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Abstract
Innovations in water technology are needed to solve challenges of climate change, resource shortages, emerging contami-
nants, urbanization, sustainable development and demographic changes. In particular, conventional techniques of wastewater 
treatment are limited by the presence of poorly biodegradable organic matter. Alternatively, recent Fenton, Fenton-like and 
hybrid processes appear successful for cleaning of different types of liquid wastewaters. Here, we review the application of 
metallic catalyst-H2O2 systems in the heterogeneous Fenton process. Each metallic catalyst-H2O2 system has unique redox 
properties due to metal oxidation state. Solution pH is a major influencing factor. Catalysts made of iron and cerium form 
stable complexes with oxidation products and H2O2, thus resulting in reduced activities. Copper forms transitory complexes 
with oxidation products, but copper catalytic activity is restored during the reaction. Silver and manganese do not form 
complexes. The catalyst performance for degradation and mineralization decreases in the order: manganese, copper, iron, 
silver, cerium, yet the easiness of practical application decreases in the order: copper, manganese, iron, silver, cerium.
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Introduction

Over the past few decades, the massive industrialization 
and urbanization has triggered an enormous stress on the 
environment. Water being the fundamental pillar of the 
environment has been affected the most, and numerous 
organic pollutants are being detected in ground- and sur-
face waters. Water contamination has raised an alarm for the 
scientific community because it has serious consequences 
for the humans as well as to the ecosystem (Kolpin et al. 
2002). To safeguard standard quality, it is crucial to care-
fully manage this precious resource, especially in the face of 
the current challenges: climate change, population growth, 
urbanization and pollution. Innovations in water technol-
ogy are fundamental in finding solutions to these essential 
issues. A key feature is the pollution of anthropogenic ori-
gin constantly introduced in the environment (Bokare and 
Choi 2014). Nowadays, more than 700 emerging pollutants, 

their metabolites and transformation products, are present 
in the European aquatic environment. The list of emerging 
compounds and chemicals is significantly large and con-
tinuously growing with the introduction of new commercial 
compounds, disposal of chemicals and further identification 
of new molecules that includes pharmaceuticals and per-
sonal care products (PPCPs), pesticides, endocrine-disrupt-
ing chemicals (EDCs), industrial chemicals, surfactants and 
antibiotic-resistant bacteria (Gavrilescu et al. 2015). Con-
ventional treatment processes (sedimentation and biological 
treatment) are not capable of removing these micropollut-
ants, and thus innovative technologies are required (Chan 
et al. 2009; Glassmeyer et al. 2005; Gogate and Pandit 2004; 
Kasprzyk-Hordern et al. 2008; Kim et al. 2007; Metz and 
Ingold 2014; Quinn et al. 2008).

Advanced oxidation processes (AOPs), have been proven 
effective when it comes to deal with persistent organic pol-
lutants (Andreozzi et al. 1999; Bello and Raman 2019; Boc-
zkaj and Fernandes 2017; Glaze and Kang 1989; Mousset 
and Dionysiou 2020; Rueda Márquez et al. 2018; Salimi 
et al. 2017; Wang and Zhuan 2020). These processes gen-
erate temporary species, fundamentally hydroxyl radicals 
(OH•) which attack the targeted pollutants and oxidize them 
(Fakhru’l-Razi et al. 2009; Ioannou et al. 2015; Shahidi et al. 
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2015; Tiya-Djowe et al. 2016). The key features which make 
these processes superior to other processes are their ability 
to be operated near ambient conditions, nonselective nature 
of OH• radicals and conversion of pollutants into nontoxic 
products such as CO2 and H2O (Neyens and Baeyens 2003). 
Advanced oxidation processes can also be integrated with 
existing biological processes as a pretreatment strategy for 
the treatment of heavily polluted wastewater streams (Oller 
et al. 2011).

There are several types of advanced oxidation processes 
based on the mechanism of OH• generation: for instance, 
classical Fenton reaction, heterogeneous Fenton-like reac-
tion, processes which employ any of these physical fields 
such as electrical, microwave, ultraviolet and ultrasonic 
(Comninellis et al. 2008; John and Shaike 2015; Lahkimi 
et al. 2007; Paramo-Vargas et al. 2016; Rayaroth et al. 2016). 
Advanced oxidation processes involving physical fields have 
not been widely adopted by the industry yet for a reliable 
wastewater treatment due to high energy and capital cost. 
Therefore, in this article we will first briefly discus Fen-
ton reaction and finally focus on heterogeneous Fenton-like 
reaction (Fig. 1) because the classical Fenton reaction which 
is currently in place for wastewater treatment lacks process-
ing and economic sustainability.

Homogeneous Fenton reaction

The Fenton reaction was developed by Henry John Horst-
man Fenton in 1890 (Barbusiński 2009; Fenton 1894). The 
Fenton reagent comprising of ferrous ions and an oxidant 
H2O2 yields transitory but extremely reactive species, i.e., 
hydroxyl radicals, which have remarkable oxidizing capa-
bility (Goldstein et al. 1993; Jain et al. 2018; Navalon et al. 
2011; Neyens and Baeyens 2003). Although the Fenton’s 
reagent was discovered 100 years ago, it was not applied for 

the abatement of toxic organic pollutants until 1960 (Huang 
et al. 1993). It is critically important to comprehend the 
mechanism of Fenton reaction where ferrous (II) iron is 
mixed with H2O2, hydroxyl radicals are generated through 
the following chain initiation (Eq. 1) (Barhoumi et al. 2017) 
and chain termination (Eq. 2) reactions (Buxton et al. 1988; 
Rigg et al. 1954). The ferric (III) iron may also react with 
H2O2 and decompose it through the reaction outlined in 
(Eq. 3), and this particular reaction is referred as Fenton-
like reaction (Walling and Goosen 1973). A series of other 
reactions involved in the Fenton process are outlined here 
(Eqs. 4–7) (Feng et al. 2013; Neyens and Baeyens 2003).

Instead of looking into all these complex reactions, Wall-
ing (Walling 1975) proposed a simplified version of Fenton 
reaction (Eq. 8) (Dhakshinamoorthy et al. 2012):

The OH∙ reacts with organics and converts them into 
organic radicals which undergo a series of oxidation reac-
tions to yield secondary and tertiary metabolites (Eq. 9) 
(Nidheesh 2015; Nidheesh et al. 2013):

Homogeneous Fenton reaction essentially involves three 
processing steps: dissolution of the catalyst (de la Plata et al. 
2010), OH• radical generation and finally the oxidation of 
organics (Fig. 2). Fenton reaction is mainly dependent on the 
extent of dissolution of iron catalyst, and this is the reason 
for which Fenton reaction does not afford good efficacy at 
near-neutral pH conditions. To improve the efficiency of the 
process, the pH of the aqueous medium has to be shifted 
toward acidic conditions which favors the dissolution of the 
catalyst. Almost all researchers have concluded that acidic 
conditions near pH-3 afford the best efficiency for Fenton 
process (Aziz and Daud 2012; Bautista et al. 2008; Deng 

(1)Fe+2 + H2O2 → Fe+3 + OH∙ + OH−

(2)Fe+2 + OH → OH− + Fe+3

(3)Fe+3 + H2O2 ↔ Fe − OOH+2 + H+

(4)Fe − OOH+2
→ HO∙

2
+ Fe+2

(5)Fe+2 + HO∙

2
→ Fe+3 + HO−

2

(6)Fe+3 + HO∙

2
→ Fe+2 + O2 + H+

(7)OH∙ + H2O2
→ H2O + HO∙

2

(8)Fe+2 + H2O2 + 2H+
→ 2 Fe+3 + 2H2O2

(9)RH + OH∙
→ H2O + R∙

→ Oxidation

Fig. 1   Heterogeneous Fenton-like oxidation process
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and Englehardt 2006; Lucas and Peres 2009; Umar et al. 
2010). Apart from conducive pH conditions, there are sev-
eral other factors which may influence the dissolution of the 
catalyst and can be explained using Noyes–Whitney equa-
tion (Eq. 10) (Noyes and Whitney 1897; Otsuka et al. 2007):

where

A  is surface area of the catalyst, C  is concentration of the 
solid catalyst in the bulk dissolution medium, Cs  is concen-
tration of the solid catalyst in the diffusion layer surround-
ing the solid, D  is diffusion coefficient, L  is diffusion layer 
thickness.

This equation clearly suggests that catalyst surface area 
plays a critical role and is proportional to the rate of dis-
solution of the catalyst. Further, larger quantities of catalyst 
also enhance the solubility of solid due to higher concentra-
tion gradient between liquid and solid phases. Moreover, 
the characteristics of dissolving medium, i.e., wastewater, 
also govern the solubility of catalyst. It is also important to 
note that the nature of the iron catalyst may also affect the 
dissolution rate.

Once the catalyst is dissolved, the Fe+2 ions start pro-
ducing OH• radicals from the oxidant. The rate of OH• 
radicals mainly depends on the concentrations of both 

dW

dt
=

DA(Cs − C)

L

dW

dt
is rate of catalyst dissolution

the catalyst and the oxidant. However, excess amounts 
of either of these entities beyond optimal conditions may 
also trigger a scavenging effect which may hinder the pro-
cess efficiency (Eqs. 11 and 12) (Aşçı 2013; Nasuha et al. 
2016):

Therefore, to avoid the adverse effects of scavenging 
phenomenon, Fenton process must be optimized with 
respect to catalyst and oxidant doses.

The transitory OH• radicals then attack on the organic 
molecules and abstract one of their hydrogen atoms and 
turn them into R• which ultimately undergoes a series of 
oxidation reactions to yield secondary and tertiary prod-
ucts, ideally H2O and CO2. Organics must go through the 
oxidation process, and consequently, the nature of the 
organics not only affects the extent of oxidation but also 
the quality of the finally treated wastewater. Therefore, 
hydrocarbons with stable and high molecular weights tend 
to yield relatively stable radicals which are difficult to oxi-
dize. Another factor which hinders their oxidation is their 
poor solubility in the aqueous medium because homogene-
ous Fenton reaction must take place in the solution phase. 
The order of stability and consequently the difficulty posed 
by organic pollutants to undergo oxidation are illustrated 
in Fig. 3 (Perathoner and Centi 2005).

(11)Fe2+ + OH∙
→ Fe3+ + OH−

(12)H2O2 + OH∙
→ HO∙

2
+ H2O

Fig. 2   Homogeneous Fenton 
process. Homogeneous Fenton 
reaction involves three process-
ing steps: dissolution of the 
catalyst, OH∙ radical generation 
and the oxidation of organics

Fig. 3   Order of organic pollutants stability toward oxidation (most stable left)
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Limitations of Fenton process

Fenton process has many advantages such as processing of 
wastewater at ambient conditions, high reaction rate between 
H2O2 & Fe (II) (Pouran et al. 2014), nontoxic reagents and 
convenience of integration with existing treatment facilities 
(Brillas et al. 2009). Moreover, Fenton process has been suc-
cessfully employed for the treatment of numerous industrial 
wastewaters (Aziz and Daud 2012; Deng and Englehardt 
2006; Lucas and Peres 2009; Mosteo et al. 2007; Soares 
et al. 2014; Wang et al. 2016). However, homogeneous Fen-
ton reaction is only feasible when pH is lower than 4 because 
the interconversion of Fe+2 and Fe+3 maximizes the process 
efficiency (Tang et al. 2019). When pH exceeds 4, Fe+3 is 
converted into ferric hydroxide sludge and part of the cata-
lyst is lost and hence efficacy of the Fenton reaction declines 
(Garrido-Ramírez et al. 2010). The rigid acidic conditions 
require constant addition of chemicals before and after 
wastewater treatment and thus lead the process toward eco-
nomic nonfeasibility. Besides, handling and disposal of solid 
sludge incur additional costs. Moreover, the newly formed 
sludge may also serve as an absorbent for the pollutants in 
the wastewater and hence give rise to another environmental 
hazard. Furthermore, recycling of the iron sludge is also not 
feasible.

Heterogeneous Fenton‑like reaction

Fenton-like reaction is established when Fe+2 is either 
replaced with Fe+3 or other transition metal ions in the Fen-
ton reagent system (Wang et al. 2016). Although heterogene-
ous Fenton-like reaction also coexists within homogeneous 
Fenton reaction, it is limited because of the narrow pH range 
and quickly dissipates once favorable conditions are inverted 
(Caudo et al. 2006). Heterogeneous Fenton-like reaction 
can be successfully used to overcome the processing and 
economic constraints associated with homogeneous Fenton 
reaction such as high input of chemicals, catalyst loss and 
large amount of sludge generation (Centi et al. 2000; Nava-
lon et al. 2010). In heterogeneous Fenton reaction, the Fe+3 
is principally used in the nonsoluble form either harnessing 

naturally occurring minerals such as magnetite (Fe3O4), 
maghemite (γ-Fe2O3), hematite (α-Fe2O3) and pyrite (FeS2) 
(Feng et al. 2012; Pereira et al. 2012) or impregnating it 
over suitable supports to afford extended surface area (Flores 
et al. 2008; Gumy et al. 2005; Muthuvel and Swaminathan 
2008; Xue et al. 2009).

Heterogeneous Fenton process is altogether different 
when compared with homogeneous Fenton process because 
adsorption is mainly responsible for determining the effi-
ciency of the process. There are three steps involved in het-
erogeneous Fenton process: adsorption of organics over the 
catalyst surface, in situ generation and attack of OH• radi-
cals on organics (He et al. 2016) and finally desorption of 
oxidation products from catalyst surface (Fig. 4). In order 
to explain the driving force of adsorption in heterogeneous 
Fenton oxidation, Langmuir equation can be used (Eq. 13):

whereCe  is equilibrium concentration of organics, Qe  is 
equilibrium monolayer adsorption capacity,    Qm  is com-
plete monolayer adsorption capacity,  Kl  is Langmuir 
adsorption constant.

The equation clearly suggests that the rate of adsorp-
tion predominantly depends upon the monolayer adsorp-
tion capacity of the solid catalyst. This further suggests that 
higher surface area of the catalyst is exposed in the aqueous 
medium, resulting in a higher organic adsorption (Geçgel 
et al. 2015). Although multilayer adsorption may also exist, 
it only happens when organics are present in very high con-
centrations. Once the organics are adsorbed onto catalyst 
surface, OH• radicals are generated through active sites on 
the catalyst surface and start oxidizing the organics. The 
oxidation products either undergo further oxidation or des-
orb from the catalysts surface, completing the heterogeneous 
catalytic cycle.

Originally, heterogeneous Fenton process was developed 
by harnessing iron (Fe+3) to overcome the disadvantages of 
homogeneous Fenton process, mitigating several process-
ing constraints such as reduced sludge generation, lower 

(13)
Ce

Qe
=

1

QmKl
+

Ce

Qm

Fig. 4   Heterogeneous Fenton process. Heterogeneous Fenton reaction 
essentially involves three processing steps: adsorption of organics 
over the catalyst surface, OH∙ radicals generation through active sites 

on the catalyst surface and oxidation of the organics, desorption of 
the oxidation products from the catalysts surface
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chemical input and hence lower cost. However, pH optimi-
zation and control remain the major defect in the process 
because in order to afford high efficiency, acidic conditions 
are favorable but in doing so metal ions start coming off 
from the catalyst surface. Leaching of the active metal from 
the catalyst surface inevitably results in lowering the cata-
lytic activity, turning the process less sustainable. Therefore, 
many researchers have been striving to employ various met-
als including iron to develop heterogeneous catalysts with 
enhanced stability without compromising the acceptable 
activity threshold. Now, we will discuss frequently used met-
als for the development of heterogeneous catalyst for Fenton 
oxidation and critically analyze their performance in terms 
of activity and stability. Specifically, we will focus on iron, 
cerium, copper, manganese and silver catalysts.

Iron-based catalysts have been mainly discussed because 
the main idea of ​​the Fenton and Fenton-like processes 
originated using iron-containing materials. This is the only 
metal which forms stable complexes with the degradation 
products.

Copper-based materials have been considered due to the 
redox cycle that is very similar to that of iron. Moreover, 
unlike iron, copper forms temporary complexes with the 
degradation products.

Silver has been chosen because of its unique redox cycle 
involving elemental Ag and Ag+.

Cerium has been taken into consideration because this 
is the only metal when employed in Fenton-like oxidation 
process forms complexes with the oxidant.

Manganese has been included in the review because it 
offers two separate redox cycles depending upon the nature 
of manganese-based material.

Role of metals in heterogeneous Fenton‑like 
oxidation

Considerations for development of sustainable 
catalyst

The fundamental prerequisites to develop a sustainable het-
erogeneous catalyst for Fenton oxidation are high activity 
and stability. In order to achieve these features in a catalyst, 
it is essential that the metal used for catalyst development 
can exist in multiple oxidation states due to its higher capac-
ity to transform H2O2 into OH• radicals (Bokare and Choi 
2014). Moreover, all these oxidation states ought to be stable 
over a wide range of pH to avoid the loss of catalyst though 
leaching. Another aspect which must be considered is the 
resistance of the metallic species toward hydration forces/
nonsoluble nature of the metallic ions. Apart from these 
requirements, the metal entities must have the potential to 

transform pollutants into terminal oxidation products, i.e., 
CO2 and H2O.

Iron

The abundant and cost-effective availability of iron is the 
prime reason due to which researchers are still focused to 
develop heterogeneous catalysts by employing this metal 
(Pereira et al. 2012). Another reason for harnessing this 
metal is its high activity in Fenton process and familiarity 
with reaction mechanism (Pouran et al. 2014). Iron-based 
heterogeneous catalysts are still the most widely used cata-
lysts in Fenton-like process, and many researchers have 
reported their findings which are presented in Table 1. Iron 
can exhibit its heterogeneous catalytic features cycling 
between Fe3+ and Fe2+ (Feng et al. 2013; Hartmann et al. 
2010; Rusevova et al. 2012); some researchers have also pro-
posed high-valent iron species such as ferryl (Fe+4) but these 
species only exist in basic conditions (Gonzalez-Olmos et al. 
2011; He et al. 2016; Luo et al. 2010).

Controlling parameters

The nature of the iron-based catalyst is the governing param-
eter which dictates rest of the factors for optimal perfor-
mance of the catalyst in Fenton process because coordina-
tion of the iron species in different catalytic environments is 
inherently different; the nature of the catalyst predominantly 
regulates the optimization of the parameters in Fenton pro-
cess (Wang et al. 2013). For example, there is a marked 
difference of optimal pH between BiFeO3 and zerovalent 
iron (Table 1). Likewise, similar iron-based catalysts such as 
nanoparticle iron and zerovalent iron yield maximum activ-
ity at identical pH conditions.

The parameters pH, catalyst dose, oxidant dose, tempera-
ture, reaction time and pollutant type will strongly affect the 
efficiency of the Fenton process. The most critical param-
eter for iron-based heterogeneous catalysis is the pH of the 
wastewater. Acidic pH conditions yield higher activity of the 
process because part of the iron species is lost into the solu-
tion phase and may contribute toward improving efficiency 
of the process through partial homogeneous Fenton reaction 
(Rusevova et al. 2014). However, this will also cause sub-
stantial metal loss from catalyst surface and turn the catalyst 
less active in subsequent cycles. Moreover, acidic pH condi-
tions of the aqueous solutions are adjusted by the addition 
of HCl or H2SO4 and this will increase the concentration 
of SO4

2− and Cl− ions, which are known as inhibitors for 
the generation of OH• radicals, thus adversely affecting the 
overall process efficacy (Lin et al. 2015).

Another important parameters are the catalyst dose and 
the associated surface area of the catalyst. Generally, higher 
catalyst loadings favor the efficacy of the Fenton process, 
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especially when iron-based heterogeneous catalysts are used, 
but beyond a certain point it may also negatively impact 
the efficacy due to scavenging effect, i.e., consumption of 
OH• radicals by the catalyst itself (Chen et al. 2015b; Divya 

and Renuka 2015). Heterogeneous Fenton process is a sur-
face phenomenon and higher surface area of the catalyst 
will increase the effectiveness of the catalyst. However, 
extended surface area of iron-based catalysts may subject 

Table 1   Iron-based heterogeneous catalysts

Catalyst composition Catalyst 
dose 
(g/l)

H2O2 
dose 
(mM/l)

pH T (°C) (time) Target compound Degradation (%) Miner-
alization 
(%)

References

Fe(III)AspSiW 0.2 20 6.5 25 (30 min) 4-chlorophenol 100 85 (Chen et al. 2015a)
Fe3O4 Nanoparticle 0.1 1 3 25 (30 min) Methylene blue 100 77 (Wei et al. 2020)
Fe0/Fe3O4 3 300 6 25 (2 h) Methylene blue 100 75 (Costa et al. 2008)
Iron over activated 

carbon
0.1 6 3 30 (24 h) Azo dye orange II 100 60 (Duarte et al. 2012)

Fe-Lap-RD 1 60 3 25 (30 min) Ciprofloxacin 100 57 (Bobu et al. 2008)
Zerovalent iron 1 128 3 20 (8 min) 4-chlorophenol 100 – (Zhou et al. 2008)
Fe3O4/γ Al2O3 1 44 3 50 (3 h)

50 (2 h)
50 (1 h)

4-chlorophenol
2,4-dichlorophenol
2,4,6-trichlorophenol

100
100
100

– (Munoz et al. 2013)

GO/ Fe3O4 0.2 22 3 25 (3 h) Acid Orange 7 100 – (Zubir et al. 2014)
Fe3O4/CeO2 2 30 3 30 (2 h) 4-Chlorophenol 100 – (Xu and Wang 2012)
FeNi/C-300 1 100 7 25 (1 h) Methylene blue 100 – (Li et al. 2020)
Fe/saponite clay 0.07 13 3 40 (4 h) Azo dye 100 – (Herney-Ramirez et al. 

2008)
Fe/clinoptilolite 5 3 3 25 (1 h) Phenol 100 – (Bayat et al. 2012)
Quartz/goethite 0.1 58 5 20 (30 min) Methyl red 100 – (Hanna et al. 2008)
Fe/Faujasite Y zeolite 1 7 5.5 20 (4 h) Phenol 100 – (Ayoub et al. 2018)
Nanoparticle iron 0.5 3.0 3 30 (1 h) 4-Chloro-3-methyl 

phenol
99 63 (Xu and Wang 2011)

Fe2O3 20 24 2.5 25 (2 h) Drimarene 99 – (Araujo et al. 2011)
Fe-Zeolite Y 2.5 16 2.5 30 (1 h) Acid red I 99 – (Hassan and Hameed 

2011b)
Fe Clay 5 8 3 30 (3 h) Reactive blue 4 99 – (Hassan and Hameed 

2011a)
Amorphous FeOOH 2.5 15.8 7 1.5 h Methyl orange 99 – (Li and Zhang 2010)
Fe-Al Clay 0.3 4 4 30 (3 h) Phenol 99 – (Luo et al. 2009)
Fe0–Fe3O4–RGO 0.1 0.8 3 25 (1 h) Methylene Blue 98 – (Yang et al. 2015)
AC-FeOOH 1 10 7 30 (4 h) Azo dye 98 – (Wu et al. 2013)
Fe/ZSM-5 1 267 3.5 60 (2 h) Reactive red 97 – (Yaman et al. 2013)
Fedpa/SiO2 0.87 4.5 8 25 (2 h) 2,4-dichlorophenol 95 – (Jin et al. 2020)
FeVO4 0.5 15 6.1 25 (1 h) Methyl orange II 94.7 – (Deng et al. 2008)
Fe2O3 Over CeO2 1 640 9.6 27 (7 h) Methylene blue 94 – (Divya and Renuka 

2015)
Fe2O3-MWCNTs 0.5 15 3.5 25 (30 min) Acid orange II 94 – (Deng et al. 2012)
Fe2(MoO4)3 1.4 18 3 30 (1 h) Acid orange II 94 – (Tian et al. 2011)
FeII@MIL-100(Fe) 1 40 3 25 (5 h) Methylene blue 91 – (Lv et al. 2015)
LaFeO3 and BiFeO3 0.1 26 5 40 Phenol 90 – (Rusevova et al. 2014)
NZVI/CD particles 1 60 3.5 25 (1 h) Amoxicillin 90 – (Pirsaheb et al. 2019)
SCFA 10 5 3 30 (1.5 h) p-nitrophenol 90 – (Wang et al. 2018)
FeS 0.5 10 4.5 50 (5 h) 2,4-Dichlorophenoxy-

acetic acid
88 – (Chen et al. 2015b)

Zero valent iron 0.5 6.6 3 30 (20 min) Amoxicillin 86.5 – (Zha et al. 2014)
Fe/ZSM-5 0.2 8.35 4 60 (2 h) Acetic acid – 50.5 (Cihanoğlu et al. 2015)
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them to strong hydration forces, especially in acidic con-
ditions, and ultimately result in the increase in metal loss 
(Duarte et al. 2012).

Obviously, oxidant dose is also critical when it comes to 
achieve optimal efficiency in Fenton process. However, it has 
been observed that when iron-based catalysts are used, only 
a small excess of oxidant is required to obtain maximum pol-
lutant abatement (Chen et al. 2015b; Duarte et al. 2012). It 
is also worth mentioning that the type of the pollutants will 
regulate not only the extent of oxidation but also the degree 
to which oxidation objectives are achieved, i.e., whether a 
mere degradation of the organics is required, or a complete 
mineralization is the primary objective.

A key characteristic of the Fenton-like process carried 
out by iron-based catalysts is their ability to degrade wide 
range of organics (Zhou et al. 2008). Further, iron-based 
catalysts afford high reaction rates in terms of organic deg-
radation, but rate of mineralization is far slower due to two 
possible reasons. First, the oxidation products do not desorb 
from catalyst surface; second, due to their inability to gen-
erate in situ R• radicals from secondary oxidation products 
because Fe+3 forms very stable complexes with oxidation 
products and ultimately inhibits the oxidation of degraded 
products as shown in Fig. 5 (Salazar et al. 2012; Sirés et al. 
2006; Vindedahl et al. 2016).

Copper

Copper is the second most used transition metal in heteroge-
neous Fenton process because of several characteristics such 
as inexpensiveness, abundant availability, nontoxic nature 
and high activity. Another feature which has attracted the 
attention of research community is its similar redox behav-
ior like iron. There are two oxidation states of copper, i.e., 
cuprous (Cu+) and cupric (Cu+2), which can react with H2O2 
to form OH• radicals (Bokare and Choi 2014). However, 
copper has a distinct property which makes it even a bet-
ter catalytic entity when compared with iron, its ability to 

form temporary complexes with oxidation products and 
rapid interconversion of Cu+ into Cu+2 and vice versa (Lyu 
et al. 2015). The oxidation products do not form permanent 
complexes with copper, and hence the active sites remain 
available for continuous catalytic cycle (Fig. 6). Therefore, 
copper not only offers better redox cycle, but is also active 
in the mineralization of organics. Several researchers have 
employed copper in variable forms as heterogeneous catalyst 
in Fenton process (Table 2).

Controlling parameters

The principal feature of copper-based heterogeneous cata-
lysts is their potential to perform well over a broad pH range, 
especially at near-neutral pH conditions. However, the opti-
mal pH conditions depend upon the nature of the catalyst 
and its corresponding value of point of zero charge. Unlike 

Fig. 5   Complex formation of 
iron with oxidation products. 
The organics are adsorbed over 
the catalyst surface where they 
are oxidized by the iron-based 
catalyst. After the oxidation, 
the formation of very stable 
complexes between Fe3+ and 
oxidation products inhibits 
the desorption of the reaction 
products

Fig. 6   Complex formation of copper with oxidation products. The 
oxidation products do not form permanent complexes with copper, 
and hence the active sites remain available for continuous catalytic 
cycle
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iron catalysts, acidic conditions not only reduce the over-
all activity of these materials but also amplify the loss of 
metal from catalyst surface. Moreover, copper-based cata-
lysts do not offer catalytic activity through homogeneous 
phase. Another advantage of copper over iron is its ability 
to afford better catalytic activities with lower catalyst dose 
because it possesses superior redox cycle and extended cata-
lyst stability. Further, heterogeneous catalysis carried out 
by copper made catalysts is much faster. However, optimal 

catalyst dose ought to be determined experimentally and any 
additional amount of catalyst will bear strong scavenging 
effects and ultimately process efficiency will decline.

Copper-based catalysts have a serious disadvantage 
concerning oxidant dose: a fairly large excess of oxidant 
is required to obtain optimal pollutant abatement because 
molecular oxygen disturbs the redox cycle of copper and 
part of the oxidant is lost in the process. The large excess of 
H2O2 not only increases the cost of the Fenton process but 

Table 2   Copper-based heterogeneous catalysts

Catalyst composi-
tion

Catalyst dose (g/l) H2O2 
dose 
(mM/l)

pH T (°C) (time) Target compound Degradation (%) Miner-
alization 
(%)

References

5Cu/ZrO2 0.25 32 5 70 (2 h) Ibuprofen 100 53 (Hussain et al. 2020)
CuFe/ZSM-5 0.15 40 3.5 50 (2 h) Rhodamine 6G 100 51.8 (Dükkancı et al. 

2010)
Copper slag 2.49 4.7 3 30 (4 h) Phenol 100 50 (Huanosta-Gutiérrez 

et al. 2012)
CuFe2O4/rGO 0.6 660 7 25 (4 h) Phenol 100 – (Othman et al. 2019)
Copper-doped 

mesoporous 
silica

0.4 10 5 30 (2 h) Ibuprofen 100 – (Lyu et al. 2015)

Cu/SiO2 0.035 Cu 29 - 60 (1 h) Rhodamine B 100 – (Sun et al. 2019)
Cu(I)-doped nano-

Fe3O4

0.1 10 6 25 (2 h) Carbamazepine 100 – (Yang et al. 2019)

Cu-Fe3O4@SiO2 1 (0.2 cu-fe) 15 5 25 (2 h) Acetaminophen 100 – (Do et al. 2018)
CuFeO2 Micropar-

ticles
1 20 5 30 (2 h) Bisphenol 99.2 85 (Zhang et al. 2014)

CuO over CeO2 1 640 9.6 27 (7 h) Methylene blue 99 – (Divya and Renuka 
2015)

Cobalt–copper 
oxalate nanofib-
ers

0.1 380 5 30 (5 h) Congo Red 99 – (Shen et al. 2017)

Cu–CuFe2O4/SiO2 0.2 250 7 25 (2 h) Methylene blue 98 – (Wu et al. 2020)
CuO/SiO2 hollow 

sphere
6 34 3.5 60 (2 h) acid scarlet 3R 97 – (Xie et al. 2015)

Co0.5-Cu0.5O 0.1 380 9 30 (5 h) Congo red 95 – (Shen et al. 2015)
7.5 CuY 1 200 5 60 (4 h) Congo red 93.58 79.52 (Singh et al. 2016)
CuFe-MC-1–800 0.3 30 3 25 (1 h) Bisphenol

Imidacloprid
Methylene Blue
2,4,6-trichloro-

phenol

93 66.3
94.3
95.4
93.5

(Wang et al. 2015)

Methyl orange
Phenol
Benzoic acid
Ketoprofen

86.9
83.7
81.4
77.8

Mesoporous Cu/
TUD-1

0.1 90 3.5 25 (3 h) Bisphenol 90.4 – (Pachamuthu et al. 
2017)

Cu2+/Al2O3, Cu2+/
ZrO2

1 300 6.8 30 (5 h) Bromophenol blue 90 – (Salem 2000)

CuO nanoparticles 0.1 800 6 25 (4 h) Enrofloxacin 90 – (Fink et al. 2012)
CuO/Al2O3 0.2 40 5.5 21 (2 h) Reactive black 5 90 – (Bradu et al. 2010)
Fe-Cu/Al2O3 1.5 49 4 40 (2 h) Phenol – 80 (Xia et al. 2011)
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also makes it susceptible to severe scavenging effect caused 
by the oxidant itself for OH• radicals (Bali and Karagözoğlu 
2007; Miles and Brezonik 1981).

Contrary to iron, the activity of the copper-based catalysts 
is greatly influenced by variations in the reaction tempera-
ture. Higher reaction temperature favors the rate as well as 
efficiency of the Fenton process because the energy required 
by the organics and H2O2 to form oxidation products is sup-
plied through an elevation in temperature (Konstantinou 
and Albanis 2004; Nasuha et al. 2016). However, beyond 
a certain point, temperature may also negatively impact the 
process efficiency due to the formation of undesirable stable 
oxidation products, loss of active sites through hydration 
forces and decomposition of oxidant into useless species.

Cu-based catalysts have a main disadvantage which is 
the high excess of H2O2 requirement for maintaining the 
catalytic activity. This disadvantage has often been mitigated 
by employing a bimetallic composite of copper with iron 
and other transition metals. However, iron has been used 
more frequently and various studies have shown promising 
results in this regard. The induction of two metals not only 
enhances the catalytic activity but also increases the stability 
of the catalytic composite because of superior redox cycle 

(Fig. 7). Tian et.al. have summarized the redox mechanism 
of bimetallic redox cycle using a single equation (Eq. 14) 
(Tian et al. 2017):

Fe3+ is reduced to Fe2+ while Cu+ is oxidized to Cu2+, favor-
ing the oxidation of organic matter.

Silver

The main drive to use silver as a catalyst in Fenton-like pro-
cess is its proven ability to oxidize organics such as metha-
nol (Kundakovic and Flytzani-Stephanopoulos 1999), ethyl-
ene (Mao and Vannice 1995), methane and volatile organic 
compounds (Qu et al. 2005). He et.al. reported the use of 
silver nanoparticles for the generation of OH• from H2O2 
(He et al. 2012). Until now, silver has not been widely stud-
ied as a heterogeneous Fenton catalyst (Table 3).

Controlling parameters

In the context of Fenton-like oxidation, silver can exist in 
two oxidation forms, i.e., Ag0 and Ag+1, depending upon 
the pH conditions of the aqueous medium; therefore, pH is 
the most crucial parameter (Saeed et al. 2018). Under acidic 
conditions, bare silver will tend to dissolve in the water 
phase and will transform H2O2 into OH• radicals through 
homogeneous phase. However, basic conditions will shift the 
redox reaction in the opposite direction and instead of OH• 
radical generation, O2 is produced through heterogeneous 
phase reaction (Fig. 7). Keeping in view of these facts, silver 
can efficiently be used as heterogeneous catalyst when pH 
conditions are either neutral or basic. However, the unfavora-
ble redox reactions will suppress the catalytic activity while 
the conditions become basic as suggested by Weaver and 
Frederikse (Eq. 15, and 16) (Weaver and Frederikse 1977). 
Additionally, basic conditions may activate the agglom-
eration of the catalyst particles, reducing surface area and 
diminishing the activity (Park et al. 2017). Moreover, with 
the progress of Fenton reaction, the degradation products 

(14)Fe3+ + Cu+ → Fe2+ + Cu2+

Fig. 7   Redox cycle of copper and iron bimetallic composite. Fe3+ is 
reduced to Fe2+, while Cu+ is oxidized to Cu2+, favoring the oxida-
tion of organics

Table 3   Silver-based heterogeneous catalysts used in Fenton-like processes

Catalyst composition Catalyst 
dose (g/l)

H2O2 
dose 
(mM/l)

pH T (°C) (time) Target compound Degra-
dation 
(%)

Miner-
alization 
(%)

References

NZVI-Ag 0.025 5.3 3 25 (1.5 h) 4-Cholorophenol 100 80 (Barreto-Rodrigues et al. 2017)
Ag/CeO2 0.01 63 2 70 (2 h) Phenol 100 – (Aneggi et al. 2017)
Silver nanoparticles 0.010 0.4 4 25 (8 h) Bisphenol 100 – (Park et al. 2017)
Silver nanoparticles 0.01 0.4 4 25 (8 h) 17a-ethinyl estradiol 100 – (Park et al. 2017)
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being predominantly acidic will acidify the aqueous medium 
and silver will start leaching out from the solid surface:

These drawbacks associated with silver can be averted 
by incorporating an appropriate support material such as 
ceria, zirconia, etc. The integration of silver on supports with 
oxygen storage capacity will not only enhance its activity but 
also strengthen the catalytic structure because of dual redox 
cycle, one responsible for activity and the other for stabil-
ity (Fig. 8). Moreover, surface area is also increased mani-
fold by the introduction of supports which will ultimately 
increase the activity of the catalyst. Further, the catalyst can 
afford viable activities through broader pH range due to dual 
redox cycle.

The oxidant dose directly affects the silver-catalyzed het-
erogeneous Fenton process; however, only a small excess of 
stoichiometric oxidant dose is sufficient to achieve optimal 
efficacy. Further, a large excess of oxidant dose ought to 
be avoided because it can either cause scavenging effect or 
lower the pH and hence catalytic activity is subdued (Park 
et al. 2017). The most prominent feature of silver formed 
catalysts is that they can afford equivalent process efficacies 
with minimal catalyst loadings.

Cerium

Cerium is a rare earth metal from lanthanide group which 
has been widely employed in wet air oxidation and water gas 
shift reactions (Aneggi et al. 2016; Trovarelli et al. 1999). 
Owing to its oxidation properties, cerium can conveniently 
produce OH• from H2O2 due to exhibition of two oxidation 

(15)2Ag + H2O2 → 2Ag+ + 2OH−

(16)2Ag+ + OH− + HO−

2
→ 2Ag + O2 + H2O

states, i.e., + 3 and + 4. Heckert et al. used cerium-based het-
erogeneous catalysts for the production of OH• from H2O2 
through the mechanism outlined in Eq. 17 and 18 (Heckert 
et al. 2008b). It is important to note that cerous (Ce+3) is a 
strong reducing agent, while ceric (Ce4+) is a strong oxidiz-
ing agent. These two ions can interchange quite easily, offer-
ing a good redox cycle which is critical for heterogeneous 
Fenton like oxidation (Aneggi et al. 2012; Rossi et al. 2012). 
A list of studies employing cerium in Fenton-like oxidation 
is presented in Table 4.

 

Controlling parameters

Unlike other metals, the favorable redox cycle of cerium in 
aqueous environments is very much dependent on the pH 
of the medium. Therefore, pH of the polluted water is the 
most critical parameter which governs the activity of cerium 
catalyst. Under basic conditions, H2O2 forms very stable per-
oxide-like species (OOH−) with cerium (Chen et al. 2012) 
and these species do not decompose even at neutral pH con-
ditions; thus, no OH• radicals are generated at all because 
the redox cycle between Ce4+/ Ce3+ is completely blocked 
(Cai et al. 2010; Heckert et al. 2008a; Ji et al. 2010). On 
the contrary, when acidic conditions are available, the H+ 
ions attack the cerium-peroxide complex and redox cycle is 
unblocked which yields OH• radicals (Fig. 9). However, it 
is important to note that the cerium-peroxide complex will 

(17)Ce3+ + H2O2 → Ce4+ + HO∙ + HO−

(18)Ce4+ + H2O2 → Ce3+ + HO∙

2
+ H+

Fig. 8   Activity of bare and supported silver catalysts under variable pH conditions. Bare silver interacts with H2O2 forming OH∙ radicals through 
homogeneous phase. The integration of silver on supports enhances its activity and strengthens the stability
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form under both conditions and will only decompose when 
acidic conditions are applied.

Apart from using an experimentally determined opti-
mal dose of oxidant, it is also crucial to use it in a suitable 
processing fashion which favors the Fenton oxidation; i.e., 
oxidant should never be premixed with the cerium cata-
lyst because it is highly likely that it will block the cata-
lytic activity (Heckert et al. 2008a). Therefore, it is viable 
to employ the oxidant as a last processing step so that part 
of the cerium catalyst sites is preoccupied by the organics 
and partly by cerium-peroxide complexes. Further, higher 
oxidant dose will only intensify the blockage of catalytic 
activity of cerium. The cerium-peroxide complexes are 
reverted by acidic conditions or either by applying very high 
temperatures ~ 300 °C (Ferrizz et al. 2001; Liu et al. 2009). 
Since an increase in temperature is beneficial in reversing 

the cerium-peroxide complex which triggers the redox cycle 
Ce4+/ Ce3+, any elevation in temperature would certainly 
enhance the heterogeneous activity of cerium catalyst (Fer-
rizz et al. 2001).

Manganese

Manganese is a transition metal, which is abundantly avail-
able, has low toxicity, is not very expensive, and exists in 
multiple oxidation states (Ren et al. 2012). Manganese offers 
structural flexibility in its metallic oxides while exhibiting 
the favorable oxidation states (Birkner et al. 2013). However, 
Mn+2 and Mn+4 are the only suitable oxidation states while 
considering heterogeneous Fenton-like oxidation as reported 
in many studies (Table 5) (Robinson et al. 2013). It is impor-
tant to mention that manganese transforms H2O2 into OH• 

Table 4   Cerium-based catalysts employed in heterogeneous Fenton-like oxidation

Catalyst composition Catalyst 
dose (g/l)

H2O2 
dose 
(mM/l)

pH T (°C) (time) Target compound Degradation (%) Miner-
alization 
(%)

References

CeO2-LaCuO3 0.4 12.5 7 25 (6 h) Bisphenol 99.85 72.44 (Hammouda et al. 
2017)

Ce-Cu composite oxide 1 – 4 50 (2 h) 2,4- Dichlorophenol 99.5 82 (Xie et al. 2020)
Fe3O4/CeO2 2 30 2 30 (1.5 h) 2,4,6-trichlorophenol 99 65 (Xu and Wang 2015)
CeO2 0.5 10 – 25 (8 h) Acid orange7 98 – (Chen et al. 2012)
Ce-Cu composite oxide 1 – 4 50 (2 h) 4- Chlorophenol 95 88 (Xie et al. 2020)
CexCuOy 0.1 50 5 25 (1 h) Fluconazole 94 – (Zhang et al. 2020b)
CeO2 1 18 - 25 (5 h) Acid orange7 90 – (Ji et al. 2010)
Fe0/CeO2 0.1 100 5.8 26 (1 h) tetracycline 90 – (Zhang et al. 2019)
FeCeOx 1.5 80 5 35 (2.5 h) Rhodamine B 90 – (Zhang et al. 2020a)
CeO2 1.5 60 3 22 (2 h) Orange II 85 – (Hamoud et al. 2017)
Fe2O3-CeO2 0.5 8 3 45 (2 h) Sulfamerazine 70 – (Gao et al. 2019)
CeO2 1.5 116 3 22 (2 h) Acid Green 60 – (Hamoud et al. 2017)

Fig. 9   Cerium reactions with H2O2 under acidic and basic conditions. 
Under basic conditions, H2O2 forms very stable peroxide-like spe-
cies (OOH−) with cerium inhibiting OH∙ radicals generation, while in 

acidic conditions, H+ ions attack the cerium-peroxide complex with 
OH

∙ radicals generation
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radicals by undergoing through a transitional intermediate, 
i.e., Mn+3 (Rhadfi et al. 2010; Sigel 2000; Watts et al. 2005), 
thus possessing a unique redox cycles depending upon the 
type of oxide, and an electron is exchanged between the sub-
strate and the solution (Fig. 10) (Parida et al. 2005).

Controlling parameters

The most critical parameter which dictates the efficacy of 
manganese catalyzed Fenton oxidation is the pH of the aque-
ous medium because the pH conditions change altogether 
when MnO2 and Mn3O4 are used (Fig. 10). When Mn3O4 
is employed, the reaction is favored by a basic environment 
(Eqs. 19 and 20), though neutral conditions are applied for 
practical reasons:

(19)Mn+2 + H2O2 → Mn3+ + HO∙ + HO−

(20)Mn+3 + H2O2 → Mn+2 + HO∙

2
+ H+

Conversely, MnO2 requires acidic conditions to drive the 
redox cycle toward Mn+3 generation which in turn trans-
forms H2O2 into OH• radicals (Eqs. 21 and 22). Addition-
ally, precise control of the pH is also essential because 
adsorption of organics over the catalyst surface is influenced 
by it (Zhao et al. 2013). Moreover, the oxidation pathway 
of organics as well as stability of the catalyst heavily relies 
on the pH:

In the case of manganese-based catalysts, another 
parameter which greatly influences their performance 
in Fenton-like process is their morphology (Hermanek 
et al. 2007; Kim et al. 2017). For instance, MnO2 can 
exist in four crystalline structures, i.e., α- MnO2, β-MnO2, 
γ-MnO2, δ-MnO2. All of them have different surface 
areas and extents of crystallinity, thus exhibiting variable 

(21)Mn+4 + H2O2 → Mn3+ + HO∙

2
+ H+

(22)Mn+3 + H2O2 → Mn+4 + HO∙ + OH−

Table 5   Manganese-based heterogeneous catalysts used in Fenton-like oxidation

Catalyst composition Catalyst 
dose 
(g/l)

H2O2 
dose 
(mM/l)

pH T ( °C) (time) Target compound Degradation (%) Miner-
alization 
(%)

References

Mn3O4/silicate 0.4 97 6 25 (4 h) Methylene blue 100 81 (Tušar et al. 2012)
Fe/Mn-MOF-71 0.064 600 6.2 35 (3 h) Phenol 100 – (Sun et al. 2017)
MnO2-MWCNT 0.2 300 6 25 (3 h) reactive blue 19 99 – (Fathy et al. 2013)
MnO2 0.1 1450 6.1 25(0.3 h) Methylene blue 99 – (Kim et al. 2017)
Mn3O4–FeS2/Fe2O3 0.3 5 2.8 25 (1 h) Orange II 99 – (Xu et al. 2020)
Fe–Mn oxide hollow fiber 

membrane
- 22 9 25 Methylene blue 97 – (Xu et al. 2019)

Diatomite/Manganese 
silicate

0.3 30 - 30(1 h) Malachite green 93 – (Jiang et al. 2018)

Mn/Ti-HMS 1 10 7 25 (2 h) Methylene blue 63.9 – (Song et al. 2016)
Mesoporous MnOx 1 20 3 20 (1 h) Norfloxacin(NFX) 60 – (Minghao et al. 2013)
Mn/Ti-HMS 1 10 7 25 (2 h) Rhodamine B 49.7 – (Song et al. 2016)

Fig. 10   Redox cycles of MnO2 
and Mn3O4 under feasible con-
ditions. Manganese transforms 
H2O2 into OH∙ radicals by 
undergoing through a transi-
tional intermediate, i.e., Mn+3
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catalytic activities in heterogeneous Fenton process (Xiao 
et al. 2010). γ-MnO2 affords maximum activity because 
of well-formed morphology and high surface area, while 
δ-MnO2 is the least active because it is an amorphous 
solid with minimum surface area (Kim et al. 2017). Kim 
et.al. also explained that different morphologies of MnO2 
have different magnetic moments, indicating that these 
oxides exhibit mixed oxidation states (Kim et al. 2017).

H2O2 dose has a direct impact on the efficacy of man-
ganese-driven Fenton-like process because more oxi-
dant is available for OH• radical generation. However, 
an optimal oxidant dose has always to be determined 
experimentally because excess dose may give rise to 
scavenging effect which negatively affects the process 
efficiency. Moreover, any excessive oxidant dose may 
also disturb the pH balance of the solution which may 
suppress the activity of the catalyst (Molina et al. 2006). 
Similarly, increasing the manganese catalyst loading also 
increases the overall efficiency of the Fenton process due 
to increase in the number of active sites through which 
OH. radicals are generated, and organics are attacked. 
However, beyond a certain point, surplus catalyst starts 
moderating the potency of the process due to scavenging 
effect and aggregation of the material which reduces the 
exposed active sites of the catalyst. In accordance with 
Arrhenius law, a rise in temperature elevates the activity 
of manganese catalyst because lower amount of activa-
tion energy is required for product formation (Xiao et al. 
2010).

Conclusion

The inborn limitations of classical Fenton process such as 
large volumes of sludge and stringent pH prerequisites can 
be easily reverted by adapting heterogeneous Fenton-like 
approach, employing either iron or other metallic systems. 
The choice of an appropriate metal not only offers milder 
pH conditions but also greatly enhances the efficacy of the 
Fenton process by providing alternate and better redox cycle. 
In this review, we have discussed different metals and their 
suitability in Fenton process, considering all the processing 
factors (Fig. 11). Iron-based catalysts require severe acidic 
conditions, high catalyst doses, they form stable complexes 
with oxidation products, and complete mineralization of 
organics is difficult to achieve. However, these catalysts can 
bear optimum activities with minimal H2O2 excess and the 
energy required to produce oxidizing species is the lowest 
among the discussed metals. Although silver-based catalysts 
require less excess H2O2, low catalyst loadings for optimal 
performance, a poor redox cycle coupled with susceptibility 
toward leaching limits their application in Fenton process 
unless a proper support is employed. Cerium-based catalysts 
form very stable complexes with the oxidant and can only 
be broken if stringent acidic conditions are applied. Besides, 
they require the highest catalyst loadings and excess H2O2. 
Copper and manganese both possess superior redox cycles, 
require feasible catalyst loadings, excess H2O2 and can 
afford optimum activities under flexible pH conditions, and 
they have the ability to completely mineralize the organics.

Fig. 11   Comparative analysis 
of metals in heterogeneous 
Fenton-like oxidation. Several 
processing factors are consid-
ered for metal suitability in 
Fenton process
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