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Abstract: Cosmic Birefringence (CB) is a phenomenon in which the polarization of the
Cosmic Microwave Background (CMB) radiation is rotated as it travels through space due to
the coupling between photons and an axion-like field. We look for a solution able to explain
the result obtained from the Planck Public Release 4 (PR4), which has provided a hint of
detection of the CB angle, α = (0.30 ± 0.11)◦. In addition to the solutions, already present in
the literature, which need a non-negligible evolution in time of the axion-like field during
recombination, we find a new region of the parameter space that allows for a nearly constant
time evolution of such a field in the same epoch. The latter reinforces the possibility to employ
the commonly used relations connecting the observed CMB spectra with the unrotated ones,
through trigonometric functions of the CB angle. However, if the homogeneous axion field
sourcing isotropic birefringence is almost constant in time during the matter-dominated era,
this does not automatically imply that the same holds also for the associated inhomogeneous
perturbations. For this reason, in this paper we present a fully generalized Boltzmann
treatment of this phenomenon, that is able, for the first time to our knowledge to deal with
the time evolution of anisotropic cosmic birefringence (ACB). We employ this approach to
provide predictions of ACB, in particular for the set of best-fit parameters found in the new
solution of the isotropic case. If the latter is the correct model, we expect an ACB spectrum
of the order of (10−15 ÷ 10−32) deg2 for the auto-correlation, and (10−7 ÷ 10−17) µK· deg for
the cross-correlations with the CMB T and E fields, depending on the angular scale.
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1 Introduction

In the last decades, the investigation of parity-violating signatures in cosmology has become
one of the most ambitious goals (see e.g. [1, 2]). Many efforts have been made to constrain
parity-breaking effects coming, e.g., from non-standard inflationary models, not only at
the level of the CMB angular power spectra [3–12], but also by looking at higher-order
correlation functions, such as bispectra and trispectra [13–30]. Furthermore, besides CMB
observables, recently the research on parity-breaking signals in large-scale structures [31–40]
and from astrophysical and cosmological gravitational waves at interferometers [41–53] has
known an increasing interest.

However, one of the most intriguing sources of cosmological parity violation seems to come
from cosmic birefringence, which is nothing but the rotation of the linear polarization plane
of CMB photons when free-streaming as a consequence of an electromagnetic Chern-Simons
coupling with a pseudo-scalar field χ [54],

L = −1
4FµνF µν − λ

4f
χFµνF̃ µν , (1.1)

where λ/f is a parameter with the dimensions of the inverse of an energy, F̃ µν ≡ εµνρσFρσ/

(2√
−g) is the Hodge dual of the Maxwell tensor Fµν , and εµνρσ is the Levi-Civita antisymmet-

ric symbol. Indeed, this extension of the Maxwell theory induces a rotation of the observed
Stokes parameters describing the linear CMB polarization (see e.g. [55–57]),

(Q ± iU) = (Q ± iU)wcbe2iα, (1.2)

where the label “wcb” denotes a quantity that one could obtain without cosmic birefringence,
and the birefringence angle α is strictly related to the time evolution of the field χ,

α ≡ λ

2f
(χobs − χemi) , (1.3)

– 1 –
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with χemi and χobs labeling the field’s values at the moment of photons’ emission and
observation, respectively. An observational consequence of the rotation described in eq. (1.2)
is, e.g., the switching-on of a parity-breaking angular cross-correlation between the E and
B modes of CMB polarization,

CEB
ℓ = 1

2 sin(4α)
[
CEE

ℓ,wcb − CBB
ℓ,wcb

]
. (1.4)

Cosmic birefringence can be seen as a probe for the existence of such a field χ, which
could be a candidate for early and late dark energy [58–65] or dark matter [66–72], in the
form of an axion-like field [73–85]. Other possible physical explanations for the birefringence
are investigated e.g. in [86–88] and in the refs. therein. The tantalizing idea of succeeding in
unveiling the nature of the dark sector of the Universe by looking for cosmological parity-
violating signatures has also brought with it the necessity to look for signatures that are
able to discriminate among the different models able to induce the birefringence effect, and
according to this purpose, a tomographic approach has been recently proposed [89–93]. A
complete treatment of cosmic birefringence should consider the possibility that the field χ, in
general, may not be homogeneous, implying the presence of a non-zero anisotropic component
in the birefringence angle [94–103]: such anisotropies in the birefringence angle can provide
by themselves a further and complementary observational test of models for birefringence.

An increasing number of observational constraints on both isotropic and anisotropic
cosmological birefringence are present in the literature, as results of several CMB experiments:
WMAP [104–107], POLARBEAR [108, 109], ACTPol [110], SPTpol [111], BICEP/Keck [112,
113], and the Planck satellite [114–121]. In particular, the authors of [122], exploiting the
latest Planck data release, have found a hint of detection of the isotropic birefringence angle
α = (0.30 ± 0.11)◦ [122]. However, a more detailed analysis is required to be sure that such a
rotation has effectively a cosmological origin, and it is not instead caused by, e.g., galactic
dust or miscalibration angles [123–134]. Nevertheless, let us just mention that if the new
physics hypothesis for the existence of a non-zero EB cross-correlation would be confirmed,
most probably this could only be explained by cosmic birefringence as shown by eq. (1.4)
since any observed EB correlation sourced by primordial chiral gravitational waves does
not work due to the overproduction of the B modes concerning the current constraints on
the tensor-to-scalar ratio [9, 135].

In this paper, we consider the field theory defined by the following action for the axion-like
field1 together with the axion-photon coupling shown in eq. (1.1),

Sχ = −
∫

d4x
√

−g

[1
2gµν∂µχ∂νχ + 1

2m2
χχ2

]
. (1.5)

We perform a chi-squared analysis to find the values for the axion mass mχ and the Chern-
Simons coupling λ/f that best fit the previously mentioned Planck result [122], which
nevertheless just refers to the regime of isotropic birefringence. For this reason, to consis-
tently compare theory with observations, we initially restrict our analysis to the case of a
homogeneous field, χ = χ0(η), where η denotes the conformal time.

1However, our results are not strongly dependent on the chosen potential for χ (see also appendix A).

– 2 –
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One of the main findings of the present paper is the existence of a set of best-fit parameters
for which the axion field is almost constant in time during the epoch of recombination, which
has not been obtained in previous analyses. It is well known in the literature that the
formula in eq. (1.2) holds only in the sudden recombination approximation or when the
axion time evolution is sufficiently slow during recombination. Otherwise, eq. (1.2) could
not be directly used for deriving an expression for the CMB spectra modified by cosmic
birefringence. Indeed, it becomes necessary to solve the polarized Boltzmann equation for
photons by taking into account the birefringence effect from the beginning, and eq. (1.2) still
holds, but photon-by-photon emission time [136–140], so that eq. (1.4) is recovered only in
the regimes mentioned before. According to our results, the kind of evolution experienced
by the axion seems to be compatible with the use of such an approximation, consistently
with what recent data analysis seem to suggest, see e.g. in [120].

Moreover, our idea is to use the results of the fit to find the anisotropic birefringence
signal associated with the set of best-fit parameters for the isotropic case. This approach
has a twofold purpose: first of all, if the amount of anisotropic birefringence predicted by a
theoretical model, whose parameters best fit the amount of isotropic birefringence, is found
to be excluded by the constraints on anisotropic birefringence itself, this would mean that
such a model is not a good theory for the axion field, making our approach a promising way
for breaking degeneracies between different models. Second, as we are going to show in the
next sections, the associated perturbations δχ(η, x) do not behave in the same way as the
homogeneous part, giving us the motivation for generalizing the state-of-the-art of anisotropic
cosmic birefringence and verify when it is possible to recover the treatment mainly used in
the literature. Indeed, up to now, the anisotropic birefringence angle has been related to
the value of the field at the epoch of recombination [94],

δα(n̂) ≡ − λ

2f
δχ[ηrec, (η0 − ηrec)n̂], (1.6)

where δχ ≡ χ − χ0(η) is the inhomogeneous perturbation of the axion field, −n̂ is the
photons’ coming direction, and η0 (ηrec) is the conformal time today (at recombination).
However, eq. (1.6) holds only in the sudden recombination approximation or when δχ does
not evolve significantly in time during the recombination epoch. To take into account
that photons have been emitted according to a visibility function, partial generalizations of
eq. (1.6) have been adopted, either by convolving δχ[η, (η0 − η)n̂] with the visibility function
itself [98], or by adopting a tomographic approach to separate the recombination contribution
from the reionization one [92]. Nevertheless, for the first time, in this paper, we propose
the most general treatment for anisotropic cosmic birefringence, which directly solves the
modified Boltzmann equation, in analogy with what has been done in the literature for the
isotropic counterpart. Our approach can completely characterize anisotropic birefringence as a
second-order effect in perturbation theory, whose redshift evolution is now taken into account.

The structure of the paper is organized as follows. In section 2, we present a chi-squared
analysis for isotropic cosmic birefringence, and we show that an almost constant-in-time
homogeneous field χ0 does not automatically imply that the same behavior is also shared with
its inhomogeneous perturbations δχ. In section 3, we describe our generalized Boltzmann
treatment of anisotropic cosmic birefringence and we derive the analytical expression for the

– 3 –
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modified CMB angular power spectra. We conclude in section 4 with a summary of our main
findings and suggestions for future work. In appendix A we have also extended our discussion
to a different axion potential with respect to that considered in the main body of the paper.

2 Constraining the axion parameters

As described by eq. (1.3), the value of the birefringence angle is related to the difference in
the value of the field χ between the moment of the photon’s observation and emission. We
now focus on the case of isotropic birefringence, for which a homogeneous field χ = χ0(η)
can induce a birefringence effect parameterized by an isotropic angle α = α0. In particular,
we want to find the set of parameters for the model defined in eq. (1.5) that can explain
α0 = (0.30 ± 0.11)◦ [122]. Since we are focusing now on the purely isotropic case, it is
easy to derive the equation of motion for the axion χ0 by taking the functional derivative
of eq. (1.5) with respect to the scalar field,2 and by working in the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric:

χ′′
0 + 2Hχ′

0 + a2m2
χχ0 = 0, (2.1)

where a is the scale factor of the Universe and H ≡ a′/a is the conformal Hubble parameter,
and ′ denotes the differentiation with respect to conformal time. The solution of eq. (2.1)
can be found once the initial conditions for the field are set. As already remarked e.g. in [90],
we can divide both sides of eq. (2.1) by the initial value of the field χini

0 , so that we can
trade our mathematical problem with solving the same differential equation but for the field
ξ ≡ χ0(η)/χini

0 . In this way, one of the initial conditions in such a differential equation is
automatically fixed as ξini = 1. Moreover, as already done in [92], here we choose the axion
initial velocity to be (dχ0/dη)ini = (dξ/dη)ini = 0, which is equivalent to impose the axion
behaving as pure dark energy in its early evolution. Let us mention that, similarly to what has
been done in [90–92], to solve eq. (2.1) we have assumed that the energy density of the axion
is small so that we can take the field to be decoupled from the rest of the components in H.

Now, we perform a chi-squared analysis to compare our theoretical prediction in the
sudden recombination approximation,

α0(λχini
0 /f, mχ) = λχini

0
2f

[ξ(η0) − ξ(ηrec)]
∣∣
mχ

, (2.2)

with the Planck result. The subscript mχ on the right-hand side of eq. (2.2) labels the fact that
the dependence of α0 on the axion mass is “hidden” in the field variation, since different masses
imply a different time evolution (see e.g. [90–92]). We have adopted a Bayesian approach
and computed the posterior probability, identifying the best-fit parameters with those that
maximize the posterior itself, by assuming a Gaussian likelihood and a uniform prior,

P
(
αbest, σ|λχini

0 /f, mχ,
)

∝
exp

{
− 1

2σ2
[
αbest − α0

(
λχini

0 /f, mχ
)]2}

√
2πσ2

, (2.3)

where αbest = 0.30◦ and σ = 0.11◦.
2As shown in [92], although the Chern-Simons term in eq. (1.1) is responsible for the birefringence

mechanism, it gives no contribution to the equation of motion for χ at zero- and first-order in cosmological
perturbation theory.

– 4 –
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(a) Contour plot of α0 for λχini
0 /f ≤ 0. (b) Contour plot of α0 for λχini

0 /f ≥ 0.

Figure 1. Dependence of the isotropic birefringence angle on the axion mass mχ and the coupling
parameter λ/f . The numerical computation has been performed by running several simulations of the
axion field dynamics, by setting the initial velocity of the axion field equal to zero, and by taking
the fiducial values of the ΛCDM parameters provided in [23]. Figures 1(a)–1(b) show the likelihood
as a colormap in the parameter space, for positive and negative values of λχini

0 /f , respectively. The
darkest red region between the innermost black curves explains the CMB birefringence angle at 1σ

C.L. reported by Planck PR4 [122].

To evaluate α0 and the posterior probability P we have used a modified version of the
Boltzmann code CLASS [141], in which the dynamics of the axion field is implemented. Since,
as mentioned before, the dependence of α0 on mχ is not analytical, we have performed a
large number of simulations running our version of CLASS, and then we have numerically
interpolated the predicted theoretical birefringence angle over a grid of values for the axion
mass and the product between the coupling parameter and the field’s initial value. We have
then obtained contour plots in the parameter space, by evaluating eq. (2.3) on such a grid,
as shown in figures 1(a)–1(b), where we have found two different regions, according to the
sign of the dimensionless quantity λχini

0 /f .
As a result, the best-fit parameter λχini

0 /f and the best-fit masses are estimated to be:

• λχini
0 /f ≃ −0.02 and mχ ≃ 3.00 × 10−33 eV;

• λχini
0 /f ≃ 0.12 and mχ ≃ 5.28 × 10−27 eV,

according to the two different regions of the parameter space that we have found to be most
consistent with the Planck result. Different values for mχ imply different evolution of χ, as
shown in figure 2. Indeed, for mχ ≃ 3.00 × 10−33 eV (which is associated with a λχini

0 /f ≤ 0),
the field seems to be constant during the epoch of recombination, whereas the opposite occurs
for mχ ≃ 5.28 × 10−27 eV (which is instead associated with λχini

0 /f ≥ 0).
The existence of two very different regions in the parameter space yielding a value of α0

consistent with Planck can be explained as follows: by looking at eq. (2.2) it is clear that
to get a small positive value close to αbest = 0.30◦ the product between λχini

0 /f and the
time variation of ξ(η) must be positive as well, and this can happen when both these two
quantities are positive or negative. By direct inspection of figure 2, we can easily see that in
the mχ ∼ 10−33 eV, the evolution of the axion field is really slow and ξ(η0) < ξ(ηrec), so that
a negative sign of λχini

0 /f is needed to provide a positive angle. Instead, for mχ ∼ 10−27 eV,
the field evolution is faster than in the previous case, so that, because of the strong oscillatory

– 5 –
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Figure 2. Redshift evolution of the ratio between the homogeneous scalar field χ0 and its initial
value χini

0 for the two best-fit masses resulting from our chi-squared analysis. The colored region is
the range of redshifts corresponding to recombination evaluated using the HyRec algorithm [142–144].
As in figure 1, the numerical computation has been performed by setting the initial velocity of the
axion field equal to zero, and for the fiducial values of the ΛCDM parameters provided in [23].

behavior, it is possible to achieve ξ(η0) > ξ(ηrec) in specific moments leaving the possibility
to have a positive λχini

0 /f . However, let us note that in the latter situation, as can be seen
by looking at figure 1(b), the region of the parameter space consistent with αbest is smaller
with respect to that of the former case, presented instead in figure 1(a). The reason is that
to get αbest starting from eq. (2.2) exploiting a positive λχini

0 /f and an oscillatory behavior,
one needs to fine-tune the value of the axion mass, to reach exactly the desired amount of
isotropic cosmic birefringence. On the contrary, in the case of a negative λχini

0 /f , it is possible
to find a more stable solution with an almost constant field during the matter-dominated
epoch. Now, if the axion field is not constant in time during recombination, an important
consequence is that one should account for the birefringence effect for each photon emitted
in that range of redshifts, i.e. the one associated with its own emission’s redshift. This is
something that has been already pointed out in the literature, and such an issue has been
solved by including the birefringence effect directly in the polarized Boltzmann equation
for CMB photons [62, 136–140]. Before proceeding, let us just remember that our analysis
has been adopted for the V (χ) ≡ m2

χχ2/2 potential, and so with a different potential, the
situation could in principle change. However, we have found a similar result for an Early
Dark Energy (EDE) potential (see appendix A). Let us highlight that in our analysis we
have neglected the astrophysical constraints, but we are authorized to do that because the
orders of magnitude at which they become relevant are well outside of the regions explored
in our contour plots, as shown in [60]. Moreover, let us note that in fact a solution associated
with an ultra-light axion field appears also in [60], where the authors constrained models of
cosmic birefringence by just relying on the absolute value of the isotropic angle. However, it is

– 6 –
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essential to predict the sign of the isotropic birefringence angle. Indeed, the analysis performed
in [60] is insensitive to the sign of χ0(η0) − χ(ηrec). In order to recover the amplitude and the
sign of the isotropic angle observed in [122], with an ultra-light axion field it is necessary to
set negative initial conditions for the homogeneous axion-field itself. Instead, by considering
a positive initial condition, such a value of the isotropic angle can only be explained with a
much larger mass, as shown above. As previously mentioned, we have identified two distinct
regions in the parameter space that can reproduce the observed cosmic birefringence angle,
rather than just two specific parameter values. Indeed, with our simple chi-squared analysis,
our goal is to highlight the existence of these two regions, with the ‘best-fit solutions’ serving
as representative examples of the behavior of the solutions within these regions.

As mentioned in section 1, one of our aims is to find the predicted amount of anisotropic
cosmic birefringence for that set of parameters that predicts the level of the isotropic one
found from Planck data. First of all, we now expand the anisotropic angle defined in eq. (1.6)
over the celestial sphere as

αℓm =
∫

d2n̂ Y ∗
ℓm(n̂) δα(n̂), (2.4)

so that by performing a treatment similar to that adopted e.g. in [92, 95, 97, 98], we can
compute the angular auto- and cross-correlations of anisotropic cosmic birefringence as

CαM
ℓ = 1

2ℓ + 1
∑
mm′

⟨α∗
ℓmMℓm′⟩ , (2.5)

where M can be α, the CMB temperature T or E polarization modes. The results are
shown in figure 3: by looking at them we can notice that for such a set of parameters,
the predicted amount of anisotropic birefringence is expected to be well below the current
observational constraints reported e.g. from Planck data [118]. This implies that (in this
model) the anisotropic contribution to cosmic birefringence is predicted to be extremely
subdominant with respect to the isotropic one. Moreover, it is then clear that if a future
observation detects an anisotropic signal larger than that predicted by our model, this will
be evident proof that the model under consideration has to be ruled out. In this sense, we
can regard anisotropic birefringence as a potentially further observable useful for consistency
checks and sensitive to scientific falsifiability.

However, although we have discovered a region in the parameter space that seems to
indicate that the approximation involving a constant isotropic birefringence angle is justified,
this cannot be automatically extended to its anisotropic counterpart. The reason is simply
that, according to eq. (1.6) and eq. (2.2), the isotropic birefringence angle α0 and the
anisotropic one δα are related to the dynamics of the homogeneous field χ0 and its associated
perturbation δχ, respectively, but these two fields obey different equations of motions. In
the following, we are going to show that δχ can present a non-trivial time evolution even
if χ0 is almost constant in time. As we know, the equation of motion for χ0 is eq. (2.1),
whereas that for δχ can be obtained by simply varying the action in eq. (1.5) with respect
to δχ by working at linear order in perturbation theory. For instance, in the Newtonian
conformal gauge, it can be easily evaluated to be [92, 95, 98],

δχ′′ + 2Hδχ′ +
(
k2 + a2m2

χ

)
δχ = χ′

0(3Φ′ + Ψ′) − 2a2m2
χχ0Ψ, (2.6)

– 7 –
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Figure 3. Angular power spectra involving anisotropic cosmic birefringence for the first one of the two
sets of best-fit parameters resulting from the chi-squared analysis we performed for α0. The numerical
computation has been performed by setting the axion mass equal to 3.0 × 10−33 eV, the parameter
λ/f equal to 1.6 × 10−20 GeV−1, the initial value of the axion field χini

0 equal to −mP l/2 (with
mP l = MP l/

√
8π being the reduced Planck mass), so that, according to our parameter estimation,

λ/fχini
0 ≃ −0.02. Moreover, the initial velocity of the axion field has been set equal to zero, and we

have used the fiducial values of the ΛCDM parameters provided in [23].

where we also moved to the Fourier space. Now, let us try to understand how δχ evolves
in time during the matter-dominated epoch, i.e. when almost all the CMB photons have
been emitted. Since the two Newtonian potentials are constant in time and a ≃ Ωm0H2

0 η2/2
during that epoch, the equation above reduces to

δχ′′ + 4
η

δχ′ +
(
k2 + A2η4

)
δχ = −2A2χ0Ψ(k)η4, (2.7)

where we have defined A ≡ mχΩm0H2
0 /2. Hence, we have found a second-order linear

ordinary differential equation that does not admit a solution that can be expressed in terms
of elementary functions. However, our purpose here is not to find an analytical solution,
but just to show that a constant χ0 does not imply a constant in time δχ. For this reason,
let us make a further reasonable simplification: according to our parameter estimation, the
background field χ0 is almost constant in time during matter-domination when its mass
is about mχ ≃ 3 × 10−33 eV, as can be seen by looking at figure 2, so that we can safely
disregard the A2η4δχ ≪ (4/η)δχ′ contribution3 on the left-hand side of eq. (2.7). After doing

3Indeed, by recalling our definitions, we can roughly estimate the ratio between A2η4δχ and (4/η)δχ′ to
be ∼ (mχ/H)2, and we checked that in the ΛCDM model the Hubble parameter is such that mχ ≪ H for
almost the entire duration of the matter-dominated epoch, if mχ ≃ 3 × 10−33 eV.
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that, the solution of the differential equation can be easily found to be

δχ(η, k) = 2A2χ0Ψ(k)
k6

(
28k2η2 − k4η4 − 280

)
+
√

2
πkη4

[( C1
kη

− C2

)
sin(kη) −

(
C1 + C2

kη

)
cos(kη)

]
,

(2.8)

where C1 and C2 are integration constants. The approximation we made is valid as long
as the axion mass mχ is small, and in the limit mχ → 0, the homogeneous axion χ field
becomes completely constant (see e.g. [92]). On the contrary, we can see that, even in such
a regime, δχ still encodes a non-trivial time dependence.

This proves our statement about the fact that, although our parameter estimation for
isotropic birefringence has selected a region of the parameter space for which χ0 does not
evolve significantly during matter-domination, we cannot simply extend this result also to
δχ. Therefore, our goal is now to propose a new treatment that can be seen as the most
complete generalization of the current state of the art concerning cosmic birefringence, in
which the redshift evolution of both the pseudoscalar field inducing the rotation and its
inhomogeneous perturbations are taken into account.

3 Generalized Boltzmann equation for cosmic birefringence

Let us start with the standard polarized Boltzmann equation for CMB photons [145–147],[
∂

∂η
− ik · n̂ − dτ

dη

]
±∆P (η, k, n̂) = ±SP (η, k, n̂), (3.1)

where the optical depth is defined as

τ(η) ≡ σT

∫ η0

η
dη̃ ne(η̃)a(η̃), (3.2)

ne being the free electrons’ number density and σT being the Thomson cross-section, re-
spectively. ±SP instead is the polarization’s source function, encoding the contributions
due to Thomson scattering [148],

±SP = −dτ

dη

2∑
λ=−2

√
6π

5 ±2Y2,λ(n̂)Πλ(η, k), (3.3)

where Πλ is the polarization source. The quantity ±∆P is the Fourier transform of the linear
combination of Stokes parameters Q and U ,

[Q ± iU ] (η, x, n̂) =
∫ d3k

(2π)3 ±∆P (η, k, n̂) eik·x. (3.4)

To include cosmic birefringence in eq. (3.1), we consider eq. (1.2) as valid at each redshift.
By differentiating it with respect to conformal time we get

d
dη

[Q ± iU ] (η, x, n̂) =
[dx

dη
· ∇ + ∂

∂η

]
[Q ± iU ] (η, x, n̂), (3.5)
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which can be rewritten as
d
dη

[Q ± iU ] (η, x, n̂) =
∫ d3k

(2π)3

[
∂

∂η
− ik · n̂

]
±∆P (η, k, n̂) eik·x. (3.6)

We can define now a birefringence angle for any photon emitted, and eq. (1.3) generalizes to

α(η, x) ≡ α0(η) + δα(η, x), (3.7)

where α0 and δα are the isotropic and anisotropic angles:

α0(η) ≡ λ

2f
[χ0(η0) − χ0(η)] , (3.8)

δα(η, x) ≡ λ

2f
[δχ(η0, x0) − δχ(η, x)] . (3.9)

Since our goal here is to find how cosmic birefringence impacts the Boltzmann equation,
let us assume just for now that CMB polarization is only affected by the presence of the
axion, so that we will include the contribution from the source function ±SP only later.
By starting from eq. (1.2), we can easily compute the total conformal time derivative of
the Stokes parameters as

d
dη

[Q ± iU ] (η, x, n̂) = ∓2i [Q ± iU ] (η, x, n̂) d
dη

[α0(η) + δα(η, x)] . (3.10)

We have already Fourier-transformed the left-hand side of the equation above in eq. (3.6),
so by doing the same for the right-hand side we obtain∫ d3k

(2π)3

[
∂

∂η
− ik · n̂

]
±∆P (η, k, n̂)eik·x

= ∓2i

{
dα0
dη

∫ d3k

(2π)3 ±∆P (η, k, n̂)eik·x

+
∫ d3k1 d3k2

(2π)6 ±∆P (η, k1, n̂)
[

∂

∂η
− ik2 · n̂

]
δα(η, k2) ei(k1+k2)·x

}
.

(3.11)

It is now the moment in which we add the contribution from the Thomson scattering.
However, before doing that, let us expand the transfer function for CMB polarization and
its source function at second-order in perturbation theory [149–155], for a reason which
will be clarified very soon:

±∆P (η, k, n̂) = ±∆(1)
P (η, k, n̂) + ±∆(2)

P (η, k, n̂), (3.12)

±SP (η, k, n̂) = ±S(1)
P (η, k, n̂) + ±S(2)

P (η, k, n̂), (3.13)
Πm(η, k) = Π(1)

m (η, k) + Π(2)
m (η, k). (3.14)

Indeed, if we take the inverse Fourier transform of eq. (3.11) and we plug this result in
eq. (3.1), we find two generalized Boltzmann equations: the former is valid at first-order
in perturbation theory,[

∂

∂η
− ik · n̂ − dτ

dη
± 2i

dα0
dη

]
±∆(1)

P (η, k, n̂) = ±S(1)
P (η, k, n̂), (3.15)
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whereas the latter at second-order, encoding an extra-term due to anisotropic cosmic bire-
fringence,[

∂

∂η
− ik · n̂ − dτ

dη
± 2i

dα0
dη

]
±∆(2)

P (η, k, n̂)

= ±S(2)
P (η, k, n̂) ∓ 2i

∫ d3k1 d3k2
(2π)3 δ(3)(k − k1 − k2) ±∆(1)

P (η, k1, n̂)
[

∂

∂η
− ik2 · n̂

]
δα(η, k2).

(3.16)

Now it is clear why we have adopted a perturbative expansion of the relevant quantities.
As can be seen by looking at eqs. (3.15)–(3.16), isotropic cosmic birefringence affects CMB
polarization at any order in perturbation theory, whereas anisotropic cosmic birefringence
does it starting from the second-order. This is obvious, since the inhomogeneous fluctuation
of the axion field is, in fact, an extra cosmological perturbation. To solve the two differential
equations, we firstly integrate along the line-of-sight for a generic final time η both sides
of eq. (3.15),

±∆(1)
P (η, k, n̂) =

∫ η

0
dη̃ ±S(1)

P (η̃, k, n̂)eik·n̂(η−η̃)e−[τ(η̃)−τ(η)]e±2i[α0(η̃)−α0(η)]. (3.17)

This procedure is standard in cosmological perturbation theory, and it is performed because
we need such a quantity not only to find ±∆(1)

P (η0, k, n̂) (by simply replacing η with η0),
but also ±∆(2)

P (η0, k, n̂), since, as can been seen by looking at eq. (3.16), it depends on the
first-order transfer function. Therefore, we find

±∆(1)
P (η0, k, n̂) =

∫ η0

0
dη ±S(1)

P (η, k, n̂)eik·n̂(η0−η)e−τ(η)e±2iα0(η), (3.18)

where we have neglected the value of the optical depth today, and we have used that the
isotropic birefringence angle for a photon emitted today is identically zero, according to the
definition given in eq. (1.3). Let us notice that eq. (3.18) is exactly the same formula used
in [62, 136–140]. Similarly, the second-order transfer function, after integrating by parts, reads

±∆(2)
P (η0, k, n̂) =

∫ η0

0
dη eik·n̂(η0−η)e−τ(η)e±2iα0(η)

×
[

±S(2)
P (η, k, n̂) ± 2i

∫ d3q

(2π)3 δα(η, k − q) ±S(1)
P (η, q, n̂)

]
.

(3.19)

Eq. (3.18) and eq. (3.19) are the core of our generalized treatment of CMB polarization.
Armed with these expressions, we can investigate how they are related to the more common
approaches used in the literature, and what is the impact on the CMB power spectra.

3.1 Recovering the sudden recombination approximation

Let us now show how it is possible to recover the formulas used up to now in the literature
for cosmic birefringence in specific regimes. Indeed, as we are going to prove, our treat-
ment is completely general and reduces to the standard one in the sudden recombination
approximation, i.e. by assuming that all the CMB photons have been emitted at the same
time during the recombination epoch.
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In order to see this, let us firstly substitute eq. (3.3) in eq. (3.19), so that, according
to eq. (3.4), we can easily relate ±∆(2)

P to the second-order linear combination of Stokes
parameters Q and U observed today (η = η0) on Earth (x = x0 = 0) as[

Q(2)±iU (2)
]
(η0,x0, n̂)

=
√

6π

5

2∑
λ=−2

±2Y2,λ(n̂)
∫ η0

0
dη g(η)e±2iα0(η)

×
{∫ d3k

(2π)3 eik·n̂(η0−η)Π(2)
λ (η,k)±2i

∫ d3k

(2π)3 eik·n̂(η0−η)
[
δα(η)∗Π(1)

λ (η)
]
(k)
}

,

(3.20)

where we defined the definitions of the convolution product,

[
δα(η) ∗ Π(2)

λ (η)
]

(k) ≡
∫ d3q

(2π)3 δα(η, k − q)Π(2)
λ (η, q), (3.21)

and the photons’ visibility function,

g(η) ≡ −
(dτ

dη

)
e−τ(η). (3.22)

Let us stress that the term on the right-hand side of eq. (3.20) proportional to Π(2)
λ (η, k) has

never been considered in the literature as far as the birefringence effect is concerned.
We can now simplify eq. (3.20), by exploiting the convolution theorem, which allows us

to deal with the Fourier transform of the convolution in the last line so that we can write

[
Q(2) ± iU (2)

]
(η0, x0, n̂) =

√
6π

5

2∑
λ=−2

±2Y2,λ(n̂)
∫ η0

0
dη g(η)e±2iα0(η)

×
{

Π(2)
λ [η, (η0 − η)n̂] ± 2iδα[η, (η0 − η)n̂]Π(1)

λ [η, (η0 − η)n̂]
}

,

(3.23)

Notice that up to now we have made no approximations, but if we assume the sudden
recombination regime, i.e. we trade the photons’ visibility function for a Dirac delta peaked
at the recombination, then the time integral would be trivially computed leading to the
following results:[

Q(1) ± iU (1)
]

(n̂) = e±2iα0
[
Q(1) ± iU (1)

]
wcb

(n̂), (3.24)[
Q(2) ± iU (2)

]
(n̂) = e±2iα0

{[
Q(2) ± iU (2)

]
wcb

(n̂) ± 2iδα(n̂)
[
Q(1) ± iU (1)

]
wcb

(n̂)
}

, (3.25)

where the Stokes parameters on the right-hand side are those that one could obtain without
any birefringence effects, whereas the first-order expression for (Q ± iU) has been obtained by
simply mimicking the procedure we adopted for the second-order one. As a consequence of
the sudden recombination approximation, here α0 and δα(n̂) are the same defined in eq. (2.2)
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and eq. (1.6), respectively, because δχ for η = η0 gives rise to an unobservable monopole
contribution. If we sum together eqs. (3.24)–(3.25) we get

[Q ± iU ] (n̂) = e±2iα0

{ 2∑
x=1

[
Q(x) ± iU (x)

]
wcb

(n̂) ± 2iδα(n̂)
[
Q(1) ± iU (1)

]
wcb

(n̂) + O(δ3)
}

,

(3.26)
where O(δ3) denotes terms at third-order in perturbation theory. Indeed, we notice that
eq. (3.26) matches exactly eq. (1.2) expanded at second-order in perturbation theory once
the full birefringence angle is decomposed into its isotropic and anisotropic parts.

Therefore, this proves that our generalized expression reduces to the standard ones [92, 94–
101] in the sudden recombination approximation. Similarly, if in eq. (3.23) we substitute
the photon visibility function with a series of Dirac deltas associated with the peaks of the
original g(η), we could take into account also the contribution from the reionization epoch:

g(η) ≃ grecδ(η − ηrec) + greiδ(η − ηrei), (3.27)

with grec ≫ grei. In such a case we would recover exactly the results of a tomographic
approach [89–92], i.e.

[Q ± iU ] (n̂) =
=

∑
c = rec, rei

e±2i[α0(ηc)+δα(ηc,n̂)] [Qc ± iUc]wcb (n̂). (3.28)

3.2 Harmonic expansion of CMB polarization

Once we have proved that our treatment is mathematically consistent with the current
state-of-the-art about cosmic birefringence, it is time to find the expression of the CMB
angular power spectra. To do that, it is convenient to come back to ±∆P and adopt a more
efficient notation so that we have to do the same procedure for all the perturbation orders
just once. Therefore, let us now define the two following quantities:

±T (1)
λ (η, k) ≡ e±2iα0(η)Π(1)

λ (η, k), (3.29)

and similarly

±T (2)
λ (η, k) ≡ e±2iα0(η)

{
Π(2)

λ (η, k) ± 2i
[
δα(η) ∗ Π(1)

λ (η)
]

(k)
}

. (3.30)

Indeed, if we replace eq. (3.3) in eqs. (3.18)–(3.19), we can then write a compact expression
valid for any perturbative order x = 1, 2:

±∆(x)
P (η0, k, n̂) =

√
6π

5

∫ η0

0
dη eik·n̂(η0−η)g(η)

2∑
λ=−2

±2Y2,λ(n̂) ±T (x)
λ (η, k). (3.31)

Eq. (3.31) is the main result of this section, and we have put it in such a specific form because
now the mathematical computation becomes less challenging since it has the same form of
the standard transfer function of CMB polarization: for instance, it looks like exactly eq. (14)
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of [148]. Indeed, we can appreciate that cosmic birefringence affects CMB polarization as a
modification of the transfer function ±T (x)

λ (η, k), and this occurs because cosmic birefringence
is a propagation effect. As previously shown, eq. (3.31) yields the standard formalism of
cosmic birefringence when assuming the sudden recombination approximation. However, it
is easy to show that the same happens also when the birefringence angle is independent
of the photons’ emission time, which is the case occurring when the axion field is constant
in time during the matter-dominated epoch.

To test our generalized treatment of cosmic birefringence, let us compute the CMB
angular power spectra. First of all, let us notice that the dependence of ±∆ (x)

P on n̂ is
encoded in ±2Y2,λ(n̂) but also in the complex exponential. Then, for our purposes it is
convenient to move to the multipole space, by evaluating the following harmonic transform:

P
(x)
±2,ℓm(η0, x0) ≡

∫ d2n̂

4π
±2Y ∗

ℓm(n̂)
∫ d3k

(2π)3 ±∆(x)
P (η0, k, n̂). (3.32)

We now adopt the plane wave-expansion [156] for the complex exponential involving k,

eik·n̂(η0−η)

4π
=
∑
LM

iLjL[k(η0 − η)]Y ∗
LM (k̂)YLM (n̂), (3.33)

where jL is the L-th spherical Bessel function. By substituting eq. (3.33) in eq. (3.31), we
can easily see that now the dependence on n̂ is encoded in the product of two spin-weighted
spherical harmonics, which can be rewritten as a single one using the composition of angular
momenta [157],

s1Yℓ1,m1(n̂) s2Yℓ2,m2(n̂)

=
∑

ℓ3m3s3

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3

−s1 −s2 −s3

)(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
s3Y ∗

ℓ3m3(n̂),
(3.34)

where the “matrix” is a Wigner 3-j symbol, which satisfies the following selection rules:

|ℓ1 − ℓ2| ≤ ℓ3 ≤ |ℓ1 + ℓ2|, (3.35)
m1 + m2 + m3 = 0 = s1 + s2 + s3. (3.36)

However, to better digest such a long computation, it is better to adopt a standard trick
in CMB calculations: indeed, instead of directly evaluating eq. (3.32). we apply a sort of
“fake” rotation of the k̂ unit vector, that is we firstly compute

±∆(x)
P (η0, k, n̂) = Rkẑ 7→k

[
±∆(x)

P (η0, kẑ, n̂)
]

. (3.37)

In other words, we choose to work in the coordinate system where k ∥ ẑ, and then, before
performing the angular integration, we apply a rotation Rkẑ 7→k which brings k in a generic
direction. Nevertheless, rotating the reference system implies that also n̂ rotates and we
have to take this into account.
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We substitute eq. (3.33) and eq. (3.34) within eq. (3.31) and we plug all together in
eq. (3.37), so that we obtain

±∆(x)
P (η0, k, n̂) =

√
3
2

∫ η0

0
dη g(η)

∑
LM

iLjL[k(η0 − η)]
∑

L′M ′

√
(2L + 1)(2L′ + 1)

(
L 2 L′

0 ∓2 ±2

)

×
2∑

λ=−2

(
L 2 L′

M λ M ′

)
Rkẑ 7→k

[
Y ∗

LM (ẑ) ±T (x)
λ (η, kẑ) ∓2Y ∗

L′M ′(n̂)
]

. (3.38)

Thanks to our choice of k̂ = ẑ, the associated spherical harmonics is simply given as [158]

Y ∗
LM (ẑ) = δM,0

√
2L + 1

4π
, (3.39)

so that in the last line of eq. (3.38) we have

Rkẑ 7→k
[
Y ∗

LM (ẑ) ±T (x)
λ (η, kẑ) ∓2Y ∗

L′M ′(n̂)
]

= δM,0

√
2L + 1

4π
±T (x)

λ (η, k) Rkẑ 7→k [ ∓2Y ∗
L′M ′(n̂)]

(3.40)

where we have exploited that the rotation operator is unitary, and so applying it to a product
of quantities is equivalent to multiplying the rotated quantities themselves. The action of the
rotation operator on the spin-weighted spherical harmonics is given as [158]

Rkẑ 7→k [ ∓2Y ∗
L′M ′(n̂)] =

L′∑
m′=−L′

D
(L′)
m′M ′

[
R−1

kẑ 7→k

]
∓2Y ∗

L′m′(n̂)

=
L′∑

m′=−L′

√
4π

2L′ + 1 M ′Y ∗
L′,m′(k̂) ±2YL′,m′(n̂),

(3.41)

where the D
(L)
m′M ′ ’s are elements of the Wigner D-matrix. We now substitute the results of

eqs. (3.40)–(3.41) in eq. (3.38). By exploiting the orthonormality of spin-weighted spherical
harmonics [159], ∫

d2n̂ sY ∗
ℓ1m1(n̂) sYℓ2m2(n̂) = δℓ1ℓ2δm1m2 , (3.42)

we can finally evaluate the right-hand side of eq. (3.32),

P
(x)
±2,ℓm(η0, x0) =

√
3
2

ℓ+2∑
L=|ℓ−2|

iL(2L + 1)
(

L 2 ℓ

0 ∓2 ±2

) 2∑
λ=−2

(
L 2 ℓ

0 λ −λ

)

×
∫ d3k

(2π)3 −λY ∗
ℓm(k̂)

∫ η0

0
dη g(η) ±T (x)

λ (η, k)jL[k(η0 − η)].

(3.43)

We now move to the standard decomposition in E and B modes, that is

P
(x)
±2,ℓm(η0, x0) ≡ −

[
E

(x)
ℓm ± iB

(x)
ℓm

]
(η0, x0). (3.44)
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Therefore, we are now in the position to give the most general expression for the harmonic
coefficients of the CMB polarization. By recalling all the procedure that we have made, it
can be easily understood that the results of eq. (3.45) and eq. (3.46) are valid for any kind of
cosmological perturbations (scalar, vector or tensor) up to the second-order in perturbation
theory (x = 1, 2), and for any kind of initial conditions:

E
(x)
ℓm (η0,x0) =

√
3
8

ℓ+2∑
L=|ℓ−2|

iL+2(2L+1)
(

L 2 ℓ

0 −2 2

) 2∑
λ=−2

(
L 2 ℓ

0 λ −λ

)∫ d3k

(2π)3 −λY ∗
ℓm(k̂)

×
∫ η0

0
dη g(η)

[
+T (x)

λ (η,k)+(−1)ℓ+L
−T (x)

λ (η,k)
]
jL[k(η0−η)],

(3.45)

B
(x)
ℓm (η0,x0) =

√
3
8

ℓ+2∑
L=|ℓ−2|

iL+1(2L+1)
(

L 2 ℓ

0 −2 2

) 2∑
λ=−2

(
L 2 ℓ

0 λ −λ

)∫ d3k

(2π)3 −λY ∗
ℓm(k̂)

×
∫ η0

0
dη g(η)

[
+T (x)

λ (η,k)−(−1)ℓ+L
−T (x)

λ (η,k)
]
jL[k(η0−η)].

(3.46)

The inflationary information is encoded in the k dependence of ±T (x)
λ , which is left general

so that we have not assumed primordial Gaussianity, statistical isotropy or adiabaticity of
the initial conditions a priori. Here we have not considered the contributions from weak
lensing and spectral distortions, that could be relevant in general, but this is beyond the
purpose of our paper.

3.3 CMB power spectra

To better appreciate the power of the formulas for the E and B modes of CMB polarization
given by eqs. (3.45)–(3.46), we can now compute the CMB power spectra, that are defined as

CMN
ℓ ≡ 1

2ℓ + 1
∑
mm′

[ 〈
M

(1)∗
ℓm N

(1)
ℓm

〉
+
〈
M

(2)∗
ℓm N

(2)
ℓm

〉
+ . . .

]
, (3.47)

where M, N = T, E, B. The dots in eq. (3.47) denote terms that we are not taking into
account, such as correlations involving higher-order terms, e.g.

〈
M

(3)∗
ℓm N

(1)
ℓm

〉
, and eventual

non-Gaussian contributions.
Now, to evaluate the Cℓ’s we can use eqs. (3.45) and eq. (3.46), which are completely

general, but for the sake of simplicity, we are now going to give a simplified estimation of the
power spectra. First of all, let us consider just the contributions coming from the λ = 0 case.
Indeed, if we recall the definition of eq. (3.3) and eqs. (3.29)–(3.30), setting λ = 0 means
selecting just scalar perturbations (see e.g. [147]). By the way, let us notice that when going
at second order in perturbation theory, the axis-symmetry of the radiation field around the
mode axis is broken by coupling to other modes [148, 149].

However, as said, here we want just to provide an estimation, and this is why we are
now going to provide the harmonic coefficients of CMB polarization with λ = 0. At first
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order we get

E
(1)
ℓm(η0, x0)

∣∣
λ=0 =

√
3
2

ℓ+2∑
L=|ℓ−2|

iL+2(2L + 1)
(

L 2 ℓ

0 −2 2

)(
L 2 ℓ

0 0 0

)∫ d3k

(2π)3 Y ∗
ℓm(k̂)

×
∫ η0

0
dη g(η) cos[2α0(η)]Π(1)

0 (η, k)jL[k(η0 − η)],

(3.48)

B
(1)
ℓm(η0, x0)

∣∣
λ=0 =

√
3
2

ℓ+2∑
L=|ℓ−2|

iL+2(2L + 1)
(

L 2 ℓ

0 −2 2

)(
L 2 ℓ

0 0 0

)∫ d3k

(2π)3 Y ∗
ℓm(k̂)

×
∫ η0

0
dη g(η) sin[2α0(η)]Π(1)

0 (η, k)jL[k(η0 − η)].

(3.49)

whereas at second-order in perturbations we have

E
(2)
ℓm(η0, x0)

∣∣
λ=0 =

√
3
2

ℓ+2∑
L=|ℓ−2|

iL+2(2L + 1)
(

L 2 ℓ

0 −2 2

)(
L 2 ℓ

0 0 0

)∫ d3k

(2π)3 Y ∗
ℓm(k̂)

×
∫ η0

0
dη g(η)

{
cos[2α0(η)]Π(2)

0 (η, k) − 2 sin[2α0(η)]
[
δα(η) ∗ Π(1)

0 (η)
]

(k)
}

jL[k(η0 − η)],

(3.50)

B
(2)
ℓm(η0, x0)

∣∣
λ=0 =

√
3
2

ℓ+2∑
L=|ℓ−2|

iL+2(2L + 1)
(

L 2 ℓ

0 −2 2

)(
L 2 ℓ

0 0 0

)∫ d3k

(2π)3 Y ∗
ℓm(k̂)

×
∫ η0

0
dη g(η)

{
sin[2α0(η)]Π(2)

0 (η, k) + 2 cos[2α0(η)]
[
δα(η) ∗ Π(1)

0 (η)
]

(k)
}

jL[k(η0 − η)].

(3.51)
By inspecting the first-order expressions, we can see that, if the isotropic birefringence angle
equals zero, we have no B-modes, and this is something completely expected since B modes
are primordially sourced just by tensor perturbations. This is fully consistent with what is
already present in the literature [62, 137–140], that our treatment has been able to generalize.

As previously said, one of the main goals of our paper is to estimate the impact on
CMB observables of the predicted anisotropic birefringence associated with the set of best-fit
parameters most consistent with the isotropic birefringence angle measured from Planck data.
To do that, we can numerically evaluate the CMB power spectra using eqs. (3.48)–(3.51),
and this is precisely what we have done in figure 4. However, dealing with second-order terms
in perturbation theory could be extremely challenging and time-consuming: this is why to
obtain the plot shown in figure 4 we have applied the tomographic approximation of eq. (3.27)
to a modified version of Boltzmann code SONG [153] so that we have partially bypassed the
integration over the conformal time. Indeed, we have used a modified version of SONG for
computing the first term in the time-integrals at the right-hand side of eqs. (3.50)–(3.51),
which represent the second-order polarization term just affected by isotropic birefringence,
whereas we have exploited our modified version of CLASS to evaluate the remaining first- and
second-order terms. In particular, we have taken advantage of the tomographic approximation
to deal with the convolution product δα ∗ Π(1)

0 . Of course, a more rigorous treatment should
involve a full integration like that present in our general theoretical formulas, which requires
a much higher computational cost, but this is something beyond the purpose of our paper.
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Figure 4. Absolute value of the unlensed angular power spectra of CMB, ℓ(ℓ+1)|Cℓ|/(2π), in units of
µK2 affected by isotropic and anisotropic cosmic birefringence compared with the ΛCDM predictions
without any birefringence effects (black dashed lines). The numerical computation has been performed
by setting the axion mass equal to 3.0 × 10−33 eV, the parameter λ/f equal to 1.6 × 10−20 GeV−1, the
initial value of the axion field χini

0 equal to −mP l/2 (so that, according to our parameter estimation,
λ/fχini

0 ≃ −0.02), and its initial velocity equal to zero, and for the fiducial values of the ΛCDM
parameters provided in [23]. The tensor-to-scalar ratio has been set equal to zero.

By direct inspection of figure 4, we can recover a completely expected behavior of the
birefringent CMB correlation functions. Indeed, it seems that the spectra involving the
B-modes can be obtained using the standard rescaling of those involving the E ones, i.e.

CBB
ℓ ∼ CEE

ℓ tan2(2 × 0.30◦), (3.52)
CEB

ℓ ∼ CEE
ℓ tan(2 × 0.30◦), (3.53)

CT B
ℓ ∼ CT E

ℓ tan(2 × 0.30◦). (3.54)
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Such a behavior is in complete agreement with our previous results: first of all, since we have
set the tensor-to-scalar ratio equal to zero, it is clear that the only source of unlensed B

modes is cosmic birefringence. Secondly, we have evaluated the CMB spectra for the first set
of best-fit axion parameters we found in section 2, which predicts the contribution coming
from anisotropic birefringence to be subdominant with respect to the isotropic one. Thirdly,
the physical source of isotropic cosmic birefringence, i.e. the homogeneous axion-like field χ0,
experiences a phase in which it is almost constant in time during matter-domination for such a
set of parameters. This translates into an isotropic angle which is independent of the photons’
emission time, and this is why the birefringence effect manifests itself as just a multiplicative
factor in figure 4. Let us notice that such features are not only theoretical predictions but
seem to be perfectly consistent with the data analysis of both the isotropic and anisotropic
angle, done e.g. in [118, 120], respectively, which suggest a negligible redshift evolution of the
birefringence angle and an anisotropic contribution compatible with the null hypothesis.

4 Conclusions

In this paper, we have tested the possibility of explaining the Planck’s hint of detection for
isotropic cosmic birefringence with the physics of an axion-like field χ interacting with the
electromagnetic one through a Chern-Simons coupling. In particular, we have considered a
pseudoscalar field described by a standard quadratic potential, and we have found that there
exist two different regions of the parameter space that are consistent with α0 = (0.30 ± 0.11)◦:
one characterized by a negative product between the initial value of the field and the
coupling parameter (λχini

0 /f ≃ −0.02, mχ ≃ 3.00 × 10−33 eV), the other by a positive one
(λχini

0 /f ≃ 0.12, mχ ≃ 5.28 × 10−27 eV). Interestingly enough, the first of these two solutions
can explain an isotropic birefringence angle ∼ 0.30◦ for a very light mass of the axion-like
field (of the order 3 × 10−33 eV), whose time evolution is almost constant during the matter-
dominated epoch of the Universe. This behavior is perfectly consistent with the results
of [120]. which seem to prefer a CMB EB spectrum, coming from such dynamics with respect
to the case in which the homogeneous field evolves in time during the recombination epoch.

In the second part of the paper we then moved to investigating the implications of such
results for the anisotropic component of cosmic birefringence. For this reason, we also provided
the angular power spectrum of δα(n̂) and its cross-correlation with CMB temperature and
the E polarization mode. We found that the amount of anisotropic birefringence sourced
by the perturbations of the axion-like field δχ for the previously (first) mentioned set of
best-fit parameters is predicted to be well below the latest observational constraints, see also
figure 3. Indeed, for the model defined in eq. (1.5) we predict that the amount of anisotropic
birefringence is of the order of (10−15÷10−32) deg2 for the auto-correlation, and (10−7÷10−17)
µK· deg for the cross-correlations with the CMB T and E fields, according to the angular
scale. This is compatible with what has been found e.g. in [118], i.e. a signal consistent with
the null hypothesis. Similar results are found for a different potential, see appendix A.

However, as shown at the end of section 2, a set of parameters predicting an almost
constant-in-time χ0(η), does not automatically imply that the same behavior is also followed
by the inhomogeneous perturbations of the axion-like field δχ(η, x). Hence, in section 3 we
have presented a generalized Boltzmann approach, which can completely take into account
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the dependence of isotropic and anisotropic birefringence on the photons’ emission time. To
our knowledge, this is the first time in the literature in which anisotropic cosmic birefringence
is formally characterized, i.e. as a second-order effect arising because of the convolution
between the first-order axion perturbations and the standard first-order CMB polarization.
As proof of the validity of our treatment, we have checked that such formalism recovers the
frequently used equations when assuming sudden recombination or when considering the
axion-like field as almost constant during the matter-dominated epoch.

Since dealing with second-order quantities is numerically challenging, we have evaluated
our generalized expressions for Eℓm and Bℓm by invoking the “tomographic approximation”,
already exploited for similar purposes also in [92], so that we have been able to compute
the angular power spectra of CMB polarization and its cross-correlation with temperature
anisotropies, by using the fiducial values of the ΛCDM model together with the (first) set of
best-fit parameters found in section 2. As shown in figure 4, such spectra are consistent with
a purely redshift-independent isotropic birefringence effect, and, according to our previous
discussions, this is not surprising. Indeed, as just mentioned, for such a set of parameters the
homogeneous axion-like field is predicted to be almost constant in time, and the anisotropic
component of cosmic birefringence to be extremely subdominant. Despite the smallness of
such anisotropic signal, this result is nevertheless really important, since it shows how the
models investigated can provide promising falsifiability checks for future observations.
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A The EDE potential

In this appendix we are going to show the results of a chi-squared analysis, very similar to
what we performed in section 2, but with a different theory for the pseudoscalar often used
to characterize the axion as early dark energy (see e.g. [98, 120])

Sχ = −
∫

d4x
√

−g

{
1
2gµν∂µχ∂νχ + m2

χM2
P l

[
1 − cos

(
χ

MP l

)]3
}

. (A.1)

The equation of motion for the homogeneous axion-like field χ = χ0(η) following by eq. (A.1)
reads

χ′′
0 + 2Hχ′

0 = −3a2m2
χMP l sin

(
χ0

MP l

)[
1 − cos

(
χ

MP l

)]2
, (A.2)

which, contrary to eq. (2.1), is not linear in χ0 and so it cannot be rescaled by a factor χini
0 as

we did in section 2. Therefore, in this case the parameter space for the isotropic birefringence
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(a) Contour plot of α0. (b) Redshift evolution of the ratio between χ0
and its initial value for the best-fit mass resulting
from our chi-squared analysis.

(c) Angular power spectra involving anisotropic cosmic birefringence for the set of best-fit parameters
resulting from our chi-squared analysis we performed in this appendix for α0, i.e. mχ ≃ 1.2 × 10−30 eV
and λ/f ≃ 1.2 × 10−20 GeV−1.

Figure 5. Cosmic birefringence from the model described in eq. (A.1). The numerical computation has
been performed by setting the initial value of the axion field χini

0 equal to −mP l/2, the initial velocity
of the axion field equal to zero, and for the fiducial values of the ΛCDM parameters provided in [23].

angle is represented as a grid of values for mχ and λ/f , whereas we have fixed the initial
value of χini

0 = −mP l/2: the results are shown in figure 5.

As in the case of a quadratic potential, we have found that there is a region of the
parameter space consistent with an almost constant in time, homogeneous field χ0 during
recombination. Moreover, this can be achieved by setting the initial value of the field
equal to a negative amount, which was indeed one of the possibilities already examined
in section 2. Hence, also with an EDE potential, it is possible to find a set of parameters
in agreement with the Planck result, which yields an almost constant in-time evolution of
the axion field at recombination.
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