchical spatial organization: unimodal 

regions show shorter timescales compared to the longer time scales of transmodal cortical areas, 

related to the different time requirements to integrate (and segregate) their perceptual space 

(Golesorkhi et al., 2021b). Do findings obtained through PE-TD converge with this important 

property of the brain? The topoplot in Figure 3a shows (although in electrode space) a fair 

hierarchical distribution of PE-TD values, coherent with findings obtained with ACW-0. We 

observed a significantly high spatial correlation between the two maps obtained with PE-TD and 

ACW-0 (Figure 4a, R = 0.90; p < 0.001), suggesting a preservation of the hierarchical spatial 

distribution of INTs captured by PE-TD. To validate these findings, we repeated the same analysis 

on another sample of healthy subjects (N = 20) with similar results (R = 0.93, p < 0.001). 
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Figure 3.3. The distribution of INTs in healthy populations and their abnormal average prolongation in 

disorders of consciousness (DoCs), probed with PE-TD. (a) Topopolot depicting the average distribution of 

INT values (in seconds) probed with PE-TD in a healthy population (N = 44). (b) Topoplot depicting the same 

average distribution of INT values probed with ACW-0. The overall INT scalp distribution is clearly consistent 

between the two different measures, as confirmed by a very high channel-wise correlation between the 

two measures (R = 0.90, p < 0.001, presented in Figure 4). (c) Violin plots for the subject average length of 

PE-TD values in DoCs vs. healthy controls (HC). (HC mean = 0.19 s; UWS mean = 0.24 s; MCS mean = 0.27 s; 

HC vs. UWS: p < 0.001; HC vs. MCS: p < 0.001; UWS vs. MCS: p > 0.05). (** represents p < 0.01 and *** 

represents p < 0.001. n.s., when shown, stands for “non-significant” (p > 0.05)). 
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Figure 3.4. State-dependent decreased channel-wise correlation between PE-TD and ACW-0 in loss of 

consciousness (LOC). (a) Pearson’s correlation coefficient in healthy subjects (R = 0.90, p < 0.001). (b) 

Pearson’s correlation coefficient in UWS (R = 0.55, p < 0.001). The decrease in correlation observed in UWS 

is confirmed by a bootstrap distribution test (p < 0.001) and is validated with a Fisher’s z transform test (p < 

0.001) (see Section 3.2—Methods). 

 

Previous studies (Buccellato et al., 2023; Northoff et al., 2023; Zilio et al., 2021) have shown that 

loss of consciousness is accompanied by an abnormal prolongation of INTs, as probed with ACW-0. 

Does this outcome apply to methods that estimate INTs through information theory? Replicating 

previous results, PE-TD values in both UWS and MCS showed a significantly higher subject-wise 

average compared to those from healthy controls, but there were no significant differences 

between UWS and MCS (Figure 3c. HC mean = 0.19 s; UWS mean = 0.24 s; MCS mean = 0.27 s; HC 

vs. UWS: p < 0.001; HC vs. MCS: p < 0.001; UWS vs. MCS: p > 0.05). To summarize, our findings 

showed that, through PE-TD, we were able to replicate: (i) the hierarchical distribution of INTs in 

two unrelated healthy populations; and (ii) the abnormal prolongation of INTs in resting-state EEG 

recordings in DoC patients previously shown in other studies, with fairly similar data distributions. 

 

Increased Distance between INTs Obtained with PE-TD and ACW-0 during Loss of Consciousness 

Loss of consciousness not only entails a different capacity for input processing (Northoff and Zilio, 

2022a) but also a significant change in signal properties (Walter and Hinterberger, 2022). Is it 

possible to take advantage of these differences to qualify the differences between conscious and 

unconscious subjects? We introduce a characterization of loss of consciousness as an increase in 

the discrepancy between the spatial organization of INTs probed with PE-TD and that obtained 

with ACW-0. 

To this end, we used the channel-wise linear correlation between average values of PE-TD and 

ACW-0 as a proxy measure of the spatial similarity between the two measures; then, we tested for 

statistical differences between the correlation coefficients obtained with HC and UWS. Figure 4 

shows that the linear relation between PE-TD and ACW-0 changes drastically from HC (Figure 4a) to 

UWS (Figure 4b) (RHC = 0.90; p < 0.001; RUWS = 0.55; p < 0.001). We tested for significance 

through the bootstrap distribution test described in Section 2.4. The difference in the correlation 
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coefficients was highly significant (p < 0.001): the statistical significance was confirmed and 

validated with Fisher’s z transformation test (p < 0.001). 

 

3.4 Discussion 

 

The purpose of this study was to show that the estimation of a system’s time delays through serial 

computation of permutation entropy (PE) values as a function of its embedding time delay 

parameter (which we refer to as PE-TD, permutation entropy–time delay estimation) is compatible 

with the estimation of neural activity’s time scales; additionally, we suggest a parallel utilization of 

PE-TD, which could offer some important insights into the mechanisms of consciousness as well, 

coherent with the theoretical framework of TTC. 

With this point in mind, we followed two parallel strategies. In the first part of the study, through a 

series of simulations, we demonstrated that PE-TD works well in estimating the time scale of a 

simple IAF neuron model and that it is well resistant to nonstationary regimes; furthermore, we 

showed how the performance of PE-TD in a nonlinear time-delayed model, such as the Mackey–

Glass oscillator, is affected by parametrization choice, which could hint at strategies aimed to 

improve the interpretation of PE-TD in real-world applications. 

In the second part, we employed PE-TD on a dataset consisting of resting-state hd-EEG recordings 

of DoC patients and healthy controls, demonstrating that PE-TD is able to replicate the abnormal 

prolongation of INTs during clinical loss of consciousness, as previously shown in other studies; 

additionally, we observed a divergence in the results obtained through PE-TD and ACW-0 when 

consciousness is lost, which we suggest is due to different signal properties of EEG recordings of 

people with DoCs. 

The estimation of INTs is a fundamental aspect of TTC, which posits an important role for the 

temporal structure of the brain’s spontaneous activity in shaping consciousness. A crucial 

assumption for this postulate is that the brain has adapted its features to the external 

environment’s statistical input structure, an evolutionary force driven by the limited computational 

resources of the brain and the consequential need to maximize the information extracted from the 

outside world (Rosenblith, 2013): the dynamics of its intrinsic temporal structure (e.g., INTs) make 

no exception because inputs/stimuli possess their own temporal scales (e.g., the temporal 

dimension at which the input structure changes its relevant features), and the brain “aligns” to 

these timescales for proper and efficient encoding. 

Additionally, a peculiar characteristic of TTC is the notion of “common currencies” (Northoff et al., 

2020): e.g., the dimensions of consciousness and neural activity share topographical and 

dynamical intrinsic properties. Hence, the utmost importance of estimating INTs in this theoretical 

framework encourages methodological advances to ensure the soundness of the scientific 

approach to the study of consciousness. 

In this study, we observed that our first implementation of PE-TD in a neuroscientific context 

worked surprisingly well in extracting the average time between two consecutive spikes of an IAF 
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neuron directly from its time series; therefore, we suggest that PE-TD is fit to study neural time 

scales even at a microscale level of investigation (e.g., single neurons). 

Other studies have demonstrated that PE does not require a strict assumption of stationarity of 

the underlying process (Kreuzer et al., 2014): this fact is reflected in the overall better performance 

of PE as an estimator of financial time series, as recently shown in (Huang et al., 2022). In this 

study, we present similar evidence as in (Huang et al., 2022) but within the context of a single 

spiking neuron, which helps to contextualize this informational theoretic approach to a different 

field of knowledge. Furthermore, we linked the potential cause of nonstationarity in a neural time 

series (a varying external input structure) to its effects on the behavior of a single spiking neuron. 

In cases such as delay systems, non-linear effects are non-negligible (Otto et al., 2019). For this 

reason, a measure capable of extracting the underlying temporal structure of the system of 

interest with sufficient accuracy is of utmost importance. 

We were interested in unveiling the probable causes of the differences between ACW—which is 

the standard measure for estimating time delays in neural signals—and PE-TD. Computing the 

ACW of a signal requires the computation of its autocorrelation function (ACF). ACF (and therefore 

ACW) is known to behave similarly to ordinal-based time scale quantifiers in linear conditions 

(Huang et al., 2022) and is actually a better solution when it comes to quantify linear dynamics 

(Box et al., 2016). However, most real-world systems—including the brain—have non-linear 

dynamics: as such, it is important to know the basis of divergence between these two measures. 

First, we established the minimum degree of non-linearity of a Mackey–Glass oscillator (c 

coefficient, see Section 3.2—Methods) that resulted in comparable performance between ACW-0 

and PE-TD. 

Second, we observed different behaviors of ACW-0 and PE-TD when both models’ timescales and 

the feedback strength varied. For ACW-0, the estimation error seems to decrease monotonically as 

the model’s intrinsic timescale becomes longer, achieving stable performance after a threshold 

(tau = 160). Accordingly, for the feedback strength parameter, we show an unsurprising trend 

toward higher accuracy with higher feedback values, which however can be appreciated only at 

shorter timescales. If similar results were to be shown for neural simulated data, it would suggest 

that neural populations with sufficiently strong reentrant connections and with sufficiently long 

intrinsic time signatures can be efficiently probed using ACW-0 with an acceptable estimation 

error. 

On the other hand, PE-TD displayed a different but comparable performance. The lower error 

range suggests higher accuracy of PE-TD for the estimation of timescales in the Mackey–Glass 

model; furthermore, the accuracy reaches stability at shorter values of tau, suggesting that PE-TD 

is a better fit when we assume shorter intrinsic timescales in the neural population of interest. 

With respect to feedback, we did not observe any meaningful difference with the performance of 

ACW-0. Our results are useful to informing real-world application of these two different time delay 

quantifiers; however, we do not want to advance the claim that these observations can translate 

directly to neuroscience. Further simulation studies will need to quantify the minimum values of 

connection strength and the durations of intrinsic dynamics that are acceptable for a correct time 

delay estimation. 
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While our simulations provide a first set of evidence that advances the use of PE-TD in a 

neuroscientific context, this study also advances the use of PE-TD on real-world neural data by 

replicating a series of results obtained from hd-EEG datasets that have already been probed with 

ACW-0 in past studies (Buccellato et al., 2023; Zilio et al., 2021). 

We confirm that PE-TD is able to satisfactorily reveal the established INT hierarchical distribution 

across the scalp (Golesorkhi et al., 2021a), with the high correlation observed at the channel level, 

between INTs measured by ACW-0 and PE-TD (Figure 4a). To further validate this claim, we 

confirmed the same results in a second independent dataset. A postero-anterior gradient of 

intrinsic timescales can be qualitatively appreciated by the two very similar topographical plot 

(topoplots) shown in Figure 3a,b. 

Moreover, we also replicated the same abnormal prolongation of INTs that is typically appreciated 

in different unconscious states (Buccellato et al., 2023; Zilio et al., 2021), as in the case of disorders 

of consciousness (DoCs) (Figure 3c). As an additional confirmation of the validity of these results, 

replication was not restricted to the aforementioned abnormal prolongation of INTs: we also 

observed a similar range of INT values compared to those obtained through ACW-0. Together, our 

results encourage the use of PE-TD in the investigation of human INTs as well since it produces 

outputs comparable to ACW-0. 

Altogether, these findings suggest a close, but not complete, overlap between the timescales 

estimated by PE-TD and ACW-0. This parallelism allows for an indirect link between PE-TD and the 

spectral characteristics of an EEG signal (e.g., its power spectrum density, PSD). In fact, despite a 

well-known mathematical relation between a signal’s ACF and its PSD, there is evidence of a clear 

dissociation between the timescale probed in a signal and its spectral features (Zilio et al., 2021), 

suggesting that the correspondence between the two is far from trivial: for instance, two signals 

can show a similar PSD but very different ACW values, and vice versa, two signals with the same 

timescales might have very different PSDs. In the case of PE-TD, even if there is no direct link 

between the spectral composition of the brain signals and their estimated timescales, it is 

plausible to infer a similar degree of dissociation: even if a slower spectrum (e.g., with higher 

power in the slow frequency range) is expected to produce slower INT values on average, the 

relation between the two is likely nonlinear due to the contribution of the aperiodic component 

present in neural signals. Future studies will need to shed light on this conundrum—especially in 

light of the availability of the novel methodology presented in this study. In the last section of this 

study, we advanced one step further and took advantage of the inherent differences between ACW 

and PE-TD as an instrument to gain further insight into the neurophysiological features of 

consciousness. 

The channel-wise correlation between ACW-0 and PE-TD can be thought of as a “closeness” 

measure: the higher that the correlation is, the more similar that the results obtained and their 

spatial distribution across the scalp are, while lower correlation values would signal increased 

distance between the two. With this idea in mind, we asked whether the “closeness” between 

ACW-0 and PE-TD would show a state-dependent difference when consciousness is severely 

impaired, as in unresponsive wakefulness syndrome (UWS). We observed a significant drop in the 

correlation coefficient in UWS compared to the healthy controls (HC) sample, even if the 

correlation coefficient remained moderate (but nonetheless significant). 
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How can one interpret this increased distance between ACW-0 and PE-TD when consciousness is 

lost or impaired? We suggest that the cause must be searched for in the different signal properties 

related to loss of consciousness. For instance, unconscious states have recently been characterized 

by a qualitatively distinct nonstationary attractor landscape (Galadí et al., 2021), which constrains 

the past and future states of a system. Therefore, differences in the behavior of a dynamical 

system are expected to generate differences in the properties of its time series, for instance, its 

nonstationarity. PE, as we have demonstrated, is resilient to the signal’s nonstationarities; this fact 

suggests that the increased distance between the time scales obtained with PE-TD and those 

obtained with another method, such as the ACW, might be due to increased differences in the 

signal’s nonstationary characteristics. We suggest that this characterization of different states of 

consciousness relates to the nonlinear behavior of a system and its statistical features (e.g., the 

degree of nonstationarity in its time series). This theory is consistent with many current theories of 

consciousness: for instance, the degree to which brain activity is differentiated in time is a relevant 

indicator of consciousness in the latest iterations of IIT (Koch et al., 2016), while the dynamic 

properties of the broadcasting networks are coherent with increasing nonstationarity during 

conscious access (Mashour et al., 2020). In the framework of TTC, these findings are also coherent 

with an expected poorer “dynamic repertoire” (Hudetz et al., 2015) of the spontaneous activity’s 

temporospatial structure characterizing unconscious states (Northoff and Huang, 2017; Northoff 

and Zilio, 2022a). Indeed, TTC advances the claim that consciousness does not only manifest in the 

time series data captured from the brain as neural correlates of consciousness (NCCs, (Koch et al., 

2016)), but it is also dependent on the preservation of baseline conditions that are necessary—but 

not sufficient—for the actuation of consciousness, summarized in the notion of neural 

predisposing factors of consciousness (NPCs) (Northoff and Lamme, 2020; Northoff and Zilio, 

2022a). For instance, in this theoretical framework, NPC candidates are represented by the “scale-

freeness” of the brain’s spontaneous activity (Zhang et al., 2018; Zilio et al., 2021) and the richness 

of its intrinsic dynamics (Carhart-Harris, 2018; Casali et al., 2013; Tononi, 1998), which are known 

properties of nonlinear physical systems: a shift (or disruption) in these properties is expected to 

drive unexpected consequences for their signals’ statistical properties (Petelczyc and Czechowski, 

2023). Therefore, this disruption of nonlinear properties in the brain’s spontaneous activity and its 

effects on the statistical features of the time series that it generates are tied to potential 

differences in nonstationarity regimes between conscious and unconscious states, explaining the 

ACW-PE-TD distance that we observed in UWS. However, this theory requires strong experimental 

evidence; thus, future studies are warranted to investigate this particular interplay between these 

different TTC-based mechanisms/dimensions of consciousness. 

 

Limitations 

Thus far, we have provided evidence for the use of ordinal quantifiers (PE) to estimate neural time 

scales. However, a recent study (Soriano and Zunino, 2021) showed that the use of ordinal 

statistics still has room for improvement, e.g., using weighted permutation entropy (PE) to account 

for amplitude. In this study—which to our knowledge is the first neuroscientific example of the use 

of ordinal quantifiers for time-delay estimation—we proceeded with PE because of how better 

understood it is in comparison with its more recent variants. 
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PE-TD, in its first implementation, only takes the absolute minimum of the PE vs. time delay graph 

as its estimated INT. We followed these heuristics of the novelty of this approach in neuroscience 

and, furthermore, to allow for an approachable comparison with the ACW. However, we do not 

suggest that the absolute minimum is always the relevant time scale of an EEG signal, as multiple 

time scales are to be expected, even in the same brain population: this fact is already implied in 

the way that INTs are extracted through ACW, which has multiple versions (Wolff et al., 2022) that 

are believed to capture different neural time scales. Pragmatically, the high correlation between 

PE-TD and ACW-0 in our healthy subjects suggests that, at least for the preliminary use of PE-TD, it 

is an appropriate choice; however, future studies must include the investigation of other local 

minima for the relation of different minima to neural/behavioral events. 

On the other hand, along with the replication of the abnormally prolonged average INT values in 

DoCs obtained through ACW (Buccellato et al., 2023; Zilio et al., 2021) we observe a similar lack of 

significance in the difference between the UWS and MCS diagnostic groups, as already shown in 

(Buccellato et al., 2023). Because of the current clinical challenge posed by the presence of covert 

consciousness (Bayne et al., 2016; Owen et al., 2006), we argue that the lack of predictive power of 

average INT values to distinguish between different states of consciousness, even with PE-TD, is 

not an intrinsic weakness of this approach but rather a symptom of the discrepancy between 

behavioral responsiveness and consciousness itself (Hermann et al., 2021). Therefore, we 

encourage further studies, which are needed to refine the study of INTs and to improve on its 

potential as a diagnostic/prognostic marker of conscious states. 

 

 

3.5 Conclusions 

 

Intrinsic neural timescales (INTs) are a remarkable feature of the human brain: they are related to 

temporal input processing and, in the theoretical framework of TTC, allow for adequate conscious 

states through their interaction with the environment—namely “temporospatial alignment”. 

However, INTs are not known a priori and need to be estimated from neurophysiological data. In 

this paper, we have advanced the use of permutation entropy (PE) to this end, a methodology that 

is already applied to estimate time delays in different fields of physics. First, we tested the 

suitability of this methodology for its use on neural data with synthetic time series, demonstrating 

its resistance to extreme regimes of nonstationarity and providing some heuristics for interpreting 

output values. Moreover, our empirical investigation motivates the use of PE-TD in hd-EEG data, 

replicating previous results and yielding high similarity with values obtained with previous 

standard methodologies (ACW-0). Further, we also observed an increased dissimilarity between 

INTs probed with PE-TD and with ACW-0 in clinical loss of consciousness: we suggest that this 

finding is a first step toward a deeper characterization of different states of consciousness. In 

conclusion, we demonstrated that PE-TD is a valid methodology for the measurement of INTs from 

resting-state EEG data and we further propose that, because of its characteristic resistance to 

nonstationarity, it could be even helpful to better discriminate between different state of 

consciousness. 
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Chapter 4 

The following article is currently under submission for publication. 

 

 

 

4. Dynamic repertoire of Intrinsic Neural Timescales becomes poorer as 

consciousness is lost – evidence from M/EEG resting state recordings 

 

 

Abstract 

The brain’s spontaneous activity is highly organized and exhibits complex spatiotemporal 

dynamics; among these basic features, the brain displays intrinsic durations of its own activity – 

Intrinsic Neural Timescales (INTs). INTs are hierarchically organized, with shorter timescales in 

unimodal areas and longer in multimodal areas. While much is known about INTs and especially 

their topographic properties and their dynamics remain yet to be investigated. Specifically, it is not 

known whether the unimodal multimodal hierarchical organization undergoes by itself recurrent 

changes, consistent with the existence of a dynamic repertoire of INT topographic states, and 

whether the richness of this repertoire is related to consciousness. To this aim, we characterized 

recurrent dynamic INT states by clustering the dynamic ACW-0 (dACW-0) matrices of both source-

reconstructed HCP resting-state MEG data and of a hd-EEG (256 channels) resting-state dataset 

composed of healthy individuals and people with disorders of consciousness (DoCs). We found 

that the dynamic transitions between different INT states, which exhibited changing degrees of 

both hierarchical and non-hierarchical topographies, displayed a nontrivial non-random behavior, 

with evidence of Markov-based memory effects. Unlike in healthy subjects, this memory property 

was disrupted in DoC patients. Together, our data show the richness of the dynamic repertoire of 

INT topographic states in the healthy awake state which, given our DoC data, is key in maintaining 

the level or state of consciousness. This lends empirical support to the Temporospatial theory of 

consciousness (TTC), and may also provide a biomarker for clinical differential diagnosis of DoCs. 
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4.1 Introduction 

 

At a superficial glance, understanding consciousness does not seem to require enormous efforts, 

given how familiar we are with its subjective aspects. However, its true essence remains elusive: 

considered one of the biggest unsolved questions in science, it’s remarkable that a universally 

accepted definition of consciousness is still not a reality (Seth, 2018). 

The consequences of this scientific conundrum resonate outside of theoretical debates. For 

instance, one of the most significant challenges in the clinical world is the assessment of residual 

consciousness in what is known as disorders of consciousness (DoCs) (Giacino et al., 2014), which 

are clinical states characterized by reduced or total loss of consciousness and are due to acquired 

severe brain injuries. The taxonomy of DoC is still under debate (Bayne et al., 2016; Golden et al., 

2024), but it can be roughly described with two main diagnostic categories: the unresponsive 

wakefulness syndrome (UWS) (the European Task Force on Disorders of Consciousness et al., 2010) 

and the minimally conscious state (MCS) (Giacino et al., 2002). Currently, clinicians rely on 

behavioral evaluations at the bedside to infer levels of consciousness in this population, primarily 

focusing on the observation of residual non-reflexive behavior as a proxy to consciousness 

(Schnakers, 2020). Nevertheless, consciousness levels often dissociate from behavioral 

responsiveness, which further complicates the clinical frame (Schiff, 2015), resulting in a high 

misdiagnosis rate which ranges around 30-40% (Schnakers et al., 2009; Wang et al., 2020). 

Henceforth, there is a burgeoning interest in developing a theory-driven objective index of 

consciousness (Gazzaniga and Mangun, 2014), based on neuroimaging or electrophysiological 

tools. Among recent proposal, the ones that identify a promising candidate for a diagnostic marker 

of consciousness in the dynamic features of the brain’s activity at rest (Barttfeld et al., 2015) align 

well with theoretical frameworks that emphasize the role of the brain’s spontaneous activity for 

consciousness (Carhart-Harris, 2018; Fingelkurts et al., 2010; Northoff and Lamme, 2020; Northoff 

and Zilio, 2022a). 

In fact, neural activity is characterized by complex spatiotemporal patterns that are inherently 

dynamic – i.e. they are not static and vary with time (Hadriche et al., 2013; Li et al., 2022), thus 

reflecting what has been described as “dynamic repertoire” (Hadriche et al., 2013; Hudetz et al., 

2015; McIntosh and Jirsa, 2019). It has been hypothesized that the underlying causes of this 

dynamic behavior are related to the fact that the brain operates in a critical regime – i.e. at the 

edge between order and chaos (Tognoli and Kelso, 2014). Within this framework, neural dynamics 

are modelled as a trajectory drawn while exploring a state space composed of a fixed set of pre-

defined macrostates – spatially extended configurations – which are short-lived but preserve a 

degree of stability over time (Heiney et al., 2021). One can then propose a “dynamic repertoire” 

for the brain, which describes the set of macrostates available to the brain for exploration 

(Hadriche et al., 2013; Hudetz et al., 2015). 

However, matters are complicated by two methodological constraints: i) we currently don’t have 

access to the real dynamic repertoire of the brain; ii) the chances that the true number of possible 

brain configurations would make this an intractable problem are very high.  Dealing with the high 

dimensionality of this problem has been addressed through strategies of dimensionality reduction. 

Notably, the application of dimensionality reduction algorithms, such as the k-means algorithm 
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(Hartigan and Wong, 1979), for partitioning dynamic functional connectivity (dFC) matrices into 

clusters, has revealed that resting-state networks (RSNs) (Raichle, 2015) undergo continuous 

reorganization even at brief timescales and in the absence of overt stimulation, task demands, or 

most intriguingly, across different states of consciousness (Britz et al., 2010; Cabral et al., 2017a; 

Cavanna et al., 2018; Di and Biswal, 2015; Park and Friston, 2013; Tagliazucchi et al., 2012). This 

dynamic view of the brain is not specific to RSNs and has been extended to several other 

spatiotemporal patterns of the brain’s activity, leading to the current notion of “dynamic brain 

states” (Li et al., 2022): a series of “spatially distributed patterns”, which are explored by the brain 

in a non-trivial manner reflecting its capacity to process information efficiently (Hoel et al., 2016). 

Characterizing the dynamic repertoire of basic neural features has to potential to deepen our 

understanding of the brain’s intrinsic dynamics and how they relate to consciousness. Even if k-

means clustering is not the only algorithm that has been employed to this aim (we refer the reader 

to (Cavanna et al., 2018) for an overview on other strategies, such as symbolization procedures, 

used in dFC studies), this strategy has allowed to draw a link between shifts in how the brain 

spontaneously rearranges its functional networks and, among others, changes in cognitive 

performance (Cabral et al., 2017b; Gonzalez-Castillo et al., 2019), drug induced alteration of 

consciousness levels (Li et al., 2022; Lord et al., 2019) and, most fittingly to the aim of this study, 

differences in states of consciousness (Cavanna et al., 2018). The latter observation is consistent 

with theoretical proposals such as the “dynamic core hypothesis” of consciousness (Edelman et al., 

2011; Tononi, 1998): the dynamic core is assumed to be a minimally sufficient network for 

consciousness which coordinates the bidirectional flux of information from other brain areas to 

itself, and its dynamic reshaping is also assumed to be a basic property of the conscious brain. In 

turn, a reduction in the richness of this dynamic process is posited to yield a diminished quality of 

consciousness - which is currently being supported by increasing experimental evidence (Barttfeld 

et al., 2015; Hudetz et al., 2015; Hutchison et al., 2014; Kafashan et al., 2016; Li et al., 2022; 

Mashour and Hudetz, 2018). 

However, nothing is currently known about the dynamics of a different intrinsic property of the 

brain: the timescales (or durations) of its own activity – Intrinsic Neural Timescales (INTs) 

(Golesorkhi et al., 2021b; Wolff et al., 2022). Across cortical and subcortical networks, INTs are 

distributed in a hierarchical way (Demirtaş et al., 2019; Honey et al., 2012; Murray et al., 2014), 

often codified as a “core-periphery” organization (Golesorkhi et al., 2021a), with longer timescales 

in multimodal, higher-order brain areas and lower durations on unimodal, lower-order areas: this 

suggests a fundamental role of INTs for temporal processing mechanisms such as temporal 

integration and segregation (Wolff et al., 2022), forming a basic computational principle of the 

brain that shapes cognition in multiple ways. Furthermore, INTs serve as a crucial facilitator of 

consciousness in the Temporospatial Theory of Consciousness (TTC) (Northoff and Huang, 2017; 

Northoff and Zilio, 2022a). TTC posits that INTs enable consciousness by allowing the brain's 

dynamics to “align” or synchronize to the timescales of its environment; moreover, it also suggests 

that a rich “repertoire” of timescales allows for better alignment, forming the basis of healthier 

consciousness levels and a richer phenomenology. However, studies to date have never 

investigated INTs in a dynamic framework, which leaves open many questions around its dynamic 

behavior. Growing evidence shows that a disruption of the average INT durations is indeed related 

to diminished levels of consciousness (Buccellato et al., 2023; Huang et al., 2018; Zilio et al., 2021), 
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but there is, to our knowledge, no literature which reports evidence of a dynamic repertoire of 

INTs and its association with consciousness.  

 

Does the brain display a dynamic repertoire of INTs? And, if so, is a poorer dynamic INT repertoire 

related to lower level or state of consciousness, as postulated  by TTC? Our investigation followed a 

dual strategy. Initially, we utilized MEG resting-state recordings from the open access Human 

Connectome Project dataset (Van Essen et al., 2013) to validate the approach proposed in this 

study; more specifically, we aimed at determining whether clustering algorithms could reveal 

spontaneous dynamic reorganization over time in the spatial organization of INTs across the cortex 

of healthy fully awake subjects. In fact, the use of source-reconstructed MEG data offers the 

opportunity of enhanced spatial resolution, enabling a comparison of the dynamic INT states' 

topographic properties with established maps from unrelated studies but indexed in the same 

coordinate space. This allowed us to explore the dynamic properties of the time series describing 

the transition between dynamic INT topographies. Secondly, we employed a high-density EEG (256 

channels) dataset, which included both healthy conscious subjects and individuals with disorders 

of consciousness (DoC). In this second step, the objective was assess whether disruptions in these 

dynamic features – e.g. a diminished dynamic repertoire - were related to loss of consciousness. 

 

 

4.2 Methods 

 

 

4.2.1 Data 

 

4.2.1.1 MEG Data Acquisition and Experimental Details 

 

The open access resting-state (rs) magnetoencephalogram (MEG) data from the Human 

Connectome Project (HCP) repository was used  in the first section of this study (Larson-Prior et al., 

2013; Van Essen et al., 2013, 2012). 
The dataset used in this study consisted of 89 age and sex matched subjects; during each 5 

minutes resting-state scan, subjects were instructed to lie, with eyes open, while a fixation cross 

was presented on a screen. Each subject underwent three consecutive resting-state recordings of 

the same length. Further details, about the subject population demographics and the acquisition 

parameters, can be found in (Larson-Prior et al., 2013). 
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4.2.1.2 MEG Preprocessing 

 

We used the standard preprocessing HCP  pipeline data from HCP (specifically, at the rmegpreproc 

stage) (Larson-Prior et al., 2013). Briefly, channels correlating weakly in their proximities and with a 

high variance ratio were deemed as noisy and removed; non-neural and artifactual components 

(eye blinks, muscle or sensor artifacts) were removed, on the basis of a semi-automatic ICA 

procedure. Differently from the standard HCP pipeline, bad segments that were identified on z-

scored amplitude. To avoid artifacts related to signal temporal discontinuity, flatline channels and 

muscle artifacts were linearly interpolated instead of removed. 

 

4.2.1.3 Source reconstruction 

 

Source reconstruction was obtained following the icamne step of the standard HCP processing 

pipeline; ICs were already obtained at the icaclass step. At this level, independent component 

decomposition is repeated iteratively with different initial conditions, selecting as the best 

decomposition the iteration with the lowest artifact residual and largest number of brain 

components for the following processing steps. The icamne procedure applies weighted minimum 

norm estimation (wMNE) to project sensor maps of the brain ICs into a source space, consisting of 

8004 vertices individually registered on the surface cortical sheets. 

Eventually, the data was spatially interpolated to match the HCP-MMP parcellation atlas (360 

parcels) (Glasser et al., 2016), applying the ft_virtualchannel function from the MATLAB toolbox 

fieldtrip (Oostenveld et al., 2011) which uses singular value decomposition (SVD) to obtain a time 

series for each parcel. 

The template parcels were further subdivided into 12 networks, following the network 

categorization proposed in (Ito et al., 2020) (Visual1, Visual2, Auditory, Somatomotor, Dorsal 

Attention, Posterior Multimodal, Ventral Multimodal, Orbito Affective, Language, Cingulo 

Opercular, FPC, and DMN). To obtain the core-periphery organization, as in the aforementioned 

study, Visual1, Visual2, Auditory, and Somatomotor regions were assigned as belonging to the 

periphery, and the rest to the core. 

 

4.2.1.4 EEG data acquisition and experimental details 

 

Eighty-one individuals with DoC (nUWS = 39; nMCS = 42; mean age = 46.65 ± 15.89 years old; sex-ratio 

= 2.24; etiology: stroke = 43; anoxia = 7; traumatic brain injury = 31) were recorded in resting 
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state—at bedside—for 5 min using a Geodesics system (Ges300, EGI, Eugene, OR, USA) and a 256-

channel electrode cap (HydroCel 130, EGI, Eugene, OR, USA) (following 10–20 international 

systems). Standard systematic procedures, such as the Arousal Facilitation Protocol (Giacino et al., 

2004), were followed to ensure high wakefulness and arousal levels in the participants undergoing 

the recording session. To avoid interference related to medication, examiners did not administer 

any sedative agents in the 24-h period that preceded the recording session. The clinical 

assessment was performed on admission, through the Glasgow Coma Scale (GCS) (Teasdale and 

Jennett, 1974), while the differential diagnosis was carried by trained clinicians by repeatedly 

applying the JFK Coma Recovery Scale–Revised (CRS-R) (Giacino et al., 2004), selecting the best 

total score over all assessments. Additionally, a control sample of 44 healthy controls (HC) (age 

31.3 ± 16.1 years) underwent a 5-min resting-state hd-EEG recording session, recorded with the 

same 256-channel system (GES 300, Electrical Geodesics, Inc., USA). Healthy participants were 

asked to lie on the bed and keep their eyes open to mirror the EEG recording of the DoC sample. 

EEG data were re-referenced online to Cz and acquired at a sampling rate of 1000 Hz, while the 

impedance of all electrodes was kept to less than 20 KΩ. Further details about the datasets used in 

this study can be found in (Zilio et al., 2021). 

4.2.1.5 EEG pre-processing 

 

Pre-processing and data analysis (including statistical analysis) were carried out with custom 

MATLAB software (The MathWorks, 2019b) and the EEGLAB toolbox (Delorme and Makeig, 2004). 

An identical pre-processing pipeline was used for all EEG datasets used in this study. First, data 

were resampled at 250 Hz; then, a band-pass FIR filter (Hamming window) between 0.5 (order = 

1650) and 40 Hz (order = 750) was applied to the EEG data at the channel level. Noisy channels  

were rejected using a standard semi-automatic procedure. Criteria for rejection were: removal of 

flatline channels (channels inactive for more than 5 s); weak channel correlation (with a threshold 

at r = 0.8); low-frequency drifts; noisy channel activity; and shortly-lived bursts unrelated to neural 

activity (threshold at sd = 5 relative to baseline). This procedure resulted in the removal of 9 

channels on average per subject. Next, bad channels were interpolated with a spherical method, 

and channel activity was re-referenced to the common average reference (CAR). 

Artifactual activity, such as that related to muscular noise, eye movements or heart activity were 

identified by independent component analysis (ICA), using the infomax ICA algorithm; 

subsequently, the identified ICs were removed from the signal. Data rank was reduced by dropping 

the rereference channel before the ICA procedure. 

 

4.2.2 Dynamic ACW-0  

 

The auto-correlation window (ACW) is the standard method used to probe INTs (Golesorkhi et al., 

2021b; Honey et al., 2012; Wolff et al., 2022); the method is based on the computation of the 

signal’s  autocorrelation function (ACF), which is obtained correlating the signal with itself at 

increasing time lags. 
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Here, we computed the ACW-0, which is parametrized as the first time lag at which the temporal 

auto-correlation function (ACF) of the EEG time series reaches its zero value (Golesorkhi et al., 

2021a). 

As we were interested in the dynamics of INTs, the ACW-0 was computed using a sliding-window 

approach (Lechner and Northoff, 2023) on all M/EEG datasets (window size = 8 s; step size = 10%), 

resulting in a time series of 366 time points for each recording. 

 These sliding window parameters, especially the window size, were chosen according to evidence 

that shows that dynamic connectivity measures, which are tightly related to INTs (Chaudhuri et al., 

2015), show increased reliability when probed with sliding windows of a comparable duration 

(Fraschini et al., 2016; Sorrentino et al., 2023). 

 

4.2.3 k-means clustering 

 

The k-means algorithm is an established unsupervised learning algorithm which seeks to cluster 

data in order to partition the input data into a pre-established k number of groups (clusters). After 

the clustering process a low dimensional representation of the data is obtained, and each n 

observation will belong to one and only one cluster. 

As we were interested in obtaining a discrete set of states dynamic INT states, we used MATLAB’s 

kmeans function to partition dynamic ACW-0 (dACW-0) matrices into the most recurrent 

topographic INT distributions across the subjects’ scalp. First, the subjects’ dynamic ACW-0 

matrices were concatenated horizontally, to obtain a channelsXwindows matrix, which was 

consequently normalized (min-max feature scaling) before the clustering procedure. Consequently, 

the k-means++ algorithm (Association for Computing Machinery and Society for Industrial and 

Applied Mathematics, 2007, pp. 1027–1035) was iteratively run 25 times, with k ranging from 2 to 

30. The k-means procedure can vary across iterations, since it starts by randomly assigning k 

centroids at each iterations; therefore, we ran the clustering procedure multiple times to avoid the 

interference of random seeds. We applied both squared Euclidian distance and cityblock (L1 

distance) as distance metrics. The optimization criterion applied to select the best number of k 

across all iterations consisted in choosing the knee point of the k vs within-cluster variance graph, 

which ensured choosing the highest variance explained with the lowest number of k clusters. From 

this step on, the resulting clusters were treated as a surrogate of topographic INT states. 

Once the best number of clusters was selected, each INT sliding window was assigned as belonging 

to a state based on a competitive back-fitting procedure, similarly to (Murray et al., 2008): first, 

each window was spatially correlated to all k map states, and then the state was assigned based on 

the highest spatial correlation value obtained. This yielded, for each subject, a time series of the 

same temporal resolution of its original dACW-0 time series, representing the temporal succession 

of states as a function of time. 
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4.2.4 Core-periphery organization 

 

To probe for the presence of a degree of hierarchical organization in the MEG INT topographic 

states, parcel-level INT values were spatially correlated with a myelination index map obtained 

from (Rosen and Halgren, 2021). This map is obtained from HCP diffusion MRI (dMRI) data from 

over a thousand healthy individuals, and indexes the average density of T1w/T2w at each parcel. 

To ensure spatial correlation, the myelination map followed the same parcellation scheme (360 

parcels) as the source-reconstructed MEG data. 

To obtain a summary index of the core-periphery organization, parcels were further subdivided 

into the 12-networks categorization suggested in (Ito et al., 2020), and INT values averaged over all 

parcels belonging to the same network. 

 

4.2.5 Permutation Entropy 

 

Randomness (unpredictability) in the INT states time series was probed by means of Permutation 

Entropy (PE) (Bandt and Pompe, 2002). PE estimates the amount of temporal information in a time 

series by computing a probability distribution function on the basis of a symbolization procedure 

described in (Bandt and Pompe, 2002). PE values were computed varying the embedding 

dimension parameter D (from D = 2 to D = 7) and the embedding delay tau (from tau = 1 to tau = 

4). Resulting PE values were normalized to ensure comparability across subjects. 

In this study, we used the PE function from the EntropyHub open-source MATLAB toolbox (Flood 

and Grimm, 2021). 

 

4.2.6 Markov properties 

 

Statistical properties of the INT states time series were investigated by modeling them as Markov 

Chains (Gagniuc, 2017) and subsequently testing these models for 0-th and 1-st order 

Markovianity. Testing these hypotheses yields knowledge about the temporal dependences in the 

states’ time series: if the system under exam only holds memory of the previous state when 

transitioning into the current one, then its time series holds a property known as “Markovianity”, 

and it can be modeled as a 1st order Markov Chain. If this property does not hold – current states 

do not depend on previous states – then we are observing a 0th order Markov Chain. 

First, the empirical transition matrix T was obtained. To statistically test for the 0-th and 1st Markov 

property, we used a log-likelihood ratio test, which compared the log-likelihood LLm of the model 

order being tested and the log-likelihood LLn at one order higher: for instance, to test for 0th order 

Markovianity, 0th and 1st order log-likelihoods were compared, 1st and 2nd order to test for 1st order 

Markovianity. 
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We assumed that the likelihood ratio test statistics followed a chi squared distribution with 

degrees of freedom df  

𝑑𝑓 = (𝑛𝑠𝑚 − 𝑛𝑠𝑚) × (𝑛𝑠 − 1)  

where ns is the number of states and m is the Markov order being tested. Consequently, p-values 

were defined as  

𝑝 = 1 − (−2 × (𝐿𝐿𝑚 − 𝐿𝐿𝑛) 

with threshold for significance at 𝑎 = 0.05. 

 

4.2.7 Exponential decay fitting 

 

The memory property of the dynamic INT state transition time series was probed in a series of 

steps. First, we computing a version of the autocorrelation function which suited better ordinal 

data: we pursued this aim by computing Cramer’s V (Bergsma, 2013) on a copy of the signal at 

different time lags. The choice of Cramer’s V, instead of the more classic ACF, was guided by the 

fact that the time series is made of ordinal variable, and Pearson’s correlation is defined on 

continuous data. 

 

The decay rate was obtained by fitting an exponential decay of the form 

 

𝐷 = 𝐴 ×  𝑒−𝑑𝑟 ×𝑥 + 𝐶 

 

to the Cramer’s V categorical autocorrelation time series (where A and C define the lower and 

upper bound of the fitted function, dr is the decay rate and x is the time lag). Since this function 

displayed an exponential decay only in its first portion, we performed the fitting only on a 

truncated version of it (until lag = 30). The fit was performed through the curve_fit function from 

the scipy Python library. 

 

4.2.8 Statistics 

 

Summary statistics of the repertoire of INT topographic states were indexed at subject level and 

consisted of the average state coverage (in percentages), which describes the relative amount of 

time spent in one particular state with respect to the total duration of the recording. 
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A spatial permutation “spin test” was applied to address the correspondence problem faced when 

correlating two cortical maps (Alexander-Bloch et al., 2018). To correct family-wise error rate when 

performing multiple statistical tests, the Holm-Bonferroni method was applied.  

To compare PE values at group level, we applied the non-parametric Wilcoxon rank-sum test with 

significance threshold at 5%. Spatial correlation, in this study, corresponds to computing a linear 

Pearson’s r. 

The null hypothesis of equal means in the decay rate in the DoC sample was tested with the non-

parametric Alexander-Govern approximation test. Post-hoc pairwise comparisons were performed 

with the Wilcoxon rank-sum test. 

To check for significance on the group states’ properties, the INT state time series were temporally 

scrambled iteratively (1000 repetitions each) to produce a test distribution: significance was set at 

a = 0.05. 

 

 

4.3.Results 

 

4.3.1 MEG 

 

4.3.1.1 Basic topographic features of dynamic INT state properties 

 

The time series representing the dynamics of the intrinsic timescales displayed by the MEG resting 

state recordings were subject to the clustering procedure described in the previous section. The 

number of INT topographic maps that described best the data, according to the criterion described 

in the methods section, was ten (ns = 10), which was then selected for further analysis. The ten 

dynamic INT maps are shown in Figure 1. 
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Figure 4.1. MEG topographic plots of the ten states describing the INT dynamic repertoire, 

obtained with k-means clustering. Dynamic INT states, which we define as the recurrent 

topographic patterns of INTs found after clustering the dynamic ACW-0 matrices, are here pictured 

and numbered from one to ten. These states are not ranked according to any arbitrary principle, 

and therefore the number assigned to each state does not identify them with any particular 

property: however, we will refer to particular states using the numerology assigned here. Colormap 

is organized as following: in red, lower values of INT; in yellow, lower values of INTs; black indicates 

very low INT values. INT values range from 0 to 1, as data is normalized before clustering. 

 

A few qualitative properties of the dynamic INT states found here are already evident from eye 

inspection. First, while in MEG there seems to be an overall modest level of heterogeneity in the 

spatial distribution of INTs, we can infer the presence of two main categories: states with a  

hierarchical distribution of timescales – i.e. following a spatial gradient from shorter to longer 

durations – and, on the other hand, states with a more homogeneous scalp distribution of INT 

durations.  

Together, we observe a hierarchical organization of INTs, which is in line with recent findings (Chen 

et al., 2015; Golesorkhi et al., 2021a; Hasson et al., 2008; Honey et al., 2012). However, we extend 

these findings showing changes in this topography which have, to the best of our knowledge, not 

been observed before in the literature. Importantly, we stress the fact that in none of the previous 

studies there has been any dynamic analysis of INT topographic states. Furthermore, we observe 

that motor areas usually display the lowest INT values in almost all of the 10 states displayed here; 

this has already been observed in INT topography of humans, primates (Golesorkhi et al., 2021a; 

Murray et al., 2014) and most recently in mice too (Çatal et al., “Brain-wide intrinsic neural 

timescales reflect behavioral patterns”, under review). 
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Do these observations carry any topographic significance? To test the claim that only some of the 

dynamic INT states follow a significant hierarchy, we spatially correlated these states with a 

myelination index map (T1w/T2w ratio). The degree of myelination displays a gradient that follows 

a cortical hierarchy (low myelination in higher order areas and viceversa), and is thus used as a 

proxy to map the hierarchical properties of the cortical features overall. Results can be found in 

Table 1. 

 

 

 

 

 

 

 

 

k p-value (spin test) Pearson’s R 

1 0.21178821178821178 -0.39351949732122415 
2 0.2057942057942058 -0.3361540855510716 
3 0.5294705294705294 -0.19759643207123512 
4 0.030969030969030968 -0.5394107979228234 
5 0.46253746253746253 -0.224267676962528 
6 0.0999000999000999 -0.4341370946792285 
7 0.3786213786213786 -0.2819697682852491 
8 0.014985014985014986 -0.5842701975581087 
9 0.002997002997002997 -0.6440353192025658 
10 0.014985014985014986 -0.5898422570133 

 

Table 4.1. Spatial correlations between the kth INT topographic states and the myelination index 

in MEG. In bold, the correlations that resulted significant after testing for significance. p-values are 

obtained after a permutation “spin-test” and corrected for multiple comparisons. 

 

All maps correlated negatively with the myelination index, which substantiates the use of the k-

means algorithm: in fact, the myelination index is expected to be lower, on average, in higher order 

areas, and INT durations usually get longer in those same areas. This strongly supports the validity 

of our method. Only four out of the ten maps (maps 4, 8, 9 and 10) survived the spatial 

permutation test (“spin-test”), which is coherent with a dynamic perspective on INTs undergoing 

spontaneous reorganization and rearrangements of their topographical distribution as a function 

of time. 
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Further, we tested for a core-periphery organization (Golesorkhi et al., 2021a) in all states by 

dividing the parcels into the 12-networks organization described in the Methods section (Chapter 

2.4). A core-periphery ratio (C/P ratio) index was obtained by dividing the average INT duration of 

the kth map’s core regions by the duration of the periphery regions: the higher the C/P ratio, the 

more pronounced the core-periphery organization is assumed to be. Results are displayed in Table 

2. 

A linear relation between the degree of cortical hierarchy and the C/P ratio arises when comparing 

Table 1 and Table 2: the higher the degree of hierarchy in the state under examination, the longer 

(on average) the intrinsic timescales of that state in the core regions, which further supports the 

validity of our methodology. 

 

 

 

 

 

k C/P ratio 

1 1.11 
2 1.13 
3 1.0 
4 1.67 
5 1.2 
6 1.2 
7 1.13 
8 1.98 
9 2.2 
10 1.87 

 

Table 4.2. Core-periphery (C/P) ratio index of the kth INT topographic state. 

 

Each state’s average coverage (%), describing the “syntax” (Von Wegner et al., 2017) properties of 

the dynamic INT repertoire, is shown in Supplementary Figure 2.  

Concluding this section, we showed that the pairwise within-subject correlation between the 

average time spent in a state (e.g. 30 windows in state 2, 15 in state 1, etc…) across all three 

resting-state recordings is, on average, fairly high (r12 = 0.82; r13 = 0.76; r23 = 0.78), suggesting that 

the relative percentage of time exploring these states – the individual’s dynamic repertoire – is 

relatively stable across recordings. 
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4.3.1.2 Markov properties and Permutation Entropy 

 

A time series describing transitions from state to state can be modelled as a Markov Chain. To test 

whether our time series followed Markovian properties to some degree, and hence generated by a 

non-random process (Ross, 1981), we tested for 0th and 1st order Markovianity. The null hypothesis 

for 0th order Markovianity was rejected for all subject (p < 0.001). The null hypothesis, instead, was 

accepted when testing for 1st order Markovianity; within the context of the statistical test used 

here, this result indicates that the data is more likely to be explained by a 1st order Markov chain 

rather than by a 2nd order Markov chain.  

Having assessed the statistical properties of the transitions between INT topographies, we also 

investigated the amount of temporal information contained in these time series. To this end, we 

computed Permutation Entropy (PE) on our MEG sample (D = 3; tau = 1). Average sample values 

(mean = 0.38 ; std = 0.12) are consistent with a non-random system. Backing up the latter claim, 

the average PE values of the temporally shuffled INT state time series (mean = 0.91) confirm that, 

in this sample, lower PE values do not arise as a result of chance. 

 

 

4.3.2 EEG 

 

4.3.2.1 Basic topographic features of dynamic INT states  

 

Having checked for the validity of using k-means clustering to obtain a set of maps describing the 

dynamics of INTs in MEG data, we proceeded to testing the hypothesis, as posited by TTC, that the 

brain’s dynamic INT repertoire is fundamental for consciousness – i.e. it gets poorer when 

consciousness is lost (Northoff and Huang, 2017; Northoff and Zilio, 2022a; Wolff et al., 2022). To 

test this hypothesis, we applied the same procedure to a hd-EEG dataset consisting of DoC 

patients. 

Differently to what we have seen in MEG, our EEG sample resulted in k = 7 states which described 

best the variability of the data. Therefore, we proceeded with this number for further analysis; the 

maps are shown in Figure 2. 
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Figure 4.2. EEG topographic plots of the ten states describing the INT dynamic repertoire, 

obtained with k-means clustering. As with the dynamic INT states found in MEG (see Fig. 1), we do 

not present these states with any form of ranking. Colormap is organized as following: in red, higher 

values of INT; in blue, lower values of INTs; yellow tints indicate intermediate values. INT values 

range from 0 to 1, as data is normalized before clustering. 

 

Regarding the most frequent state explored on average in the different subgroups (Supplementary 

Figure 4), we can appreciate significant differences especially between the healthy sample (HC) 

and the most severe diagnoses of loss of consciousness (UWS). Healthy subjects explored on 

average state 1 and 7 more frequently: both states correspond qualitatively with the same spatial 

gradient which is appreciable in “static” ACW topographies (Zilio et al., 2021) and in our MEG data 

too. On the other hand, while the MCS group spent more time on state 2, which resembles a more 

nuanced version of a hierarchical topography, the UWS group is instead characterized by the 

overrepresentation of state 6, which doesn’t apparently show any spatial structure whatsoever. 

The very low INT values on the right hemisphere might be a direct result of brain lesions 

overrepresented in our UWS sample. 

 

 

4.3.2.2 Markov properties and Permutation Entropy 

 

Is a poorer INT dynamic repertoire associated with loss of consciousness? To address this question, 

we first assessed Markov properties of the INT states time series separately for our three EEG 

groups, similarly to what we have shown in section 3.2. 
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In all groups, both conscious and unconscious, no subject fulfilled 0th order Markovianity (p < 

0.001), while all groups could be better described by a 1st order Markov chain (p < 0.001). 

Therefore, even in the most severe cases of loss of consciousness, the brain seems to retain a 

structure to the transition between states in its INT dynamic repertoire. 

In a successive step, we probed the amount of temporal information by computing PE (D = 3, tau = 

1) in all groups and compared them (Figure 4a). A non-parametric statistical test indicated that 

populations differed significantly (p < 0.05): post-hoc comparisons revealed a significant difference 

between the HC and the UWS group (mean HC = 0.35, std HC = 0.13; mean UWS = 0.46, std UWS = 

0.0985; p < 0.01) and the HC and the MCS group (mean MCS = 0.44, std MCS = 0.10; p < 0.01), but 

not between the UWS and MCS group (p > 0.05). The two DoC groups showed significantly higher 

PE values when compared to healthy conscious subjects, which is consistent with a more random 

behavior of the transitions between INT topographies over time. 

Temporally shuffling the transition time series resulted in very highly disordered behavior (mean = 

0.92), as in the MEG dataset. 

 

 

4.3.2.3 Memory effects of the dynamic INT transition time series 

 

Lastly, we probed the memory properties of the transitions between INT states. 

A system which displays memory may display an autocorrelation function (ACF) that decays 

exponentially as a function of time lags. If that applies, one can estimate the degree of memory by 

fitting an exponential curve to the ACF, extracting the decay rate parameter of the resulting fit: a 

lower decay rate corresponds to a longer temporal reach on the influence of a perturbation on the 

examined system – i.e. more memory – and viceversa. 

First, we computed Cramer’s V as a function of increasing time lags as a surrogate of the ACF; in 

this particular case, our time series are not composed of continuous variables, and therefore 

Pearson correlation could not apply. An example of a single subject’s Auto-Cramer’s V graph can be 

found in Figure 3a. In the next step, we estimated the decay rate after fitting an exponential decay 

function to the subjects’ Auto-Cramer’s V functions. Figure 3b shows an example of a function fit, 

overlapped with the Auto-Cramer’s V of the same individual, to show a sample of the quality of 

the fit. 
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Figure 4.3. The procedure to infer memory effects of the spontaneous dynamic exploration of INT 

states in EEG. 3a. The Auto-Cramer’s V function is obtained, similarly to an autocorrelation 

function, by computing Cramer’s V values between the dynamic INT transition time series and a 

time-lagged copy of itself as a function of increasing time lags. Here, an invidual’s Auto-Cramer’s V 

function is visualized as an example. 3b. A graph showing the quality of the fit of an individual 

subject’s Auto-Cramer’s V function with an exponential decay. In orange, the subject’s function is 

depicted, while in blue the fitted decay is displayed. 

 

We found significant differences in the three groups’ decay rates (Figure 4b) (mean HC = 0.38; 

mean UWS = 0.46; mean MCS = 0.41; p < 0.05). The HC sample displayed a lower decay rate 

estimate on average. Post-hoc comparisons showed significant differences only between the HC 

and the UWS population (p < 0.05), but not between HC and MCS (p > 0.05) and UWS vs MCS (p > 

0.05). However, when grouping UWS and MCS as a single DoC group (without taking into account 

the clinical diagnostic labels), the difference remained significant (Figure 4c, p < 0.01). 
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Figure 4.4. Randomness and memory effects of the dynamic INT transition time series as a function of 

different states of consciousness. 4a. Violin plots depicting the subject-wise average PE value of the 

dynamic INT transition time series in healthy wakeful consciousness (HC), compared to UWS and MCS. PE 

value are normalized, ranging from 0 (extreme predictability) to 1 (absolute randomness). In all violin plots, 

* indicates p < 0.05, ** indicates p < 0.01 and *** indicates p < 0.001. The absence of any sign stands for 

non-significance (p > 0.05). 4b Violin plots depicting the subject-wise average decay rate of the exponential 

fit to the dynamic INT transition time series in healthy wakeful consciousness (HC), compared to UWS and 

MCS. 4c Violin plot depicting the same data as 4b, but UWS and MCS are grouped together as a single DoC 

category. 
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4.4 Discussion 

 

Here, we investigated the brain’s spontaneous topography of Intrinsic Neural Timescales (INTs) and 

its dynamic behavior, modeled as a series of dynamic transitions from one INT state to another, 

therefore characterizing its dynamic repertoire. To our knowledge, this is the first study that 

directly tests the hypothesis that the INT’s dynamic repertoire plays a significant role for 

consciousness, as predicted by the Temporospatial Theory of Consciousness (TTC) (Northoff and 

Zilio, 2022a). 

In order to pursue this aim, we first needed to provided support for the existence of dynamic 

repertoires of intrinsic timescales. Our methodological strategy involved the estimation of INTs, by 

using the well-known Autocorrelation Window – 0 (ACW-0), with a windowed approach, and the 

consequent use of clustering algorithms to obtain a set of dynamic INT states. This process 

unveiled the existence of a non-trivial dynamic behavior in the topographic organization of INTs, 

with significant memory effects; additionally, we also showed that the detriment of this dynamic 

behavior is related to loss of consciousness, at least in a clinical population of post-comatose 

patients.  

Further, we observed a striking similarity between the optimal number of INT states we detected 

in our analysis and the optimal number of microstates found in an unrelated MEG resting-state 

dataset (Tait and Zhang, 2022), which is in both cases 10. Microstate analysis is a very well 

established methodology in EEG, which aims at identifying the “global patterns of scalp potential 

topographies” (Michel and Koenig, 2018) and their dynamics. Computing microstates involves a 

very similar methodological strategy to the one presented in this study, with the difference that 

microstates are not computed from the topographic distribution of features computed from the 

neural signals such as dFC or dACW, but directly from neural signals.  

Moreover, we point out that even if the literature about EEG microstates is pretty consistent, with 

4 usually being the optimal number of clusters, a hd-EEG study has found an optimal number of 7 

microstates (Custo et al., 2017), which is again the same number of dynamic INT maps we have 

found in our study, increasing the similarities of this method with microstate analysis.  

The seemingly contradictory differences we found between MEG and EEG regarding the optimal 

number of INT states can be traced to a series of factors. A first source of divergence might be due 

to differences in spatial resolution, as in our source reconstructed MEG data is significantly higher 

(360 parcels) than our hd-EEG data (256 channels). In fact, it’s reasonable that, with a higher 

number of data points, the number of possible spatial configurations increases accordingly, as 

argued also in (Tait and Zhang, 2022). Another alternative explanation is our choice for the 

criterion used to select the optimal number of INT states; in fact, microstates (Custo et al., 2017; 

Tait and Zhang, 2022) and dFC studies (Allen et al., 2014) which have used a similar criterion have 

found a similar optimal number of dynamic states, supporting our findings. 

Microstates are thought to reflect the instantaneous mode of interaction between different 

networks (Koenig et al., 2002), and have been found to be able to predict the patterns of 

connectivity across the cortex (Abreu et al., 2021). As there is a direct relation between 

connectivity and INTs (Chaudhuri et al., 2015; Ito et al., 2020; Ryan V Raut et al., 2020), it would 
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not be surprising if INTs and microstates also shared a common ground. But the chain of logic 

delineated here (microstates - connectivity patterns – INT topography) is only speculative, and we 

warrant for future studies that directly probe the link between these basic features of the brain. 

INT’s most remarkable feature is its hierarchical organization across the cortex (Golesorkhi et al., 

2021a; Honey et al., 2012; Ito et al., 2020), which can be expressed as a core-periphery topography 

(Golesorkhi et al., 2021a). We show that three of the ten INT dynamic states follow a significant 

hierarchical organization by spatially correlating each INT state to a myelination index map (Rosen 

and Halgren, 2021), which was used as a proxy to cortical hierarchy, as in other studies (Burt et al., 

2018; Fotiadis et al., 2023; Wu et al., 2020). While not directly predicted before, it is plausible that 

the scalp distribution of INTs undergoes several different topographies: if the process that 

produces these maps is truly dynamic and carries functional meaning, then a repetition of 

different “flavors” of the same hierarchical principle would be of little use. Nevertheless, this 

leaves the functional significance of the non-hierarchical INT states open to question. We suggest 

that, in some occurrences, departing from the computational constraints given by a hierarchical 

organization towards a more homogeneous distribution of INTs could be useful to improve inter-

regional synchrony, which we assume would serve a currently unknown adaptive role for the 

processing of the temporal features of the incoming stimuli. 

However, the functional significance of the maps we found in M/EEG can only be a matter of 

speculation at this point, since we have only restricted our interest to resting-state data. For 

instance, we suggest that only by observing if and how the relative distribution of state occupancy 

is affected by different experimental conditions can reveal the functional meaning of occupying a 

dynamic INT state that does not express a marked hierarchical organization. 

Our main finding is that the dynamic transition between the different INT topographies is not 

generated by a random process, as we provide evidence that its time series carry a significant 

degree of information. First and foremost, 0th order Markovianity is never appliable to our data, 

which indicates that the transition matrices obtained through our analysis are not the 

consequence of a spurious effect of window size. Further, as our dynamic transition time series can 

be modeled at least by a 1st order Markov process, we show that there is an underlying process 

which generates the observed transitions between states (Ross, 1981).  Substantiating further this 

observation, we found moderate (PE = 0.38) average Permutation Entropy (PE) values in the 

dynamic transition time series extracted from the MEG dataset. The choice of using PE was 

motivated by the fact that this measure takes temporal dependences into account more than 

other entropy measures (Bandt and Pompe, 2002), which makes it more sensitive to changes 

related to the temporal structure of a time series. Therefore, in this study PE can be interpreted as 

a measure of how predictable the dynamic transition time series are: high PE values imply that the 

transitions between states are more random and thus “chaotic”, as if they were generated at 

random, while lower values indicate higher predictability and therefore a stereotypical underlying 

process. Instead, moderate entropy values generally imply  “meaningfully complex” data (Murphy 

et al., 2020). The effects of randomness on PE values can be observed by temporally shuffling the 

state transition time series, with PE approaching its upper limit, as we observe accordingly in our 

findings. These results suggest that the spontaneous exploration of different INT topographies is 

underpinned by a nonrandom dynamic process. Moreover, in our EEG dataset, we observed similar 
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PE values in the healthy sample, which indicates the existence of a typical range of predictability in 

healthy individuals populations that is not dependent on the modality of the data. 

Loss of consciousness is accompanied by increased state transition randomness. Assuming that 

these time series truly reflect INT dynamics, we posit that this reflects an impaired ability in 

individuals with reduced consciousness to adapt to changes in the temporal structure of input 

environments. INTs are thought to index the brain’s capacity to process temporal information of 

incoming inputs (Golesorkhi et al., 2021b; Himberger et al., 2018). Moreover, as we have already 

argued, the topography of INTs shapes its computational capacities, thus representing a specific 

computational mode. Our ancillary analysis further confirms this assumption, since memory 

effects tend to be less pronounced in the state transitions of the DoC sample: less memory 

indicates lower temporal dependence between consecutive states, which is indicative of a less 

complex underlying process. Therefore, it can be argued that, when the ability to switch 

meaningfully to the proper computational mode (hierarchical vs non-hierarchical), neural 

representations of the environment are degraded accordingly. However, we stress the fact that the 

scope of this study is restricted to resting-state data, and that we can only infer about actual input 

processing mechanisms. Future research, particularly on task-evoked activity data, is warranted for 

a more precise interpretation of these results in terms of the capacity for input processing, where 

a more random exploration of INT states entails a lower “predisposition” to proper temporal input 

processing.  

These findings are particularly significant for TTC, as they provide first-hand evidence of one of its 

predicted mechanism of consciousness: richer dynamic INT repertoires in conscious individuals, 

with respect to reduced or absent consciousness states. As we have already argued, a diverse array 

of timescales can substantially enhance the subject’s capacity to capture the intricate temporal 

nature of its environment (Golesorkhi et al., 2021b), which helps in aligning with the distinct 

timescales present in the environment (temporospatial alignment (Northoff and Huang, 2017)). 

Phenomenologically, this would translate in a higher quality of the subjective experience, at least 

from the temporal perspective: with more fine-grained “sampling” (understood as temporal 

integration/segregation mechanisms (Himberger et al., 2018; Wolff et al., 2022)) of the incoming 

inputs, we are not only able to better distinguish the contents of consciousness from one another, 

but also to embed these single contents into a slower-paced flow of consciousness, integrating 

them into the coherent and unitary experience that is one of the most immediate 

phenomenological features of consciousness. 

Here, we found no significant difference between the UWS and MCS groups, which could be 

considered a limitation. Recent discussions challenge the assumption that the UWS-MCS contrast 

is a minimal contrast for consciousness (Hermann et al., 2021), mainly because common standard 

clinical methods are reliant on overt behavioral responsiveness may limit statistical power in 

assessing consciousness, especially when covert consciousness is involved (Kondziella et al., 2020). 

Therefore, we identify the causes of lack of discriminative power of our analyses in the fact that we 

have proceeded with the clinical diagnosis obtained through these behavioral assessments and 

haven’t probed for the presence of covert consciousness with other established neurophysiological 

indices. 

Arguably, a methodological limitation of this study is related to the use of sliding window analysis 

to track the temporal changes of ACW-0 values (dACW-0), as several concerns have been raised 
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against the use of this technique in functional connectivity studies (Laumann et al., 2016; Lurie et 

al., 2020). In the case of dFC studies, while there are many factor that might be confounded for 

genuine FC changes from window to window, the main concern seems to be related to sampling 

errors. In the case of our dACW-0 analysis, we chose this simple but limited approach because of 

the novelty of this hypothesis, as a windowed analysis does not require any modeling of the 

underlying dynamics which remain unknown to this day. Further, we mitigated the sampling error 

effect by using relatively large sized windows (8 s), as detailed in the Methods section. However, 

limitations inherent to this method can only be addressed by either applying different methods, 

such as statistical autoregressive models (Liégeois et al., 2019), or by future studies that take 

advantage of the temporal structure of an experimental task to test whether the changes in dACW-

0 time series match behavioral state changes. 

Likewise, we employed a k-means clustering algorithm guided by the same parsimony principle 

that led to the use of sliding windows. There are two main problems with this unsupervised 

learning algorithm, which stem from the same constraint: the number of clusters is decided a 

priori by the experimenter. Because of that, a first issue is that the algorithm will always find 

clusters for which there is no guarantee of their actual significance, while the second issue is 

related to the choice of k (the number of clusters), which can be either be guided by visual 

inspection or by using more strict criteria. For instance, in microstates analysis, it is indicated to 

use a meta-criterion (a “democratic” voting based on the collective scoring of other criteria) 

(Michel and Koenig, 2018) to select the optimal number of clusters, but in our study we decided to 

use a single criterion to improve the interpretability of our results – including the pitfalls of our 

methodology. We suggest two alternatives that can potentially improve the validity of the present 

study in future studies. On one hand, one can test whether similar dynamic INT states arise when 

employing different dimensionality reduction strategies, such as principal component analysis, 

independent component analysis, or other related algorithms; alternatively, through the use of 

simulated data, where the ground truth is known, one can test for the sensitivity of the k-means 

algorithm to truly detect the spatiotemporal configurations that are theoretically explorable by the 

brain. 

Additionally, the clustering procedure was applied to concatenated group data, treating groups as 

a whole, and not on single subjects; this was done because we were interested in comparing 

different conditions (conscious vs unconscious), and not in the individual differences in the 

subjects’ dynamic INT topographies. Nevertheless, as we have also shown that dynamic INT 

repertoire might represent an individual’s brain fingerprint, we suggest that training a clustering 

algorithm with single subject data might be of interest, especially to probe the role of these 

repertoires for efficient input processing. 

 

 

4.5 Conclusions 

 

This study, investigating the brain's dynamic topography of Intrinsic Neural Timescales (INTs) in two 

different modalities (MEG and EEG), provides evidence of a non-random dynamic behavior of the 
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transition between different dynamic INT states, derived from applying a k-means clustering 

procedure on a sliding windows ACW-0 analysis. Source reconstructed MEG data confirmed that at 

least a good percentage of the dynamic INT states are consistent with a core-periphery 

organization, which is consistent with previous literature, but reveals a new set of non-hierarchical 

INT topographies. However, the functional significance of non-hierarchical states remains 

speculative. Applying the same analysis in a hd-EEG dataset consisting of disorders of 

consciousness (DoC) patients, we found that the dynamic transitions between INT states are 

nonrandom, with loss of consciousness associated with increased unpredictability, implying a 

poorer INT dynamic repertoire. These results provide direct evidence for the Temporospatial 

Theory of Consciousness (TTC), which postulated richer dynamic INT repertoires in conscious 

states, assuming that these would enhance temporal processing and contribute to a higher quality 

of subjective experience. We suggest that a future finer-grained characterization of dynamic INT 

repertoires possesses a very high potential for the diagnostic labeling of DoC patients, because of 

how cost-effective resting-state recordings are in the clinical setting. 

 

 

 

Supplementary Figures 

 

Supplementary Fig. 1 Knee-point criterion to select the optimal number of clusters (MEG 

data). 
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Supplementary Fig. 2. Average state coverage, in percentage, for each of the 10 MEG 

dynamic INT states, computed across all subjects and recording sessions. 
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Supplementary Fig. 3. Knee-point criterion to select the optimal number of clusters (EEG 

data). 

 

Supplementary Figure 4. Average coverage of EEG dynamic INT states in different states 

of consciousness. 

 

 

 

 

 

        



89 
 

 

 

Supplementary Figure 5. Single subject microstate analysis in the healthy sample. 

As an additional control to the quality of the topographies obtained in this results, a 

canonical microstate analysis was performed on a single-subject basis on the EEG dataset. 3 

random subjects from our healthy population are shown here for visualization. We used 

the +microstate MATLAB toolbox (Tait and Zhang, 2022b) on the sensor level, with k = 4 to 

compare the resulting topographies to the four canonical EEG microstates (A, B, C, D) which 

are consistently reported in the literature (Michel et al., 2018). The procedure was 

repeated 20 times to avoid the effects of randomness on the initial choice of the centroids. 

Details on the standard microstate pipeline can be found in the toolbox’s documentation. 

The similarities between these individual microstates and the canonical microstates can be 

compared with those in (Michel et al., 2018). Even if these individual topographies are not 

as smooth as those obtained in group analysis, the reader can observe a significant overlap 

between the two, especially with those usually known as microstate A and B (see Fig. 2B of 

(Michel et al,, 2018). From this overlap, we additionally validate the use of clustering 

algorithms on INT topographies, as there seems not to be any concern regarding the 

topography of the “original” EEG time series. 
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Chapter 5 

 

 

 

5. General discussion 

 

The present line of work intends to enhance our understanding of the implications of deteriorated 

consciousness, especially following severe brain injuries, for the temporal properties of the brain’s 

spontaneous activity – i.e. Intrinsic Neural Timescales (INTs). To this aim, we probed the general 

disruption of INTs during instances of loss of consciousness, including their relation to well-

characterized neural oscillatory mechanisms and the dynamic exploration of different INT 

topographies at rest.  

We start with concise summaries of each study detailed thus far, before discussing in more detail 

the broader implications of our work. Additionally, we deduce (where feasible) the putative 

mechanisms underpinning our observations and suggest future ramifications facilitated by our 

work. 

 

 

 

Summary of Study 1:  

Temporal input processing – the ability to track the temporal information of the incoming stimuli – 

has been related to individual variability in the frequency of synchronous fluctuations in the alpha 

(7-13 Hz) frequency range – the Alpha Peak Frequency (APF) – and to intrinsic temporal 

fluctuations of the brain’s spontaneous activity – Intrinsic Neural Timescales (INTs). We used a hd-

EEG resting-state dataset, composed of recordings from healthy individuals, anesthetized 

volunteers and disorder of consciousness (DoC) patients to investigate the relation between these 

two measures of temporal input processing and its relevance for consciousness. Our investigation 

revealed that, during the awake fully conscious state, these two different EEG measures of 

temporal processing are interconnected, while operating on shorter (APF) and longer (ACW) time 

scales, showing an expected negative correlation at the channel level. This relationship undergoes 

deviation from this negative correlation in states of unconsciousness, such as anesthesia and 

UWS/MCS, reflecting abnormal ACW prolongation and a slowing-down of APF at the group level. 

The consistency of the results across qualitatively different unconsciousness states strongly 

suggests that the disruption is relevant for consciousness and does not reflect a general 

malfunctioning of brain functionality. These findings underscore the vital role of the brain's 

capacity for input processing across various timescales in consciousness, aligning with the 

principles of temporo-spatial alignment in the Temporo-spatial Theory of Consciousness (TTC). 
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Summary of Study 2 

This study focuses on advancing the current methodologies in the estimation of time delays for 

neural time series data, introducing an information-theory derived measure, Permutation Entropy 

– Time Delay estimation (PE-TD),  as a robust alternative to autocorrelation window (ACW) for 

estimating time delays. First, we demonstrated its validity on synthetic neural data, showing that 

the time delay estimation of simple simulated neural data can be hindered by non-stationary 

regimes, and that PE-TD shows a more stable performance even at high non-stationarity, therefore 

resulting more resistant compared to ACW-0. Next, we used a hd-EEG dataset of resting-state 

recordings of both healthy conscious individuals and a DoC population. Intriguingly, PE-TD 

successfully measures intrinsic neural timescales (INTs) from hd-EEG human data, showing very 

high topographic similarity with the topographic maps obtained with ACW-0 . Notably, the spatial 

correlation between ACW-0 and PE-TD maps decreases in a state-dependent manner during loss of 

consciousness, suggesting potentially different regimes of non-stationarity and non-linearity in 

conscious and unconscious states. This study provides evidence for the effectiveness of PE-TD in 

extracting relevant timescales from neural data and hints at its potential for characterizing 

conscious states, especially in disorders of consciousness. The proposed PE-TD methodology shows 

promise for discriminating between different states of consciousness in the clinical setting, to 

perform diagnostic labeling of DoC patients thanks to the high cost-effectiveness of resting-state 

EEG recordings. 

 

Summary of Study 3 

INTs are known to display a cortical hierarchy, with shorter timescales in the unimodal sensory 

areas at the bottom of the hierarchical organization and longer durations in the multimodal, 

higher-order integrative areas, which has been functionally related to efficient temporal processing 

of the temporal structure of the feature space of the environment and to adequate levels of 

consciousness. It is currently unknown whether this topographic organization displays a dynamic 

behavior, consistent with predictions of a dynamic repertoire of INTs This study addresses this gap 

by analyzing two resting-state datasets: an open-access MEG dataset, source-reconstructed before 

analysis, and a hd-EEG dataset comprising healthy individuals and patients with disorders of 

consciousness (DoC). Utilizing a data-driven approach, we delineate the dynamic repertoire of INTs 

of both datasets, identifying "dynamic INT states" through the employment of a clustering 

algorithm on the dynamic ACW-0 time series, which identified the recurrent INT topographies 

observed in the data. In MEG, 10 dynamic INT states optimally described the tested population: 

three of these states correlated significantly with a myelination map outsourced from a different 

study, therefore strongly suggesting that these states displayed a cortical hierarchy. The dynamic 

transition time series, which describes the succession of states of each individual recording, 

displayed intermediate levels of randomness. On the other hand, the EEG data was best described 

with 7 topographic states. We found significant differences in the randomness of the dynamic 

transition time series, with unconscious people exhibiting significantly higher levels of 

randomness, confirming a more “chaotic” dynamic exploration of these states at rest. Further, we 
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corroborate these findings by showing that, when consciousness is lost, the dynamic INT 

transitions display less memory, hinting at a less complex dynamic behavior and therefore a poorer 

dynamic INT repertoire. In summary, we expand previous findings on the spatial organization of 

time scales in the resting brain by providing evidence for a dynamic repertoire of INTs, and that the 

richness of this repertoire is related to consciousness quality, as posited by the Temporospatial 

Theory of Consciousness (TTC). 

 

Novelty of the methods 

Facing a relatively new scientific challenge, as that of the neural basis of the temporal properties of 

consciousness, often requires to rethink and introduce novelties in the methodologies at disposal, 

guided by the twin principles of efficiency and soundness. This is the case of the methods 

introduced here. First, PE-TD is designed to overcome the issues of estimating an autocorrelation 

function of a signal in the presence of nonstationarity and nonlinearity, which greatly affects EEG 

signals and especially those of DoC individuals. Second, the methods introduced in the last study 

are not completely novel: as already well detailed in the text, clustering algorithms have been used 

for decades to summarize topographic data in neuroscience, with the most popular example of 

microstate analysis. However, to our knowledge, this is the first example of the application of such 

methods to INT topographies. INTs and its distinct uni-transmodal spatial organization is a 

consistent finding: nevertheless, its dynamics could not be investigated until the introduction of 

the methods detailed here, opening for exciting venues in the field – especially to the analysis of 

the change of the spatial asset of INTs as a function of different task paradigms. 

 

5.1 A deeper insight into the temporal dimension of consciousness: are INTs a 

promising marker of consciousness?  

 

The overarching theme of the work presented here is the scientific investigation of the temporal 

dynamics of the brain at rest and how they are able to shape our conscious experience. 

Specifically, in the three studies collected here, we have tested hypotheses regarding the role of 

Intrinsic Neural Timescale (INTs) as a necessary condition for consciousness, which has been 

argued to also capture valuable information useful to develop an objective index of consciousness 

(Northoff and Zilio, 2022a; Wolff et al., 2022). We have referred to this inquiry as one regarding the 

“temporal dimension of consciousness”.  

To this aim, we have worked under the theoretical constraints of the Temporo-Spatial Theory of 

Consciousness (TTC) (Northoff and Huang, 2017; Northoff and Zilio, 2022a). This theory of 

consciousness, similar to other current theories (Carhart-Harris, 2018; Fingelkurts et al., 2010), 

puts great focus on spontaneous brain activity, thus producing a great array of theoretical 

predictions which are related to the spatiotemporal patterns of neural activity at rest. To 

understand the foundations of this theory, it is important to underline that TTC is also firmly 

rooted in phenomenological principles: similarly, for instance, to IIT - which starts by formulating 

five essential properties of the subjective experience to infer an equal number of postulates which 
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must be satisfied by a physical substrate of consciousness (Albantakis et al., 2023) – TTC also starts 

by a fundamental assumption: the spatiotemporal structure of the activity intrinsically generated 

by the brain and the spatiotemporal structure of conscious experience share a common ground. 

Therefore, TTC links the brain and the phenomenological features of the subjective experience by 

proposing that topographic and dynamic properties of the brain serve as an a-priori “common 

currency”, explicitly linking brain and mind. Therefore, the four mechanisms of consciousness 

proposed by TTC are also explicitly formulated as neuro-phenomenal hypotheses – i.e. they 

forward specific experimental predictions related to the phenomenology of the individuals being 

tested – which is in fact granted by the assumption of a “common currency”, a phenomenological 

feature that resurfaces in neural activity and that is directly observable by the experimenter. 

During the process of testing hypotheses in the framework of TTC, this means that a 

phenomenological property will always have a neuronal counterpart which is measurable and that 

can be experimentally manipulated.  

Where does our work fit into this theoretical framework, and in which sense does it confirm its 

predictions, or even contribute to a refinement of its principles? 

Related to our investigation on INTs, TTC advances the mechanism of “temporo-spatial alignment”. 

Conscious contents are usually the focus of theoretical predictions, but it is a given fact that 

contents are perceived in a context. A useful analogy is that we don’t have access to, say, the smile 

of the Mona Lisa per se: we are aware of the smile of the Mona Lisa, that is in the homonymous 

painting of Leonardo Da Vinci, which is currently being preserved in a single room of the Louvre 

museum in Paris, France, and so forth. 

TTC proposes that this context-dependent processing of conscious contents occurs thanks to the 

“alignment” of the brain’s own temporal dynamics to the multi-scaled temporal structure of the 

environment. Take the example of a visual object, such as a face stimulus: it will display features 

that change at a faster pace - as its average luminance, among others - and other features that 

change at slower pace, like the position of the nose relative to the rest of the face. On the neuronal 

side, INTs represent the feature of the brain’s temporal dynamics that is actively “aligned” with the 

environment to ensure that the content is perceived in its corresponding contextual frame, or “put 

into context”. This position is justified by evidence that shows that INTs play a fundamental role for 

computational mechanisms related to temporal input processing, such as temporal integration and 

temporal segregation mechanisms (Golesorkhi et al., 2021a; Himberger et al., 2018). At the 

phenomenological level, a disruption in temporo-spatial alignment is predicted to have dramatic 

consequences for the temporal granularity of the subjective experience. This neuro-phenomenal 

prediction is detailed in (Northoff and Zilio, 2022a), making use of an analogy with a spectator’s 

point of view on a tracking field, where a running race is taking place. In one case, when the 

subjects’ INTs are well aligned with its environment, the experience is well-detailed thanks to 

correct amounts of temporal input processing, which allows the viewer to distinguish the details of 

the runners’ actions (the start, the incessant leg movements, etc…) thanks to temporal 

segmentation, while still maintaining track of the general course of the race, thanks to temporal 

integration mechanisms. On the other hand, if INTs are detached from its environment, the 

experience will be gradually less detailed and it will be harder to distinguish between consecutive 

events: stimuli will be less and less temporally precise, and the race will appear as blurry and 

undifferentiated at once. 
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These predictions, while being very precise with respect to the changes relative to the 

phenomenology of the conscious experience, still lack a substantial understanding of the neuronal 

side. In fact, we argue that our current methodological tools still don’t allow to access fully and 

objectively the subjective experience of consciousness, and therefore the neuro-phenomenal 

hypotheses that can be currently tested still require an asymmetric understanding of the two 

aspects (neuronal and phenomenological), tipping the needle more towards the neuronal side. 

Nevertheless, knowledge about the underlying generative mechanisms of INTs is still scarce. 

Improving this body of knowledge has been the rationale guiding the experimental studies 

produced during these three years of research, and the key to understanding this present work. 

 

 

5.1.1 The disruption of the relation between APF and INTs during loss of 

consciousness might reveal novel perspectives on the pathophysiology of disorders 

of consciousness  

 

In the first study, we have presented evidence of a dynamic relation between INTs an EEG feature 

with a very high historical significance for neuroscience, which is arguably one of the most well-

studied properties of the brain (Mierau et al., 2017): the peak frequency in the alpha frequency 

range (7-13 Hz) (Haegens et al., 2014). The circuit mechanisms that underlie the modulation of the 

synchronous firing in the alpha range are not understood fully, but there is a significantly bigger 

body of evidence compared to INTs. This knowledge and our observation of a disruption between 

two different EEG features can be exploited to gain a deeper understanding of the link between 

the pathophysiological mechanism at the basis of DoC and the abnormal prolongation of the 

duration of INTs, which we have also observed in this study. 

Because of the role of INTs in input processing, we will only focus on the mechanisms that drive 

shifts in the alpha range during the processing of sensory inputs. A very common 

pathophysiological effect of severe brain damage is a general deafferentation and the weakening 

of input strength to neurons in the cortex (Fridman et al., 2014; Giacino et al., 2014). Many 

modeling studies (Cohen, 2014; Herrmann et al., 2016; Lefebvre et al., 2015) indicate that input 

strength has a high modulatory power on the oscillatory speed in the alpha range: a higher input 

intensity corresponds to an acceleration of the oscillations in this range. On the other hand, INTs 

are known to react differently to inputs as a function of consciousness (Klar et al., 2023; Wolman 

et al., 2023), suggesting a corresponding mechanism; however, to our knowledge, there is no study 

that explicitly tests the sensitivity of INTs to input strength. This, we argue, might be one of the 

first causes of the dissonance between INTs and APF as a function of loss of consciousness, which 

would link this phenomenon to a very simple and common observation about the breaking down 

of brain functionality in DoCs. 

Is it possible to track any physiological mechanisms that explains the spatial divergence between 

APF and INTs when consciousness is lost? There is evidence that alpha rhythms propagate slowly 

and locally across the cortex (Hindriks et al., 2014), and are therefore better explained in terms of 

local propagation rather than in terms of connectivity patterns. In light of this study, it might be 
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unsurprising to detect a dissociative effect between the local speed of alpha rhythms, which might 

be more related to a local propagation mechanism that is hindered by the severe brain injuries 

sustained by DoC patients (McClenathan et al., 2013), and the local duration of INTs, which are 

more related to long-range cortico-cortical connections (Chaudhuri et al., 2015; Ryan V Raut et al., 

2020): often, but not always, severe brain injuries result in the severing of cortico-cortical 

connections (Achard et al., 2012; Snider et al., 2020), and this dissociation might be reflected in 

the disruption we observed. This interpretation provides a first attempt at a mechanistic account 

of the relation between two similar mechanisms related to temporal sensory processing 

mechanisms at different time scales. We warrant for studies that explicitly model the relation 

between propagation velocity and the interaction between intrinsic time scales and alpha 

oscillations, which can also be helpful in disentangling between the effects of different etiologies 

on the temporal dynamics of the spontaneous activity of DoC patients. 

 

 

 

 

5.1.2 Overcoming methodological limitations in time scale estimation with 

Permutation Entropy (PE): the non-stationary character of EEG time series data 

 

In physics, a nonlinear delay system is a dynamical system in which its subcomponents interact 

nonlinearly to generate outputs that don’t depend solely on its present state, but also the history 

of past states, culminating in a delayed effect of the system on itself (Otto et al., 2019). To avoid 

any type of misunderstanding, we advise to not confuse the concepts of time delayed systems and 

systems with a diverse distribution of time scales, since the presence of time-delayed mechanisms 

does not necessarily imply the presence of such distributed time scales, as we will explicate in 

more detail in the next section. 

Time-delayed systems are ubiquitous in physics and biology, and the estimation of time delays 

from time series data is often the subject of methodological debates; recently, the classical use of 

ACF has been challenged (Siefert, 2007) due to how sensitive its computation is to non-stationary 

regimes. We define non-stationary regimes as the overt behavior of a system yielding stochastic 

processes whose statistical features do change consistently with time: e.g. in the context of EEG 

time series data, the presence of trends in average amplitude values over time. To address and 

overcome the methodological limitations which affect the estimation of time delays in 

neurophysiological data, we were inspired by approaches that utilize Permutation Entropy (PE) to 

yield successful time delay estimation, with increased performance even in chaotic systems such as 

chaotic oscillators (Zunino et al., 2010), numerical simulations of chaotic processes (Matilla-García 

and Ruiz Marín, 2009), weather time series data (Soriano and Zunino, 2021) and semiconductor 

lasers (Soriano et al., 2011). By itself, PE is a popular tool which was already widely used in 

neuroscience a long time ago before the introduction of PE-TD, usually as a proxy measure of 

complexity (Zanin et al., 2012) and fruitfully even to detect differences in consciousness states 
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(Arsiwalla and Verschure, 2018); however, its use for the estimation of time delays in neural data is 

an absolute first not only for consciousness studies, but for neuroscientific literature in general. 

Even if we show, with simulated neural activity data, how ACF might suffer from the effects of non-

linear and non-stationarity regimes, literature investigating explicitly changes in stationarity in loss 

of consciousness is not very rich. 

The few studies that specifically investigate the non-stationary nature of the EEG signal and how it 

changes in DoCs generally indicate that stationarity increases along with the loss of consciousness 

(G-Guzmán et al., 2023; Kreuzer et al., 2014; Panda et al., 2022; Untergehrer et al., 2014). While 

investigating the stationarity of neural time series during loss of consciousness might appear 

trivial, as it is often assumed that brain dynamics lose variability as a function of degrading quality 

of conscious states, the phenomenology of different states of consciousness suggests a different 

story: while the comparison with healthy wake conscious states might always reveal a decrease in 

the richness of brain dynamics, it does not necessarily imply a homogeneous degree of change in 

all unconscious states. Hence, characterizing different regimes of non-stationarity in altered states 

of consciousness might represent a worthwhile opportunity window into the neuronal 

mechanisms of consciousness. Further, we argue that a more stationary brain during 

unconsciousness is consistent with the view of a brain that loses the richness of its dynamics and 

that tends to have more stability in its energy landscape, which is also confirmed by the results of 

our third study, which is presented in the next paragraph.  

 

 

5.1.3 Dynamic repertoires of INTs: insights into a new perspective on temporal 

input processing  

 

Up to this point, we have analyzed the properties of the brain’s temporal dynamics, represented by 

INTs, in relation to temporal processing, pathophysiology, and reduced states of consciousness. 

Nevertheless, a comprehensive understanding of INTs and how they contribute to overall brain 

functioning, as well as their impact on the quality of the subjective experience, requires that we 

explore the origins of these temporal dynamics. 

First of all, time delays in neural populations may originate as a consequence of many factors, 

some of which are pinpointed in (Campbell, 2007). We will briefly identify a few of these factors, 

which we think are very important to characterize how they relate to INTs. First, Campbell 

identifies a first source of time-delayed activity in the propagation velocity of the action potential 

along the axon: conduction velocity can differ greatly, especially depending on the degree of 

myelination of the axons that carry the electric signal. We can already draw a first parallel with INTs 

and their spatial organization: across the cortex, there is a very high spatial correspondence 

between the spatial gradient of myelination, indexed by the T1w/T2w ratio map obtained from 

(Gao et al., 2020) and the temporal hierarchy of INTs (Golesorkhi et al., 2021a; Ito et al., 2020; 

Murray et al., 2014), which we also confirm in our third study. A second source of time-delayed 

interactions is to be found in the kinetic properties of the synapses composing neural populations. 

We warrant modeling studies investigating in detail whether synaptic properties can influence INTs 
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and their properties, as evidence is still too scarce to draw any conclusions related to this matter. 

Time delays also allow for different functions, which are surprisingly close to properties related to 

INTs. For instance, in systems with sufficient inhibitory feedback, time delays allow for the creation 

of spontaneous oscillations (Plant, 1981), which might contribute to the length of INT duration in 

different areas, and synchrony patterns between different populations (Wang and Buzsáki, 1996; 

Wang and Rinzel, 1992), which might contribute to the modularity of INT durations in the cortical 

hierarchy. 

Given these parallels, we propose that the duration of INTs across the cortex is related to-time 

delayed interactions between neural populations, since both display similar properties and similar 

methodologies are used in order to measure them. However, time delays can only influence 

partially the durations of INTs: time delays, in fact, are indeed related to inhibitory feedback 

mechanisms, but the oscillatory component of the brain signal, which is not directly controlled by 

time delayed interactions, is also greatly influenced by neural circuitry. Therefore we recommend 

extreme caution, avoiding a 1:1 correspondence between time delays and INTs, as these are 

concepts which do not overlap completely; similarly, we also recommend the use of “time delays” 

only when explicitly referring to delayed activity in neural activity signals. 

As we have just seen, neural architecture (i.e. the structural arrangement of neural populations 

and their patterns of connection) inevitably shapes brain dynamics: for instance, a dominant role 

for the connectivity motifs observed within and between neural populations has been established 

in the last decades of neuroscientific investigation (Braitenberg and Schüz, 1998). Are there 

fundamental organizational aspects of the brain that result in the hierarchy of time scales we 

observe in vivo? Unsurprisingly, these questions have been initially tackled through modeling 

studies (Chaudhuri et al., 2015), as there are many advantages to developing a model when the 

aim is to uncover a correspondence between the brain’s organizational principles and its 

functionality. First of all, it allows for a parsimonious description of the data: the experimenter 

chooses the model which suits best the hypothesis being tested and incorporates only the 

minimally sufficient information necessary to build that particular model, therefore eliminating all 

the irrelevant information contained in a typical empirical dataset. Most importantly, it gives the 

experimenter direct control over the parameters of the model, allowing specific interference with 

the properties of the brain which are being tested: this is usually not possible in real-world 

scenarios, even in the strictest experimental conditions, as the complexity of the brain and its 

countless interactions does not guarantee a clear-cut modulation of the independent variable. 

In this study, an empirical directed connectivity matrix obtained from macaque data was used to 

develop a macroscale dynamic model of the cortex composed of abstract neural populations 

(threshold-linear recurrent network models) of both excitatory and inhibitory nature. A crucial step 

in the modelling is the insertion of a gradient of excitatory input strengths which was different for 

each area, therefore integrating a realistic anatomical gradient in the local circuitry of their brain 

model. Doing so, the authors were able to demonstrate that a temporal hierarchy naturally 

emerges only when factoring both the diversity in the areas’ local excitatory connection strengths 

and the distinct profile of long-range connectivity across areas, and thus it’s the interaction 

between local and global properties that lies at the core of the topography of neural timescales we 

observe in vivo.  
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The work of Chaudhuri and colleagues is the first successful description of a putative circuit 

mechanism for the origin of a hierarchy of time scales in the brain. We argue that our results 

contribute to updating the current understanding of neural time scales, since here we have 

provided evidence that hints at the possibility that time scales can spontaneously commit to 

multiple spatial arrangements cortex; not a single, anatomically constrained hierarchy, but an array 

of alternative arrangements that are continuously explored even in the absence of explicit 

environmental needs. However, if one hand the functional significance of a temporal hierarchy has 

been well-characterized, the purpose of one or more alternative INT topographies remains 

unknown. 

Unfortunately, the downside of a novel finding presents itself as a total lack of similar observations 

in the literature, which makes it harder to draw any inference that does not appear at best 

incomplete or anecdotal. However, a recent study on the development of temporal hierarchies in 

children (Moraczewski et al., 2020) might be of interest to the future directions we might 

undertake by venturing deeper into the temporal dynamics of the brain. In this study, children 

were presented with stimuli, at different time durations, which were then temporally scrambled to 

destroy their temporal structure, in order to assess the different areas’ sensitivity to temporal 

information (similar to the seminal work of Hasson and colleagues (Hasson et al., 2008; Lerner et 

al., 2011; Stephens et al., 2013)). In parallel, the experimenters probed the children’s performance 

in reading other people’s intentions, often labeled as “theory of mind” (Schurz et al., 2014), since 

the coexistence of multiple processing time scales is thought to be necessary for the integration of 

information which, in turn, is fundamental to predicting other individuals’ future behavior (Koster-

Hale and Saxe, 2013). They found that longer time scales are important for the children’s socio-

cognitive performance, as children displayed less specialization to longer input durations in higher-

order areas, and that the degree of this sensitivity to longer input duration was positively 

correlated with their performance in socio-cognitive skills. Importantly, memory performance was 

unaffected, suggesting a dissociation of the effects of the absence of the longer timescales in the 

developing years of life. The authors thus suggest that the presence of longer time scales at the 

farthest end of the temporal hierarchy are needed to put information in “context”, which they 

deem as necessary for higher-order cognitive abilities such as the ones related to theory of mind. 

Relating these results with our proposal of a dynamic INT repertoire, the absence of the slower 

component of the temporal hierarchy may be interpreted as a shallower hierarchy, since the 

remaining modules of the hierarchy are not affected. A shallower hierarchy, in turn, is more similar 

to the topographies we find in our study that don’t show a significant correlation with the 

myelination index map obtained from dMRI, that we have informally defined as “homogeneous” 

states. A shallower hierarchy does not seem to impair consciousness or normal cognition, as 

developing young people are perfectly capable of navigating in complex environments and are 

assumed to have consciousness levels comparable to adults, but it appears to selectively target at 

least social skills. Therefore, this study suggests that exploring a state that does not display a full 

gradient as the one displayed without resorting to dynamic analysis does not prevent any of those 

higher-order cognitive skills or consciousness, but it does seem to selectively affect some domains 

of cognition. The question which will need to be answered in the future is whether these shallower 

hierarchical INT states grant any sort of computational advantage to the brain and, if so, to identify 

them. 
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Why do we assume functional relevance for the topographic states spontaneously explored by the 

brain? We start our reasoning by reintroducing a pivotal assumption in the study of the brain’s 

spontaneous activity: the brain at rest does not simply sit in an idle state until the next input or 

“command”, but it actively and incessantly reshapes its own activity in a manner that allows it to 

process proficiently any incoming stimuli (Fox and Raichle, 2007) – in other words, its intrinsic 

dynamics are not an epiphenomenon but a functional “tool” which might have even granted 

advantages in our evolutionary history. Following this line of reasoning, if a brain feature shows 

dynamic behavior at rest, its change in time must subserve one or more functions which give it 

immediate advantage compared to not changing in time: e.g. transitioning from one metastable 

functional network to another to allow for goal-dependent adaptation to the environment. 

Likewise, we assume that, if further confirmed by experimental evidence, these dynamic INT states 

subserve different functions and are not only a collateral observation of which its origins can be 

only traced to neural noise. What would these functions be? We advance two tentative proposals, 

which are neither mutually exclusive nor necessarily coherent with one another, since we only 

advance them in the spirit of explorative hypotheses and we don’t mean to further any dogmatic 

theoretical principles.  

Both alternatives start from the assumption that, in a temporary state with a shallower temporal 

hierarchy, the processing hierarchy would not completely disappear. Instead, since a hierarchical 

organization of information processing implies a directional flow of information, we propose that 

such information flow would temporarily lose its directionality, in favor of other regimes of 

information transfer from one cortical area to another.  

The two alternative proposals differ in the putative functions fulfilled by these metastable non-

hierarchical INT topographies. In the first alternative, a non-hierarchical INT topography represents 

a diminished degree of inter-areal communication in favor of an increase in intra-areal information 

transfer; information about the temporal features of the inputs would “stagnate” more. We 

propose that such state could be useful to disconnect temporarily from the environment, in a sort 

of “anti-temporospatial alignment” mechanism. In turn, such a “dealignment” from the temporal 

structure of the environment could be used to consolidate an internal simulation of the outside 

world. In frameworks such as Predictive Coding (PC) (Pezzulo et al., 2021), where prior belief are 

constantly updated in light of a posteriori evidence of the outside world, this disconnection would 

allow a slower update of its a priori, without the interference of the constant (and noisy) flow of 

environmental information. In terms of the phenomenology of consciousness, these states would 

correspond to a higher likelihood of mind wandering, which can be easily tracked with a recently 

developed dedicated experimental setting (Hua et al., 2022). On the other hand, information might 

not “stagnate” but instead homogeneously proceed in the same direction. This proposal draws 

inspiration from the broadcasting mechanism put forward by the Global Neuronal Workspace 

Theory of consciousness (Mashour et al., 2020) (GNWT). GNWT proposed that, when information 

is broadcasted from a dedicated network to virtually all higher-order areas and therefore available 

for further processing, the information becomes a content which is consciously perceived. 

However, in a temporary state with shallower temporal hierarchy, we don’t assume a central hub 

which routes information in all directions, but instead we presume that, as information proceeds 

at a similar pace in all areas, it would be almost automatically available to all the cortex at once. 

This proposal, however intriguing, is less parsimonious, as it requires the existence of an auxiliary 
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synchronization mechanism which we are currently unable to identify without a deeper 

understanding of INTs. 

Corollary: temporal complexity of state transitions 

In this last study, we used permutation entropy (PE) as a measure of the unpredictability of the 

dynamic INT state transitions. The use of tools borrowed directly from information theory to 

estimate the temporal properties of the mechanisms guiding the change in time across different 

topographies is not new in neuroscience. For instance, in microstates studies (Michel et al., 2018) 

there is a recent and sudden surge in interest for the characterization of their dynamic features. 

The novelty of quantifying these temporal features with entropy-based measures stands in 

contrast to classical approaches such as modeling the microstate series as a Markovian Chain. In 

this statistical model, the probability of transitioning between states depends only on the previous 

state of the system. This approach fails in considering the non-stationary nature of the 

transitioning process and its memory effects (Van De Vill et al., 2010), and is therefore not suited 

for a fine-grained analysis of microstate dynamics. On the other hand, complexity measures have 

been suggested to overcome these issues. In general, “complexity” encompasses every attempt at 

characterizing the behavior of a complex system: a physical system with interactions that are not 

too repetitive nor too random. Laying at the “edge of chaos”, complex systems become 

unpredictable on short time scales: complexity measures aim at characterizing the magnitude of 

this unpredictability. However, in this context, complexity has a specific meaning: capturing the 

unpredictability of the transitioning patterns between maps. For instance, when in front of a low 

heterogeneity of the transitioning patterns, the analysis will yield low complexity values, from 

which we can then infer a “rigidity” of the underlying process. That is, for instance, the case of 

Alzheimer’s disease patients, which have been found to have a lower Lempel-Ziv Complexity (LZC 

(Ziv and Lempel, 1977)) values in their state transitions (Tait et al., 2020). The LZ algorithm, which 

is at the basis of the well-known zip compression of digital files, aims at reconstructing the 

“dictionary” from which the observed time series has been “written”: a very complex system will 

yield a vast number of different patterns, and therefore a more numerous dictionary. Estimating 

this dictionary means preserving the most informative components of the data, thus allowing for 

efficient compression. A score is obtained at the completion of the LZ algorithm: i.e. LZC, which 

quantifies the richness of patterns in the data, without the need for assumptions of stationarity or 

Markovianity. Other well-known measures have been used to estimate the complexity of 

microstate transitioning, such as the Lempel-Ziv-Markov chain algorithm (LZMA2) (Artoni et al., 

2022), Hurst exponent analysis (VanDe Ville et al., 2010) and entropy rate estimation (von Wegner 

et al., 2017; von Wegner et al., 2018). This brief overview on these methods are important to 

understand why we chose to approach the same problem – the characterization of the behavior of 

state transitions- in this INT study through PE. Permutation Entropy, while still maintaining the 

same advantages described just now over classical methods, allows to control in a more intuitive 

way the temporal grain at disposal. This is because the two PE parameters illustrated in the 

methods section of the study, which control the time step and the number of successive time 

points considered as part of an individual symbol (a “permutation”; that is, a unique pattern), also 

allow to calibrate the analysis at the desired time scale. In fact, when investigating INTs, ensuring 

absolute rigor in the right choice of the time scale of investigation is even more crucial, in order to 

avoid generating an uncontrollable amount of confounding factors in the analysis. Therefore, PE 
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represents a choice which conforms to both principles of adherence to the aim and parsimony, 

which we have pursued in the course of this study. 

 

 

5.1.4 Limitations 

 

The spatiotemporal organization of the brain at rest is fundamentally important to capture the 

intimate nature of consciousness, and we have most certainly substantiated this claim by providing 

novel evidence on the role of INTs for consciousness.  

There is nevertheless a general limitation that affects all of the studies collected here. We have so 

far often underlined the role of INTs in temporal processing mechanisms. Consequently, we always 

assumed that a change in INTs leads to changes in these computational mechanisms, which we 

considered a fair assumption, given the evidence that supports these claims (Golesorkhi et al., 

2021b). However, since we have only tested our hypotheses on resting-state data, these studies 

only support partially claims of a direct relation between consciousness and input processing. We 

did not neglect this very important aspect in our choice to proceed in this way but rather, the 

choice was dictated by a compromise between cost-effectiveness and resources availability. In the 

first place, the focus of our research is the development of objective indices of consciousness with 

explicit implications for its uses in clinical settings. To undergo an EEG resting-state recording 

session at the bedside is cheaper and more feasible for clinicians in the ICU, compared to the very 

rigid constraints imposed by an experimental setting. Individuals with DoCs are not easily 

accessible to examination given their comorbidities with often have the priority for a clinician 

which has to ensure their survival, and it would require extreme efforts to even perform a single 

experimental examination with neurophysiological methodologies, not even considering the 

fleeting nature of awareness typical of these conditions (Giacino et al., 2002). Therefore, it’s not 

surprising that the vast majority of available DoC datasets consist of resting-state recordings. 

Additionally, TTC is a relatively new theory of consciousness, and therefore it still requires 

refinement of its most basic theoretical basis, which we have pursued by following its most 

important assumption: the brain spontaneously constructs its own time and space. Here, we have 

focused on the temporal dimension of consciousness, but we don’t suggest a supremacy of this 

dimension over the spatial mechanisms; rather, we argue that these two aspects are very 

complementary, and one can’t be truly captured without recurring to the other to understand 

consciousness: this is why, in the third study, we have put forward a new role for the spatial 

organization of INTs for consciousness. Hence, we can only encourage studies which explicitly 

investigate these aspects both in relation to task-evoked activity and with its most spatial 

properties. 
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5.1.5 Vision: future perspectives 

 

Consciousness research is undergoing rapid evolution, marked by the continual emergence of new 

theoretical frameworks and perspectives. Consequently, numerous novel neurophysiological 

indicators of consciousness have been evaluated in clinical contexts over the past decade, as 

detailed in the introductory chapter of this thesis. The scientific endeavors outlined herein align 

with this evolving landscape. However, there remain significant unanswered questions that must 

be addressed before the methods proposed in this work can be effectively integrated into clinical 

practice. In the following paragraph, we will briefly confront these challenges and offer suggestions 

aimed at fostering a comprehensive, forward-thinking vision for neuroscientific approaches to INTs 

research and, in particular, for fully introducing the temporal dimension of consciousness. 

INTs have provided useful insights into the brain’s perceptual mechanisms; however, it’s only in TTC 

that they are assumed to be a necessary condition for consciousness. Since it’s introduction, TTC 

has then accumulated evidence of a consistent cofluctuation between conscious states and INTs 

(as detailed in this thesis). As this is not a trivial task, much about the ways in which INTs vary as a 

function of other quantitative measures of consciousness has been overlooked. Therefore, one of 

the first objectives to be pursued in the next 5 years should be to unveil this relation between INTs 

and the currently available proposed indices of consciousness. Pursuing this does not only entail 

the advancement of the theoretical corpus of TTC, but has very practical implications. In fact, 

however promising, INTs alone can’t provide an easy solution for the diagnosis/prognosis of DoC; 

however, as recently shown, introducing multiple sources of information into the diagnostic task 

benefits greatly the performance of machine learning classifiers trained to perform such 

classification tasks (Engeman et al., 2018). Further, multimodal strategies such as the ones 

described in (Gallucci et al., 2023) can greatly improve the predictive power of INTs and of 

neighboring measures of the temporal dimension of consciousness. Clearly, overcoming the issue 

of the circularity of diagnostic labeling is necessary to “unlock” the possibility of true prediction for 

quantitative indices of consciousness. 

A second challenge that needs to be faced is the computational speed of the current methods and 

its implications for online use. The family of ACW metrics, for instance, does not suffer particularly 

from this problem: however, as shown in the second study, it suffers greatly from the non-

stationarities and from the non-linear nature of the EEG signal. This is an issue, especially if one 

wants to bring in these methods into a brain-computer interface (BCI) paradigm for DoC patients. 

Setting up an EEG in the ICU is especially challenging, as these bedridden patients are often 

connected to extensive medical equipment, which limits access to the scalp and hinders the EEG 

electrodes placement, increasing the chance of noise in the recorded signals. This is exactly the 

reason why developing a metric such as PE-TD is fundamentally important for the introduction of 

INTs into these experimental settings. However, the current challenge of PE-TD is that it does not 

easily translate into this practice, as the iterative computation of permutation entropy requires 

long periods of time, not compatible with BCI online use. I suggest how to overcome this issue in 

two ways: either PE-TD is computed on a few channels of interest, or to improve the 

computational efficiency at the basis of PE calculation.  

 



103 
 

5.2 Conclusions 

 

Consciousness flows in the same direction of the arrow of time, from conscious content to 

conscious content, with seamless continuity. Despite the fundamental reality of this statement, the 

temporal properties of consciousness are often overlooked. We followed a line of work which, 

throughout the entirety of this work is referred to as the investigation of the “temporal dimension 

of consciousness”. Specifically, we tested whether Intrinsic Neural Timescales (INTs) – the temporal 

duration of neural activity at rest – play a significant role in the emergence of consciousness, 

indicating them as a promising candidate for the development of an objective index of 

consciousness with the underlying aim of improving the differential diagnosis of disorders of 

consciousness (DoCs).  Previous findings have illustrated the relevance of the temporal hierarchy of 

consciousness for efficient temporal input processing and for consciousness. We have extended 

these findings by showing that: i) the dissociation between INTs and the oscillatory speed in the 

alpha frequency range (7-13 Hz) is relevant for consciousness and might underlie an important 

pathophysiological mechanism; ii) current methodologies used to infer the duration of INTs can be 

improved, in spite of the nonstationary character of neural signals, with a novel information-

theoretical measure which we named “Permutation Entropy Time Delay estimation (PE-TD); iii) 

INTs display a dynamic repertoire of topographies across the scalp, which is explored in a more 

random manner as consciousness is lost. The studies collected so far give ground to predictions 

posited by the Temporospatial Theory of Consciousness (TTC), and have the potential to refine its 

theoretical principles. Taken together, we provide evidence for the relation between the temporal 

dynamics of spontaneous brain activity, represented by INTs, and consciousness, demonstrating 

the current potential of the investigation of the temporal dimension of consciousness.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 
 

References 

 

 

Aboubakr, M., Yousaf, M.I.K., Weisbrod, L.J., Alameda, G., 2023. Brain Death Criteria, in: 
StatPearls. StatPearls Publishing, Treasure Island (FL). 

Abreu, R., Jorge, J., Leal, A., Koenig, T., Figueiredo, P., 2021. EEG Microstates Predict Concurrent 
fMRI Dynamic Functional Connectivity States. Brain Topogr 34, 41–55. 
https://doi.org/10.1007/s10548-020-00805-1 

Achard, S., Delon-Martin, C., Vértes, P.E., Renard, F., Schenck, M., Schneider, F., Heinrich, C., 
Kremer, S., Bullmore, E.T., 2012. Hubs of brain functional networks are radically 
reorganized in comatose patients. Proc. Natl. Acad. Sci. U.S.A. 109, 20608–20613. 
https://doi.org/10.1073/pnas.1208933109 

Albantakis, L., Barbosa, L., Findlay, G., Grasso, M., Haun, A.M., Marshall, W., Mayner, W.G.P., 
Zaeemzadeh, A., Boly, M., Juel, B.E., Sasai, S., Fujii, K., David, I., Hendren, J., Lang, J.P., 
Tononi, G., 2023. Integrated information theory (IIT) 4.0: Formulating the properties of 
phenomenal existence in physical terms. PLoS Comput Biol 19, e1011465. 
https://doi.org/10.1371/journal.pcbi.1011465 

Alexander-Bloch, A.F., Shou, H., Liu, S., Satterthwaite, T.D., Glahn, D.C., Shinohara, R.T., Vandekar, 
S.N., Raznahan, A., 2018. On testing for spatial correspondence between maps of human 
brain structure and function. NeuroImage 178, 540–551. 
https://doi.org/10.1016/j.neuroimage.2018.05.070 

Ali, F., Rickards, H., Cavanna, A.E., 2012. The assessment of consciousness during partial seizures. 
Epilepsy & Behavior 23, 98–102. https://doi.org/10.1016/j.yebeh.2011.11.021 

Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014. Tracking Whole-
Brain Connectivity Dynamics in the Resting State. Cerebral Cortex 24, 663–676. 
https://doi.org/10.1093/cercor/bhs352 

Angelakis, E., Lubar, J.F., Stathopoulou, S., Kounios, J., 2004. Peak alpha frequency: an 
electroencephalographic measure of cognitive preparedness. Clinical Neurophysiology 115, 
887–897. https://doi.org/10.1016/j.clinph.2003.11.034 

Arieli, A., Sterkin, A., Grinvald, A., Aertsen, A., 1996. Dynamics of Ongoing Activity: Explanation of 
the Large Variability in Evoked Cortical Responses. Science 273, 1868–1871. 
https://doi.org/10.1126/science.273.5283.1868 

Arsiwalla, X.D., Verschure, P., 2018. Measuring the Complexity of Consciousness. Front. Neurosci. 
12, 424. https://doi.org/10.3389/fnins.2018.00424  

Artoni, F., Maillard, J., Britz, J., Seeber, M., Lysakowski, C., Staedler, C., ... & Blanke, O. (2022). EEG 
microstate dynamics indicate a U-shaped path to propofol-induced loss of consciousness. 
NeuroImage. 

Association for Computing Machinery, Society for Industrial and Applied Mathematics (Eds.), 2007. 
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms: New 
Orleans, La., January 7 - 9, 2007. Presented at the Symposium on Discrete Algorithms, 
Association for Computing Machinery [u.a.], New York, NY. 

Aubinet, C., Larroque, S.K., Heine, L., Martial, C., Majerus, S., Laureys, S., Di Perri, C., 2018. Clinical 
subcategorization of minimally conscious state according to resting functional connectivity. 
Human Brain Mapping 39, 4519–4532. https://doi.org/10.1002/hbm.24303 

Baars, B.J., 1988. A cognitive theory of consciousness. Cambridge University Press, Cambridge 
[England] ; New York. 



105 
 

Badre, D., D’Esposito, M., 2009. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev 
Neurosci 10, 659–669. https://doi.org/10.1038/nrn2667 

Baldassano, C., Chen, J., Zadbood, A., Pillow, J.W., Hasson, U., Norman, K.A., 2017. Discovering 
Event Structure in Continuous Narrative Perception and Memory. Neuron 95, 709-721.e5. 
https://doi.org/10.1016/j.neuron.2017.06.041 

Bandt, C., Pompe, B., 2002. Permutation Entropy: A Natural Complexity Measure for Time Series. 
Phys. Rev. Lett. 88, 174102. https://doi.org/10.1103/PhysRevLett.88.174102 

Bardin, J.C., Fins, J.J., Katz, D.I., Hersh, J., Heier, L.A., Tabelow, K., Dyke, J.P., Ballon, D.J., Schiff, 
N.D., Voss, H.U., 2011. Dissociations between behavioural and functional magnetic 
resonance imaging-based evaluations of cognitive function after brain injury. Brain 134, 
769–782. https://doi.org/10.1093/brain/awr005 

Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., Dehaene, S., 2015. Signature of 
consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. U.S.A. 
112, 887–892. https://doi.org/10.1073/pnas.1418031112 

Bayne, T., Hohwy, J., Owen, A.M., 2016. Are There Levels of Consciousness? Trends in Cognitive 
Sciences 20, 405–413. https://doi.org/10.1016/j.tics.2016.03.009 

Bélair, J., Glass, L., An Der Heiden, U., Milton, J., 1995. Dynamical disease: Identification, temporal 
aspects and treatment strategies of human illness. Chaos: An Interdisciplinary Journal of 
Nonlinear Science 5, 1–7. https://doi.org/10.1063/1.166069 

Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B 
(Methodological) 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 

Benwell, C.S.Y., London, R.E., Tagliabue, C.F., Veniero, D., Gross, J., Keitel, C., Thut, G., 2019. 
Frequency and power of human alpha oscillations drift systematically with time-on-task. 
NeuroImage 192, 101–114. https://doi.org/10.1016/j.neuroimage.2019.02.067 

Berg, A.T., Berkovic, S.F., Brodie, M.J., Buchhalter, J., Cross, J.H., Van Emde Boas, W., Engel, J., 
French, J., Glauser, T.A., Mathern, G.W., Moshé, S.L., Nordli, D., Plouin, P., Scheffer, I.E., 
2010. Revised terminology and concepts for organization of seizures and epilepsies: Report 
of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51, 676–
685. https://doi.org/10.1111/j.1528-1167.2010.02522.x 

Bergsma, W., 2013. A bias-correction for Cramér’s and Tschuprow’s. Journal of the Korean 
Statistical Society 42, 323–328. https://doi.org/10.1016/j.jkss.2012.10.002 

Berkes, P., Orbán, G., Lengyel, M., Fiser, J., 2011. Spontaneous Cortical Activity Reveals Hallmarks 
of an Optimal Internal Model of the Environment. Science 331, 83–87. 
https://doi.org/10.1126/science.1195870 

Bick, C., Goodfellow, M., Laing, C.R., Martens, E.A., 2020. Understanding the dynamics of biological 
and neural oscillator networks through exact mean-field reductions: a review. J. Math. 
Neurosc. 10, 9. https://doi.org/10.1186/s13408-020-00086-9 

Block, N., 2019. What Is Wrong with the No-Report Paradigm and How to Fix It. Trends in Cognitive 
Sciences 23, 1003–1013. https://doi.org/10.1016/j.tics.2019.10.001 

Block, N., 2005. Two neural correlates of consciousness. Trends in Cognitive Sciences 9, 46–52. 
https://doi.org/10.1016/j.tics.2004.12.006 

Boly, M., Coleman, M.R., Davis, M.H., Hampshire, A., Bor, D., Moonen, G., Maquet, P.A., Pickard, 
J.D., Laureys, S., Owen, A.M., 2007. When thoughts become action: An fMRI paradigm to 
study volitional brain activity in non-communicative brain injured patients. NeuroImage 36, 
979–992. https://doi.org/10.1016/j.neuroimage.2007.02.047 

Boly, M., Massimini, M., Tsuchiya, N., Postle, B.R., Koch, C., Tononi, G., 2017. Are the Neural 
Correlates of Consciousness in the Front or in the Back of the Cerebral Cortex? Clinical and 



106 
 

Neuroimaging Evidence. J. Neurosci. 37, 9603–9613. 
https://doi.org/10.1523/JNEUROSCI.3218-16.2017 

Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M., 2016. Time series analysis: forecasting and 
control, Fifth edition. ed, Wiley series in probability and statistics. Wiley, Hoboken, New 
Jersey. 

Braitenberg, V., Schüz, A., 1998. Cortex: Statistics and Geometry of Neuronal Connectivity. 
Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03733-1 

Britz, J., Van De Ville, D., Michel, C.M., 2010. BOLD correlates of EEG topography reveal rapid 
resting-state network dynamics. NeuroImage 52, 1162–1170. 
https://doi.org/10.1016/j.neuroimage.2010.02.052 

Brown, E.N., Lydic, R., Schiff, N.D., 2010. General Anesthesia, Sleep, and Coma. N Engl J Med 363, 
2638–2650. https://doi.org/10.1056/NEJMra0808281 

Brown, R., Lau, H., LeDoux, J.E., 2019. Understanding the Higher-Order Approach to 
Consciousness. Trends in Cognitive Sciences 23, 754–768. 
https://doi.org/10.1016/j.tics.2019.06.009 

Bruno, M.-A., Vanhaudenhuyse, A., Thibaut, A., Moonen, G., Laureys, S., 2011. From unresponsive 
wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent 
advances in our understanding of disorders of consciousness. J Neurol 258, 1373–1384. 
https://doi.org/10.1007/s00415-011-6114-x 

Buccellato, A., Zang, D., Zilio, F., Gomez-Pilar, J., Wang, Z., Qi, Z., Zheng, R., Xu, Z., Wu, X., Bisiacchi, 
P., Del Felice, A., Mao, Y., Northoff, G., 2023. Disrupted relationship between intrinsic 
neural timescales and alpha peak frequency during unconscious states – A high-density 
EEG study. NeuroImage 265, 119802. https://doi.org/10.1016/j.neuroimage.2022.119802 

Burkitt, A.N., 2006. A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic 
Input. Biol Cybern 95, 1–19. https://doi.org/10.1007/s00422-006-0068-6 

Burt, J.B., Demirtaş, M., Eckner, W.J., Navejar, N.M., Ji, J.L., Martin, W.J., Bernacchia, A., Anticevic, 
A., Murray, J.D., 2018. Hierarchy of transcriptomic specialization across human cortex 
captured by structural neuroimaging topography. Nat Neurosci 21, 1251–1259. 
https://doi.org/10.1038/s41593-018-0195-0 

Cabral, J., Kringelbach, M.L., Deco, G., 2017a. Functional connectivity dynamically evolves on 
multiple time-scales over a static structural connectome: Models and mechanisms. 
NeuroImage 160, 84–96. https://doi.org/10.1016/j.neuroimage.2017.03.045 

Cabral, J., Luckhoo, H., Woolrich, M., Joensson, M., Mohseni, H., Baker, A., Kringelbach, M.L., 
Deco, G., 2014. Exploring mechanisms of spontaneous functional connectivity in MEG: How 
delayed network interactions lead to structured amplitude envelopes of band-pass filtered 
oscillations. NeuroImage 90, 423–435. https://doi.org/10.1016/j.neuroimage.2013.11.047 

Cabral, J., Vidaurre, D., Marques, P., Magalhães, R., Silva Moreira, P., Miguel Soares, J., Deco, G., 
Sousa, N., Kringelbach, M.L., 2017b. Cognitive performance in healthy older adults relates 
to spontaneous switching between states of functional connectivity during rest. Sci Rep 7, 
5135. https://doi.org/10.1038/s41598-017-05425-7 

Campbell, S.A., 2007. Time Delays in Neural Systems, in: Jirsa, V.K., McIntosh, A. (Eds.), Handbook 
of Brain Connectivity, Understanding Complex Systems. Springer Berlin Heidelberg, Berlin, 
Heidelberg, pp. 65–90. https://doi.org/10.1007/978-3-540-71512-2_2 

Candelieri, A., Cortese, M.D., Dolce, G., Riganello, F., Sannita, W.G., 2011. Visual Pursuit: Within-
Day Variability in the Severe Disorder of Consciousness. Journal of Neurotrauma 28, 2013–
2017. https://doi.org/10.1089/neu.2011.1885 

Carhart-Harris, R.L., 2018. The entropic brain - revisited. Neuropharmacology 142, 167–178. 
https://doi.org/10.1016/j.neuropharm.2018.03.010 



107 
 

Carhart-Harris, R.L., Friston, K.J., 2019. REBUS and the Anarchic Brain: Toward a Unified Model of 
the Brain Action of Psychedelics. Pharmacol Rev 71, 316–344. 
https://doi.org/10.1124/pr.118.017160 

Casali, A.G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K.R., Casarotto, S., Bruno, M.-
A., Laureys, S., Tononi, G., Massimini, M., 2013. A Theoretically Based Index of 
Consciousness Independent of Sensory Processing and Behavior. Sci. Transl. Med. 5. 
https://doi.org/10.1126/scitranslmed.3006294 

Cavanna, A., Nani, A., 2014. Consciousness: theories in neuroscience and philosophy of mind. 
Springer, New York. 

Cavanna, A.E., Mula, M., Servo, S., Strigaro, G., Tota, G., Barbagli, D., Collimedaglia, L., Viana, M., 
Cantello, R., Monaco, F., 2008. Measuring the level and content of consciousness during 
epileptic seizures: The Ictal Consciousness Inventory. Epilepsy & Behavior 13, 184–188. 
https://doi.org/10.1016/j.yebeh.2008.01.009 

Cavanna, F., Vilas, M.G., Palmucci, M., Tagliazucchi, E., 2018. Dynamic functional connectivity and 
brain metastability during altered states of consciousness. NeuroImage 180, 383–395. 
https://doi.org/10.1016/j.neuroimage.2017.09.065 

Cecere, R., Rees, G., Romei, V., 2015. Individual Differences in Alpha Frequency Drive Crossmodal 
Illusory Perception. Current Biology 25, 231–235. 
https://doi.org/10.1016/j.cub.2014.11.034 

Chalmers, D.J., 2010. The Character of Consciousness. Oxford University Press. 
https://doi.org/10.1093/acprof:oso/9780195311105.001.0001 

Chalmers, D.J., 1997. The conscious mind: in search of a fundamental theory, 1. issued as an 
Oxford University Press paperback. ed, Philosophy of mind series. Oxford University Press, 
New York. 

Chatfield, C., 2003. The Analysis of Time Series, 0 ed. Chapman and Hall/CRC. 
https://doi.org/10.4324/9780203491683 

Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H., Wang, X.-J., 2015. A Large-Scale Circuit 
Mechanism for Hierarchical Dynamical Processing in the Primate Cortex. Neuron 88, 419–
431. https://doi.org/10.1016/j.neuron.2015.09.008 

Chen, J., Hasson, U., Honey, C.J., 2015. Processing Timescales as an Organizing Principle for 
Primate Cortex. Neuron 88, 244–246. https://doi.org/10.1016/j.neuron.2015.10.010 

Chen, J., Leong, Y.C., Honey, C.J., Yong, C.H., Norman, K.A., Hasson, U., 2017. Shared memories 
reveal shared structure in neural activity across individuals. Nat Neurosci 20, 115–125. 
https://doi.org/10.1038/nn.4450 

Chennu, S., Finoia, P., Kamau, E., Allanson, J., Williams, G.B., Monti, M.M., Noreika, V., 
Arnatkeviciute, A., Canales-Johnson, A., Olivares, F., Cabezas-Soto, D., Menon, D.K., 
Pickard, J.D., Owen, A.M., Bekinschtein, T.A., 2014. Spectral Signatures of Reorganised 
Brain Networks in Disorders of Consciousness. PLoS Comput Biol 10, e1003887. 
https://doi.org/10.1371/journal.pcbi.1003887 

Cohen, M.X., 2014. Fluctuations in Oscillation Frequency Control Spike Timing and Coordinate 
Neural Networks. Journal of Neuroscience 34, 8988–8998. 
https://doi.org/10.1523/JNEUROSCI.0261-14.2014 

Collier, B.B., 1972. Ketamine and the conscious mind. Anaesthesia 27, 120–134. 
https://doi.org/10.1111/j.1365-2044.1972.tb08186.x 

Crick, F., 2004. Foreword to C. Koch. The Quest for Consciousness: A Neurobiological Approach. 
Crick, F., 1998. Consciousness and neuroscience. Cerebral Cortex 8, 97–107. 

https://doi.org/10.1093/cercor/8.2.97 



108 
 

Crick, F., Koch, C., 1990. Towards a neurobiological theory of consciousness. Seminars in the 
Neurosciences 263–275. 

Cruse, D., Chennu, S., Chatelle, C., Bekinschtein, T.A., Fernández-Espejo, D., Pickard, J.D., Laureys, 
S., Owen, A.M., 2011. Bedside detection of awareness in the vegetative state: a cohort 
study. The Lancet 378, 2088–2094. https://doi.org/10.1016/S0140-6736(11)61224-5 

Cruse, D., Chennu, S., Chatelle, C., Fernandez-Espejo, D., Bekinschtein, T.A., Pickard, J.D., Laureys, 
S., Owen, A.M., 2012. Relationship between etiology and covert cognition in the minimally 
conscious state. Neurology 78, 816–822. https://doi.org/10.1212/WNL.0b013e318249f764 

Custo, A., Van De Ville, D., Wells, W.M., Tomescu, M.I., Brunet, D., Michel, C.M., 2017. 
Electroencephalographic Resting-State Networks: Source Localization of Microstates. Brain 
Connectivity 7, 671–682. https://doi.org/10.1089/brain.2016.0476 

Dehaene, S., 2014. Consciousness and the brain: deciphering how the brain codes our thoughts. 
Penguin books, New York (N. Y.). 

Dehaene, S., Changeux, J.-P., 2011. Experimental and Theoretical Approaches to Conscious 
Processing. Neuron 70, 200–227. https://doi.org/10.1016/j.neuron.2011.03.018 

Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG 
dynamics including independent component analysis. Journal of Neuroscience Methods 
134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 

Demertzi, A., Gosseries, O., Ledoux, D., Laureys, S., Bruno, M.-A., 2013. Quality of Life and End-of-
Life Decisions After Brain Injury, in: Warren, N., Manderson, L. (Eds.), Reframing Disability 
and Quality of Life, Social Indicators Research Series. Springer Netherlands, Dordrecht, pp. 
95–110. https://doi.org/10.1007/978-94-007-3018-2_6 

Demirtaş, M., Burt, J.B., Helmer, M., Ji, J.L., Adkinson, B.D., Glasser, M.F., Van Essen, D.C., 
Sotiropoulos, S.N., Anticevic, A., Murray, J.D., 2019. Hierarchical Heterogeneity across 
Human Cortex Shapes Large-Scale Neural Dynamics. Neuron 101, 1181-1194.e13. 
https://doi.org/10.1016/j.neuron.2019.01.017 

Di Lernia, D., Serino, S., Pezzulo, G., Pedroli, E., Cipresso, P., Riva, G., 2018. Feel the Time. Time 
Perception as a Function of Interoceptive Processing. Front. Hum. Neurosci. 12, 74. 
https://doi.org/10.3389/fnhum.2018.00074 

Di, X., Biswal, B.B., 2015. Dynamic brain functional connectivity modulated by resting-state 
networks. Brain Struct Funct 220, 37–46. https://doi.org/10.1007/s00429-013-0634-3 

Domino, E.F., Warner, D.S., 2010. Taming the Ketamine Tiger. Anesthesiology 113, 678–684. 
https://doi.org/10.1097/ALN.0b013e3181ed09a2 

Dotson, N.M., Hoffman, S.J., Goodell, B., Gray, C.M., 2018. Feature-Based Visual Short-Term 
Memory Is Widely Distributed and Hierarchically Organized. Neuron 99, 215-226.e4. 
https://doi.org/10.1016/j.neuron.2018.05.026 

Duarte, R., Seeholzer, A., Zilles, K., Morrison, A., 2017. Synaptic patterning and the timescales of 
cortical dynamics. Current Opinion in Neurobiology 43, 156–165. 
https://doi.org/10.1016/j.conb.2017.02.007 

Dürschmid, S., Reichert, C., Walter, N., Hinrichs, H., Heinze, H.-J., Ohl, F.W., Tononi, G., Deliano, 
M., 2020. Self-regulated critical brain dynamics originate from high frequency-band activity 
in the MEG. PLoS ONE 15, e0233589. https://doi.org/10.1371/journal.pone.0233589 

Edelman, G.M., Gally, J.A., Baars, B.J., 2011. Biology of Consciousness. Front. Psychology 2. 
https://doi.org/10.3389/fpsyg.2011.00004 

Engemann, D.A., Raimondo, F., King, J.-R., Rohaut, B., Louppe, G., Faugeras, F., Annen, J., Cassol, 
H., Gosseries, O., Fernandez-Slezak, D., Laureys, S., Naccache, L., Dehaene, S., Sitt, J.D., 
2018. Robust EEG-based cross-site and cross-protocol classification of states of 
consciousness. Brain 141, 3179–3192. https://doi.org/10.1093/brain/awy251 



109 
 

Erneux, T., 2009. Applied delay differential equations, Surveys and tutorials in the applied 
mathematical sciences. Springer, New York, NY. 

Escueta, A.V., Kunze, U., Waddell, G., Boxley, J., Nadel, A., 1977. Lapse of consciousness and 
automatisms in temporal lobe epilepsy: A videotape analysis. Neurology 27, 144–144. 
https://doi.org/10.1212/WNL.27.2.144 

Fallon, J., Ward, P.G.D., Parkes, L., Oldham, S., Arnatkevičiūtė, A., Fornito, A., Fulcher, B.D., 2020. 
Timescales of spontaneous fMRI fluctuations relate to structural connectivity in the brain. 
Network Neuroscience 4, 788–806. https://doi.org/10.1162/netn_a_00151 

Fekete, T., Omer, D.B., O’Hashi, K., Grinvald, A., Van Leeuwen, C., Shriki, O., 2018. Critical 
dynamics, anesthesia and information integration: Lessons from multi-scale criticality 
analysis of voltage imaging data. NeuroImage 183, 919–933. 
https://doi.org/10.1016/j.neuroimage.2018.08.026 

Fingelkurts, Alexander A., Fingelkurts, Andrew A., Bagnato, S., Boccagni, C., Galardi, G., 2012. EEG 
oscillatory states as neuro-phenomenology of consciousness as revealed from patients in 
vegetative and minimally conscious states. Consciousness and Cognition 21, 149–169. 
https://doi.org/10.1016/j.concog.2011.10.004 

Fingelkurts, Andrew A., Fingelkurts, Alexander A., Neves, C.F.H., 2010. Natural world physical, 
brain operational, and mind phenomenal space–time. Physics of Life Reviews 7, 195–249. 
https://doi.org/10.1016/j.plrev.2010.04.001 

Flood, M.W., Grimm, B., 2021. EntropyHub: An open-source toolkit for entropic time series 
analysis. PLoS ONE 16, e0259448. https://doi.org/10.1371/journal.pone.0259448 

Forgacs, P.B., Frey, H., Velazquez, A., Thompson, S., Brodie, D., Moitra, V., Rabani, L., Park, S., 
Agarwal, S., Falo, M.C., Schiff, N.D., Claassen, J., 2017. Dynamic regimes of neocortical 
activity linked to corticothalamic integrity correlate with outcomes in acute anoxic brain 
injury after cardiac arrest. Ann Clin Transl Neurol 4, 119–129. 
https://doi.org/10.1002/acn3.385 

Fotiadis, P., Cieslak, M., He, X., Caciagli, L., Ouellet, M., Satterthwaite, T.D., Shinohara, R.T., 
Bassett, D.S., 2023. Myelination and excitation-inhibition balance synergistically shape 
structure-function coupling across the human cortex. Nat Commun 14, 6115. 
https://doi.org/10.1038/s41467-023-41686-9 

Fox, M.D., Raichle, M.E., 2007. Spontaneous fluctuations in brain activity observed with functional 
magnetic resonance imaging. Nat Rev Neurosci 8, 700–711. 
https://doi.org/10.1038/nrn2201 

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005. The human 
brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. 
Acad. Sci. U.S.A. 102, 9673–9678. https://doi.org/10.1073/pnas.0504136102 

Fraschini, M., Demuru, M., Crobe, A., Marrosu, F., Stam, C.J., Hillebrand, A., 2016. The effect of 
epoch length on estimated EEG functional connectivity and brain network organisation. J. 
Neural Eng. 13, 036015. https://doi.org/10.1088/1741-2560/13/3/036015 

Fridman, E.A., Beattie, B.J., Broft, A., Laureys, S., Schiff, N.D., 2014. Regional cerebral metabolic 
patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely 
injured brain. Proc. Natl. Acad. Sci. U.S.A. 111, 6473–6478. 
https://doi.org/10.1073/pnas.1320969111 

Friston, K.J., Rosch, R., Parr, T., Price, C., Bowman, H., 2017. Deep temporal models and active 
inference. Neuroscience & Biobehavioral Reviews 77, 388–402. 
https://doi.org/10.1016/j.neubiorev.2017.04.009 

Fuscà, M., Siebenhühner, F., Wang, S.H., Myrov, V., Arnulfo, G., Nobili, L., Palva, J.M., Palva, S., 
2023. Brain criticality predicts individual levels of inter-areal synchronization in human 



110 
 

electrophysiological data. Nat Commun 14, 4736. https://doi.org/10.1038/s41467-023-
40056-9 

Gagniuc, P.A., 2017. Markov chains: from theory to implementation and experimentation. John 
Wiley & Sons, Hoboken, NJ. 

Galadí, J.A., Silva Pereira, S., Sanz Perl, Y., Kringelbach, M.L., Gayte, I., Laufs, H., Tagliazucchi, E., 
Langa, J.A., Deco, G., 2021. Capturing the non-stationarity of whole-brain dynamics 
underlying human brain states. NeuroImage 244, 118551. 
https://doi.org/10.1016/j.neuroimage.2021.118551  

Gallucci, A., Varoli, E., Del Mauro, L., Hassan, G., Rovida, M., Comanducci, A., Casarotto, S., Lo Re, 
V., & Romero Lauro, L. J. (2023). Multimodal approaches supporting the diagnosis, 
prognosis and investigation of neural correlates of disorders of consciousness: A systematic 
review. European Journal of Neuroscience. Advance online publication. 
https://doi.org/10.1111/ejn.16149 

Gao, R., Van Den Brink, R.L., Pfeffer, T., Voytek, B., 2020. Neuronal timescales are functionally 
dynamic and shaped by cortical microarchitecture. eLife 9, e61277. 
https://doi.org/10.7554/eLife.61277 

Gazzaniga, M.S., Mangun, G.R. (Eds.), 2014. The Cognitive Neurosciences, 5th ed. The MIT Press. 
https://doi.org/10.7551/mitpress/9504.001.0001 

Gennarelli, T.A., Champion, H.R., Copes, W.S., Sacco, W.J., 1994. COMPARISON OF MORTALITY, 
MORBIDITY, AND SEVERITY OF 59,713 HEAD INJURED PATIENTS WITH 114,447 PATIENTS 
WITH EXTRACRANIAL INJURIES: The Journal of Trauma: Injury, Infection, and Critical Care 
37, 962–968. https://doi.org/10.1097/00005373-199412000-00016 

Gerstner, W., Kistler, W.M., 2002. Spiking neuron models: single neurons, populations, plasticity. 
Cambridge University Press, Cambridge, U.K. ; New York. 

G-Guzmán, E., Perl, Y.S., Vohryzek, J., Escrichs, A., Manasova, D., Türker, B., Tagliazucchi, E., 
Kringelbach, M., Sitt, J.D., Deco, G., 2023. The lack of temporal brain dynamics asymmetry 
as a signature of impaired consciousness states. Interface Focus. 13, 20220086. 
https://doi.org/10.1098/rsfs.2022.0086 

Giacino, J., 1997. Disorders of Consciousness: Differential Diagnosis and Neuropathologic Features. 
Semin Neurol 17, 105–111. https://doi.org/10.1055/s-2008-1040919 

Giacino, J.T., Ashwal, S., Childs, N., Cranford, R., Jennett, B., Katz, D.I., Kelly, J.P., Rosenberg, J.H., 
Whyte, J., Zafonte, R.D., Zasler, N.D., 2002. The minimally conscious state: Definition and 
diagnostic criteria. Neurology 58, 349–353. https://doi.org/10.1212/WNL.58.3.349 

Giacino, J.T., Fins, J.J., Laureys, S., Schiff, N.D., 2014. Disorders of consciousness after acquired 
brain injury: the state of the science. Nat Rev Neurol 10, 99–114. 
https://doi.org/10.1038/nrneurol.2013.279 

Giacino, J.T., Kalmar, K., Whyte, J., 2004. The JFK Coma Recovery Scale-Revised: Measurement 
characteristics and diagnostic utility11No commercial party having a direct financial 
interest in the results of the research supporting this article has or will confer a benefit 
upon the authors or upon any organization with which the authors are associated. Archives 
of Physical Medicine and Rehabilitation 85, 2020–2029. 
https://doi.org/10.1016/j.apmr.2004.02.033 

Giacino, J.T., Katz, D.I., Schiff, N.D., Whyte, J., Ashman, E.J., Ashwal, S., Barbano, R., Hammond, 
F.M., Laureys, S., Ling, G.S.F., Nakase-Richardson, R., Seel, R.T., Yablon, S., Getchius, T.S.D., 
Gronseth, G.S., Armstrong, M.J., 2018. Practice guideline update recommendations 
summary: Disorders of consciousness: Report of the Guideline Development, 
Dissemination, and Implementation Subcommittee of the American Academy of 
Neurology; the American Congress of Rehabilitation Medicine; and the National Institute 



111 
 

on Disability, Independent Living, and Rehabilitation Research. Neurology 91, 450–460. 
https://doi.org/10.1212/WNL.0000000000005926 

Giacino, J.T., Kezmarsky, M.A., DeLuca, J., Cicerone, K.D., 1991. Monitoring rate of recovery to 
predict outcome in minimally responsive patients. Archives of Physical Medicine and 
Rehabilitation 72, 897–901. https://doi.org/10.1016/0003-9993(91)90008-7 

Giacino, J.T., Schiff, N.D., 2009. The Minimally Conscious State: Clinical Features, Pathophysiology 
and Therapeutic Implications, in: The Neurology of Consciousness. Elsevier, pp. 173–190. 
https://doi.org/10.1016/B978-0-12-374168-4.00014-9 

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., 
Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., Van Essen, D.C., 2016. A multi-
modal parcellation of human cerebral cortex. Nature 536, 171–178. 
https://doi.org/10.1038/nature18933 

Gloor, P., 1986. Consciousness as a Neurological Concept in Epileptology: A Critical Review. 
Epilepsia 27. https://doi.org/10.1111/j.1528-1157.1986.tb05737.x 

Gold, L., Lauritzen, M., 2002. Neuronal deactivation explains decreased cerebellar blood flow in 
response to focal cerebral ischemia or suppressed neocortical function. Proc. Natl. Acad. 
Sci. U.S.A. 99, 7699–7704. https://doi.org/10.1073/pnas.112012499 

Golden, K., Bodien, Y.G., Giacino, J.T., 2024. Disorders of Consciousness. Physical Medicine and 
Rehabilitation Clinics of North America 35, 15–33. 
https://doi.org/10.1016/j.pmr.2023.06.011 

Goldfine, A.M., Victor, J.D., Conte, M.M., Bardin, J.C., Schiff, N.D., 2011. Determination of 
awareness in patients with severe brain injury using EEG power spectral analysis. Clinical 
Neurophysiology 122, 2157–2168. https://doi.org/10.1016/j.clinph.2011.03.022 

Golesorkhi, M., Gomez-Pilar, J., Tumati, S., Fraser, M., Northoff, G., 2021a. Temporal hierarchy of 
intrinsic neural timescales converges with spatial core-periphery organization. Commun 
Biol 4, 277. https://doi.org/10.1038/s42003-021-01785-z 

Golesorkhi, M., Gomez-Pilar, J., Zilio, F., Berberian, N., Wolff, A., Yagoub, M.C.E., Northoff, G., 
2021b. The brain and its time: intrinsic neural timescales are key for input processing. 
Commun Biol 4, 970. https://doi.org/10.1038/s42003-021-02483-6 

Gollo, L.L., 2019. Exploring atypical timescales in the brain. eLife 8, e45089. 
https://doi.org/10.7554/eLife.45089 

Gollo, L.L., Roberts, J.A., Cocchi, L., 2017. Mapping how local perturbations influence systems-level 
brain dynamics. NeuroImage 160, 97–112. 
https://doi.org/10.1016/j.neuroimage.2017.01.057 

Gonzalez-Castillo, J., Caballero-Gaudes, C., Topolski, N., Handwerker, D.A., Pereira, F., Bandettini, 
P.A., 2019. Imaging the spontaneous flow of thought: Distinct periods of cognition 
contribute to dynamic functional connectivity during rest. NeuroImage 202, 116129. 
https://doi.org/10.1016/j.neuroimage.2019.116129 

Gulbinaite, R., Van Viegen, T., Wieling, M., Cohen, M.X., VanRullen, R., 2017. Individual Alpha Peak 
Frequency Predicts 10 Hz Flicker Effects on Selective Attention. J. Neurosci. 37, 10173–
10184. https://doi.org/10.1523/JNEUROSCI.1163-17.2017 

Gutiérrez-Tobal, G.C., Gomez-Pilar, J., Kheirandish-Gozal, L., Martín-Montero, A., Poza, J., Álvarez, 
D., Del Campo, F., Gozal, D., Hornero, R., 2021. Pediatric Sleep Apnea: The Overnight 
Electroencephalogram as a Phenotypic Biomarker. Front. Neurosci. 15, 644697. 
https://doi.org/10.3389/fnins.2021.644697 

Hadriche, A., Pezard, L., Nandrino, J.-L., Ghariani, H., Kachouri, A., Jirsa, V.K., 2013. Mapping the 
dynamic repertoire of the resting brain. NeuroImage 78, 448–462. 
https://doi.org/10.1016/j.neuroimage.2013.04.041 



112 
 

Haegens, S., Cousijn, H., Wallis, G., Harrison, P.J., Nobre, A.C., 2014. Inter- and intra-individual 
variability in alpha peak frequency. NeuroImage 92, 46–55. 
https://doi.org/10.1016/j.neuroimage.2014.01.049 

Hasson, U., Chen, J., Honey, C.J., 2015. Hierarchical process memory: memory as an integral 
component of information processing. Trends in Cognitive Sciences 19, 304–313. 
https://doi.org/10.1016/j.tics.2015.04.006 

Hasson, U., Yang, E., Vallines, I., Heeger, D.J., Rubin, N., 2008. A Hierarchy of Temporal Receptive 
Windows in Human Cortex. J. Neurosci. 28, 2539–2550. 
https://doi.org/10.1523/JNEUROSCI.5487-07.2008 

He, B.J., 2014. Scale-free brain activity: past, present, and future. Trends in Cognitive Sciences 18, 
480–487. https://doi.org/10.1016/j.tics.2014.04.003 

He, B.J., 2013. Spontaneous and Task-Evoked Brain Activity Negatively Interact. J. Neurosci. 33, 
4672–4682. https://doi.org/10.1523/JNEUROSCI.2922-12.2013 

He, B.J., Zempel, J.M., Snyder, A.Z., Raichle, M.E., 2010. The Temporal Structures and Functional 
Significance of Scale-free Brain Activity. Neuron 66, 353–369. 
https://doi.org/10.1016/j.neuron.2010.04.020 

Heiney, K., Huse Ramstad, O., Fiskum, V., Christiansen, N., Sandvig, A., Nichele, S., Sandvig, I., 
2021. Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural 
Computation. Front. Comput. Neurosci. 15, 611183. 
https://doi.org/10.3389/fncom.2021.611183 

Hermann, B., Sangaré, A., Munoz-Musat, E., Salah, A.B., Perez, P., Valente, M., Faugeras, F., 
Axelrod, V., Demeret, S., Marois, C., Pyatigorskaya, N., Habert, M.-O., Kas, A., Sitt, J.D., 
Rohaut, B., Naccache, L., 2021. Importance, limits and caveats of the use of “disorders of 
consciousness” to theorize consciousness. Neuroscience of Consciousness 2021, niab048. 
https://doi.org/10.1093/nc/niab048 

Herrmann, C.S., Murray, M.M., Ionta, S., Hutt, A., Lefebvre, J., 2016. Shaping Intrinsic Neural 
Oscillations with Periodic Stimulation. J. Neurosci. 36, 5328–5337. 
https://doi.org/10.1523/JNEUROSCI.0236-16.2016 

Hesse, J., Gross, T., 2014. Self-organized criticality as a fundamental property of neural systems. 
Front. Syst. Neurosci. 8. https://doi.org/10.3389/fnsys.2014.00166 

Heydrich, L., Dieguez, S., Grunwald, T., Seeck, M., Blanke, O., 2010. Illusory own body perceptions: 
Case reports and relevance for bodily self-consciousness. Consciousness and Cognition 19, 
702–710. https://doi.org/10.1016/j.concog.2010.04.010 

Hight, D.F., Dadok, V.M., Szeri, A.J., GarcÃ­a, P.S., Voss, L., Sleigh, J.W., 2014. Emergence from 
general anesthesia and the sleep-manifold. Front. Syst. Neurosci. 8. 
https://doi.org/10.3389/fnsys.2014.00146 

Himberger, K.D., Chien, H.-Y., Honey, C.J., 2018. Principles of Temporal Processing Across the 
Cortical Hierarchy. Neuroscience 389, 161–174. 
https://doi.org/10.1016/j.neuroscience.2018.04.030 

Hindriks, R., Van Putten, M.J.A.M., Deco, G., 2014. Intra-cortical propagation of EEG alpha 
oscillations. NeuroImage 103, 444–453. https://doi.org/10.1016/j.neuroimage.2014.08.027 

Hoel, E.P., Albantakis, L., Marshall, W., Tononi, G., 2016. Can the macro beat the micro? Integrated 
information across spatiotemporal scales. Neurosci Conscious 2016, niw012. 
https://doi.org/10.1093/nc/niw012 

Hoffmann, J.M., Elger, C.E., Kleefuss-Lie, A.A., 2008. Lateralizing value of behavioral arrest in 
patients with temporal lobe epilepsy. Epilepsy & Behavior 13, 634–636. 
https://doi.org/10.1016/j.yebeh.2008.07.006 



113 
 

Honey, C.J., Thesen, T., Donner, T.H., Silbert, L.J., Carlson, C.E., Devinsky, O., Doyle, W.K., Rubin, N., 
Heeger, D.J., Hasson, U., 2012. Slow Cortical Dynamics and the Accumulation of 
Information over Long Timescales. Neuron 76, 423–434. 
https://doi.org/10.1016/j.neuron.2012.08.011 

Hua, J., Wolff, A., Zhang, J., Yao, L., Zang, Y., Luo, J., Ge, X., Liu, C., Northoff, G., 2022. Alpha and 
theta peak frequency track on- and off-thoughts. Commun Biol 5, 209. 
https://doi.org/10.1038/s42003-022-03146-w 

Huang, C., Doiron, B., 2017. Once upon a (slow) time in the land of recurrent neuronal networks…. 
Current Opinion in Neurobiology 46, 31–38. https://doi.org/10.1016/j.conb.2017.07.003 

Huang, X., Shang, H.L., Pitt, D., 2022. Permutation entropy and its variants for measuring temporal 
dependence. Aus NZ J of Statistics 64, 442–477. https://doi.org/10.1111/anzs.12376 

Huang, Z., Liu, X., Mashour, G.A., Hudetz, A.G., 2018. Timescales of Intrinsic BOLD Signal Dynamics 
and Functional Connectivity in Pharmacologic and Neuropathologic States of 
Unconsciousness. J. Neurosci. 38, 2304–2317. https://doi.org/10.1523/JNEUROSCI.2545-
17.2018 

Huang, Z., Tarnal, V., Vlisides, P.E., Janke, E.L., McKinney, A.M., Picton, P., Mashour, G.A., Hudetz, 
A.G., 2021. Asymmetric neural dynamics characterize loss and recovery of consciousness. 
NeuroImage 236, 118042. https://doi.org/10.1016/j.neuroimage.2021.118042 

Huang, Z., Zhang, J., Longtin, A., Dumont, G., Duncan, N.W., Pokorny, J., Qin, P., Dai, R., Ferri, F., 
Weng, X., Northoff, G., 2015. Is There a Nonadditive Interaction Between Spontaneous and 
Evoked Activity? Phase-Dependence and Its Relation to the Temporal Structure of Scale-
Free Brain Activity. Cereb. Cortex bhv288. https://doi.org/10.1093/cercor/bhv288 

Hudetz, A.G., Liu, X., Pillay, S., 2015. Dynamic Repertoire of Intrinsic Brain States Is Reduced in 
Propofol-Induced Unconsciousness. Brain Connectivity 5, 10–22. 
https://doi.org/10.1089/brain.2014.0230 

Hülsdünker, T., Mierau, A., Strüder, H.K., 2016. Higher Balance Task Demands are Associated with 
an Increase in Individual Alpha Peak Frequency. Front. Hum. Neurosci. 9. 
https://doi.org/10.3389/fnhum.2015.00695 

Huntenburg, J.M., Bazin, P.-L., Margulies, D.S., 2018. Large-Scale Gradients in Human Cortical 
Organization. Trends in Cognitive Sciences 22, 21–31. 
https://doi.org/10.1016/j.tics.2017.11.002 

Husserl, E., 2019. The Phenomenology of Internal Time-Consciousness. Indiana University Press. 
https://doi.org/10.2307/j.ctvh4zhv9 

Hutchison, R.M., Hutchison, M., Manning, K.Y., Menon, R.S., Everling, S., 2014. Isoflurane induces 
dose-dependent alterations in the cortical connectivity profiles and dynamic properties of 
the brain’s functional architecture: Dose-Dependent Isoflurane Effects. Hum. Brain Mapp. 
35, 5754–5775. https://doi.org/10.1002/hbm.22583 

Ito, T., Hearne, L.J., Cole, M.W., 2020. A cortical hierarchy of localized and distributed processes 
revealed via dissociation of task activations, connectivity changes, and intrinsic timescales. 
NeuroImage 221, 117141. https://doi.org/10.1016/j.neuroimage.2020.117141 

James, W., 1890. The principles of psychology, Vol I. Henry Holt and Co, New York. 
https://doi.org/10.1037/10538-000 

Ji, J.L., Spronk, M., Kulkarni, K., Repovš, G., Anticevic, A., Cole, M.W., 2019. Mapping the human 
brain’s cortical-subcortical functional network organization. NeuroImage 185, 35–57. 
https://doi.org/10.1016/j.neuroimage.2018.10.006 

Kafashan, M., Ching, S., Palanca, B.J.A., 2016. Sevoflurane Alters Spatiotemporal Functional 
Connectivity Motifs That Link Resting-State Networks during Wakefulness. Front. Neural 
Circuits 10. https://doi.org/10.3389/fncir.2016.00107 



114 
 

Kaplan, A.Ya., Fingelkurts, Andrew A., Fingelkurts, Alexander A., Borisov, S.V., Darkhovsky, B.S., 
2005. Nonstationary nature of the brain activity as revealed by EEG/MEG: Methodological, 
practical and conceptual challenges. Signal Processing 85, 2190–2212. 
https://doi.org/10.1016/j.sigpro.2005.07.010 

Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., Arieli, A., 2003. Spontaneously emerging 
cortical representations of visual attributes. Nature 425, 954–956. 
https://doi.org/10.1038/nature02078 

Kennedy, D., Norman, C., 2005. What Don’t We Know? Science 309, 75–75. 
https://doi.org/10.1126/science.309.5731.75 

Kent, L., Van Doorn, G., Klein, B., 2019. Systema Temporis: A time-based dimensional framework 
for consciousness and cognition. Consciousness and Cognition 73, 102766. 
https://doi.org/10.1016/j.concog.2019.102766 

Kent, L., Wittmann, M., 2021. Time consciousness: the missing link in theories of consciousness. 
Neuroscience of Consciousness 2021, niab011. https://doi.org/10.1093/nc/niab011 

Klar, P., Çatal, Y., Fogel, S., Jocham, G., Langner, R., Owen, A.M., Northoff, G., 2023. Auditory 
inputs modulate intrinsic neuronal timescales during sleep. Commun Biol 6, 1180. 
https://doi.org/10.1038/s42003-023-05566-8 

Klimesch, W., 2012. Alpha-band oscillations, attention, and controlled access to stored 
information. Trends in Cognitive Sciences 16, 606–617. 
https://doi.org/10.1016/j.tics.2012.10.007 

Koch, C., Massimini, M., Boly, M., Tononi, G., 2016. Neural correlates of consciousness: progress 
and problems. Nat Rev Neurosci 17, 307–321. https://doi.org/10.1038/nrn.2016.22 

Koenig, T., Prichep, L., Lehmann, D., Sosa, P.V., Braeker, E., Kleinlogel, H., Isenhart, R., John, E.R., 
2002. Millisecond by Millisecond, Year by Year: Normative EEG Microstates and 
Developmental Stages. NeuroImage 16, 41–48. https://doi.org/10.1006/nimg.2002.1070 

Kolvoort, I.R., Wainio‐Theberge, S., Wolff, A., Northoff, G., 2020. Temporal integration as 
“common currency” of brain and self ‐ scale‐free activity in resting‐state EEG correlates 
with temporal delay effects on self‐relatedness. Human Brain Mapping 41, 4355–4374. 
https://doi.org/10.1002/hbm.25129 

Kondziella, D., Bender, A., Diserens, K., Van Erp, W., Estraneo, A., Formisano, R., Laureys, S., 
Naccache, L., Ozturk, S., Rohaut, B., Sitt, J.D., Stender, J., Tiainen, M., Rossetti, A.O., 
Gosseries, O., Chatelle, C., the EAN Panel on Coma, Disorders of Consciousness, 2020. 
European Academy of Neurology guideline on the diagnosis of coma and other disorders of 
consciousness. Euro J of Neurology 27, 741–756. https://doi.org/10.1111/ene.14151 

Kondziella, D., Friberg, C.K., Frokjaer, V.G., Fabricius, M., Møller, K., 2016. Preserved consciousness 
in vegetative and minimal conscious states: systematic review and meta-analysis. J Neurol 
Neurosurg Psychiatry 87, 485–492. https://doi.org/10.1136/jnnp-2015-310958 

Kornmeier, J., Friedel, Evelyn., Hecker, L., Schmidt, S., Wittmann, M., 2019. What happens in the 
brain of meditators when perception changes but not the stimulus? PLoS ONE 14, 
e0223843. https://doi.org/10.1371/journal.pone.0223843 

Koster-Hale, J., Saxe, R., 2013. Theory of Mind: A Neural Prediction Problem. Neuron 79, 836–848. 
https://doi.org/10.1016/j.neuron.2013.08.020 

Kotz, S., Johnson, N.L. (Eds.), 1992. Breakthroughs in statistics, Springer series in statistics. 
Springer-Verlag, New York. 

Kreuzer, M., Kochs, E.F., Schneider, G., Jordan, D., 2014. Non-stationarity of EEG during 
wakefulness and anaesthesia: advantages of EEG permutation entropy monitoring. J Clin 
Monit Comput 28, 573–580. https://doi.org/10.1007/s10877-014-9553-y 



115 
 

Krohn, S., Von Schwanenflug, N., Waschke, L., Romanello, A., Gell, M., Garrett, D.D., Finke, C., 
2023. A spatiotemporal complexity architecture of human brain activity. Sci. Adv. 9, 
eabq3851. https://doi.org/10.1126/sciadv.abq3851 

Labonte, A.K., Kafashan, M., Huels, E.R., Blain-Moraes, S., Basner, M., Kelz, M.B., Mashour, G.A., 
Avidan, M.S., Palanca, B.J.A., Muench, M., Tarnal, V., Vanini, G., Ochroch, E.A., Hogg, R., 
Schwarz, M., Janke, E., Golmirzaie, G., Picton, P., McKinstry-Wu, A.R., 2023. The posterior 
dominant rhythm: an electroencephalographic biomarker for cognitive recovery after 
general anaesthesia. British Journal of Anaesthesia 130, e233–e242. 
https://doi.org/10.1016/j.bja.2022.01.019  

Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends in Cognitive 
Sciences, 7(1), 12-18. https://doi.org/10.1016/S1364-6613(02)00013-X 

Larson-Prior, L.J., Oostenveld, R., Della Penna, S., Michalareas, G., Prior, F., Babajani-Feremi, A., 
Schoffelen, J.-M., Marzetti, L., De Pasquale, F., Di Pompeo, F., Stout, J., Woolrich, M., Luo, 
Q., Bucholz, R., Fries, P., Pizzella, V., Romani, G.L., Corbetta, M., Snyder, A.Z., 2013. Adding 
dynamics to the Human Connectome Project with MEG. NeuroImage 80, 190–201. 
https://doi.org/10.1016/j.neuroimage.2013.05.056 

Lau, H., 2022. In consciousness we trust: the cognitive neuroscience of subjective experience. 
Oxford University press, Oxford. 

Laumann, T.O., Snyder, A.Z., Mitra, A., Gordon, E.M., Gratton, C., Adeyemo, B., Gilmore, A.W., 
Nelson, S.M., Berg, J.J., Greene, D.J., McCarthy, J.E., Tagliazucchi, E., Laufs, H., Schlaggar, 
B.L., Dosenbach, N.U.F., Petersen, S.E., 2016. On the Stability of BOLD fMRI Correlations. 
Cereb. Cortex cercor;bhw265v1. https://doi.org/10.1093/cercor/bhw265 

Laureys, S., Pellas, F., Van Eeckhout, P., Ghorbel, S., Schnakers, C., Perrin, F., Berré, J., Faymonville, 
M.-E., Pantke, K.-H., Damas, F., Lamy, M., Moonen, G., Goldman, S., 2005. The locked-in 
syndrome : what is it like to be conscious but paralyzed and voiceless?, in: Progress in Brain 
Research. Elsevier, pp. 495–611. https://doi.org/10.1016/S0079-6123(05)50034-7 

Lechinger, J., Bothe, K., Pichler, G., Michitsch, G., Donis, J., Klimesch, W., Schabus, M., 2013. CRS-R 
score in disorders of consciousness is strongly related to spectral EEG at rest. J Neurol 260, 
2348–2356. https://doi.org/10.1007/s00415-013-6982-3 

Lechner, S., Northoff, G., 2023. Prolonged Intrinsic Neural Timescales Dissociate from Phase 
Coherence in Schizophrenia. Brain Sciences 13, 695. 
https://doi.org/10.3390/brainsci13040695 

Lefebvre, J., Hutt, A., Knebel, J.-F., Whittingstall, K., Murray, M.M., 2015. Stimulus Statistics Shape 
Oscillations in Nonlinear Recurrent Neural Networks. J. Neurosci. 35, 2895–2903. 
https://doi.org/10.1523/JNEUROSCI.3609-14.2015 

Lerner, Y., Honey, C.J., Silbert, L.J., Hasson, U., 2011. Topographic Mapping of a Hierarchy of 
Temporal Receptive Windows Using a Narrated Story. J. Neurosci. 31, 2906–2915. 
https://doi.org/10.1523/JNEUROSCI.3684-10.2011 

Li, D., Mashour, G.A., 2019. Cortical dynamics during psychedelic and anesthetized states induced 
by ketamine. NeuroImage 196, 32–40. https://doi.org/10.1016/j.neuroimage.2019.03.076 

Li, D., Vlisides, P.E., Mashour, G.A., 2022. Dynamic reconfiguration of frequency-specific cortical 
coactivation patterns during psychedelic and anesthetized states induced by ketamine. 
NeuroImage 249, 118891. https://doi.org/10.1016/j.neuroimage.2022.118891 

Liégeois, R., Li, J., Kong, R., Orban, C., Van De Ville, D., Ge, T., Sabuncu, M.R., Yeo, B.T.T., 2019. 
Resting brain dynamics at different timescales capture distinct aspects of human behavior. 
Nat Commun 10, 2317. https://doi.org/10.1038/s41467-019-10317-7 

Lord, L.-D., Expert, P., Atasoy, S., Roseman, L., Rapuano, K., Lambiotte, R., Nutt, D.J., Deco, G., 
Carhart-Harris, R.L., Kringelbach, M.L., Cabral, J., 2019. Dynamical exploration of the 



116 
 

repertoire of brain networks at rest is modulated by psilocybin. NeuroImage 199, 127–142. 
https://doi.org/10.1016/j.neuroimage.2019.05.060 

Luczak, A., Barthó, P., Harris, K.D., 2009. Spontaneous Events Outline the Realm of Possible 
Sensory Responses in Neocortical Populations. Neuron 62, 413–425. 
https://doi.org/10.1016/j.neuron.2009.03.014 

Lulé, D., Noirhomme, Q., Kleih, S.C., Chatelle, C., Halder, S., Demertzi, A., Bruno, M.-A., Gosseries, 
O., Vanhaudenhuyse, A., Schnakers, C., Thonnard, M., Soddu, A., Kübler, A., Laureys, S., 
2013. Probing command following in patients with disorders of consciousness using a 
brain–computer interface. Clinical Neurophysiology 124, 101–106. 
https://doi.org/10.1016/j.clinph.2012.04.030 

Lurie, D.J., Kessler, D., Bassett, D.S., Betzel, R.F., Breakspear, M., Kheilholz, S., Kucyi, A., Liégeois, 
R., Lindquist, M.A., McIntosh, A.R., Poldrack, R.A., Shine, J.M., Thompson, W.H., Bielczyk, 
N.Z., Douw, L., Kraft, D., Miller, R.L., Muthuraman, M., Pasquini, L., Razi, A., Vidaurre, D., 
Xie, H., Calhoun, V.D., 2020. Questions and controversies in the study of time-varying 
functional connectivity in resting fMRI. Network Neuroscience 4, 30–69. 
https://doi.org/10.1162/netn_a_00116 

Mackey, M.C., Glass, L., 1977. Oscillation and Chaos in Physiological Control Systems. Science 197, 
287–289. https://doi.org/10.1126/science.267326 

Mahjoory, K., Schoffelen, J.-M., Keitel, A., Gross, J., 2020. The frequency gradient of human 
resting-state brain oscillations follows cortical hierarchies. eLife 9, e53715. 
https://doi.org/10.7554/eLife.53715 

Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L., Corbetta, M., 2007. Electrophysiological 
signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. U.S.A. 104, 
13170–13175. https://doi.org/10.1073/pnas.0700668104 

Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G., Bezgin, G., 
Eickhoff, S.B., Castellanos, F.X., Petrides, M., Jefferies, E., Smallwood, J., 2016. Situating the 
default-mode network along a principal gradient of macroscale cortical organization. Proc. 
Natl. Acad. Sci. U.S.A. 113, 12574–12579. https://doi.org/10.1073/pnas.1608282113 

Mashour, G.A., Hudetz, A.G., 2018. Neural Correlates of Unconsciousness in Large-Scale Brain 
Networks. Trends in Neurosciences 41, 150–160. 
https://doi.org/10.1016/j.tins.2018.01.003 

Mashour, G.A., Roelfsema, P., Changeux, J.-P., Dehaene, S., 2020. Conscious Processing and the 
Global Neuronal Workspace Hypothesis. Neuron 105, 776–798. 
https://doi.org/10.1016/j.neuron.2020.01.026 

Matilla-García, M., Ruiz Marín, M., 2009. Detection of non-linear structure in time series. 
Economics Letters 105, 1–6. https://doi.org/10.1016/j.econlet.2009.04.014 

McClenathan, B., Thakor, N., Hoesch, R., 2013. Pathophysiology of Acute Coma and Disorders of 
Consciousness: Considerations for Diagnosis and Management. Semin Neurol 33, 091–109. 
https://doi.org/10.1055/s-0033-1348964 

McIntosh, A.R., Jirsa, V.K., 2019. The hidden repertoire of brain dynamics and dysfunction. 
Network Neuroscience 3, 994–1008. https://doi.org/10.1162/netn_a_00107 

McPherson, A., Rojas, L., Bauerschmidt, A., Ezeani, C.C., Yang, L., Motelow, J.E., Farooque, P., 
Detyniecki, K., Giacino, J.T., Blumenfeld, H., 2012. Testing for minimal consciousness in 
complex partial and generalized tonic–clonic seizures. Epilepsia 53. 
https://doi.org/10.1111/j.1528-1167.2012.03657.x 

Michel, C.M., Koenig, T., 2018. EEG microstates as a tool for studying the temporal dynamics of 
whole-brain neuronal networks: A review. NeuroImage 180, 577–593. 
https://doi.org/10.1016/j.neuroimage.2017.11.062 



117 
 

Mierau, A., Klimesch, W., Lefebvre, J., 2017. State-dependent alpha peak frequency shifts: 
Experimental evidence, potential mechanisms and functional implications. Neuroscience 
360, 146–154. https://doi.org/10.1016/j.neuroscience.2017.07.037 

Mikosch, T., Stărică, C., 2004. Nonstationarities in Financial Time Series, the Long-Range 
Dependence, and the IGARCH Effects. Review of Economics and Statistics 86, 378–390. 
https://doi.org/10.1162/003465304323023886 

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, 
M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., 
Kumaran, D., Wierstra, D., Legg, S., Hassabis, D., 2015. Human-level control through deep 
reinforcement learning. Nature 518, 529–533. https://doi.org/10.1038/nature14236 

Monti, M.M., Vanhaudenhuyse, A., Coleman, M.R., Boly, M., Pickard, J.D., Tshibanda, L., Owen, 
A.M., Laureys, S., 2010. Willful Modulation of Brain Activity in Disorders of Consciousness. 
N Engl J Med 362, 579–589. https://doi.org/10.1056/NEJMoa0905370 

Moraczewski, D., Nketia, J., Redcay, E., 2020. Cortical temporal hierarchy is immature in middle 
childhood. NeuroImage 216, 116616. https://doi.org/10.1016/j.neuroimage.2020.116616 

Murphy, M., Stickgold, R., Öngür, D., 2020. Electroencephalogram Microstate Abnormalities in 
Early-Course Psychosis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 5, 
35–44. https://doi.org/10.1016/j.bpsc.2019.07.006 

Murray, J.D., Bernacchia, A., Freedman, D.J., Romo, R., Wallis, J.D., Cai, X., Padoa-Schioppa, C., 
Pasternak, T., Seo, H., Lee, D., Wang, X.-J., 2014. A hierarchy of intrinsic timescales across 
primate cortex. Nat Neurosci 17, 1661–1663. https://doi.org/10.1038/nn.3862 

Murray, M.M., Brunet, D., Michel, C.M., 2008. Topographic ERP Analyses: A Step-by-Step Tutorial 
Review. Brain Topogr 20, 249–264. https://doi.org/10.1007/s10548-008-0054-5 

Naci, L., Cusack, R., Jia, V.Z., Owen, A.M., 2013. The Brain’s Silent Messenger: Using Selective 
Attention to Decode Human Thought for Brain-Based Communication. J. Neurosci. 33, 
9385–9393. https://doi.org/10.1523/JNEUROSCI.5577-12.2013 

Naci, L., Owen, A.M., 2013. Making Every Word Count for Nonresponsive Patients. JAMA Neurol. 
https://doi.org/10.1001/jamaneurol.2013.3686 

Nagel, T., 1974. What Is It Like to Be a Bat? The Philosophical Review 83, 435. 
https://doi.org/10.2307/2183914 

Nakajima, Y., Shimojo, S., Sugita, Y., 1980. On the perception of two successive sound bursts. 
Psychol. Res 41, 335–344. https://doi.org/10.1007/BF00308878 

Noguchi, Y., Xia, Y., Kakigi, R., 2019. Desynchronizing to be faster? Perceptual- and attentional-
modulation of brain rhythms at the sub-millisecond scale. NeuroImage 191, 225–233. 
https://doi.org/10.1016/j.neuroimage.2019.02.027 

Northoff, G., Huang, Z., 2017. How do the brain’s time and space mediate consciousness and its 
different dimensions? Temporo-spatial theory of consciousness (TTC). Neuroscience & 
Biobehavioral Reviews 80, 630–645. https://doi.org/10.1016/j.neubiorev.2017.07.013 

Northoff, G., Klar, P., Bein, M., Safron, A., 2023. As without, so within: how the brain’s temporo-
spatial alignment to the environment shapes consciousness. Interface Focus. 13, 20220076. 
https://doi.org/10.1098/rsfs.2022.0076 

Northoff, G., Lamme, V., 2020. Neural signs and mechanisms of consciousness: Is there a potential 
convergence of theories of consciousness in sight? Neuroscience & Biobehavioral Reviews 
118, 568–587. https://doi.org/10.1016/j.neubiorev.2020.07.019 

Northoff, G., Wainio-Theberge, S., Evers, K., 2020. Is temporo-spatial dynamics the “common 
currency” of brain and mind? In Quest of “Spatiotemporal Neuroscience.” Physics of Life 
Reviews 33, 34–54. https://doi.org/10.1016/j.plrev.2019.05.002 



118 
 

Northoff, G., Zilio, F., 2022a. Temporo-spatial Theory of Consciousness (TTC) – Bridging the gap of 
neuronal activity and phenomenal states. Behavioural Brain Research 424, 113788. 
https://doi.org/10.1016/j.bbr.2022.113788 

Northoff, G., Zilio, F., 2022b. From Shorter to Longer Timescales: Converging Integrated 
Information Theory (IIT) with the Temporo-Spatial Theory of Consciousness (TTC). Entropy 
24, 270. https://doi.org/10.3390/e24020270 

Oizumi, M., Albantakis, L., Tononi, G., 2014. From the Phenomenology to the Mechanisms of 
Consciousness: Integrated Information Theory 3.0. PLoS Comput Biol 10, e1003588. 
https://doi.org/10.1371/journal.pcbi.1003588 

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: Open Source Software for 
Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational 
Intelligence and Neuroscience 2011, 1–9. https://doi.org/10.1155/2011/156869 

Otto, A., Just, W., Radons, G., 2019. Nonlinear dynamics of delay systems: an overview. Phil. Trans. 
R. Soc. A. 377, 20180389. https://doi.org/10.1098/rsta.2018.0389 

Owen, A.M., Coleman, M.R., Boly, M., Davis, M.H., Laureys, S., Pickard, J.D., 2006. Detecting 
Awareness in the Vegetative State. Science 313, 1402–1402. 
https://doi.org/10.1126/science.1130197 

Palva, S., Palva, J.M., 2018. Roles of Brain Criticality and Multiscale Oscillations in Temporal 
Predictions for Sensorimotor Processing. Trends in Neurosciences 41, 729–743. 
https://doi.org/10.1016/j.tins.2018.08.008 

Panda, R., Thibaut, A., Lopez-Gonzalez, A., Escrichs, A., Bahri, M.A., Hillebrand, A., Deco, G., 
Laureys, S., Gosseries, O., Annen, J., Tewarie, P., 2022. Disruption in structural–functional 
network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in 
disorders of consciousness. eLife 11, e77462. https://doi.org/10.7554/eLife.77462 

Park, H.-J., Friston, K., 2013. Structural and Functional Brain Networks: From Connections to 
Cognition. Science 342, 1238411. https://doi.org/10.1126/science.1238411 

Park, K.I., 2018. Fundamentals of probability and stochastic processes with applications to 
communications. Springer, Cham. 

Paton, J.J., Buonomano, D.V., 2018. The Neural Basis of Timing: Distributed Mechanisms for 
Diverse Functions. Neuron 98, 687–705. https://doi.org/10.1016/j.neuron.2018.03.045 

Penfield, W., 1952. Epileptic automatism and the centrencephalic integrating system. Res Publ 
Assoc Res Nerv Ment Dis 30, 513–528. 

Petelczyc, M., Czechowski, Z., 2023. Effect of nonlinearity and persistence on multiscale 
irreversibility, non-stationarity, and complexity of time series—Case of data generated by 
the modified Langevin model. Chaos: An Interdisciplinary Journal of Nonlinear Science 33, 
053107. https://doi.org/10.1063/5.0141160 

Peterson, A., Cruse, D., Naci, L., Weijer, C., Owen, A.M., 2015. Risk, diagnostic error, and the 
clinical science of consciousness. NeuroImage: Clinical 7, 588–597. 
https://doi.org/10.1016/j.nicl.2015.02.008 

Petitot, J. (Ed.), 1999. Naturalizing phenomenology: issues in contemporary phenomenology and 
cognitive science, Writing science. Stanford University Press, Stanford, Calif. 

Pezzulo, G., Zorzi, M., Corbetta, M., 2021. The secret life of predictive brains: what’s spontaneous 
activity for? Trends in Cognitive Sciences 25, 730–743. 
https://doi.org/10.1016/j.tics.2021.05.007 

Phillips, I., Morales, J., 2020. The Fundamental Problem with No-Cognition Paradigms. Trends in 
Cognitive Sciences 24, 165–167. https://doi.org/10.1016/j.tics.2019.11.010 



119 
 

Picard, F., Craig, A.D., 2009. Ecstatic epileptic seizures: A potential window on the neural basis for 
human self-awareness. Epilepsy & Behavior 16, 539–546. 
https://doi.org/10.1016/j.yebeh.2009.09.013 

Plant, R.E., 1981. A FitzHugh Differential-Difference Equation Modeling Recurrent Neural 
Feedback. SIAM J. Appl. Math. 40, 150–162. https://doi.org/10.1137/0140012 

Plum, F., Posner, J.B., 1972. The diagnosis of stupor and coma, 2d ed. ed, Contemporary neurology 
series. F. A. Davis Co, Philadelphia. 

Pöppel, E., 1989. A hierarchical model of human time perception. International Journal of 
Psychophysiology 7, 357–359. https://doi.org/10.1016/0167-8760(89)90292-4 

Prigogine, I., Stengers, I., Prigogine, I., 1997. The end of certainty: time, chaos, and the new laws of 
nature, 1. Free Press ed. ed. Free Press, New York London. 

Poeppel, E., Logothetis, N., 1986. Neuronal oscillations in the human brain: Discontinuous 
initiations of pursuit eye movements indicate a 30-Hz temporal framework for visual 
information processing. Naturwissenschaften 73, 267–268. 
https://doi.org/10.1007/BF00367781 

Qin, P., Wu, Xuehai, Huang, Z., Duncan, N.W., Tang, W., Wolff, A., Hu, J., Gao, L., Jin, Y., Wu, Xing, 
Zhang, Jianfeng, Lu, L., Wu, C., Qu, X., Mao, Y., Weng, X., Zhang, Jun, Northoff, G., 2015. 
How are different neural networks related to consciousness? Annals of Neurology 78, 594–
605. https://doi.org/10.1002/ana.24479 

Raichle, M.E., 2015. The Brain’s Default Mode Network. Annu. Rev. Neurosci. 38, 433–447. 
https://doi.org/10.1146/annurev-neuro-071013-014030 

Raut, Ryan V, Mitra, A., Marek, S., Ortega, M., Snyder, A.Z., Tanenbaum, A., Laumann, T.O., 
Dosenbach, N.U.F., Raichle, M.E., 2020. Organization of Propagated Intrinsic Brain Activity 
in Individual Humans. Cerebral Cortex 30, 1716–1734. 
https://doi.org/10.1093/cercor/bhz198 

Raut, Ryan V., Snyder, A.Z., Raichle, M.E., 2020. Hierarchical dynamics as a macroscopic organizing 
principle of the human brain. Proc. Natl. Acad. Sci. U.S.A. 117, 20890–20897. 
https://doi.org/10.1073/pnas.2003383117 

Reith, F.C.M., Lingsma, H.F., Gabbe, B.J., Lecky, F.E., Roberts, I., Maas, A.I.R., 2017. Differential 
effects of the Glasgow Coma Scale Score and its Components: An analysis of 54,069 
patients with traumatic brain injury. Injury 48, 1932–1943. 
https://doi.org/10.1016/j.injury.2017.05.038 

Revonsuo, A., 2010. Consciousness: the science of subjectivity. Psychology Press, New York, NY. 
Rosen, B.Q., Halgren, E., 2021. A Whole-Cortex Probabilistic Diffusion Tractography Connectome. 

eNeuro 8, ENEURO.0416-20.2020. https://doi.org/10.1523/ENEURO.0416-20.2020 
Rosenblith, W.A., 2013. Sensory communication: contributions to the Symposium on principles of 

sensory communication, July 19-August 1, 1959, Endicott House, M.I.T, [Cambridge, Mass.], 
Reprint of the 1961 edition. ed. the MIT press, Cambridge (Mass.). 

Ross, S.M., 1981. Introduction to probability models. H,2: Hauptbd., 2. ed. ed, Probability and 
mathematical statistics. Acad. Press, New York. 

Rosso, O.A., Craig, H., Moscato, P., 2009. Shakespeare and other English Renaissance authors as 
characterized by Information Theory complexity quantifiers. Physica A: Statistical 
Mechanics and its Applications 388, 916–926. https://doi.org/10.1016/j.physa.2008.11.018 

Runyan, C.A., Piasini, E., Panzeri, S., Harvey, C.D., 2017. Distinct timescales of population coding 
across cortex. Nature 548, 92–96. https://doi.org/10.1038/nature23020 

Saladin, K.S., Gan, C.A., Cushman, H.N., 2018. Anatomy & physiology: the unity of form and 
function, Eighth edition. ed. McGraw-Hill Education, New York, NY. 



120 
 

Salinas, E., Sejnowski, T.J., 2002. Integrate-and-Fire Neurons Driven by Correlated Stochastic Input. 
Neural Computation 14, 2111–2155. https://doi.org/10.1162/089976602320264024 

Salpekar, J., 2019. Seizures, Nonepileptic Events, Trauma, Anxiety, or All of the Above. Epilepsy 
Curr 19, 29–30. https://doi.org/10.1177/1535759718822842 

Samaha, J., Postle, B.R., 2015. The Speed of Alpha-Band Oscillations Predicts the Temporal 
Resolution of Visual Perception. Current Biology 25, 2985–2990. 
https://doi.org/10.1016/j.cub.2015.10.007 

Sancristóbal, B., Ferri, F., Longtin, A., Perrucci, M.G., Romani, G.L., Northoff, G., 2022. Slow Resting 
State Fluctuations Enhance Neuronal and Behavioral Responses to Looming Sounds. Brain 
Topogr 35, 121–141. https://doi.org/10.1007/s10548-021-00826-4 

Sanders, R.D., Tononi, G., Laureys, S., Sleigh, J.W., Warner, D.S., 2012. Unresponsiveness ≠ 
Unconsciousness. Anesthesiology 116, 946–959. 
https://doi.org/10.1097/ALN.0b013e318249d0a7 

Sanz-Leon, P., Knock, S.A., Spiegler, A., Jirsa, V.K., 2015. Mathematical framework for large-scale 
brain network modeling in The Virtual Brain. NeuroImage 111, 385–430. 
https://doi.org/10.1016/j.neuroimage.2015.01.002 

Sarafyazd, M., Jazayeri, M., 2019. Hierarchical reasoning by neural circuits in the frontal cortex. 
Science 364, eaav8911. https://doi.org/10.1126/science.aav8911 

Sarasso, S., Boly, M., Napolitani, M., Gosseries, O., Charland-Verville, V., Casarotto, S., Rosanova, 
M., Casali, A.G., Brichant, J.-F., Boveroux, P., Rex, S., Tononi, G., Laureys, S., Massimini, M., 
2015. Consciousness and Complexity during Unresponsiveness Induced by Propofol, Xenon, 
and Ketamine. Current Biology 25, 3099–3105. https://doi.org/10.1016/j.cub.2015.10.014 

Sarracino, A., Arviv, O., Shriki, O., De Arcangelis, L., 2020. Predicting brain evoked response to 
external stimuli from temporal correlations of spontaneous activity. Phys. Rev. Research 2, 
033355. https://doi.org/10.1103/PhysRevResearch.2.033355 

Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.-N., Holmes, A.J., Eickhoff, S.B., Yeo, 
B.T.T., 2018. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic 
Functional Connectivity MRI. Cerebral Cortex 28, 3095–3114. 
https://doi.org/10.1093/cercor/bhx179 

Schiff, N.D., 2015. Cognitive Motor Dissociation Following Severe Brain Injuries. JAMA Neurol 72, 
1413. https://doi.org/10.1001/jamaneurol.2015.2899 

Schiff, N.D., Nauvel, T., Victor, J.D., 2014. Large-scale brain dynamics in disorders of consciousness. 
Current Opinion in Neurobiology 25, 7–14. https://doi.org/10.1016/j.conb.2013.10.007 

Schnakers, C., 2020. Update on diagnosis in disorders of consciousness. Expert Review of 
Neurotherapeutics 20, 997–1004. https://doi.org/10.1080/14737175.2020.1796641 

Schnakers, C., Bauer, C., Formisano, R., Noé, E., Llorens, R., Lejeune, N., Farisco, M., Teixeira, L., 
Morrissey, A.-M., De Marco, S., Veeramuthu, V., Ilina, K., Edlow, B.L., Gosseries, O., 
Zandalasini, M., De Bellis, F., Thibaut, A., Estraneo, A., 2022. What names for covert 
awareness? A systematic review. Front. Hum. Neurosci. 16, 971315. 
https://doi.org/10.3389/fnhum.2022.971315 

Schnakers, C., Vanhaudenhuyse, A., Giacino, J., Ventura, M., Boly, M., Majerus, S., Moonen, G., 
Laureys, S., 2009. Diagnostic accuracy of the vegetative and minimally conscious state: 
Clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 9, 35. 
https://doi.org/10.1186/1471-2377-9-35 

Schurz, M., Radua, J., Aichhorn, M., Richlan, F., Perner, J., 2014. Fractionating theory of mind: A 
meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews 
42, 9–34. https://doi.org/10.1016/j.neubiorev.2014.01.009 



121 
 

Seel, R.T., Sherer, M., Whyte, J., Katz, D.I., Giacino, J.T., Rosenbaum, A.M., Hammond, F.M., 
Kalmar, K., Pape, T.L.-B., Zafonte, R., Biester, R.C., Kaelin, D., Kean, J., Zasler, N., 2010. 
Assessment Scales for Disorders of Consciousness: Evidence-Based Recommendations for 
Clinical Practice and Research. Archives of Physical Medicine and Rehabilitation 91, 1795–
1813. https://doi.org/10.1016/j.apmr.2010.07.218 

Seth, A.K., 2018. Consciousness: The last 50 years (and the next). Brain and Neuroscience 
Advances 2, 239821281881601. https://doi.org/10.1177/2398212818816019 

Shannon, C.E., 1948. A Mathematical Theory of Communication. Bell System Technical Journal 27, 
379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 

Shen, L., Han, B., Chen, L., Chen, Q., 2019. Perceptual inference employs intrinsic alpha frequency 
to resolve perceptual ambiguity. PLoS Biol 17, e3000025. 
https://doi.org/10.1371/journal.pbio.3000025 

Sherrington, C.S., 1911. The integrative action of the nervous system. Yale University Press, New 
Haven. https://doi.org/10.1037/13798-000 

Siefert, M., 2007. Practical criterion for delay estimation using random perturbations. Phys. Rev. E 
76, 026215. https://doi.org/10.1103/PhysRevE.76.026215 

Simoncelli, E.P., Olshausen, B.A., 2001. Natural Image Statistics and Neural Representation. Annu. 
Rev. Neurosci. 24, 1193–1216. https://doi.org/10.1146/annurev.neuro.24.1.1193 

Simony, E., Honey, C.J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., Hasson, U., 2016. Dynamic 
reconfiguration of the default mode network during narrative comprehension. Nat 
Commun 7, 12141. https://doi.org/10.1038/ncomms12141 

Smith, D., Wolff, A., Wolman, A., Ignaszewski, J., Northoff, G., 2022. Temporal continuity of self: 
Long autocorrelation windows mediate self-specificity. NeuroImage 257, 119305. 
https://doi.org/10.1016/j.neuroimage.2022.119305 

Snider, S.B., Hsu, J., Darby, R.R., Cooke, D., Fischer, D., Cohen, A.L., Grafman, J.H., Fox, M.D., 2020. 
Cortical lesions causing loss of consciousness are anticorrelated with the dorsal brainstem. 
Human Brain Mapping 41, 1520–1531. https://doi.org/10.1002/hbm.24892 

Soriano, M.C., Zunino, L., 2021. Time-Delay Identification Using Multiscale Ordinal Quantifiers. 
Entropy 23, 969. https://doi.org/10.3390/e23080969 

Soriano, M.C., Zunino, L., Rosso, O.A., Fischer, I., Mirasso, C.R., 2011. Time Scales of a Chaotic 
Semiconductor Laser With Optical Feedback Under the Lens of a Permutation Information 
Analysis. IEEE J. Quantum Electron. 47, 252–261. 
https://doi.org/10.1109/JQE.2010.2078799 

Sorrentino, P., Troisi Lopez, E., Romano, A., Granata, C., Corsi, M.C., Sorrentino, G., Jirsa, V., 2023. 
Brain fingerprint is based on the aperiodic, scale-free, neuronal activity. NeuroImage 277, 
120260. https://doi.org/10.1016/j.neuroimage.2023.120260 

Spitmaan, M., Seo, H., Lee, D., Soltani, A., 2020. Multiple timescales of neural dynamics and 
integration of task-relevant signals across cortex. Proc. Natl. Acad. Sci. U.S.A. 117, 22522–
22531. https://doi.org/10.1073/pnas.2005993117 

Stengers, I., 1997. Power and invention: situating science, Theory out of bounds. University of 
Minnesota Press, Minneapolis. 

Stephens, G.J., Honey, C.J., Hasson, U., 2013. A place for time: the spatiotemporal structure of 
neural dynamics during natural audition. Journal of Neurophysiology 110, 2019–2026. 
https://doi.org/10.1152/jn.00268.2013 

Sterling, P., Laughlin, S., 2015. Principles of Neural Design. The MIT Press. 
https://doi.org/10.7551/mitpress/9780262028707.001.0001 

Steyerberg, E.W., Mushkudiani, N., Perel, P., Butcher, I., Lu, J., McHugh, G.S., Murray, G.D., 
Marmarou, A., Roberts, I., Habbema, J.D.F., Maas, A.I.R., 2008. Predicting Outcome after 



122 
 

Traumatic Brain Injury: Development and International Validation of Prognostic Scores 
Based on Admission Characteristics. PLoS Med 5, e165. 
https://doi.org/10.1371/journal.pmed.0050165 

Sutherland, N.S., 1989. The international dictionary of psychology, 2nd ed. ed. Crossroad, New 
York. 

Tagliazucchi, E., Von Wegner, F., Morzelewski, A., Brodbeck, V., Laufs, H., 2012. Dynamic BOLD 
functional connectivity in humans and its electrophysiological correlates. Front. Hum. 
Neurosci. 6. https://doi.org/10.3389/fnhum.2012.00339  

Tait, L., Tamagnini, F., Stothart, G., Barvas, E., Monaldini, C., Frusciante, R., ... Goodfellow, M. , 
2020. EEG microstate complexity for aiding early diagnosis of Alzheimer’s disease. Scientific 
Reports, 10, 17627. https://doi.org/10.1038/s41598-020-74790-7 

Tait, L., Zhang, J., 2022. MEG cortical microstates: Spatiotemporal characteristics, dynamic 
functional connectivity and stimulus-evoked responses. NeuroImage 251, 119006. 
https://doi.org/10.1016/j.neuroimage.2022.119006  

Tait and Zhang, 2022b. +microstate: A MATLAB toolbox for brain microstate analysis in sensor and 
cortical EEG/MEG, NeuroImage 258:119346. doi: 10.1016/j.neuroimage.2022.119346 

Teasdale, G., Jennett, B., 1974. ASSESSMENT OF COMA AND IMPAIRED CONSCIOUSNESS. The 
Lancet 304, 81–84. https://doi.org/10.1016/S0140-6736(74)91639-0 

Tesileanu, T., Conte, M.M., Briguglio, J.J., Hermundstad, A.M., Victor, J.D., Balasubramanian, V., 
2020. Efficient coding of natural scene statistics predicts discrimination thresholds for 
grayscale textures. eLife 9, e54347. https://doi.org/10.7554/eLife.54347 

the European Task Force on Disorders of Consciousness, Laureys, S., Celesia, G.G., Cohadon, F., 
Lavrijsen, J., León-Carrión, J., Sannita, W.G., Sazbon, L., Schmutzhard, E., Von Wild, K.R., 
Zeman, A., Dolce, G., 2010. Unresponsive wakefulness syndrome: a new name for the 
vegetative state or apallic syndrome. BMC Med 8, 68. https://doi.org/10.1186/1741-7015-
8-68 

Thibaut, A., Bodien, Y.G., Laureys, S., Giacino, J.T., 2020. Minimally conscious state “plus”: 
diagnostic criteria and relation to functional recovery. J Neurol 267, 1245–1254. 
https://doi.org/10.1007/s00415-019-09628-y 

Tognoli, E., Kelso, J.A.S., 2014. The Metastable Brain. Neuron 81, 35–48. 
https://doi.org/10.1016/j.neuron.2013.12.022 

Tononi, G., 1998. Consciousness and Complexity. Science 282, 1846–1851. 
https://doi.org/10.1126/science.282.5395.1846 

Tononi, G., Boly, M., Massimini, M., Koch, C., 2016. Integrated information theory: from 
consciousness to its physical substrate. Nat Rev Neurosci 17, 450–461. 
https://doi.org/10.1038/nrn.2016.44 

Tsuchiya, N., Wilke, M., Frässle, S., Lamme, V.A.F., 2015. No-Report Paradigms: Extracting the True 
Neural Correlates of Consciousness. Trends in Cognitive Sciences 19, 757–770. 
https://doi.org/10.1016/j.tics.2015.10.002 

Unakafova, V., Keller, K., 2013. Efficiently Measuring Complexity on the Basis of Real-World Data. 
Entropy 15, 4392–4415. https://doi.org/10.3390/e15104392 

Untergehrer, G., Jordan, D., Kochs, E.F., Ilg, R., Schneider, G., 2014. Fronto-Parietal Connectivity Is 
a Non-Static Phenomenon with Characteristic Changes during Unconsciousness. PLoS ONE 
9, e87498. https://doi.org/10.1371/journal.pone.0087498  

Van De Ville D, Britz J, Michel CM. EEG microstate sequences in healthy humans at rest reveal 
scale-free dynamics. PNAS. 2010;107:18179–18184. doi: 10.1073/pnas.1007841107. 



123 
 

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., 2013. The WU-
Minn Human Connectome Project: An overview. NeuroImage 80, 62–79. 
https://doi.org/10.1016/j.neuroimage.2013.05.041 

Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E.J., Bucholz, R., Chang, A., Chen, 
L., Corbetta, M., Curtiss, S.W., Della Penna, S., Feinberg, D., Glasser, M.F., Harel, N., Heath, 
A.C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R., Petersen, 
S.E., Prior, F., Schlaggar, B.L., Smith, S.M., Snyder, A.Z., Xu, J., Yacoub, E., 2012. The Human 
Connectome Project: A data acquisition perspective. NeuroImage 62, 2222–2231. 
https://doi.org/10.1016/j.neuroimage.2012.02.018 

VanRullen, R., Koch, C., 2003. Is perception discrete or continuous? Trends in Cognitive Sciences 7, 
207–213. https://doi.org/10.1016/S1364-6613(03)00095-0 

Vlisides, P.E., Bel-Bahar, T., Nelson, A., Chilton, K., Smith, E., Janke, E., Tarnal, V., Picton, P., Harris, 
R.E., Mashour, G.A., 2018. Subanaesthetic ketamine and altered states of consciousness in 
humans. British Journal of Anaesthesia 121, 249–259. 
https://doi.org/10.1016/j.bja.2018.03.011 

Von Wegner, F., Tagliazucchi, E., Laufs, H., 2017. Information-theoretical analysis of resting state 
EEG microstate sequences - non-Markovianity, non-stationarity and periodicities.  

von Wegner, F., Knaut, P., & Laufs, H., 2018. EEG microstate sequences from different clustering 
algorithms are information-theoretically invariant. Frontiers in Computational 
Neuroscience, 12, 30.NeuroImage 158, 99–111. 
https://doi.org/10.1016/j.neuroimage.2017.06.062 

Voytek, B., Kayser, A.S., Badre, D., Fegen, D., Chang, E.F., Crone, N.E., Parvizi, J., Knight, R.T., 
D’Esposito, M., 2015. Oscillatory dynamics coordinating human frontal networks in support 
of goal maintenance. Nat Neurosci 18, 1318–1324. https://doi.org/10.1038/nn.4071 

Wainio-Theberge, S., Wolff, A., Gomez-Pilar, J., Zhang, J., Northoff, G., 2022. Variability and task-
responsiveness of electrophysiological dynamics: Scale-free stability and oscillatory 
flexibility. NeuroImage 256, 119245. https://doi.org/10.1016/j.neuroimage.2022.119245 

Walter, N., Hinterberger, T., 2022. Determining states of consciousness in the 
electroencephalogram based on spectral, complexity, and criticality features. Neuroscience 
of Consciousness 2022, niac008. https://doi.org/10.1093/nc/niac008 

Wang, J., Hu, X., Hu, Z., Sun, Z., Laureys, S., Di, H., 2020. The misdiagnosis of prolonged disorders 
of consciousness by a clinical consensus compared with repeated coma-recovery scale-
revised assessment. BMC Neurol 20, 343. https://doi.org/10.1186/s12883-020-01924-9 

Wang, X.-J., 2020. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. 
Nat Rev Neurosci 21, 169–178. https://doi.org/10.1038/s41583-020-0262-x 

Wang, X.-J., Buzsáki, G., 1996. Gamma Oscillation by Synaptic Inhibition in a Hippocampal 
Interneuronal Network Model. J. Neurosci. 16, 6402–6413. 
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996 

Wang, X.-J., Rinzel, J., 1992. Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model 
Neurons. Neural Computation 4, 84–97. https://doi.org/10.1162/neco.1992.4.1.84 

Wasmuht, D.F., Spaak, E., Buschman, T.J., Miller, E.K., Stokes, M.G., 2018. Intrinsic neuronal 
dynamics predict distinct functional roles during working memory. Nat Commun 9, 3499. 
https://doi.org/10.1038/s41467-018-05961-4 

Watanabe, T., Rees, G., Masuda, N., 2019. Atypical intrinsic neural timescale in autism. eLife 8, 
e42256. https://doi.org/10.7554/eLife.42256 

West, B.J., Geneston, E.L., Grigolini, P., 2008. Maximizing information exchange between complex 
networks. Physics Reports 468, 1–99. https://doi.org/10.1016/j.physrep.2008.06.003 



124 
 

Wijdicks, E.F.M., Varelas, P.N., Gronseth, G.S., Greer, D.M., 2010. Evidence-based guideline 
update: Determining brain death in adults: Report of the Quality Standards Subcommittee 
of the American Academy of Neurology. Neurology 74, 1911–1918. 
https://doi.org/10.1212/WNL.0b013e3181e242a8 

Wolff, A., Berberian, N., Golesorkhi, M., Gomez-Pilar, J., Zilio, F., Northoff, G., 2022. Intrinsic neural 
timescales: temporal integration and segregation. Trends in Cognitive Sciences 26, 159–
173. https://doi.org/10.1016/j.tics.2021.11.007 

Wolman, A., Çatal, Y., Wolff, A., Wainio-Theberge, S., Scalabrini, A., Ahmadi, A.E., Northoff, G., 
2023. Intrinsic neural timescales mediate the cognitive bias of self – temporal integration 
as key mechanism. NeuroImage 268, 119896. 
https://doi.org/10.1016/j.neuroimage.2023.119896 

Wu, D., Fan, L., Song, M., Wang, H., Chu, C., Yu, S., Jiang, T., 2020. Hierarchy of Connectivity–
Function Relationship of the Human Cortex Revealed through Predicting Activity across 
Functional Domains. Cerebral Cortex 30, 4607–4616. 
https://doi.org/10.1093/cercor/bhaa063 

Wu, J.-G., Wu, Z.-M., Xia, G.-Q., Feng, G.-Y., 2012. Evolution of time delay signature of chaos 
generated in a mutually delay-coupled semiconductor lasers system. Opt. Express 20, 1741. 
https://doi.org/10.1364/OE.20.001741 

Wutzl, B., Golaszewski, S.M., Leibnitz, K., Langthaler, P.B., Kunz, A.B., Leis, S., Schwenker, K., 
Thomschewski, A., Bergmann, J., Trinka, E., 2021. Narrative Review: Quantitative EEG in 
Disorders of Consciousness. Brain Sciences 11, 697. 
https://doi.org/10.3390/brainsci11060697 

Yamins, D.L.K., DiCarlo, J.J., 2016. Using goal-driven deep learning models to understand sensory 
cortex. Nat Neurosci 19, 356–365. https://doi.org/10.1038/nn.4244 

Yeshurun, Y., Nguyen, M., Hasson, U., 2021. The default mode network: where the idiosyncratic 
self meets the shared social world. Nat Rev Neurosci 22, 181–192. 
https://doi.org/10.1038/s41583-020-00420-w 

Zahavi, D., 2005. Subjectivity and Selfhood: Investigating the First-Person Perspective. The MIT 
Press. https://doi.org/10.7551/mitpress/6541.001.0001 

Zanin, M., Zunino, L., Rosso, O.A., Papo, D., 2012. Permutation Entropy and Its Main Biomedical 
and Econophysics Applications: A Review. Entropy 14, 1553–1577. 
https://doi.org/10.3390/e14081553 

Zeman, A., 2001. Consciousness. Brain 124, 1263–1289. https://doi.org/10.1093/brain/124.7.1263 
Zhang, Jianfeng, Huang, Z., Chen, Y., Zhang, Jun, Ghinda, D., Nikolova, Y., Wu, J., Xu, J., Bai, W., 

Mao, Y., Yang, Z., Duncan, N., Qin, P., Wang, H., Chen, B., Weng, X., Northoff, G., 2018. 
Breakdown in the temporal and spatial organization of spontaneous brain activity during 
general anesthesia. Human Brain Mapping 39, 2035–2046. 
https://doi.org/10.1002/hbm.23984 

Zilio, F., Gomez-Pilar, J., Cao, S., Zhang, J., Zang, D., Qi, Z., Tan, J., Hiromi, T., Wu, X., Fogel, S., 
Huang, Z., Hohmann, M.R., Fomina, T., Synofzik, M., Grosse-Wentrup, M., Owen, A.M., 
Northoff, G., 2021. Are intrinsic neural timescales related to sensory processing? Evidence 
from abnormal behavioral states. NeuroImage 226, 117579. 
https://doi.org/10.1016/j.neuroimage.2020.117579 

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE 
Transactions on Information Theory, 23(3), 337–343. 

Zunino, L., Soriano, M.C., Fischer, I., Rosso, O.A., Mirasso, C.R., 2010. Permutation-information-
theory approach to unveil delay dynamics from time-series analysis. Phys. Rev. E 82, 
046212. https://doi.org/10.1103/PhysRevE.82.046212 



125 
 

 


