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Different MRI structural processing 
methods do not impact functional 
connectivity computation
Lu Zhang 1, Lorenzo Pini 1 & Maurizio Corbetta 1,2,3*

Resting-state functional magnetic resonance imaging (rs-fMRI) has become an increasingly popular 
technique. This technique can assess several features of brain connectivity, such as inter-regional 
temporal correlation (functional connectivity), from which graph measures of network organization 
can be derived. However, these measures are prone to a certain degree of variability depending on 
the analytical steps during preprocessing. Many studies have investigated the effect of different 
preprocessing steps on functional connectivity measures; however, no study investigated whether 
different structural reconstructions lead to different functional connectivity metrics. Here, we 
evaluated the impact of different structural segmentation strategies on functional connectivity 
outcomes. To this aim, we compared different metrics computed after two different registration 
strategies. The first strategy used structural information from the 3D T1-weighted image (unimodal), 
while the second strategy implemented a multimodal approach, where an additional registration 
step used the information from the T2-weighted image. The impact of these different approaches 
was evaluated on a sample of 58 healthy adults. As expected, different approaches led to significant 
differences in structural measures (i.e., cortical thickness, volume, and gyrification index), with the 
maximum impact on the insula cortex. However, these differences were only slightly translated 
to functional metrics. We reported no differences in graph measures and seed-based functional 
connectivity maps, but slight differences in the insula when we compared the mean functional 
strength for each parcel. Overall, these results suggested that functional metrics are only slightly 
different when using a unimodal compared to a multimodal approach, while the structural output can 
be significantly affected.

Abbreviations
fMRI	� Functional magnetic resonance imaging
T1w	� T1-weighted
T2w	� T2-weighted
BOLD	� Blood oxygen level dependent
FC	� Functional connectivity
UP	� Unimodal pipeline
MP	� Multimodal pipeline

Resting-state functional magnetic resonance imaging (rs-fMRI) is a popular imaging approach aimed at study-
ing the intrinsic activity of the brain during rest. Brain regions showing temporal correlation of the blood 
oxygen level dependent (BOLD) signal are considered to be functionally connected into intrinsic resting state 
networks1–6. Rs-fMRI functional connectivity (FC) is emerging as an important feature for both basic neurosci-
ence and clinical researchers, shedding new light on the functional organization of the human brain. Moreover, 
in the last two decades, a large amount of literature indicates that FC contributes to cognitive, sensory, and 
social functions. A piece of evidence comes from clinical studies, showing that network breakdowns are related 
to cognitive deficits7–15.

However, the application of rs-fMRI is still limited by several factors, including preprocessing. To date, there 
are no gold standard procedures for fMRI processing, limiting the possible application of this tool to the clini-
cal arena. Moreover, the field suffers from a reproducibility crisis. Recently, a large collaborative study reported 
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low reproducibility of results among 70 independent international teams working on the same fMRI dataset. 
Although this result was obtained based on task-state fMRI, not rs-fMRI, this16 and other studies showed that the 
results strongly depend on the decisions made in terms of preprocessing17–21. This problem is also evident in other 
methods such as diffusion magnetic resonance imaging and arterial spin labeling that use similar acquisition pro-
tocols, e.g., echo-planar imaging22–24. On the contrary, structural imaging assessed with T1-weighted sequences 
(T1w) shows greater reproducibility between sites and vendors25. However, results from structural imaging are 
not completely independent of preprocessing. Different parameters can impact the results. For instance, the 
FreeSurfer pipeline, one of the most popular toolboxes for the analysis of brain surface morphology26, shows 
some limitations, as observed by Gronenschild et al. reporting a significant impact of these variables on structural 
MRI (sMRI) computation. That is, using different software versions (v4.3.1, v4.5.0, and v5.0.0), workstations 
(Macintosh and Hewlett-Packard), and operating systems (OSX 10.5 and OSX 10.6) they reported an average 
significant difference of around 9% and 3% for volume and cortical thickness, respectively27. This result must be 
considered in the context of fMRI analysis as sMRI scans are used for regressing non-neural signals (i.e., used 
to identify white matter (WM) and ventricle voxels) and for registering data into a specific geometrical space 
(e.g., T1w-native or standard space). FC measures, such as graph theoretical measures28, may differ based on 
the different preprocessing steps selected.

In recent years, several attempts have been made to improve sMRI segmentation. While surface recon-
struction is mostly computed using a single T1w scan, it is possible to exploit the information from sMRI data 
employing longer repetition time (TR) and echo time (TE), such as T2-weighted (T2w) and fluid-attenuated 
inversion recovery (FLAIR) images. T1w data enables the segmentation of gray matter (GM) and WM, while 
T2w enhances the signal of the water. Previous studies used T1w and T2w images in combination to refine the 
placement of the pial surface, to exclude nonbrain regions from T1w images, and to correct the bias field of the 
images29,30. Moreover, Glasser et al.31 improved surface reconstructions and myelin maps based on the T1w/T2w 
ratio. Similarly, FLAIR sequences can improve anatomical information. This statement has been demonstrated 
by Lindroth et al. reporting significant improvement in surface reconstruction by combining T1w and FLAIR 
through the FreeSurfer pipeline32.

However, it is unclear whether the combination of T1w and T2w signals can affect FC metrics due to dif-
ferences in the preprocessing steps. This influence can occur both during the creation of the GM and WM 
masks used for computing non-neural signal regression or during imaging co-registration steps. Based on these 
premises, we aimed at investigating whether different structural reconstruction strategies would impact FC 
connectivity outcomes within the context of surface FC. Specifically, we evaluated whether a multimodal recon-
struction approach (combining T1w and T2w images; referred to as multimodal pipeline—MP) would lead to 
different FC outcomes compared to a unimodal approach (using only information from T1w image; referred to 
as unimodal pipeline—UP).

Results
The whole workflow is reported in Fig. 1, describing the analytical procedure and the analyses performed in 
the study.

Structural outcomes.  In line with previous studies, we reported a significant difference in cortical thickness 
between the two pipelines. This difference, widespread to the cortex, was stronger for the insula (see Fig. 2). MP 
led to a significantly widespread thicker surface, except for the bilateral caudal anterior cingulate cortex (ACC), 
left superior temporal gyrus, and right superior parietal lobule (pBonferroni > 0.0014) (Supplementary Table S1). 
Similarly, a higher cortical volume was reported for the MP compared to UP, except for left ACC, left posterior 
cingulate cortex, right cuneus, right lingual gyrus, and bilateral superior parietal lobule (pBonferroni > 0.0014) (Sup-
plementary Table S2). For subcortical regions, results were mixed, with MP showing higher volumes for the 
bilateral amygdala, and the right accumbens, while UP led to higher bilateral thalamus volumes. These results 
were confirmed in the subgroup of individuals acquired with the same MRI protocol; the z-maps expressing 
cortical thickness difference between UP and MP for the whole cohort and the subgroup (n = 44) showed a high 
and significant correlation (r = 0.83; p < 0.001) suggesting that the difference reported is ubiquitous to different 
MRI parameters. Additionally, we reported a significant difference in the gyrification index between the MP and 
UP. MP led to a significantly lower gyrification index widespread across the cortex, while few regions did not 
survive multiple comparison significance (bilateral caudal middle frontal gyrus, bilateral transverse temporal 
gyrus, left ACC, left pars opercularis, left pars orbitalis, left precentral gyrus, left posterior cingulate cortex, 
right banks of the superior temporal sulcus and right middle temporal gyrus) (Supplementary Table S3). The 
vertex-wise analysis confirmed this pattern (see Fig. 2). A post-hoc analysis was performed to assess whether 
these results may be driven by a pipeline-dependent vertices-to-parcels assignment. The Jaccard coefficient for 
the left insula—which exhibited the greatest difference in structural outcome between UP and MP—was found 
to be high (mean J = 0.90 ± 0.01), indicating a comparable spatial pattern in vertex assignment between the two 
pipelines. The very slight difference in vertex assignment alone is unlikely to account for the reported overall 
differences.

Functional connectivity outcomes.  Contrary to the widespread differences for cortical thickness and 
volumes, mean FC values computed with MP and UP were not significantly different except for the left insula 
(t = − 3.599, p = 0.0007), left superior temporal gyrus (t = − 3.503, p = 0.0009) and the left transverse temporal 
region (t = 3.504, p = 0.0009). As for the structural outcomes, the analysis limited in the subgroup of individuals 
acquired with the same MRI protocol (n = 44) confirmed these results, showing a significant difference between 
UP and MP limited to the left insula (t = − 3.113, p = 0.003) and the left transverse temporal region (t = 2.929, 
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p = 0.006). Similar results were reported computing FC as the median of values in the whole cohort, which 
showed a significant difference only in the left superior temporal gyrus (t = − 3.646, p = 0.0006). These results 
were atlas-independent as using a different brain parcellation scheme (Schaefer 100 parcel atlas) FC mean val-
ues were similar between UP and MP across the whole cortex, except for a single parcel (left prefrontal cortex; 
t = −  4.604, p < 0.0001; Fig.  3) surviving after multiple comparison correction. Finally, we tested the effect of 
different smoothing parameters on the rs-fMRI to assess for potential confounding factors. We reported simi-
lar results in the left insula (4-mm FWHM Gaussian kernel: t = − 3.635, p = 0.0006; 6-mm FWHM Gaussian 
kernel: t = − 3.645, p = 0.0006), in the left transverse temporal region (4-mm FWHM Gaussian kernel: t = 3.608, 
p = 0.0007; 6-mm FWHM Gaussian kernel: t = 3.374, p = 0.001) and in the left superior temporal gyrus (4-mm 
FWHM Gaussian kernel: t = − 3.455, p = 0.001; 6-mm FWHM Gaussian kernel: t = − 2.884, p = 0.006), although 
the difference in the left superior temporal gyrus was not significant after Bonferroni correction (p < 0.0014) with 
a Gaussian kernel equaled to 6 mm (Fig. 3). These results were partially echoed by the FC seed-vertex region of 
interest (ROI) group analysis for the left and right five networks, showing no significant differences between MP 
and UP at the vertex level.

Region of interest connectivity results.  According to the cortical thickness results (see Fig. 3), parcels 
with the highest and lowest t value, left insula and left ACC respectively, were selected as ROIs. The Euclid-
ean distance for each ROI between MP and UP did not report significant differences (left insula: p = 0.193; left 
ACC: p = 0.721) (Fig. 4) suggesting that FC map peak was overall located in the same spatial voxels. By contrast, 
when we compared the delta Euclidean distance between the insula and ACC, we found a significant difference 

Figure 1.   Workflow of the analysis. Each participant underwent resting-state functional, T1-weighted (T1w), 
and T2-weighted (T2w) MRI scans. Surface reconstruction was performed through a unimodal pipeline (UP; 
using T1w signal) or a multimodal pipeline (MP; combining T1w and T2w signals). For the UP workflow (pink 
triangle), 3D T1w structural images were processed using the recon-all processing stream, which performed 
all reconstruction steps, including motion correction, intensity normalization, skull-stripping, white matter 
(WM) segmentation, spherical morph, and parcellation. MP workflow (blue and pink triangle) included the 
T2w images (blue triangle) in the Freesurfer workflow, recomputing spherical morph and cortical parcellation 
to adjust the pial surfaces. The preprocessing steps for resting-state data included head movement correction, 
intensity normalization, anatomical registration, and smoothing. For the anatomical registration step, the 
rs-fMRI preprocessing pipeline was run independently for the UP and the MP. Structural (volume, cortical 
thickness, and gyrification index) and functional (mean FC, seed-ROI maps, spatial topology, and graph 
analysis) outcomes were compared between the two different pipelines.
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(p = 0.0016) (Fig. 4). This result suggested that a slight shift of the insula FC peak was bigger than the difference 
of the ACC, suggesting a slight translational effect of the structural findings in FC.

When we compared error maps (MP vs UP) between ACC and insula, we found a similar spatial distribution. 
Specifically, error maps showed overall low error values, suggesting that FC maps computed with MP and UP 
were similar. However, slight differences were found, specifically for temporal and frontal regions (see Fig. 5). 
When we computed an overall error value (mean error values across voxels) we found a significant difference 
between the left insula and left ACC, suggesting that the parcel with the highest structural difference showed 
also the lowest similarity between the two pipelines at each threshold considered (FC threshold 0.3: p = 0.0058; 
FC threshold 0.4: p = 0.0017; FC threshold 0.5: p = 0.0011; FC threshold 0.6: p = 0.0028) (Fig. 5). When this dif-
ference was investigated at the voxel-wise level, we found a significant difference with a maximal expression in 
the left insula (Fig. 5).

Graph connectivity patterns.  We compared the first principal component of each graph metric for the rs-
fMRI processed data from the UP and MP. The first principal componence from UP was highly correlated with 
the first principal componence from MP (betweenness centrality r = 0.98, closeness centrality r = 0.99, clustering 
coefficient r = 0.98, degree centrality r = 0.99, eigenvector centrality r = 0.99, and normalized strength r = 0.99) 
(Fig. 6), in line with mean FC results.

Discussion
In the present study, we evaluated the impact of a preprocessing imaging pipeline combining T1w and T2w 
signals compared to a unimodal approach considering only the signal from the T1w image. In line with the pre-
vious literature, we reported a significant difference in structural metrics, even in a relatively small sample size 
of 58 subjects. The multimodal pipeline led to a significantly thicker cortical thickness, higher volume values, 
and lower gyrification index compared to the unimodal processing. These differences were widespread across 

Figure 2.   Structural differences between unimodal and multimodal pipelines. Top panel: difference in cortical 
thickness at the vertex level, stronger within the bilateral insula (first row); differences in the gyrification index 
at vertex level (second row). Middle panel: significant differences in cortical thickness (left) and gyrification 
index (right) within frontal, parietal, temporal, and occipital cortices were found between the two processing 
modalities. Significantly thicker cortical thickness was reported for the multimodal pipeline, compared to the 
unimodal pipelines. Significantly higher gyrification index was reported for the unimodal pipeline, compared to 
the multimodal pipelines. Bottom panel: subdivision of the Desikan–Killiany atlas parcels for the four lobes.
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the cortex. Note, the negative relationship between higher cortical thickness and lower gyrification for the MP 
pipeline is in line with previous literature reporting a negative correlation between these two measures33,34. 
However, these differences were only slightly translated in the FC metrics, suggesting a limited impact on FC 
computation metrics, while graph metrics were not affected.

The effect of combining T1w and T2w/FLAIR has previously been assessed35. A significant advantage of 
this multimodal pipeline was demonstrated for the computation of structural outcomes linked with cortical 
segmentation32,35–37. The additional value of the structural MP was reported for both healthy individuals, and 
patients and for the identification of age-related cortical atrophy32. Our results are perfectly in line with these 
studies. We observed a widespread and significant difference between MP and UP approaches. This is not unex-
pected, since the simultaneous use of T2w and T1w images can solve the misclassification of vessels, dura, and 
gray matter through multiple signal sources35.

However, these differences were not reported in FC computation. We reported a limited impact on con-
nectivity metrics, ranging from static FC, similarity values, and graph analysis. Notably, using the insula as a 
seed ROI showed overlapping topological results, suggesting that the FC computation might be, at least par-
tially, independent of the structural processing pipeline. These results did not suggest that different processing 
parameters for fMRI data did not influence subsequent FC analysis, since UP and MP were equivalent in terms 
of preprocessing strategy, except for the structural source of the signal. Why did a huge difference in structural 
segmentation lead to a slight difference in FC? fMRI preprocessing involves several steps, such as motion cor-
rection, spatial normalization, and spatial smoothing, involving interpolation procedures. These transformations 
might reduce the potential differences introduced by the inclusion of different structural signals. The Gaussian 
smoothing kernel is the most commonly implemented procedure in fMRI38. This step is an important operation, 
although its implementation is controversial. Some amount of smoothing is applied to ‘blur’ images, increasing 
the signal-to-noise ratio and removing residual noise after spatial registration. However, when different smooth-
ing parameters were applied to the rs-fMRI data we observed comparable results, suggesting a limited impact of 

Figure 3.   Functional connectivity differences between unimodal and multimodal streams. Left panel: 
differences in cortical thickness, volume, mean functional connectivity (FC) with different smoothing 
parameters (Gaussian smoothing kernels: 5 mm, 4 mm, and 6 mm), median FC, and mean FC computed using 
a subcohort of participants acquired with the same MRI protocol. Regions were reordered according to t-values 
from the paired sample t-test cortical thickness analysis (left hemisphere). The left insula was the parcel with the 
highest t value (absolute value); the left anterior cingulate (ACC) was the parcel with the lowest t value (absolute 
value). Right panel: differences in mean FC between unimodal and multimodal streams projected to the 
Schaefer 100-parcel atlas. A significant difference was reported only for the left prefrontal cortex. T: threshold, S: 
Gaussian smoothing kernels.
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smoothing on the data, although spatial smoothness has been identified as one of the most common analytical 
factors related to different fMRI results16.

However, we found a slight but still significant effect within the insula, orbitofrontal cortex, and temporal 
cortex, the regions showing the highest differences in terms of structural outcomes (both volume and thickness). 
These regions are the most prone to error during automatic segmentation39,40. Although our analysis cannot 
assume that cortical thickness and volume reconstruction through combining T1w and T2w signals is better 
than unimodal pipeline, these results should be interpreted in light of previous findings, suggesting that clinical 
studies might benefit from a combination of multiple sources of MRI structural signal. This might be relevant 
for clinical neuroimaging studies assessing structural features in brain disorders, for which MRI computation 
can be affected by atrophy. Notably, we reported that FC similarity maps within the insula showed higher error 
scores, compared to a parcel with the lowest difference in terms of structural outcome. The insula is known to 
play a key role in neurodegenerative disease13,41–46 and psychiatric disorders47–51. Moreover, this brain structure 
is linked with the connectivity of the SN, a network involved in social, emotional, and attentional cognition. 
Recent evidence reported that dysregulation of SN occurs in many brain conditions, including autism spectrum 
disorder52, psychosis53, and FTD54, all conditions sharing deficits in social cognition, such as the ability to infer 
other people’s mental states, thoughts, and feelings and referred to as ‘theory of mind’55,56. Within this framework, 
our results would be useful in guiding clinical neuroimaging studies focused on this network/structure, for which 
the pipeline of analysis should be selected with caution, considering the trade-off between improving the MRI 
signal and the time to acquire additional MRI structural scans. Overall, our results suggested that researchers 
should be careful with FC maps obtained from different pipelines, although we do not believe that there is an 
optimal pipeline in all studies.

Results from the present study should be interpreted in light of some limitations. The sample size was rela-
tively small compared to the large dataset available in the literature. However, we investigated whether differ-
ences would affect a cohort of healthy participants usually reported in fMRI studies (numerosity around 40/50 
participants). Additionally, our MRI data were obtained from different MRI scanners/parameters, although 

Figure 4.   Spatial topological differences between unimodal and multimodal streams. The left insula and left 
anterior cingulate cortex (ACC) were selected as regions of interest (ROIs) and the Euclidean distance in the 
3D anatomical space between ROI’s center of gravity and peak FC voxels was computed. Top panel: Euclidean 
distance did not report significant differences between unimodal and multimodal streams. Bottom panel: 
Significant differences were observed between the delta shift (Euclidean distance) of the left insula and the left 
ACC.
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the analysis performed on a subgroup of individuals acquired with the same MRI protocol showed comparable 
results (Supplementary Fig. S1). Moreover, we did not consider whether other preprocessing parameters would 
affect the UP and MP approach, except for the smoothing amount parameter. Further studies should investigate 
whether different preprocessing parameters would lead to widespread differences also for FC outcomes using 
these different structural strategies. Finally, the estimate of FC can be influenced by physiological noise, such 
as cardiac and respiratory fluctuations. The impact of physiological noise removal and shorter TR on different 
pipelines should be evaluated by further studies.

In conclusion, this study extends the results of previous studies, suggesting that structural reconstruction 
through a UP or MP approach, contrary to other fMRI preprocessing steps, such as temporal filtering, and 
motion correction20,21, has a very limited impact on functional metric computation. On the contrary, these two 
approaches led to significant results in terms of structural outcomes. However, the slight difference in functional 
output for the insula would suggest caution when the focus of the study is on the investigation of the brain scaf-
fold related to this brain structure and for clinical studies focused on pathology related to insula vulnerability.

Methods
Participants.  Fifty-eight healthy adults (33 females, mean age 27.4) were retrospectively included in this 
analysis. All participants were right-handed, had normal or corrected to normal vision, and had no history of 
neurological or psychological diseases. These participants were pooled from different cohorts57–59. All partici-
pants signed an informed consent form before the study and were compensated for their participation. These 
studies were approved by the Institutional Review Board (IRB) of Washington University in St. Louis School of 
Medicine. All methods used in the current study were performed in accordance with the relevant guidelines and 
regulations of the ethical review board.

Figure 5.   Difference in FC topography between unimodal and multimodal streams. Top panel: mean seed-
based connectivity maps for the left insula (left) and left anterior cingulate cortex (ACC) (right). Middle panel: 
Significant differences between the insula and ACC error maps (computed as the difference between UP and 
MP). Higher values mean higher errors. Bottom panel: Significant differences between the insula and ACC error 
maps were found at the voxel level.
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MRI acquisition.  MRI data were acquired using a Siemens (Erlingen, Germany) 3-T Prisma Fit MR scanner 
with a 32-channel RF head coil. Structural images were acquired using 3D T1-weighted Magnetization Pre-
pared Rapid Gradient Echo (MPRAGE) (1 mm isotropic voxel; TE = 2.36 ms, TR = 1700 ms, Inversion Time 
(TI) = 1000 ms, flip angle (FA) = 8°) and 3D T2-weighted fast spin echo sequences (1 mm isotropic voxel; TR/
TE = 3200/564 ms, FA = 120°). Resting-state fMRI scans were collected using a gradient echo-planar sequence 
sensitive to BOLD contrast (2.4 mm isotropic voxels, TE = 32.4 ms, TR = 1 s, FA = 63°, 48 slices, and multiband 
factor 4). Seven participants underwent MRI examination with different parameters (3D T1-MPRAGE: 1 mm 
isotropic voxel, TR/TE = 2400/2.22  ms, TI = 1000  ms, FA = 8°; 3D T2-weighted: 0.8  mm isotropic voxel, TR/

Figure 6.   Graph theory metrics differences between unimodal and multimodal streams. Betweenness 
centrality, closeness centrality, clustering coefficient, degree centrality, eigenvector centrality, and normalized 
strength were computed for each parcel and each subject. Outcomes were organized into a j × k matrix (j = the 
number of parcels; k = the number of participants) and fed to a principal component analysis. The first 
component (PC1) was selected and compared between unimodal and multimodal streams. PC1 from UP and 
MP showed the same structure for the matrix (r > 0.98).



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8589  | https://doi.org/10.1038/s41598-023-34645-3

www.nature.com/scientificreports/

TE = 3200/563 ms, FA = 120°; resting-state fMRI: 3 mm isotropic voxel, TE = 25.8 ms, TR = 1 s, FA = 58°, 56 slices 
and a multiband factor of 3). Seven participants were acquired using a Siemens 3-T Tim Trio MR system with a 
16 channel RF head coil (3D T1-MPRAGE: 1 mm isotropic voxel, TR/TE = 1950/2.26 ms, TI = 900 ms, FA = 9°, 
and 176 sagittal slices; 3D T2-weighted: 1 mm isotropic voxel, TR/TE = 2500/442 ms, FA = 120°; resting-state 
fMRI: 4 mm isotropic voxel: TR = 2 s, TE = 27 ms, FA = 90°, 32 interleaved slices.

All participants underwent three resting-state fMRI runs, each lasting 5 min (300 or 150 TRs), for a total of 
15 min. During resting state scans, participants were asked to maintain fixation on a cross that was displayed in 
the center of the screen.

Structural and functional data processing.  Surface-based cortical measurements were obtained 
using FreeSurfer v7.1.1 (https://​surfer.​nmr.​mgh.​harva​rd.​edu/). First, 3D T1-weighted structural images were 
processed using a recon-all processing stream, which included motion correction, skull-stripping, registration, 
cortical and subcortical segmentation, smoothing, spherical morph, and parcellation mapping (see Fig. 1 for 
the workflow of the structural preprocessing). Quality checks were visually performed to ensure the accuracy 
of segmentation and surface reconstruction. Cortical parcellation statistics were extracted using the Desikan-
Killiany Atlas (DKT), which contains 68 regions, 34 regions in each hemisphere.

Resting-state data were processed through the FSFAST utility (https://​surfer.​nmr.​mgh.​harva​rd.​edu/​fswiki/​
FsFast) implemented in Freesurfer. The preprocessing steps included: the removal of the first 4 scans for each 
resting state run to allow for magnetic field stabilization; template creation; brain mask extraction; rs-fMRI 
registration to anatomical images; head movement correction; slice-timing correction; spatial normalization; 
resampling time series to the left and right surfaces; spatial smoothing at 5-mm full width at half maximum 
(FWHM) Gaussian kernel. Finally, for each participant, the different resting state runs were concatenated for 
the FC analysis.

Structural (cortical thickness, gyrification, and parcel volumes) and functional (mean FC, seed-ROI maps, 
spatial topology, and graph analysis) outcomes were compared between the two pipelines: the UP considered 
only the signals from T1w images for surface and volumetric brain computation; the MP included the signal 
from the T2w image in the Freesurfer workflow, recomputing spherical morph and cortical parcellation to adjust 
the pial surfaces previously computed using only the T1w data. The rs-fMRI preprocessing pipeline was run 
independently for the UP (i.e., using the surface reconstruction from T1w-image) and the MP (i.e., using the 
surface computed combining T1w and T2w information (see Fig. 1).

Volumes, cortical thickness, and gyrification index.  Volumetric and cortical thickness metrics were 
compared between MP and UP. While the former refers to the number of voxels/vertices within a specific parcel, 
the latter is a measure of the width of the GM, computed as the closest distance from the gray-white surface 
to the gray-cerebrospinal fluid boundary (pial surface) at each vertex26,40,60. A paired sample t-test was per-
formed for cortical thickness and volumes, corrected for Bonferroni comparison (alpha significance of 0.05/n, 
where n represents the 34 parcels for each hemisphere). Similarly, we compared subcortical volumes (Bonferroni 
correction threshold 0.05/n; n = 7 subcortical regions). This analysis was repeated at the vertex level (surface-
based group analysis; multiple comparison correction—Monte Carlo simulation—with vertex-wise threshold 
p < 0.0001, and cluster-wise p-value < 0.05, 5000 iterations). Finally, we computed the gyrification index61, a 
structural metric that is defined as the ratio of the total folded cortical surface over the amount of cortex on the 
outer visible cortex. Differences in the gyrification index for each DKT region were compared using paired sam-
ple t-tests Bonferroni corrected (0.05/34). The same vertex analysis applied to cortical thickness was performed 
for the gyrification outcomes.

Functional strength of the whole brain.  All the rs-fMRI analysis was performed at the surface level, 
not involving subcortical areas. For each parcel (from the DKT atlas) we extracted the corresponding timeseries 
(averaged timeseries of each vertex belonging to that parcel). A parcel-wise connectivity matrix was then com-
puted (Pearson’s correlations). This procedure led to a symmetric matrix (68 parcels × 68 parcels) for each par-
ticipant. Diagonal values were removed as they represented the correlations between the parcels and themselves 
(ones). We also removed values with an absolute value lower than 0.3, unlikely to represent connections. Finally, 
each column of this cleaned matrix was averaged, representing the mean FC strength of that parcel. The proce-
dure was repeated for the rs-fMRI data obtained using the MP and the UP. We then investigated whether mean 
FC values were independent of the preprocessing stream by comparing mean MP and UP FC outcomes through 
a paired-sample t-test (Bonferroni corrected for multiple comparisons—0.05/34). We performed an additional 
analysis considering the median instead of the mean since the former measure is less prone to potential outliers. 
Finally, we assessed whether different smoothing values would impact the FC outcomes. The full preprocessing 
was repeated considering additional smoothing kernels of 4 mm, and 6 mm (in addition to 5 mm, considered the 
standard parameter in this analysis). Mean FC connectivity was then computed on these preprocessed images.

We selected five DKT parcels from the left and right hemisphere as ROIs, representing five main resting-state 
networks: (i) insula—salience network (SN); (ii) parahippocampus—limbic network (LIM); (iii) pericalcarine 
gyrus—visual network (VIS), (iv) precentral gyrus—somatomotor network (SMN); (v) isthmus cingulate cor-
tex—default mode network (DMN). The averaged timeseries from each ROI were extracted to compute Pearson’s 
correlations between these ROIs and surface vertices within the same hemisphere. A paired surface-based group 
analysis was performed to compare FC strengths for the 5 networks between MP and UP (multiple compari-
sons—Monte Carlo simulation: vertex-wise threshold p < 0.0001, cluster-wise p < 0.05, cluster size > 50 mm2, 5000 
iterations).

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
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Functional region of interest analysis.  We performed two different analyses based on the two extremes 
of the axis expressing differences in terms of cortical thickness. The first analysis was limited to the left hemi-
sphere and at the voxel level (registering vertex maps to voxels using the inverse of the transformation matrix 
to register fMRI data to the surface). We selected the parcels showing the highest and the lowest cortical thick-
ness difference between the MP and UP streams. As in the network analysis, these parcels were used as ROI to 
compute parcel-voxels correlations within the left hemisphere. The corresponding FC maps were then compared 
between MP and UP. For each participant and pipeline stream, we estimated the single voxel showing the FC 
peak. We then computed the Euclidean distance between the peak 3D location and the center of gravity of the 
ROI. This procedure was repeated for data computed with both MP and UP and compared using a paired sample 
t-test. Significant results would indicate a spatial shift of the FC peak between the two processing streamlines. 
In the second analysis, the FC maps (from both hemispheres) were compared directly between MP and UP as 
follows: (i) for each ROI the corresponding FC maps were binarized by a set threshold (from 0.3 to 0.6, the step 
of 0.1); (ii) error maps between binarized FC maps computed with MP and UP were calculated. The mean values 
of these error maps were compared using a paired sample t-test. Finally, we compared spatially the differences 
between error maps (smoothed with a sigma of 2.12 mm) through a non-parametric procedure (threshold-free 
enhanced cluster; TFCE with a p-Family-Wise Error (FWE) correction < 0.05, n = 5000 permutations).

Graph analysis.  We investigated whether whole-brain graph metrics would exhibit differences between MP 
and UP. We used the 333 parcels specified by Gordon et al.62 representing the node of a graph, while FC between 
each pair of parcels was defined as an edge. For each participant and processing stream, we calculated the FC 
matrix representing Pearson’s timeseries correlations between each pair of parcels. The correlation values were 
Fisher’s transformed. The matrix was thresholded (r = 0.3) and binarized it. Six graph properties, betweenness 
centrality, closeness centrality, degree centrality, eigenvector centrality, clustering coefficient, and normalized 
strength were computed63. For each measure, graph values at the parcel level of each participant were concat-
enated in a j × k matrix (j = the number of parcels; k = the number of participants) and fed to a principal com-
ponent analysis. The first component was then considered and compared across the UP and MP by Pearson’s 
correlation. This approach was used to compare parcel-wise connectomics patterns expressed by rs-fMRI data 
built from different surfaces (UP and MP).

Data availability
The dataset analyzed in this study is stored at cnda.wustl.edu; Restrictions apply to the availability of the dataset 
which was analyzed in the current study under license from the cnda center in Washington University in St. 
Louis. The data-set in not publicly available, however it could be made available upon reasonable usage request 
from MC along with the permission of the cnda center (cnda.wustl.edu).
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