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Abstract
In this paper we investigate maximal Lq -regularity for time-dependent viscous
Hamilton–Jacobi equations with unbounded right-hand side and superlinear growth
in the gradient. Our approach is based on the interplay between new integral and
Hölder estimates, interpolation inequalities, and parabolic regularity for linear equa-
tions. These estimates are obtained via a duality method à la Evans. This sheds new
light on the parabolic counterpart of a conjecture by P.-L. Lions on maximal regularity
for Hamilton–Jacobi equations, recently addressed in the stationary framework by the
authors. Finally, applications to the existence problem of classical solutions to Mean
Field Games systems with unbounded local couplings are provided.
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1 Introduction

The purpose of this paper is two-fold. First, to establish maximal Lq -regularity for
parabolic Hamilton–Jacobi equations with unbounded right-hand side of the form

{
∂t u(x, t) − �u(x, t) + H(x, Du(x, t)) = f (x, t) in QT = T

d × (0, T ) ,

u(x, 0) = u0(x) in Td

(HJ)

where H has superlinear growth in the gradient variable and f ∈ Lq(QT ) for some
q > 1. Second, to apply these regularity results to prove the existence of classical
solutions for a large class of second-order Mean Field Games systems with local
coupling, i.e.

⎧⎪⎨
⎪⎩

−∂t u − �u + H(x, Du) = g(m(x, t)) in QT

∂tm − �m − div(DpH(x, Du)m) = 0 in QT

m(0) = m0, u(T ) = uT in Td .

(MFG)

Maximal regularity for (HJ). The problem of maximal Lq -regularity for (HJ)
amounts to show that bounds on the right-hand side f in Lq(QT ) imply bounds
on individual terms ∂t u, �u and H(x, Du) in Lq(QT ) (see Theorem 1.1 below for
a more precise statement). This problem has been proposed for stationary Hamilton–
Jacobi equations by P.-L. Lions in a series of seminars (see, e.g., [46,47]). Under the
assumption that

H(x, p) = |p|γ , γ > 1,

he conjectured that maximal regularity holds provided that q is above the threshold
d(γ − 1)/γ . The conjecture has been proved recently in [21] via a refined Bernstein
method, which unfortunately breaks down in the parabolic setting. Here, we are able
to obtain parabolic maximal regularity via different methods, assuming that q is above
a certain (parabolic) threshold, that is

q ≥ (d + 2)
γ − 1

γ
= d + 2

γ ′

in the regime of subnatural growth, that is, for γ < 2. For γ ≥ 2, we obtain the larger
threshold

q > (d + 2)
γ − 1

2
.

Besides maximal regularity, we prove new results on the Hölder regularity of solutions
when γ > 2.

Before stating our results, we briefly review some contributions on the existence and
regularity of solutions to Hamilton–Jacobi equations with unbounded right-hand side.
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We first discuss the case γ ≤ 2, that is, when the nonlinear term H(Du) plays a mild
role, being the diffusion term (formally) dominating at small scales. When f ∈ Lq ,
q > (d+2)/2, the boundedness and Hölder continuity of weak solutions are classical
[41, Chapter 5]. For such values of q, boundedness has actually been established for
much more general quasi-linear equations, see, e.g., [58]. For these problems, it was
shown [27,33] that the existence of weak (and possibly unbounded) solutions holds up
to q = (d + 2)/2. For γ < 2, namely, strictly below the natural growth, the existence
assumption has been relaxed to q ≥ (d + 2)/γ ′ in the recent paper [49]. Still, the
solutions obtained are in a weak or renormalized sense, and although they need not
be bounded, the question of further regularity beyond H(Du) ∈ L1 in the existence
regime (d + 2)/γ ′ ≤ q < (d + 2)/2 has remained open so far. Beyond the natural
growth, that is, in the super-quadratic case γ > 2, the existence and regularity are
even less understood. Under the sign condition f ≥ 0, it has been proven in [13,66]
that viscosity solutions enjoy Hölder bounds depending on ‖ f ‖q , with q > 1+ d/γ .
It is worth mentioning that these results only rely on the super-quadratic nature of H ,
and tolerate degenerate diffusions. Below this exponent, bounds in L p spaces have
been shown in [14] (see also [35, Section 3.4]). It is remarkable that the exponent
1 + d/γ decreases as γ grows in the super-quadratic regime, so estimates in L∞
require milder assumptions on f than in the sub-quadratic regime. On the other hand,
further regularity, especially involving Du, seems to be difficult to achieve. For general
γ > 1, Lipschitz regularity has been recently investigated in [20], and proven under
the (optimal) assumption q > d + 2 when γ ≤ 3 and larger q when γ > 3. Note
that whenever Lipschitz regularity is established, maximal regularity for (HJ) follows
from maximal regularity for linear equations (e.g. [29,38,42,60,61]), being H(Du)

controlled in L∞.We finallymention that within the context of L p-viscosity solutions,
Hamilton–Jacobi equations with unbounded right-hand side have been considered, see
e.g. [26].

Maximal regularity typically requires some mild smoothness of coefficients in the
equation (diffusions with coefficients merely in L∞ are not allowed even in the linear
framework), but provide the integrability of D2u, ∂t u, thus allowing to recover most
of the aforementioned properties of solutions by means of Sobolev embeddings, as
q varies. To our knowledge, there are only a few instances of this type of results in
the literature, and in the regime γ ≤ 2 only. In [64] maximal regularity is stated for
f ∈ Lq , q ≥ d + 1 (see also [51,63]). For Hamilton–Jacobi equations driven by
the Laplacian, some results can be found in [35], under the more general assumption
q > (d + 2)/2, but no results are available below this exponent, nor for γ > 2.

As we previously announced, the first main result of this paper consists in achieving
maximal regularity in the full range q > (d+2)/γ ′ in the sub-quadratic setting γ ≤ 2,
and for q > (d + 2)(γ − 1)/2 when γ > 2. Data will be periodic in the x-variable,
namely, functions will be defined over the d-dimensional flat torus Td . This will be
convenient for the applications to MFG systems. We suppose that H ∈ C(Td × R

d)

is convex in the second variable, and that there exist constants γ > 1 and CH > 0
such that

C−1
H |p|γ − CH ≤ H(x, p) ≤ CH (|p|γ + 1) , (H )
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for every x ∈ T
d , p ∈ R

d . Concerning the case γ ≥ 2, we will further assume some
additional regularity in the x-variable, i.e. for α ∈ (0, 1) to be specified,

H(x, p) − H(x + ξ, p) ≤ CH |ξ |α(|DpH(x, p)|γ ′ + 1
)

(Hα)

for all x, ξ ∈ T
d and p ∈ R

d . A typical example of H satisfying (H) is

H(x, p) = h(x)|p|γ + b(x) · p, 0 < h0 ≤ h(x), h, b ∈ C(Td).

If h ∈ Cα(Td), this Hamiltonian will satisfy also (Hα).
Hoping to help the reader to have a clearer picture, we sketch known and new

regularity regimes as γ and q vary in Fig. 1.

Theorem 1.1 Assume that (H) holds, and (Hα) also when γ ≥ 2 (with α as in Theorem
1.2 below). Let u ∈ W 2,1

q (QT ) be a strong solution to (HJ) and assume that for some
K > 0

‖ f ‖Lq (QT ) + ‖u0‖
W

2− 2
q ,q

(Td )
≤ K .

If

q >

{
(d + 2) γ−1

γ
if 1 + 2

d+2 < γ < 2

(d + 2) γ−1
2 if γ ≥ 2

then, there exists a constant C > 0 depending on K , q, d,CH , T such that

‖u‖W 2,1
q (QT )

+ ‖Du‖Lγ q (QT ) ≤ C .

The strategy of the proof is based on the following procedure. Bymaximal regularity
for linear equations, one has

‖D2u‖Lq � ‖H(Du)‖Lq + ‖ f ‖Lq + ‖u0‖W 2−2/q,q � ‖Du‖γ

Lγ q + ‖ f ‖Lq + ‖u0‖W 2−2/q,q .

Then, one looks for a suitable norm |||·||| so that a Gagliardo-Nirenberg type interpo-
lation inequality of the form

‖Du‖γ

Lγ q � ‖D2u‖γ θ

Lq |||u|||γ (1−θ)

with γ θ < 1 holds. Combining the two inequalities, maximal regularity is achieved
whenever it is possible to produce bounds on |||u|||. This way of producing estimates for
nonlinear problems, using linear estimates and interpolation inequalities, goes back to
the works of Amann and Crandall [2]. When γ = 2, a good choice for |||·||| is the L∞
norm,which is easily controlled by ‖ f ‖∞ (ABP type estimates allow to reach ‖ f ‖d+1,
as in [64]). Here, we start with the observation that when γ < 2, the optimal choice is
a suitable L p norm, while for γ > 2, a Hölder bound on u is needed. A crucial step in
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this work is the derivation of such estimates. These are obtained by duality arguments,
inspired by [20,32]. The main idea behind duality is to shift the attention from (HJ)
to the formal adjoint of its linearization, which is a Fokker–Planck equation. Crossed
information on u and the solution ρ to the “dual” equation allow to retrieve estimates
on ρ, that are then transferred back to u. A more detailed heuristic explanation of
this method can be found in [20] (see also the references therein). Note that [20] is
devoted to Lipschitz regularity of u, while here we investigate Hölder regularity, which
requires a further inspection of the regularity of ρ at the level of Nikol’skii spaces.
As already mentioned, the nonlinear adjoint method started with the works of L.C.
Evans [31,32]. Further results for stationary equations have been obtained in [69], see
also [11,54] for further applications. This method has been successfully applied to
study the regularity of parabolic Hamilton–Jacobi equations and Mean Field Games
systems in recent works [19,20,25,36], see also [22] for maximal Lq

t − L p
x regularity

estimates in the long-time (quadratic) regime.
We underline that our results on Hölder regularity in the super-quadratic case are

new in the following sense. Recall that Hölder bounds have been obtained in [13,66]
when q > 1 + d/γ for γ > 2, while here we assume the stronger requirement
q > (d + 2)/γ ′ (which is the natural one for maximal regularity). In [13,66] sign
assumptions on f are in force, and explicit Hölder exponents are not provided. Here,
we do not require any assumption on the sign of f , and produce explicit Hölder
exponents. The statement is as follows.

Theorem 1.2 Assume that (H) and (Hα) hold with γ ≥ 2. Let u be a strong solution
to (HJ) in W 2,1

q (QT ), q > d+2
γ ′ . Then, there exists a positive constant C (depending

on ‖u0‖Cα(Td ), ‖ f ‖Lq (QT ), H , q, d, T ) such that

sup
t∈[0,T ]

‖u(t)‖Cα(Td ) ≤ C,

where α = γ ′ − d+2
q if q < d+2

γ ′−1 , while α ∈ (0, 1) if q ≥ d+2
γ ′−1 .

We mention that the proof of the Hölder bounds could be localized in time, thus
assuming merely u0 ∈ C(Td). The constant C would then depend on ‖u‖∞, see
Remark 3.7.

In the sub-quadratic regime γ < 2, the existence and uniqueness of weak solutions
can be obtained up to the critical integrability exponent q = (d + 2) γ−1

γ
[49]. From

the viewpoint of maximal regularity, this endpoint situation is a bit more delicate than
the one treated in Theorem 1.1, which concerns q > (d+2) γ−1

γ
. Indeed, the heuristic

procedure previously discussed yields

‖D2u‖Lq � ‖D2u‖Lq ‖u‖γ−1
L p + ‖ f ‖Lq + ‖u0‖W 2−2/q,q ,

which is meaningful only if ‖u‖L p is small. We circumvent this issue by shifting the
analysis from u to u − uk , where uk is the solution to a suitable regularized problem.
Crucial stability estimates on ‖u − uk‖L p then lead to the second main maximal
regularity result of the paper.
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Theorem 1.3 Assume that (H) holds, and 1 + 2
d+2 < γ < 2. Let u ∈ W 2,1

q (QT ) be a
strong solution to (HJ), and

q = (d + 2)
γ − 1

γ
.

Then, there exists a constant C > 0 depending on f , ‖u0‖W 2−2/q,q , q, d,CH , T such
that

‖u‖W 2,1
q (QT )

+ ‖Du‖Lγ q (QT ) ≤ C .

We stress that in this limiting case the dependence of the constant C with respect to
f is not just through its norm, as in the previous Theorem 1.1, but on subtler properties;
see Remark 4.2 below for additional details.

Further comments concerning the thresholds for q in Theorems 1.1 and 1.3 are now
in order. When q < (d + 2)/γ ′ we believe that maximal regularity results are false in
general. This would be in line with known results for the associated stationary problem
[21], for which maximal regularity does not hold when q < d/γ ′. We also believe that
the endpoint q = d+2

2 for quadratic problems γ = 2 could be treated by our methods,
using more refined interpolation estimates in Orlicz spaces (or the analysis of a linear
equation obtained via the Hopf-Cole transformation). Regarding the super-quadratic
regime γ > 2, we do not know whether our assumption q > (d + 2)(γ − 1)/2 is
optimal or not.

It is finally worth noticing that our results, and in particular the Hölder estimates
in Theorem 1.2, apply to equations with repulsive gradient term (e.g. Kardar–Parisi–
Zhang type PDEs), i.e.

∂tv − �v = G(x, Dv(x, t)) − f (x, t)

with G satisfying (H). In other words, the sign in front of H and f does not matter
in (HJ), since it is sufficient to observe that u(x, t) = −v(x, t) solves (HJ) with
H(x, p) = G(x,−p), which satisfies (H) too. We refer to [4,5] and the references
therein for further discussions on these equations.

Mean Field Games. Armed with maximal regularity results for Hamilton–Jacobi
equations, we describe our contributions on Mean Field Games (MFG) systems of
the form (MFG). These arise in the MFG framework, which is a class of methods
inspired by ideas in statistical physics to study differential games with a population
of infinitely many indistinguishable players [43,44]. The PDE system (MFG) appears
naturally when the running cost of a single player depends on the population’s density
in a pointwise manner. This results in the nonlinear coupling term g(m(x, t)) between
the Hamilton–Jacobi and the Fokker–Planck equation in (MFG). When g(·) is an
unbounded function, the regularity of solutions is still a challenging problem that has
not been solved in full generality.

In the so-calledmonotone case, that is, when g(·) is increasing, there are no restric-
tions on the growth of f if one looks for solutions in some weak sense [14,59], or
for classical solutions when the time horizon T is small [3,24]. Classical solutions
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Fig. 1 A sketch of estimates that are known for solutions to (HJ), as γ and q vary: L p (green region),
Hölder (yellow region), Lipschitz (light blue region, [20]). Above the solid red line we prove here maximal
regularity estimates (Theorems 1.1 and 1.3). Above the dashed red line we prove here new Hölder estimates
(Theorem 1.2). When γ > 2 and 1 + d

γ < q < d+2
γ ′ (yellow zone between the dashed red line and the

solid black line) Hölder estimates have been obtained in [13,66] under sign conditions on the right-hand
side, while integrability estimates in the green region below the threshold q = 1+ d

γ can be found in [14]

for arbitrary T can be obtained by requiring a mild behaviour of g(m) as m → ∞,
or a mild behaviour of H(p), i.e. γ ≤ 1 + 1/(d + 1) (as suggested in [46]). We
deal here with the first situation. For the model problem g(m) = mr , an upper bound
on r depending on γ and the space dimension d is usually required. Concerning the
subquadratic case γ < 2, a main reference is [34] (see also [6]), while [36] explores
the superquadratic case 2 < γ < 3.

We will assume here that g : Td × [0,∞) → R is of class C1, and that there exist
r > 0 and Cg > 0 such that

C−1
g mr−1 ≤ g′(m) ≤ Cg(m

r−1 + 1) ∀m ≥ 0. (M+)

This implies that g(·) is monotone increasing and bounded from above and below
by power-like functions of type mr . As for the Hamiltonian, we will further assume
some additional smoothness and uniform convexity in the p-variable, having always
in mind a power-like growth |p|γ : for every p ∈ R

d , M ∈ Symd

Tr(D2
ppH(x, p)M2) ≥ C−1

H (1 + |p|2) γ−2
2 |M |2 − CH ,

|D2
px H(x, p)| ≤ CH (|p|γ−1 + 1),

|D2
xx H(x, p)| ≤ CH (|p|γ + 1).

(H2)

Our main result on this class of problems reads as follows.

Theorem 1.4 Under the assumptions (H), (H2) and (M+), there exists a (unique)
smooth solution to (MFG) if

r <

{
γ ′
d−2

d
(d+2−γ ′) if 1 + 1

d+1 < γ ≤ 2
2

d(γ−1)−2 if γ ≥ 2.
(1)
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It is understood here that there are no restrictions on r when d = 1, 2. To our
knowledge, the results of this manuscript extend known classical regularity regimes
in the sub-quadratic case. Note that

γ ′

d − 2

d

(d + 2 − γ ′)
→ +∞ as γ → 1 + 1

d + 1
,

γ ′

d − 2

d

(d + 2 − γ ′)
→ 2

d − 2
as γ → 2.

Regarding the super-quadratic case, we actually obtain the same restriction r <
2

d(γ−1)−2 as in [36], but we are able to cover the full interval γ ∈ [2,∞), thus

unlocking some smoothness regimes for γ > 3. Still, one may conjecture that, for
all d ≥ 1, no restrictions on r should be required to get classical solutions (as for
the purely quadratic case H(p) = |p|2 investigated in [12, Theorem 4.1]), but this
remains an open question.

In the non-monotone framework, the assumption of increasing monotonicity of
g(·) is dropped. Conversely, one may even consider a g(·) which is strictly decreasing
(focusing case), andmodel aggregation phenomena as in [15,17,23]. In this framework,
a control on the growth of g is structurally needed. For stationary problems, it was
shown in [16] that when g(m) = −mr , no solutions on R

d exist when r >
γ ′

d−γ ′ ,

and even for r ≥ γ ′
d some further assumptions might be needed for solutions to be

obtained. On the other hand, when r <
γ ′
d , the existence of weak solutions is shown

in [23], but their classical regularity is proven under much stronger hypotheses, that
impose γ < 2.

Now, we suppose

−Cg(m
r + 1) ≤ g(m) ≤ Cg(m

r + 1). (M−)

With respect to the previous assumptions (M+) in the monotone case, g need not be
monotone increasing; in contrast, it can be strictly decreasing, for example, g(m) =
−mr . We have the following

Theorem 1.5 Under the assumptions (H) and (M−), there exists a smooth solution to
(MFG) if

r <

{
γ ′
d if 1 + 1

d+1 < γ ≤ 2
2

(d+2)(γ−1)−2 if γ ≥ 2.
(2)

In other words, we prove that solutions in the focusing case obtained in [23] are
always classical in the subquadratic regime. In the superquadratic regime, a new class
of smooth solutions is obtained. We stress that the threshold γ ′

d is crucial, as one may

have nonexistence of solutions for a large time horizon T when r ≥ γ ′
d [18]. For a

summary sketch of the existence regimes that we obtain here, see Fig. 2.
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Fig. 2 A sketch of regions where existence of classical solutions to (MFG) are obtained, in the monotone
case (light blue and green regions) and in the non-monotone case (green region only)

Theorems 1.4 and 1.5 are proven as follows. First, we use structural estimates
to deduce some a priori bounds on ‖g(m)‖Lq . These are mainly second-order type
estimates in the monotone framework, and first-order estimates in the non-monotone
one (plus some additional interpolation procedures). The assumptions on the growth
r of g(·) guarantee that q is large enough to apply our maximal regularity results for
the HJ equation. Then, once the crucial a priori bounds on u inW 2,1

q are established, a
bootstrap procedure allows to get estimates up to second-order derivatives in Hölder
spaces, and the existence follows via standard methods.

Outline. In Sections 2.1 and 2.2 we introduce the functional setting that is used
throughout the paper, while Section 2.3 is devoted to Sobolev regularity results for
Fokker–Planck equations. Section 3 comprehends the proof of a priori integral and
Hölder estimates for Hamilton–Jacobi equations with unbounded ingredients. In Sec-
tion 4, Theorem 1.1 on maximal regularity for (HJ) is proven, while in Section 5 the
existence Theorems 1.4 and 1.5 for (MFG) are proven.

2 Preliminaries

2.1 Fractional Spaces of Periodic Functions

Let μ ∈ (0, 1) and 1 ≤ p, q ≤ ∞. The Besov space Bμ
pq(T

d) consists of all functions
u ∈ L p(Td) such that the norm

‖u‖Bμ
pq (Td ) := ‖u‖L p(Td ) +

(∫
Td

‖ f (x + h) − f (x)‖q
L p(Td )

|h|d+μq
dh

) 1
q

is finite. When p = q = ∞ and μ = α ∈ (0, 1), the space Bμ∞∞(Td) 
 Cα(Td) and
it is endowed with the equivalent norm

‖u‖Cα(Td ) := ‖u‖C(Td ) + sup
x �=y∈Td

|u(x) − u(y)|
dist(x, y)α

123
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where dist(x, y) is the geodesic distance onTd . When, instead, either p = q ∈ (1,∞)

and μ is not an integer or μ is an integer and p = q = 2, it is immediate to recognize
that Bμ

pp(T
d) 
 Wμ,p(Td), where Wμ,p(Td) is the classical Sobolev–Slobodeckii

scale in the periodic setting.When q = ∞, the space Bμ
p∞(Td) 
 Nμ,p(Td) is known

as Nikol’skii space [55] and the above norm is interpreted as usual as

‖u‖Nμ,p(Td ) := ‖u‖L p(Td ) + sup
h

|h|−μ‖u(x + h) − u(x)‖L p(Td )︸ ︷︷ ︸
[u]Nμ,p (Td )

,

see [45, Chapter 17] for analogous spaces defined onRd , and [67, p. 460], [62, Section
3.5.4] for details in the periodic case. For general μ > 0, let μ = k + σ > 0 with
k ∈ N ∪ {0}, σ ∈ (0, 1], 1 ≤ p < ∞. Then, we define the Nikol’skii class

Nμ,p(Td) := {u ∈ Wk,p(Td) : [Dαu]Nσ,p(Td ) < ∞ , |α| = k}

We mention that in view of [70, Corollary 2 p. 143], Nikol’skii spaces Nμ,p(Td) can
be endowed with equivalent norms of the form

‖u‖Nμ,p(Td ) := ‖u‖L p(Td ) +
∑
|α|=k

sup
|h|>0

|h|k−μ‖�r
hu‖L p(Td )

where k, r ∈ Z are such that 0 ≤ k < μ and r > s − k, where �r
h are the increments

of order r and step h, see [45]. Moreover, these spaces can be characterized via real
interpolation: for m ∈ N, p, q ∈ [1,∞] and θ ∈ (0, 1) we have1

(L p(Td),Wm,p(Td))θ,q 
 Bθm
p,q(T

d) ,

with equivalence of the respective norms, see e.g. [48], [45, Theorem 17.24].

2.2 Space–time Anisotropic Spaces

For any time interval (t1, t2) ⊆ R, let Qt1,t2 := T
d × (t1, t2). We will also use the

notation Qt2 := T
d × (0, t2). For any p ≥ 1 and Q = Qt1,t2 , we denote by W 2,1

p (Q)

the space of functions u such that ∂rt D
β
x u ∈ L p(Q) for all multi-indices β and r such

that |β| + 2r ≤ 2, endowed with the norm

‖u‖W 2,1
p (Q)

=
⎛
⎝∫∫

Q

∑
|β|+2r≤2

|∂rt Dβ
x u|pdxdt

⎞
⎠

1
p

.

1 We denote here with (X0, X1)θ,q the standard real interpolation space between Banach spaces X0, X1.
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The space W 1,0
p (Q) is defined similarly, and is endowed with the norm

‖u‖W 1,0
p (Q)

:= ‖u‖L p(Q) +
∑
|β|=1

∥∥Dβ
x u

∥∥
L p(Q)

.

We define the space H1
p(Q) as the space of functions u ∈ W 1,0

p (Q) with ∂t u ∈
(W 1,0

p′ (Q))′, equipped with the norm

‖u‖H1
p(Q) := ‖u‖W 1,0

p (Q)
+ ‖∂t u‖

(W 1,0
p′ (Q))′ .

Denoting by C([t1, t2]; X), Cα([t1, t2]; X) and Lq(t1, t2; X) the usual spaces of con-
tinuous, Hölder and Lebesgue functions respectively, with values in a Banach space
X , we have the following isomorphisms: W 1,0

2 (Q) 
 L2(t1, t2;W 1,2(Td)), and

H1
2(Q) 
 {u ∈ L2(t1, t2;W 1,2(Td)), ∂t u ∈ ( L2(t1, t2;W 1,2(Td)) )′}


 {
u ∈ L2(t1, t2;W 1,2(Td)), ∂t u ∈ L2(t1, t2; (W 1,2(Td))′

)}
,

and the latter is known to be continuously embedded into C([t1, t2]; L2(Td)) (see,
e.g., [28, Theorem XVIII.2.1]). Sometimes, we will use the compact notation C(X)

and Lq(X).

2.3 Sobolev Regularity of Solutions to Fokker–Planck Equations

In this section, we collect a few existence and regularity properties of solutions to

{
−∂tρ(x, t) − �ρ(x, t) + div(b(x, t)ρ(x, t)) = 0 in Qτ ,

ρ(x, τ ) = ρτ (x) in Td (3)

Here, τ ∈ (0, T ], Qτ := T
d × (0, τ ) and Qs,τ := T

d × (s, τ ). We will assume that

ρτ ∈ L∞(Td), ρτ ≥ 0 a.e. (4)

We first recall that such a transport equation with diffusion is well-posed in an
energy space and has bounded solutions, when |b| ∈ LP (Qτ ) with P satisfying the
so-called Aronson-Serrin condition P ≥ d + 2. For a proof of the following classical
result, see e.g. [20, Proposition 2.3], or [7,8,41].

Proposition 2.1 Let |b| ∈ LP (Qτ ), with P ≥ d + 2, and ρτ be as in (4). Then, there
exists a unique weak solution ρ ∈ H1

2(Qτ ) ∩ L∞(0, τ ; Lr (Td)) for all r ≥ 1 to (3),
i.e.

−
∫ τ

s
〈∂tρ(t), ϕ(t)〉dt +

∫∫
Qs,τ

Dρ · Dϕ − bρ · Dϕ dxdt = 0 (5)
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for all s > 0 and ϕ ∈ H1
2(Qs,τ ), and ρ(τ) = ρτ in the L2-sense. Moreover, ρ is a.e.

nonnegative on Qτ .

Our analysis will be based on the regularity properties of ρ in Sobolev spaces that
depend on the integrability of |b| against ρ itself. Similar results already appeared in
[9,23,52,59].

Proposition 2.2 Let ρ be the nonnegative weak solution to (3) and 1 < σ ′ < d + 2.
Then, there exists C > 0, depending on T , σ ′, d, such that

‖ρ‖H1
σ ′ (Qτ ) ≤ C

(∫∫
Qτ

|b(x, t)|m′
ρ dxdt + ‖ρτ‖L p′ (Td )

)
(6)

where m′ = 1 + d+2
σ

and p′ = dσ
σ(d+1)−(d+2) if σ

′ > d+2
d+1 , while p′ = 1 if σ ′ < d+2

d+1 .

As we will se below, if σ ′ > d+2
d+1 we obtain also

‖ρ(t)‖L p′ (Td )
≤ C

(∫∫
Qτ

|b(x, t)|m′
ρ dxdt + ‖ρτ‖L p′ (Td )

)
for all t ∈ [0, τ ].(7)

Proof The case σ ′ < d+2
d+1 is covered by [20, Proposition 2.5], which is based on dual-

ity combined with maximal regularity arguments (following [52]). We focus here on
the case σ ′ > d+2

d+1 , and prove the theorem via a (standard) method from weak solu-
tions, that does not exploit parabolic Caldèron–Zygmund regularity. This is possible
because d+2

d+1 < σ ′ < d + 2 implies 2 < m′ < d + 2.

Set β := m′−2
d+2−m′ . To simplify, we use ϕ := ρβ as a test function in the weak for-

mulation of (3) integrating on Qt,τ := T
d × (t, τ ), while the argument can be made

rigorous by testing against ϕ := (ρ + ε)β , and then letting ε → 0. We have

1

β + 1

∫
Td

ρ(x, t)β+1 dx + β

∫∫
Qt,τ

ρβ−1|Dρ|2 dxdt

≤
∫∫

Qt,τ

|b|ρβ |Dρ| dxdt + 1

β + 1

∫
Td

|ρτ |β+1 dx

≤ Cβ

∫∫
Qt,τ

|b|2ρβ+1 dxdt + β

4

∫∫
Qt,τ

ρβ−1|Dρ|2 dxdt + 1

β + 1

∫
Td

|ρτ |β+1 dx

In particular, noting that Dρ
β+1
2 = β+1

2 ρ
β−1
2 Dρ, we write

β

∫∫
Qt,τ

ρβ−1|Dρ|2 dxdt = 4β

(β + 1)2

∫∫
Qs,τ

|Dρ
β+1
2 |2 dxdt
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to get that

1

β + 1

∫
Td

ρ(x, t)β+1 dx + β

∫∫
Qt,τ

ρβ−1|Dρ|2 dxdt

≥ cβ

[∫
Td

(|ρ(x, t)| β+1
2 )2 dx +

∫∫
Qt,τ

|Dρ
β+1
2 |2 dxdt

]
.

We first pass to the supremum over t ∈ (0, τ ) and, by means of [30, Proposition I.3.1]
we deduce

cβ

[
ess supt∈(0,τ )

∫
Td

(|ρ(x, t)| β+1
2 )2 dx +

∫∫
Qτ

|Dρ
β+1
2 |2 dxdt

]

≥ cβ,d

(∫∫
Qτ

ρ(β+1) d+2
d dxdt

)1− 2
d+2

.

We then have

cβ,d

(∫∫
Qτ

ρ(β+1) d+2
d dxdt

)1− 2
d+2 + β

2

∫∫
Qτ

ρβ−1|Dρ|2 dxdt

≤ c1

(∫∫
Qτ

|b|m′
ρ dxdt

) 2
m′ (∫∫

Qτ

ρ
β m′

m′−2
+1 dxdt

)1− 2
m′

+ c2‖ρτ‖β+1
Lβ+1(Td )

.

We then note that σ < d + 2 implies m′ > 2 and

(β + 1)
d + 2

d
= β

m′

m′ − 2
+ 1 = d + 2

d + 2 − m′ .

We apply Young’s inequality to the first term on the right-hand side to conclude

c1

(∫∫
Qτ

|b|m′
ρ dxdt

) 2
m′ (∫∫

Qτ

ρ
β m′

m′−2
+1 dxdt

)1− 2
m′

≤ c3

(∫∫
Qτ

|b|m′
ρ dxdt

) d
d+2−m′

+ cβ,d

2

(∫∫
Qτ

ρ(β+1) d+2
d dxdt

) d
d+2

.

Hence

cβ,d

(∫∫
Qτ

ρ
d+2

d+2−m′ dxdt

) d
d+2 + β

2

∫∫
Qτ

ρβ−1|Dρ|2 dxdt

≤ c4

[(∫∫
Qτ

|b|m′
ρ dxdt

) d
d+2−m′

+ ‖ρτ‖
d

d+2−m′

L
d

d+2−m′ (Td )

]

≤ c5

[∫∫
Qτ

|b|m′
ρ dxdt + ‖ρτ‖

L
d

d+2−m′ (Td )

] d
d+2−m′

.
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We thus conclude the estimates

‖ρ‖
L

d+2
d+2−m′ (Qτ )

≤ C

(∫∫
Qτ

|b|m′
ρ dxdt + ‖ρτ‖

L
d

d+2−m′ (Td )

)

and

∫∫
Qτ

ρβ−1|Dρ|2 dxdt ≤ C̄

[∫∫
Qτ

|b|m′
ρ dxdt + ‖ρτ‖

L
d

d+2−m′ (Td )

] d
d+2−m′

. (8)

Finally, recalling that σ ′ = d+2
d+3−m′ , we get the Sobolev estimate applying Hölder’s

inequality, using (8) and finally exploiting Young’s inequality as

‖Dρ‖Lσ ′
(Qτ )

≤ ‖ρ(β−1)/2Dρ‖L2(Qτ )‖ρ(1−β)/2‖
L

2(d+2)
d+4−2m′ (Qτ )

=
(∫∫

Qτ

ρβ−1|Dρ|2 dxdt
) 1

2
(∫∫

Qτ

ρ
d+2

d+2−m′ dxdt

) d+4−2m′
2(d+2)

≤ c6

(∫∫
Qτ

|b|m′
ρ dxdt + ‖ρτ‖

L
d

d+2−m′ (Td )

)
.

The estimate on the time derivative in (W 1,0
σ (Qτ ))

′ can be obtained by duality, as in
[20, Proposition 2.4]. ��

Corollary 2.3 Let ρ be the nonnegative weak solution to (3). Then, there exists C1 > 0,
depending on T , q, d, such that if q < d+2

2

sup
t∈[0,τ ]

‖ρ(t)‖L p′ (Td )
+ ‖ρ‖Lq′

(Qτ )
≤ C1

(∫∫
Qτ

|b(x, t)| d+2
q ρ dxdt + ‖ρτ‖L p′ (Td )

)

where p = dq
(d+2)−2q , while if q > d+2

2 ,

sup
t∈[0,τ ]

‖ρ(t)‖
W

d
d+2− 2

q′ ,
(d+2)q′
d+2+q′

(Td )

+ ‖ρ‖Lq′
(Qτ )

≤ C1

(∫∫
Qτ

|b(x, t)| d+2
q ρ dxdt + ‖ρτ‖L1(Td )

)
.

Proof The first estimate follows by Proposition 2.2, applied with m′ = d+2
q (see

also (7)), and the continuous embedding of H1
σ ′(Qτ ) into Lq ′

(Qτ ). The sec-
ond estimate follows analogously, using also the embedding of H1

σ ′(Qτ ) into

C([0, τ ];W d
d+2− 2

q′ , (d+2)q′
d+2+q′ (Td)). ��
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3 Bounds of Solutions to HJ Equations in Lebesgue andHölder Spaces

We derive in this section some preliminary bounds on solutions to Hamilton–Jacobi
equations via duality methods. Since we are in the setting of maximal regularity and
f ∈ Lq(QT ), we assume that u ∈ W 2,1

q (QT ) ∩ W 1,0
γ q (QT ) is a strong solution

to (HJ), i.e. it solves the Hamilton–Jacobi equation almost everywhere. The initial
datum u0 is achieved inW 2−2/q,q(Td), as suggested by the Lions–Peetre tracemethod
in interpolation theory (cf Lemma A.1 below). Note that by classical embedding
properties for Sobolev–Slobodeckii spaces, we have the following inclusions

W 2− 2
q ,q

(Td) ↪→

⎧⎪⎪⎨
⎪⎪⎩
C2− d+2

q (Td) for q > d+2
2 ,

L p(Td) for p ∈ [1,∞) and q = d+2
2 ,

L
dq

d+2−2q (Td) for q < d+2
2 .

(9)

Since we will work under the assumptions

q ≥ d + 2

γ ′ , γ > 1 + 2

d + 2
,

embeddings of W 2,1
q (QT ) imply that u is bounded in W 1,0

γ q (QT ) (so we can drop

u ∈ W 1,0
γ q (QT ) in the statements of our results), and u ∈ L2(0, T ;W 1,2(Td)). Fur-

thermore,

|Du|γ−1 ∈ LP (QT ) for some P ≥ d + 2,

so the dual equation (3) is well-posed inH1
2 whenever b(x, t) = −DpH(x, Du(x, t)).

Note finally that when q > (d + 2)/2, any solution is automatically continuous and u
solves (HJ) in the weak sense used in [20]. This always happens in the superquadratic
regime γ > 2. On the other hand, in the subquadratic case γ < 2, u is not necessarily
continuous when (d + 2)/γ ′ ≤ q < (d + 2)/2.

Remark 3.1 The assumption

γ > 1 + 2

d + 2

guarantees that u ∈ L2(0, T ;W 1,2(Td)), so u has finite energy and it can be safely
used as a test function for the dual equation (3). One can drop this requirement in all
following statements, relaxing to

γ > 1 + 1

d + 1
,

so that q > d+2
γ ′ > 1, and assuming a priori that u ∈ L2(0, T ;W 1,2(Td)) (which is

always true for example when u is a classical solution, as in Section 5 on MFG). One
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could also invoke methods from renormalized solutions, to deal also with the case
γ ≤ 1 + 1

d+1 but this is beyond the scope of this paper.

3.1 Bounds in Lebesgue Spaces

We obtain in this section the bounds on the L p-norm of u, elaborating in particular
the case d+2

γ ′ ≤ q < d+2
2 , that is when γ < 2.

Tk(s) = max
{−s,min{s, k}} belowwill denote the truncation operator at level k >

0, u+ = max{u, 0} and u− = (−u)+ the positive and negative part of u respectively.
We start with some bounds on u+, that are obtained with no restrictions on q ≥ 1.

Lemma 3.2 Assume that H is nonnegative. Let u be a strong solution to (HJ) in
W 2,1

q (QT ), q ≥ 1. There exists a positive constant C0 (depending on q, d, T ) such
that

‖u+(τ )‖L p(Td ) ≤ ‖u+
0 ‖L p(Td ) + C0‖ f +‖Lq (Qτ ), (10)

where p = dq
(d+2)−2q if q < d+2

2 , while p = ∞ if q > d+2
2 .

Note that W 2,1
q (QT ) is embedded into C([0, T ]; L p(Td)) (p as in the previous state-

ment) so (10) has the form of an a priori bound.

Proof We detail the proof in the case q < d+2
2 only. The case q > d+2

2 can be treated
in an analogous way (essentially following [20, Section 3]).

For k > 0, let μ = μk be the weak nonnegative solution of the following backward
problem

⎧⎨
⎩

−∂tμ(x, t) − �μ(x, t) = 0 in Qτ ,

μ(x, τ ) =
[
Tk
(
u+(x,τ )

)]p−1

‖u+(τ )‖p−1
p

in Td

Note that ‖μτ‖L p′ (Td )
≤ 1. Since μ solves an equation of the form (3) with b ≡ 0, by

Corollary 2.3 we have

‖μ‖Lq′
(Qτ )

≤ C,

where C does not depend on k. Since u+ is a weak subsolution of

∂t u
+(x, t) − �u+(x, t) ≤ [

f (x, t) − H(x, Du(x, t))
]
χ{u>0} in Qτ ,

testing against μ, and testing the equation for μ against u we get that∫
Td

u+(τ )μ(τ) dx ≤
∫
Td

u+
0 μ(0) dx +

∫∫
Qτ ∩{u>0}

f μ dxdt

−
∫∫

Qτ ∩{u>0}
H(x, Du)μ dxdt .
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We apply Hölder’s inequality to the second term of the right-hand side of the above
inequality, the assumption H ≥ 0 on the Hamiltonian, and the fact that the backward
heat equation preserves the L p′

norm, i.e. ‖μ(t)‖L p′ (Td )
≤ 1 for all t ∈ [0, τ ], to get,

after sending k → ∞, the desired inequality. ��
We now proceed with some more delicate bounds on u−, under the restriction

q > d+2
γ ′ . We will use the following property of H : under the standing assumptions

on H , the Lagrangian L(x, v) = supp{ν · p − H(x, p)} satisfies for some CL > 0
(depending on CH )

C−1
L |ν|γ ′ − CL ≤ L(x, ν) ≤ CL |ν|γ ′ + CL . (11)

Lemma 3.3 Assume that (H) holds. Let u be a strong solution to (HJ) in W 2,1
q (QT ),

q > d+2
γ ′ . There exists a positive constant C (depending on CH , q, d, T ) such that

‖u−(τ )‖L p(Td ) ≤ C
(‖u−

0 ‖L p(Td ) + ‖ f −‖Lq (Qτ )

)
+2CCLτ

(‖u−
0 ‖L p(Td ) + ‖ f −‖Lq (Qτ )

) qγ ′
qγ ′−(d+2) + CLτ. (12)

where p = dq
(d+2)−2q if q < d+2

2 , while p = ∞ if q > d+2
2 .

Proof As before, we detail the case q < d+2
2 only. For k > 0, let ρ = ρk be the weak

nonnegative solution of

⎧⎨
⎩

−∂tρ(x, t) − �ρ(x, t) + div
(
DpH(x, Du(x, t))χ{u<0}ρ(x, t)

) = 0 in Qτ ,

ρ(x, τ ) =
[
Tk
(
u−(x,τ )

)]p−1

‖u−(τ )‖p−1
p

in Td

As before, ‖μτ‖L p′ (Td )
≤ 1. By Corollary 2.3 we have

‖ρ(0)‖L p′ (Td )
+ ‖ρ‖Lq′

(Qτ )

≤ C1

(∫∫
Qτ

|DpH(x, Du)| d+2
q χ{u<0}ρ dxdt + ‖ρτ‖L p′ (Td )

)
, (13)

where C does not depend on k. Since u− is a weak subsolution of

∂t u
−(x, t) − �u−(x, t) ≤ [ − f (x, t) + H(x, Du(x, t))

]
χ{u<0} in Qτ ,

testing against ρ, and testing the equation for ρ against u− we get that

∫
Td

u−(τ )ρ(τ) dx +
∫∫

Qτ

[ − DpH(x, Du) · Du− − H(x, Du)
]
χ{u<0}ρ dxdt

≤
∫
Td

u−
0 ρ(0) dx −

∫∫
Qτ ∩{u<0}

f ρ dxdt .
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On the one hand, in view of (11) note that

[ − DpH(x, Du) · Du− − H(x, Du)
]
χ{u<0} = L(DpH(x,−Du−))χ{u<0}

≥ [
C−1
L |DpH(x, Du)|γ ′ − CL

]
χ{u<0},

and on the other hand by Hölder’s inequality∫
Td

u−(τ )ρ(τ) dx + C−1
L

∫∫
Qτ

|DpH(x, Du)|γ ′
χ{u<0}ρ dxdt

−CL

∫∫
Qτ

χ{u<0}ρ dxdt

≤ ‖u−
0 ‖L p(Td )‖ρ(0)‖L p′ (Td )

+ ‖ f −‖Lq (Qτ )‖ρ‖Lq′
(Qτ )

. (14)

Then, plugging (13) into (14) we obtain∫
Td

u−(τ )ρ(τ) dx + C−1
L

∫∫
Qτ

|DpH(x, Du)|γ ′
χ{u<0}ρ dxdt

≤ C1
(‖u−

0 ‖L p(Td ) + ‖ f −‖Lq (Qτ )

) (∫∫
Qτ

|DpH(x, Du)| d+2
q χ{u<0}ρ dxdt + 1

)

+CL

∫∫
Qτ

χ{u<0}ρ dxdt . (15)

Since q > d+2
γ ′ one can use Young’s inequality and the fact that

∫
ρ(t)dx ≤

‖ρ(t)‖L p′ (Td )
≤ 1 to get the desired inequality (after passing to the limit k → ∞). ��

Combining (10) and (12), we get the following estimate in the case q > d+2
γ ′ .

Corollary 3.4 Assume that (H) holds. Let u be a strong solution to (HJ) in W 2,1
q (QT ),

q > d+2
γ ′ , and assume that

‖u0‖L p(Td ), ‖ f ‖Lq (QT ) ≤ K .

Then, there exists a positive constant C (depending on K ,CH , q, d, T ) such that

sup
t∈[0,T ]

‖u(t)‖L p(Td ) ≤ C, (16)

where p = dq
(d+2)−2q if q < d+2

2 , while p = ∞ if q > d+2
2 .

Note that the previous result does not cover the critical case q = d+2
γ ′ . The rest of

the section is devoted to this endpoint situation, and more precise information on the
stability of solutions in L p will be obtained. This will be crucial in the subsequent
analysis of maximal regularity. It is worth noting that the constants appearing in
the estimates below will not depend just on the norms ‖ f ‖Lq , ‖u0‖L p , but on finer
properties of f in Lq and u0 in L p; see Remark 3.6.
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Let �(x, t) be the fundamental solution of the heat equation on T
d × (0,∞).

Consider, for k > 0, the solution uk to the problem with truncated / regularized data,
i.e.

{
∂t uk(x, t) − �uk(x, t)+H(x, Duk(x, t))=Tk

(
f (x, t)

)
in QT = T

d × (0, T ),

uk(x, 0) = u0(·)��(·, 1/k) (x) in Td ,
(17)

where � stands for the standard convolution computed in space only, i.e. f1� f2(x) =∫
Td f1(x − y) f2(y) dy. In other words, uk solves an Hamilton–Jacobi equation with
L∞ right-hand side and an initial datum in C∞. Such an initial datum is actually
uk(x, 0) = z(x, 1/k), where z is the solution to the heat equation

{
∂t z(x, t) − �z(x, t) = 0 in QT = T

d × (0, T ) ,

z(x, 0) = u0(x) in Td ,

and converges to u0 in W 2−2/q,q(Td) as k → ∞. The existence and uniqueness of a
strong solution uk ∈ W 2,1

p (QT ) for all p ≥ 1 can be obtained using, for example, the
results in [20]. We prove now the estimates on u − uk .

Proposition 3.5 Assume that (H) holds. Let u and uk be strong solutions to (HJ) and
(17) respectively, γ < 2 and q = d+2

γ ′ . Then, there exists a positive constant C
(depending on f , u0,CH , q, d, T ) such that

sup
t∈[0,T ]

‖u(t)−uk(t)‖L p(Td ) ≤C
(‖ f − Tk( f )‖Lq (QT ) + ‖u0 − u0��(1/k)‖L p(Td )

)
,

(18)

where p = dq
(d+2)−2q = d γ−1

2−γ
.

Proof Let w = u − uk . Note that w depends of course on k, but we will drop the
subscript for simplicity.

As before, we argue by duality, and estimate w+ first. Fix τ ∈ (0, T ] and ρ = ρk
be the weak nonnegative solution of

⎧⎨
⎩

−∂tρ(x, t) − �ρ(x, t) + div
(
DpH(x, Duk(x, t))ρ(x, t)

) = 0 in Qτ ,

ρ(x, τ ) =
[
w+(x,τ )

]p−1

‖w+(τ )‖p−1
p

in Td .

Note that as in previous lemmas, one should further truncate ρ(τ) to ensure the exis-
tence of ρ in an energy space (cf Proposition 2.1), and then pass to the limit, but we
will omit this step for brevity.

Step 1: bounds on
∫∫ |DpH(x, Duk)|γ ′

ρ. Testing (17) against ρ, and testing the
equation for ρ against uk we get that
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∫∫
Qτ

L
(
x, DpH(x, Duk)

)
ρ dxdt = −

∫∫
Qτ

Tk( f )ρ dxdt −
∫
Td

uk(0)ρ(0) dx

+
∫
Td

uk(τ )ρ(τ) dx . (19)

Recall that for all t ,
∫
Td ρ(t)dx = ∫

Td ρ(τ)dx ≤ ‖ρ(τ)‖L p′ (Td )
= 1. Then, for h > 0

that will be chosen below,

−
∫∫

Qτ

Tk( f )ρ dxdt ≤
∫∫

Qτ

f −ρ dxdt ≤
∫∫

Qτ ∩{ f −≥h}
f −ρ dxdt + hτ

≤ ‖ f −χ{ f −≥h}‖Lq (Qτ )‖ρ‖Lq′
(Qτ )

+ hT .

Similarly, for any h0 > 0, by Young’s inequality for convolutions and Hölder inequal-
ity,

−
∫
Td

uk(0)ρ(0) dx = −
∫
Td

u0 �(1/k)�ρ(0)

≤
∫
Td∩{u−

0 ≥h0}
u−
0 �(1/k)�ρ(0) dx + h0

∫
Td

�(1/k)�ρ(0)dx

≤ ‖u−
0 χ{u−

0 ≥h0}‖L p(Td )‖�(1/k)�ρ(0)‖L p′ (Td )
+ h0

∫
Td

�(1/k)dx
∫
Td

ρ(0)dx

≤ ‖u−
0 χ{u−

0 ≥h0}‖L p(Td )‖ρ(0)‖L p′ (Td )
+ h0.

Finally, applying Lemma 3.2 to uk and noting that (u0��(1/k))+ ≤ u+
0 ��(1/k) by

the comparison principle,

∫
Td

uk(τ )ρ(τ) dx ≤ ‖u+
k (τ )‖L p(Td )‖ρ(τ)‖L p′ (Td )

≤ ‖(u0��(1/k))+‖L p(Td ) + C0‖Tk( f )+‖Lq (Qτ ) ≤ ‖u+
0 ‖L p(Td ) + C0‖ f +‖Lq (Qτ )

Plugging the previous inequalities back in (19), and using the bounds from below on
L , we then get

C−1
L

∫∫
Qτ

|DpH(x, Duk)|γ ′
ρ dxdt − CL

∫∫
Qτ

ρ dxdt

≤ hT + h0 + ‖u+
0 ‖L p(Td ) + C0‖ f +‖Lq (Qτ )

+(‖u−
0 χ{u−

0 ≥h0}‖L p(Td ) + ‖ f −χ{ f −≥h}‖Lq (Qτ )

)(‖ρ(0)‖L p′ (Td )
+ ‖ρ‖Lq′

(Qτ )

)
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Then Corollary 2.3 yields bounds on ρ, i.e.

C−1
L

∫∫
Qτ

|DpH(x, Duk)|γ ′
ρ dxdt ≤ (h + CL)T + h0 + ‖u+

0 ‖L p(Td ) + C0‖ f +‖Lq (Qτ )

+C1
(‖u−

0 χ{u−
0 ≥h0}‖L p(Td ) + ‖ f −χ{ f −≥h}‖Lq (Qτ )

)
(∫∫

Qτ

|DpH(x, Duk)|γ ′
ρ dxdt + 1

)

for some C1 depending only on T , d, γ . Finally, h and h0 are chosen large enough so
that

‖u−
0 χ{u−

0 ≥h0}‖L p(Td ) + ‖ f −χ{ f −≥h}‖Lq (Qτ ) ≤ 1

2C1CL
,

that gives

∫∫
Qτ

|DpH(x, Duk)|γ ′
ρ dxdt ≤ 2CL [(h + CL)T + h0 + ‖u+

0 ‖L p(Td )

+C0‖ f +‖Lq (Qτ )] + 1 =: C . (20)

Step 2: bounds on w+. Taking the difference between (17) and (HJ), by the con-
vexity of H(x, ·), w+ is a weak subsolution of

∂tw
+(x, t) − �w+(x, t) + DpH(x, Duk(x, t)) · Dw+ ≤ [

f − Tk
(
f (x, t)

)]
χ{w>0}

Testing against ρ, and testing the equation for ρ against w+ gives

‖w+(τ )‖L p(Td ) =
∫
Td

w+(τ )ρ(τ) dx ≤
∫
Td

w+(0)ρ(0) dx

+
∫∫

Qτ

[
f − Tk

(
f (x, t)

)]
χ{w>0}ρ dxdt .

Hence, using Corollary 2.3 and the estimate (20) we obtain

‖w+‖L p(Td ) ≤ C1
(‖w+(0)‖L p(Td ) + ‖ f − Tk( f )‖|Lq (Td )

)
(∫∫

Qτ

|DpH(x, Duk)|γ ′
ρ dxdt + 1

)
≤ C1(C + 1)

(‖u0 − u0��(1/k)‖L p(Td ) + ‖ f − Tk( f )‖|Lq (Td )

)
,

which is “half” of the desired estimate.
To get an analogous estimate for ‖w−‖L p(Td ), which allows to conclude since

w = u − uk , one can proceed as in Step 1 and 2, noting that w− satisfies

∂tw
−(x, t) − �w−(x, t) + DpH(x, Du(x, t)) · Dw− ≤ [

Tk
(
f (x, t)

) − f
]
χ{w<0}.
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To argue as before, it is sufficient to exploit properties of the dual problem

⎧⎨
⎩

−∂t ρ̂(x, t) − �ρ̂(x, t) + div
(
DpH(x, Du(x, t))ρ̂(x, t)

) = 0 in Qτ ,

ρ̂(x, τ ) =
[
w−(x,τ )

]p−1

‖w−(τ )‖p−1
p

in Td .

��
Remark 3.6 Note that (18) directly yields the estimate

sup
t∈[0,T ]

‖u(t)‖
L
d γ−1
2−γ (Td )

≤ C,

thus extending (16) up to the critical case q = (d + 2)/γ ′. Let us focus on the the
way C depends on f and u0. When q > (d + 2)/γ ′, C depends on ‖ f ‖Lq and
‖u0‖L p only. At the endpoint q = (d + 2)/γ ′, the constant C above (and similarly
the constant in (18)) is proportional to C defined in (20), that depends in turn on
‖u+

0 ‖L p(Td ), ‖ f +‖Lq (Qτ ), h, h0, where h, h0 are such that

‖u−
0 χ{u−

0 ≥h0}‖L p(Td ) + ‖ f −χ{ f −≥h}‖Lq (Qτ ) ≤ 1

2C1CL
,

and C1 = C1(T , q, d) is as in Corollary 2.3. Thus, these constants remain bounded
when f and u0 vary in bounded and equi-integrable sets in Lq(QT ) and L p(Td)

respectively. This is completely in line with the results in [49].

3.2 Bounds in Hölder Spaces

We now proceed with bounds on u in Hölder spaces, which will be obtained in par-
ticular when γ ≥ 2, that is when q is necessarily greater than d+2

2 (and therefore u is
continuous).

Proof of Theorem 1.2 Step 1. Since we have the representation H(x, Du(x, t)) =
supν∈Rd {ν · Du(x, t) − L(x, ν)} for a.e. (x, t) ∈ QT , we get∫ τ

0
〈∂t u(t), ϕ(t)〉dt +

∫∫
Qτ

∂i u(x, t) ∂i (ϕ(x, t))

+[�(x, t) · Du(x, t) − L(x, �(x, t))]ϕ dxdt

≤
∫∫

Qτ

f (x, t)ϕ(x, t) dxdt (21)

for any measurable � : Qτ → R
d such that L(·, �(·, ·)) ∈ Lr (Qτ ) and � · Du ∈

Lr (Qτ ), r > 1, and test function ϕ ∈ H1
2(Qτ ) ∩ Lr ′

(Qτ ). The previous inequality
becomes an equality if �(x, t) = DpH(x, Du(x, t)) in Qτ .

Fix now any τ ∈ [0, T ], and let x̄, ȳ ∈ T
d be such that

u(ȳ) − u(x̄) = |ȳ − x̄ |α · [u(·, τ )]Cα(Td ).
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Let ρτ be any smooth nonnegative function satisfying
∫
Td ρτ = 1, and ρ ∈ H1

2(Qτ )∩
Lr ′

(Qτ ) (for all r ′ > 1) be the solution to

{
−∂tρ(x, t) − �ρ(x, t) + div

(
DpH(x, Du(x, t))ρ(x, t)

) = 0 in Qτ ,

ρ(x, τ ) = ρτ (x) in Td .

Use now (21) with �(x, t) = DpH(x, Du(x, t)) and ϕ = ρ, and u ∈ H1
2(QT ) as a

test function for the equation satisfied by ρ to get

∫
Td

u(x, τ )ρτ (x)dx =
∫
Td

u0(x)ρ(x, 0)dx +
∫∫

Qτ

f (x, t)ρ(x, t)dxdt

+
∫∫

Qτ

L
(
x, DpH(x, Du(x, t))

)
ρ(x, t)dxdt . (22)

Setting ξ = ȳ − x̄ , one can easily check that ρ̂(x, t) := ρ(x − ξ, t) satisfies

{
−∂t ρ̂(x, t) − �ρ̂(x, t) + div

(
DpH(x − ξ, Du(x − ξ, t))ρ̂(x, t)

) = 0 in Qτ ,

ρ̂(x, τ ) = ρτ (x − ξ) in Td .

As before, plugging �(x, t) = DpH(x − ξ, Du(x − ξ, t)) and ϕ = ρ̂ into (21), and
using u ∈ H1

2(QT ) as a test function for the equation satisfied by ρ̂ yields

∫
Td

u(x, τ )ρ̂τ (x)dx ≤
∫
Td

u0(x)ρ̂(x, 0)dx

+
∫∫

Qτ

L(x, DpH(x − ξ, Du(x − ξ, t)))ρ̂ dxdt +
∫∫

Qτ

f ρ̂ dxdt

which, after the change of variables x − ξ �→ x , becomes

∫
Td

u(x + ξ, τ )ρτ (x)dx ≤
∫
Td

u0(x + ξ)ρ(x, 0)dx

+
∫∫

Qτ

L(x + ξ, DpH(x, Du(x, t)))ρ dxdt +
∫∫

Qτ

f ρ̂ dxdt . (23)

Taking the difference between (23) and (22) we obtain

∫
Td

(
u(x + ξ, τ ) − u(x, τ )

)
ρτ (x)dx ≤

∫
Td

(
u0(x + ξ) − u0(x)

)
ρ(x, 0)dx

+
∫∫

Qτ

(
L(x + ξ, DpH(x, Du(x, t))) − L(x, DpH(x, Du(x, t)))

)
ρ(x, t) dxdt

+
∫∫

Qτ

f (x, t)
(
ρ(x − ξ, t) − ρ(x, t)

)
dxdt . (24)
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Step 2.To estimate the terms appearing in the right hand side of (24), we first derive
bounds on ρ. We stress that constants C,C1, . . . below are not going to depend on τ

and ρτ . Rearranging (22) we have

∫∫
Qτ

L
(
x, DpH(x, Du(x, t))

)
ρ(x, t)dxdt

=
∫
Td

u(x, τ )ρτ (x)dx −
∫
Td

u0(x)ρ(x, 0)dx −
∫∫

Qτ

f (x, t)ρ(x, t)dxdt,

and by (11) and the bounds on ‖u‖∞ of Proposition 3.4 we get

C−1
L

∫∫
Qτ

|DpH(x, Du(x, t))|γ ′
ρ(x, t)dxdt ≤ C + ‖ f ‖Lq (Qτ )‖ρ‖Lq′

(Qτ )
.

Using Corollary 2.3,

C−1
L

∫∫
Qτ

|DpH(x, Du(x, t))|γ ′
ρ(x, t)dxdt ≤ C

+C1‖ f ‖Lq (Qτ )

(∫∫
Qτ

|DpH(x, Du(x, t))| d+2
q ρ dxdt + ‖ρτ‖L p′ (Td )

)
.

This provides a control on
∫∫

Qτ
|DpH(Du)|γ ′

ρ, and by means of Proposition 2.2,

∫∫
Qτ

|DpH(x, Du(x, t))|γ ′
ρ(x, t)dxdt + ‖ρ‖H1

d+2
d+3−γ ′

(Qτ ) ≤ C2. (25)

Step 3. First, recall that
∫
Td ρ(0) = 1,

∫
Td

(
u0(x + ξ) − u0(x)

)
ρ(x, 0)dx ≤ |ξ |α[u0]Cα(Td ).

As for the second term in (24), L(x, v) = supp∈Rd {v · p − H(x, p)}, and if
v = DpH(x, p), then L(x, v) = ν · p − H(x, p), hence

L(x + ξ, DpH(x, Du(x, t))) − L(x, DpH(x, Du(x, t))

≤ H(x, Du(x, t)) − H(x + ξ, Du(x, t)).

Next, using (Hα),

∫∫
Qτ

(
L(x + ξ, DpH(x, Du(x, t))) − L(x, DpH(x, Du(x, t)))

)
ρ(x, t) dxdt

≤
∫∫

Qτ

(
H(x, Du(x, t)) − H(x + ξ, Du(x, t))

)
ρ(x, t) dxdt
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≤ CH |ξ |α
∫∫

Qτ

(
|DpH(x, Du(x, t))|γ ′ + 1

)
ρ(x, t) dxdt .

Finally, we apply the embeddings of Propositions A.3 and A.2 (with δ = q ′,
p = d+2

d+3−γ ′ and hence α = γ ′ − d+2
q ) to get

∣∣∣∣
∫∫

Qτ

f (x, t)
(
ρ(x − ξ, t) − ρ(x, t)

)
dxdt

∣∣∣∣
≤ |ξ |α

∫∫
Qτ

| f (x, t)| |(ρ(x − ξ, t) − ρ(x, t)
)|

|h|α dxdt ≤ |ξ |α‖ f ‖Lq (Qτ )‖ρ‖Lq′
(Nα,q′

(Td ))

≤ C |ξ |α‖ f ‖Lq (Qτ )‖ρ‖Lq′
(Wα,q′

(Td ))

≤ |ξ |α‖ f ‖Lq (Qτ )‖ρ‖H1
d+2

d+3−γ ′
(Qτ ).

Plugging now all the estimates in (24) and using (25) we obtain

∫
Td

(
u(x + ξ, τ ) − u(x, τ )

)
ρτ (x)dx ≤ C1|ξ |α.

It is now sufficient to recall that ρτ can be any smooth nonnegative function satisfying∫
Td ρτ = 1, so

|ȳ − x̄ |α · [u(·, τ )]Cα(Td ) = u(ȳ) − u(x̄) ≤ C1|ȳ − x̄ |α

and we have the assertion. ��
Remark 3.7 Adding an additional time localization term in the previous procedure,
as in [20], it is possible to obtain Hölder bounds that are independent of the initial
datum, but just depend on the sup-norm of the solution. This indicates that the equation
regularizes at Hölder scales, and the weak solutions (in an appropriate sense) become
instantaneously Hölder continuous at positive times.

4 Maximal Lq-Regularity

We start with a straightforward consequence of parabolic regularity results for linear
equations.

Proposition 4.1 Assume that (H) holds. Let u be a strong solution to (HJ) inW 2,1
q (QT ).

Then,

‖u‖W 2,1
q (QT )

≤ C(‖Du‖γ

Lγ q (QT ) + ‖ f ‖Lq (QT ) + ‖u0‖
W

2− 2
q ,q

(Td )
+ 1) (26)

for some positive constant C depending on q, d,CH .

123



   19 Page 26 of 40 M. Cirant, A. Goffi

Proof The proof is an easy consequence of well-knownCaldèron-Zygmund typemax-
imal regularity results for heat equations with potential

{
∂t u(x, t) − �u(x, t) = V (x, t) in Qτ ,

u(x, 0) = u0(x) in Td ,

which satisfies the estimate (see [41,42], or [38] and the references therein)

‖u‖W 2,1
q (QT )

≤ C(‖V ‖Lq (QT ) + ‖u0‖
W

2− 2
q ,q

(Td )
).

To get (26), it is now sufficient to choose V = −H(x, Du)+ f , and use the assumption
(H). ��

We now proceed with our main result on maximal regularity for (HJ) when q >

(d + 2)/γ ′.

Proof of Theorem 1.1 To prove the assertion, we will combine the estimates derived in
Section 3 with Gagliardo-Nirenberg type interpolation inequalities.

The subquadratic case γ < 2. We start from Proposition 3.4, which gives

sup
t∈[0,T ]

‖u(t)‖Ls (Td ) ≤ C, (27)

for any s ≤ p = dq
(d+2)−2q if q < d+2

2 , while s ≤ ∞ if q > d+2
2 . Recall then the

classical Gagliardo-Nirenberg inequality ([56, Lecture II Theorem p.125-126])

‖Du(t)‖Lγ q (Td ) ≤ C1‖u(t)‖θ
W 2,q (Td )

‖u(t)‖1−θ

Ls (Td )
(28)

for s ∈ [1,∞] and θ ∈ [1/2, 1) satisfying

1

γ q
= 1

d
+ θ

(
1

q
− 2

d

)
+ (1 − θ)

1

s
.

Note that since q > d+2
γ ′ , we have p >

d(γ−1)
2−γ

, and therefore it is possible to choose

s (close to d(γ−1)
2−γ

) so that θ ∈ [1/2, 1/γ ) and (27) and (28) holds. Then, raising (28)
to γ q and integrating on (0, T ) yields

∫ T

0
‖Du(t)‖γ q

Lγ q (Td )
dt ≤ Cγ q

1

(
sup

t∈[0,T ]
‖u(t)‖1−θ

Ls (Td )

)γ q ∫ T

0
‖u(t)‖γ θq

W 2,q (Td )
dt,

and since γ θ < 1,

‖Du‖Lγ q (QT ) ≤ C2‖u‖θ
Lq (0,T ;W 2,q (Td ))

‖u‖1−θ

L∞(0,T ;Ls (Td ))
. (29)
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Plugging (27) and (29) into (26) we obtain

‖u‖W 2,1
q (QT )

≤ C3(‖u‖θγ

W 2,1
q (QT )

+ ‖ f ‖Lq (QT ) + ‖u0‖
W

2− 2
q ,q

(Td )
),

and we conclude the assertion because θγ < 1.
The superquadratic case γ ≥ 2. We start from Hölder bounds of Theorem 1.2,

namely,

sup
t∈[0,T ]

‖u(t)‖Cα(Td ) ≤ C1,

where α = γ ′ − d+2
q (or α ∈ (0, 1) when q ≥ d+2

γ ′−1 ), and invoke the following
Miranda-Nirenberg interpolation inequality (see [37,50,53,57])

‖Du(t)‖Lγ q (Td ) ≤ C‖u(t)‖θ
W 2,q (Td )

‖u(t)‖1−θ

Cα(Td )
,

where θ ∈
[
1−α
2−α

, 1
)
satisfies

1

γ q
= 1

d
+ θ

(
1

q
− 2

d

)
− (1 − θ)

α

d
.

Choosing θ = 1−α
2−α

(or α close enough to 1 when q ≥ d+2
γ ′−1 ), we have θγ < 1 if and

only if

q >
(d + 2)(γ − 1)

2
.

Hence,

‖Du‖Lγ q (QT ) ≤ CC1−θ
1 ‖u‖θ

Lq (0,T ;W 2,q (Td ))
.

Plugging this inequality into (26) and using the fact that γ θ < 1, we conclude. ��
We now consider the maximal regularity problem in the limiting case q = (d +

2)/γ ′. The scheme of the proof is similar to the one of Theorem 1.1, but requires
an additional step involving solutions uk to the regularized problem (17), that is; for
k > 0,

{
∂t uk(x, t)−�uk(x, t)+H(x, Duk(x, t)) = Tk

(
f (x, t)

)
in QT = T

d × (0, T ),

uk(x, 0) = u0(·)��(·, 1/k) (x) in T
d .

(30)

Proof of Theorem 1.3 Let w = u − uk , k to be chosen. From Proposition 3.5, we have
the existence of C depending on f , u0,CH , q, d, T such that
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sup
t∈[0,T ]

‖w(t)‖L p(Td ) ≤ C
(‖ f − Tk( f )‖Lq (QT ) + ‖u0 − u0��(1/k)‖L p(Td )

)
,

p = d
γ − 1

2 − γ
.

The Gagliardo–Nirenberg inequality reads

‖Dw(t)‖Lγ q (Td ) ≤ C2‖w(t)‖
1
γ

W 2,q (Td )
‖w(t)‖1−

1
γ

L p(Td )
,

where C2 depends on d, p, q. Thus,

‖Dw‖γ

Lγ q (QT ) ≤ Cγ
2 C

γ−1(‖ f − Tk( f )‖Lq (QT ) + ‖u0 − u0��(1/k)‖L p(Td )

)γ−1

‖w‖Lq (0,T ;W 2,q (Td )). (31)

Note now that w solves a.e. on QT

∂tw(x, t) − �w(x, t) = H(x, Duk(x, t)) − H(x, Du(x, t)) + f (x, t)

−Tk
(
f (x, t)

)
, (32)

and that, by assumptions on H , |DpH(x, p)| ≤ C ′
H (|p|γ−1 + 1), so by Young’s

inequality

|H(x, Duk(x, t)) − H(x, Du(x, t))|
≤ |Dw(x, t)| · max{|DpH(x, Duk(x, t))|, |DpH(x, Du(x, t))|}
≤ C3(|Duk(x, t)|γ + |Du(x, t)|γ + |Dw(x, t)|γ + 1)

≤ C4(|Duk(x, t)|γ + |Dw(x, t)|γ + 1) ,

where C3,C4 depend on CH only. Then, by maximal regularity applied to the linear
equation (32),

‖w‖Lq (0,T ;W 2,q (Td ))

≤ C5

(
‖H(x, Duk) − H(x, Du)‖Lq (QT ) + ‖ f − Tk

(
f
)‖Lq (QT )

+ ‖u0 − u0��(1/k)‖
W

2− 2
q ,q

(Td )

)
≤ C6‖Dw‖γ

Lγ q (QT ) + C6

(
‖Duk‖γ

Lγ q (QT ) + ‖ f − Tk
(
f
)‖Lq (QT )

+‖u0 − u0��(1/k)‖
W

2− 2
q ,q

(Td )
+ 1

)
,

where C6 depends on CH , d, q. Plugging now this inequality into (31) yields

‖Dw‖γ

Lγ q (QT ) ≤ C6C
γ
2 C

γ−1(‖ f − Tk( f )‖Lq (QT ) + ‖u0 − u0��(1/k)‖L p(Td )

)γ−1

‖Dw‖γ

Lγ q (QT ) + · · · .
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Hence, we choose k̄ large enough so that

C6C
γ
2 C

γ−1(‖ f − Tk̄( f )‖Lq (QT ) + ‖u0 − u0��(1/k̄)‖L p(Td )

)γ−1 ≤ 1

2
, (33)

to get

‖Dw‖γ

Lγ q (QT )

≤ ‖Duk̄‖γ

Lγ q (QT ) + ‖ f − Tk̄
(
f
)‖Lq (QT ) + ‖u0 − u0��(1/k̄)‖

W
2− 2

q ,q
(Td )

+ 1

≤ ‖Duk̄‖γ

Lγ q (QT ) + 2‖ f ‖Lq (QT ) + 2‖u0‖
W

2− 2
q ,q

(Td )
+ 1. (34)

Since uk̄(0) is smooth and Tk̄( f ) ∈ L∞(QT ), we can apply Theorem 1.1 to uk̄
solving (17) to estimate Duk̄ . Indeed, pick any q̄ > q. Then,

‖Tk̄( f )‖Lq̄ (QT ) + ‖u0��(1/k̄)‖
W

2− 2
q̄ ,q̄

(Td )
≤ k̄ + C5k̄

(
d
2 +1

)(
1
q − 1

q̄

)
‖u0‖

W
2− 2

q ,q
(Td )

in view of standard decay estimates for the heat equation (C5 depends on d, q, q̄ only,
see, e.g., [68, Chapter 15]). Therefore, by Theorem 1.1,

‖Duk̄‖γ

Lγ q̄ (QT )
≤ Ck̄, (35)

where Ck̄ depends on k̄, ‖u0‖W 2− 2
q ,q

(Td )
, q, d,CH , T . Actually, Du can be proven to

be bounded in L∞(QT ), see [20]. It is now straightforward to conclude. Indeed,

‖Du‖Lγ q (QT ) ≤ ‖Dw‖Lγ q (QT ) + ‖Duk̄‖Lγ q (QT ),

and the assertion follows by (34) and (35). ��
Remark 4.2 We claim that C appearing in the statement of Theorem 1.3 remains
bounded when

• f varies in a bounded and equi-integrable set F ⊂ Lq(QT ), and
• u0 varies in a bounded set U0 ⊂ W 2−2/q,q(Td).

Indeed, in addition to ‖u0‖
W

2− 2
q ,q

(Td )
, q, d, T ,CH , the constant C crucially depends

on k̄ appearing in (33). This is chosen in the proof large enough so that

(‖ f − Tk̄( f )‖Lq (QT ) + ‖u0 − u0��(1/k̄)‖L p(Td )

) ≤ c.

In turn, c = (2C6C
γ
2 C

γ−1)−1 is independent of f ∈ F and u0 ∈ U0, since they
vary in bounded and equi-integrable sets in Lq(QT ) and L p(Td) respectively, cf.
Remark 3.6. Note that by Sobolev embeddings, the closure of U0 in L p (with p, q as
above) is compact in L p(Td), and hence weakly compact and L p-equi-integrable by
the Dunford–Pettis theorem, see [10, Theorem 4.30].
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Hence, we just need to verify that for c > 0, there exists k independent of u0 ∈ U0
such that

‖u0 − u0��(1/k)‖L p(Td ) ≤ c.

This follows again by the compactness of U0 in L p, which can be covered by finitely
many balls Bc/3(u j ) in L p(Td). Choosing k large so that

‖u j − u j��(1/k)‖L p(Td ) ≤ c/3 for all j,

we get, for u0 ∈ Bc/3(u j ),

‖u0 − u0��(1/k)‖L p(Td )

≤ ‖u0 − u j‖L p(Td ) + ‖u j − u j��(1/k)‖L p(Td ) + ‖u j − u0‖L p(Td )‖�(1/k)‖L1(Td ) ≤ c.

Remark 4.3 One can implement the same scheme to handle more general Hamilton–
Jacobi equations of the form

∂t u −
∑
i, j

ai j (x, t)∂i j u(x, t) + H(x, Du) = f (x, t)

where A ∈ C([0, T ];W 2,∞(Td)) and λId ≤ A ≤ �Id for 0 < λ ≤ �. In partic-
ular, one has to appropriately adjust the proofs of the integral and Hölder estimates,
following [20], and use the linear maximal regularity results in [61].

5 Applications toMean Field Games

For a given couple uT ,m0 ∈ C3(Td), consider the MFG system

⎧⎪⎨
⎪⎩

−∂t u − �u + H(x, Du) = g(m(x, t)) in QT

∂tm − �m − div(DpH(x, Du)m) = 0 in QT

m(0) = m0, u(T ) = uT in Td .

5.1 TheMonotone (or Defocusing) Case

Proof of Theorem 1.4 We argue that under the restrictions on r it is possible to prove a
priori bounds on second-order derivatives of solutions to (MFG) (and beyond, assum-
ing additional regularity of the data). These are typically enough to prove existence
theorems. One may indeed set up a fixed-point method, or a regularization procedure,
which consists in replacing g(m) by g(m�χε)�χε (where χε is a sequence of standard
symmetric mollifiers). The existence of a solution (mε, uε) is then standard (see e.g.
[35]). Since the bounds on (mε, uε) do not depend on ε > 0, it is therefore possible
to pass to the limit and obtain a solution to (MFG).
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The key a priori bound is stated in the next Lemma 5.1. Once bounds for u in
W 2,1

q (QT ), q > (d + 2)/γ ′, are established, one can indeed improve the estimates
via a rather standard bootstrap procedure involving parabolic regularity for linear
equations. Indeed, DpH(x, Du) turns out to be bounded in L p for some p > d + 2,
which is the usual Aronson-Serrin condition yielding space-time Hölder continuity of
m on the whole cylinder (see e.g. [41, Theorem III.10.1]). We can then use Theorem
1.1 to conclude that u in W 2,1

q (QT ) for any q > d + 2. This immediately implies by

the embeddings of W 2,1
q (QT ) that u is bounded in C1+δ, 1+δ

2 (QT ) for any δ ∈ (0, 1).
Then,we can regard theHamilton–Jacobi equation as a heat equationwith a space-time
Hölder continuous source, and by [41, Section IV.5.1] conclude that uε is bounded in

C2+δ′, 1+δ′
2 (QT ) independently of ε. One then goes back to the Fokker–Planck equation

to deduce that m also enjoys C2+δ′, 1+δ′
2 (QT ) bounds. ��

Below we state and prove the crucial a priori estimate on solutions to (MFG).

Lemma 5.1 Let (u,m) be a classical solution to (MFG). Under the assumptions of
Theorem 1.4, there exists a constant C > 0 such that

‖u‖W 2,1
q (QT )

+ ‖Du‖Lγ q (QT ) ≤ C, q >
d + 2

γ ′

for some positive constant C (depending only on the data).

Proof Step 1. First order estimates. These are standard (see e.g. [35, Proposition
6.6]), and easily obtained by testing the Hamilton–Jacobi equation with m − m0 and
the Fokker–Planck equation with u − uT ; using the standing assumptions on H and
f one obtains

∫∫
QT

|Du|γm dxdt +
∫∫

QT

mr+1 dxdt ≤ C1. (36)

Step 2. Second order estimates. These are obtained by testing the Hamilton–Jacobi
equation with �m and the Fokker–Planck equation with �u:

∫∫
QT

Tr(D2
ppH(D2u)2)m dxdt +

∫∫
QT

g′(m)|Dm|2 dxdt

=
∫
Td

�uTm(T ) dx −
∫
Td

�u(0)m0 dx

−2
∫∫

QT

Tr(D2
px HD2u)m dxdt −

∫∫
QT

�x H(x, Du)m dxdt . (37)

On one hand,
∫∫

Tr(D2
ppH(D2u)2)m ≥ ∫∫ [C−1

H (1 + |Du|2) γ−2
2 |D2u|2 − CH ]m by

(H2), while on the other hand by Young and Cauchy–Schwarz inequality
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−2
∫∫

QT

Tr(D2
px HD2u)m dxdt −

∫∫
QT

�x H(x, Du)m dxdt

≤ C−1
H

2

∫∫
QT

(1 + |Du|2) γ−2
2 |D2u|2m

+c

(∫∫
QT

H(x, Du)m dxdt +
∫∫

QT

m dxdt

)
,

therefore, back to (37), integrating by parts we obtain

C−1
H

2

∫∫
QT

(1 + |Du|2) γ−2
2 |D2u|2m dxdt +

∫∫
QT

g′(m)|Dm|2 dxdt

=
∫
Td

�uTm(T ) dx −
∫
Td

u(0)�m0 dx + c
∫∫

QT

|Du|γm dxdt + cT .

Plugging in (36), using lower bounds on g′ and the fact that u ≥ min uT +min H(·, 0)
by the comparison principle, we finally get∫∫

QT

(1 + |Du|2) γ−2
2 |D2u|2m dxdt +

∫∫
QT

|D(m
r+1
2 )|2 dxdt ≤ C2. (38)

Step 3. Setting b(x, t) = −DpH(x, Du(x, t)), by the assumptions on H , (36) and
(38) (recall also that |DpH(x, p)| ≥ c−1|p|γ−1 − c), we have

∫∫
QT

|div(b)|2m dxdt ≤ C if γ ≤ 2∫∫
QT

|div(b)|2(1 + |b|) 2−γ
γ−1m dxdt ≤ C if γ > 2,

and since m solves a Fokker–Planck equation with drift b, applying Lemma 5.2 with
μ = 2 if γ ≤ 2 and μ = γ if γ > 2 yields

‖m‖L∞(0,T ;Lη(Td )) ≤ Cη for any 1 ≤ η ≤
{

d
d−2 if γ ≤ 2
d(γ−1)

d(γ−1)−2 if γ > 2.

Therefore, using again (38), we have bounds on m
r+1
2 in L∞(0, T ; Lη 2

r+1 (Td)) ∩
L2(0, T ;W 1,2(Td)), which, by parabolic interpolation [30, Proposition I.3.2] imply

‖mr‖Lq (Td ) ≤ C2 for any q <

{
1 + d

r(d−2) if γ ≤ 2

1 + (d+2)(γ−1)−2
r [d(γ−1)−2] if γ > 2.

Under our assumptions on r , the exponent q can be chosen large enough to apply
Theorem 1.1, that yields the assertion. ��

The following lemma is needed to extract regularity information on m.
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Lemma 5.2 Let m be a classical solution to

∂tm − �m + div(b(x, t)m) = 0 in QT

and assume that for μ ≥ 2

(∫∫
QT

|div(b)|2(1 + |b|) 2−μ
μ−1m dxdt

) 1
2
(∫∫

QT

|b| μ
μ−1m dxdt

)μ−2
2μ ≤ K .

Then, there exists a constant C depending on K ,μ and d, such that

‖m(t)‖L p(Td ) ≤ C + ‖m(0)‖L p(Td ) ∀t ∈ [0, T ],

where p = d(μ−1)
d(μ−1)−2 if d > 2, while p ∈ [1,∞) if d ≤ 2.

Proof The estimate can be obtained by testing the equation against mp−1 and using
parabolic interpolation (see [34, Theorem 4.1] for further details). We briefly sketch
it here for completeness. Testing the equation and integrating by parts yields

∫
Td

m p(t)dx + 4(p − 1)

p

∫ t

0

∫
Td

|Dm
p
2 |2dxds

=
∫
Td

m p(0)dx − (p − 1)
∫ t

0

∫
Td

div(b)mp dxdt .

We write

∫ t

0

∫
Td

div(b)mp dxdt =
∫ t

0

∫
Td

div(b)m
1
2 |b| 2−μ

2(μ−1) |b| μ−2
2(μ−1)m

μ(p−1)+1
μ m

μ−2
2μ dxdt

Therefore, applying generalized Holder’s inequality with exponents (2, μ,
2μ

μ−2 ) we
deduce

∫
Td

m p(t)dx + 4(p − 1)

p

∫ t

0

∫
Td

|Dm
p
2 (s)|2 dxds

≤
∫
Td

m p(0)dx + (p − 1)K

(∫ t

0

∫
Td

mμ(p−1)+1(s) dxds

) 1
μ

. (39)

We then apply parabolic interpolation inequalities (see e.g. [30, Proposition I.3.1])

∫ t

0

∫
Td

|z|ζ dxds ≤ C

(
sup

s∈[0,t]

∫
Td

|z|2(s)dx
) 2

d ∫ t

0

∫
Td

|Dz|2dxds where ζ = 2
d + 2

d
,
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with z = m
p
2 , p = d(μ−1)

d(μ−1)−2 , so that ζ = 2μ(p−1)+1
p , to obtain

∫ t

0

∫
Td

mμ(p−1)+1(s) dxds =
∫ t

0

∫
Td

m
p
2 ζ dxds

≤ C

(∫ t

0

∫
Td

|Dm
p
2 |2dxds

)(
sup

s∈[0,t]

∫
Td

m p(s)dx

) 2
d

.

Then, using also Young’s inequality, the right-hand side of (39) can be controlled as
follows:

∫
Td

m p(0)dx + C

(∫ t

0

∫
Td

|Dm
p
2 (s)|2 dxds

) 1
μ

(
sup

s∈[0,t]

∫
Td

m p(s)dx

) 2
dμ

≤
∫
Td

m p(0)dx + 4(p − 1)

p

∫ t

0

∫
Td

|Dm
p
2 |2dxds + C1

(
sup

s∈[0,t]

∫
Td

m p(s)dx

) 2
d(μ−1)

.

If d > 2, then 2
d(μ−1) < 1 and we are done. If d ≤ 2, the proof is somehow simpler,

by different nature of Sobolev embeddings of W 1,2(Td); we refer to [36]. ��

5.2 The Nonmonotone (or Even Focusing) Case

Proof of Theorem 1.5 We detail only the derivation of the a priori estimates for smooth
solutions to (MFG), i.e. the existence of a constant C > 0 (depending only on the
data) such that

‖u‖W 2,1
q (QT )

+ ‖Du‖Lγ q (QT ) ≤ C, q >
d + 2

γ ′ (40)

Since we fall in the maximal regularity regime for the Hamilton–Jacobi equation, the
existence of a solution to the MFG system can then be derived as in Theorem 1.4.

We start from first order estimates as in Lemma 5.1, that now yield, using the
assumptions on g,

∫∫
QT

L
(
x, DpH(x, Du)

)
m dxdt −

∫∫
QT

mr+1 dxdt ≤ C1.

To bound the two terms in the left hand side separately, a further step is needed. Recall
a crucial Gagliardo-Nirenberg type inequality proven in [23, Proposition 2.5], that
reads

(∫∫
QT

mr+1(x, t) dxdt

)δ

≤ C

(∫∫
QT

|DpH(x, Du(x, t))|γ ′
dxdt + 1

)
. (41)
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for some C > 0 and δ > 1, provided that r < γ ′/d. Then, using this inequality, the
assumptions on L and the fact that

∫
Td m(t) = 1 for all t ,

C−1
L

∫∫
QT

|DpH(x, Du(x, t))|γ ′
dxdt − CLT

≤
∫∫

QT

L
(
x, DpH(x, Du)

)
m dxdt ≤ C

(∫∫
QT

|DpH(x, Du(x, t))|γ ′
dxdt + 1

)1/δ

+ C1.

Hence, back to (41), we get

‖m‖Lr+1(QT ) ≤ C2. (42)

Therefore, ‖g(m)‖
L
r+1
r (QT )

≤ C2. Note that by the assumptions on r , q = r+1
r is

large enough to apply Theorem 1.1, and (40) follows. ��
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Appendix A: Some Embedding Theorems

Lemma A.1 For p > 1, the space H1
p(QT ) is continuously embedded into

C([0, T ];W 1−2/p,p(Td)), and W 2,1
p (QT ) is continuously embedded into

C([0, T ];W 2−2/p,p(Td)).

Proof We consider the embedding of H1
p only (the other can be obtained similarly).

Recall that the case p = 2 is classical (see e.g. [28, Theorem XVIII.2.1]). The general
statement p �= 2 can be proven via abstract methods for evolution problems, see
[1,61]. We provide a short proof for reader’s convenience. First, u ∈ H1

p(QT ) can be
extended to a v ∈ H1

p(T
d × (0,∞)) in the usual way: let u(t) = u(T ) for all t ≥ T ,

and set v(t) = ζ(t)u(t), where ζ is a smooth function in (0,∞) which vanishes for
t ≥ T + 1 and is identically one for t ∈ [0, T ]. Then, since H1

p(T
d × (0,+∞)) 
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W 1,p(0,+∞; (W 1,p′
(Td))

′
) ∩ L p(0,+∞;W 1,p(Td)), apply [48, Corollary 1.14] to

obtain that

H1
p(T

d × (0,+∞)) ↪→ Cb([0,+∞); (W−1,p(Td),W 1,p(Td))1−1/p,p).

One then concludes by means of the Reiteration Theorem [48, Theorem 1.23] (see
also [45]) that

(W−1,p(Td),W 1,p(Td))1−1/p,p 
 W 1−2/p,p(Td),

which gives the statement. ��
Proposition A.2 For p > 1, the parabolic space H1

p(QT ) continuously embedded

into Lδ(0, T ;Wα,δ(Td)), where δ > p and

α = 1 + d + 2

δ
− d + 2

p
.

Proof We adapt a strategy presented in [39,40] (see also [19] for the Bessel potential
spaces setting). Let θ = p/δ ∈ (0, 1) and ν = (1 − 2/p)(1 − θ) + θ . We now use
the (real) interpolation in the Sobolev–Slobodeckii scale to observe that W ν,p(Td)

can be obtained by interpolation between W 1,p(Td) and W 1−2/p,p(Td) (see [71,
Theorem 2.4.2 p. 186 and eq. (16)]). Moreover, W ν,p(Td) is continuously embedded
into W ν+d/δ−d/p,δ(Td), see [62]. Hence, for a.e. t ,

c(d, p, δ) ‖u(t)‖
W

ν− d
p + d

δ
,δ

(Td )
≤ ‖u(t)‖W ν,p(Td ) ≤ ‖u(t)‖1−θ

W 1−2/p,p(Td )
‖u(t)‖θ

W 1,p(Td )
.

Then, α = ν − d
p + d

δ
= 1 + d

δ
− d+2(1−θ)

p and

(∫ T

0
‖u(t)‖

p
θ

Wα,δ(Td )
dt

)θ

≤ C1

(∫ T

0
‖u(t)‖(1−θ)

p
θ

W 1−2/p,p(Td )
‖u(t)‖p

W 1,p(Td )
dt

)θ

≤ C2 sup
t∈[0,T ]

‖u(t)‖(1−θ)p
W 1−2/p,p(Td )

(∫ T

0
‖u(t)‖p

W 1,p(Td )
dt

)θ

,

Recalling now that θ = p/δ ∈ (0, 1) we obtain

(∫ T

0
‖u(t)‖δ

Wα,δ(Td )
dt

) 1
δ

≤ C3‖u‖H1
p(QT ).

��
Lemma A.3 For 0 < α < 1 and 1 ≤ p < ∞, Wα,p(Td) is continuously embedded
into Nα,p(Td).
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Proof We just need to localize analogous results onRd , which go back to [67, Lemma
9 p. 441], see also [65, Proposition 10-(b) Section 5.2] and [45, Theorem 17.38] for a
proof via real interpolation methods. Let χ be a compactly supported cut-off function
such that χ ≡ 1 on the unit cube [−2, 2]d . It is immediate to see that the extension
operator is bounded

Wk,p(Td) � u �−→ ũ = χu ∈ Wk,p(Rd)

for all nonnegative integers k ≥ 0 and p ≥ 1, so it is bounded from Wα,p(Td) to
Wα,p(Rd) by interpolation. Then,

‖u‖Nα,p(Td ) ≤ C1‖ũ‖Nα,p(Rd ) ≤ C2‖ũ‖Wα,p(Rd ) ≤ C3‖u‖Wα,p(Td ) ,

where the second inequality relies on the aforementioned embedding Wα,p(Rd) ↪→
Nα,p(Rd) 
 Bα

p∞(Rd). ��

References

1. Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. I, volume 89 of Monographs in Mathe-
matics. Birkhäuser Boston, Inc., Boston (1995). Abstract linear theory

2. Amann, H., Crandall, M.G.: On some existence theorems for semi-linear elliptic equations. Indiana
Univ. Math. J. 27(5), 779–790 (1978)

3. Ambrose, D.M.: Strong solutions for time-dependent mean field games with non-separable Hamilto-
nians. J. Math. Pures Appl. 9(113), 141–154 (2018)

4. Attouchi, A., Souplet, P.: Gradient blow-up rates and sharp gradient estimates for diffusive Hamilton–
Jacobi equations. Calc. Var. Partial Differ. Equ. 59, 153 (2020)

5. Ben-Artzi, M., Souplet, P., Weissler, F.B.: The local theory for viscous Hamilton–Jacobi equations in
Lebesgue spaces. J. Math. Pures Appl. (9) 81(4), 343–378 (2002)

6. Bensoussan, A., Breit, D., Frehse, J.: Parabolic Bellman-systems with mean field dependence. Appl.
Math. Optim. 73(3), 419–432 (2016)

7. Bianchini, S., Colombo, M., Crippa, G., Spinolo, L.V.: Optimality of integrability estimates for
advection-diffusion equations. Nonlinear Differ. Equ. Appl. (NoDEA) 24, Article Number 33 (2017)

8. Boccardo, L., Orsina, L., Porretta, A.: Some noncoercive parabolic equations with lower order terms
in divergence form. J. Evol. Equ. 3(3), 407–418 (2003)

9. Bogachev, V.I., Krylov, N.V., Röckner, M., Shaposhnikov, S.V.: Fokker–Planck–Kolmogorov Equa-
tions. Mathematical Surveys and Monographs, vol. 207. American Mathematical Society, Providence
(2015)

10. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext.
Springer, New York (2011)

11. Cagnetti, F., Gomes, D., Mitake, H., Tran, H.V.: A new method for large time behavior of degenerate
viscous Hamilton–Jacobi equations with convex Hamiltonians. Ann. Inst. H. Poincaré Anal. Non
Linéaire 32(1), 183–200 (2015)

12. Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Porretta, A.: Long time average of mean field games. Netw.
Heterog. Media 7(2), 279–301 (2012)

13. Cardaliaguet, P., Silvestre, L.: Hölder continuity to Hamilton–Jacobi equations with superquadratic
growth in the gradient and unbounded right-hand side. Commun. Partial Differ. Equ. 37(9), 1668–1688
(2012)

14. Cardaliaguet, P., Graber, P.J., Porretta, A., Tonon, D.: Second order mean field games with degenerate
diffusion and local coupling. Nonlinear Differ. Equ. Appl. (NoDEA) 22(5), 1287–1317 (2015)

15. Cesaroni, A., Cirant, M.: Concentration of ground states in stationary mean-field games systems. Anal.
PDE 12(3), 737–787 (2019)

123



   19 Page 38 of 40 M. Cirant, A. Goffi

16. Cirant, M.: Stationary focusing mean-field games. Commun. Partial Differ. Equ. 41(8), 1324–1346
(2016)

17. Cirant, M.: On the existence of oscillating solutions in non-monotone mean-field games. J. Differ. Equ.
266(12), 8067–8093 (2019)

18. Cirant, M., Ghilli, D.: Existence and non-existence for time-dependent mean field games with strong
aggregation. Math. Ann. (2021). https://doi.org/10.1007/s00208-021-02217-3

19. Cirant, M., Goffi, A.: On the existence and uniqueness of solutions to time-dependent fractional MFG.
SIAM J. Math. Anal. 51(2), 913–954 (2019)

20. Cirant, M., Goffi, A.: Lipschitz regularity for viscous Hamilton–Jacobi equations with L p terms. Ann.
Inst. H. Poincaré Anal. Non Linéaire 37(4), 757–784 (2020)

21. Cirant,M., Goffi, A.: On the problem ofmaximal Lq -regularity for viscousHamilton-Jacobi equations.
Arch. Ration. Mech. Anal. 240(3), 1521–1534 (2021)

22. Cirant, M., Porretta, A.: Long time behaviour and turnpike solutions in mildly non-monotone mean
field games. ESAIM Control Optim. Calc. Var. 27, 86 (2021)

23. Cirant,M., Tonon, D.: Time-dependent focusingmean-field games: the sub-critical case. J. Dyn. Differ.
Equ. 31(1), 49–79 (2019)

24. Cirant, M., Gianni, R., Mannucci, P.: Short-time existence for a general backward-forward parabolic
system arising from mean-field games. Dyn. Games Appl. 10(1), 100–119 (2020)

25. Cirant, M., Gomes, D., Pimentel, E., Sánchez-Morgado, H.: On some singular mean-field games. J.
Dyn. Games (2021). https://doi.org/10.3934/jdg.2021006
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