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Abstract

Climate transition risk – the risk generated from the transition to a low-carbon economy due

to changing policies – can have cross-border impacts. In this paper, we study the transition risk

spillover among six major financial markets from 2013 to 2021. We find that Europe and the

US are the main transition risk contributors, while Japan and China are the net risk receivers.

Risk spillover can change over time and change according to different types of transition risk

shocks. It takes around six weeks for transition risk to be fairly transmitted. On average,

around 20% of local climate shocks to a given financial market come from other markets. The

transition risk spillover is also affected by other factors and the drivers of spillover vary among

countries.
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1 Introduction

Attention to global warming and climate change caused by greenhouse gas emissions has been
constantly growing in recent years, especially after the signing of the Paris Agreement, which
urges countries to commit to the goal of net carbon neutrality to alleviate climate change
impacts. The transition to a low-carbon economy will have huge impacts on companies whose
activities are closely related to fossil fuel energy which subsequently transmits to the entire
economy. In a recent guidance report to climate risk, the European Central Bank defines such
impact as Climate Transition Risk, which refers to “an institution’s financial loss that can
result, directly or indirectly, from the process of adjustment towards a lower-carbon and more
environmentally sustainable economy”.1 Bolton and Kacperczyk (2022) propose a similar
concept of “carbon-transition risk”, in which they define the risk as “the amalgamation of
a wide range of shocks, including changes in climate policy, reputation impacts, shifts in
market preferences and norms, and technological innovation”. While current studies mainly
focus on how transition risk materialises and affects the economy, one crucial property seldom
discussed is that climate transition risk to certain companies or areas can transmit across
sectors and borders. In other words, via socio-economic connections between countries and
regions, local climate transition risk shocks could spread over to other regions. For example,
rising energy prices due to decarbonisation could have a huge impact on all companies across
the supply chain and even across regions.2 A higher carbon tax in one country would affect
the operation of local high carbon emission companies and may finally affect their business
partners in other countries.

The “transmission nature” of climate transition risk poses additional challenges for regu-
lators to properly evaluate the impact of climate change on the local economy. From a risk
management perspective, the spillover of transition risk from other regions also entails another
source of risk. In other words, for banks and investors whose assets have a high exposure
to climate transition risk, they not only have to evaluate domestic impacts but also foreign
impacts. The additional transition risk from abroad can also affect financial stability given

1https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.202011finalguideonclimate-
relatedandenvironmentalrisks~58213f6564.en.pdf

2The recent energy crisis in Europe, where energy prices are sky high (though not due to climate change),
would be an example of how rising energy prices can have huge systemic impacts.

2



the massive exposure of the banking sector to climate risk. Such cross-broader/cross-sector
spillover will not be trivial. To achieve the goal set by the Paris Agreement, a rapid CO2
reduction is needed (Rogelj et al., 2016), which means more drastic and extreme policies will
be taken, and thus entail a larger scale and more frequent climate transition risk spillover. In
addition, national assessments of cross-border climate change impacts have been made in a
number of countries within the EU and also for the whole EU region.3

This paper studies the climate transition risk spillover, aimed at measuring how much
and to what extent the climate transition risk can transmit across borders. We propose
a new indicator for the climate transition risk based on price movements in the financial
market: the unexpected changes in the carbon risk premium. The carbon risk premium is
the return difference between high carbon emission and low carbon emission companies. It is
the realisation of climate transition risk in the financial markets and recent literature has
pointed out its existence (Bolton and Kacperczyk, 2021). Climate transition risk shocks (such
as new climate policies or new green technologies) will change investor expectations/beliefs
in companies and then result in changes in the carbon risk premium. Subsequently, such
changes in the risk premium can be used as an indicator for the climate transition risk. With
the new indicator, the transition risk spillover is measured by estimating the co-movement of
indicators among different markets.

We study the spillover of climate transition risk among six major markets: the United
States, China (including Hong Kong), Europe (including the UK), Canada, Australia and
Japan. We use company stock returns to estimate the carbon risk premium, with a sample
period covering from 2013 to 2021. Two scenarios of risk spillover are considered: when
there are extreme positive transition risk shocks and extreme negative transition risk shocks.
Extreme positive transition risk shocks are associated with a strengthening of climate policies
(good news for green companies) or extreme local weather events (Choi et al., 2020); extreme
negative transition risk shocks are related to a weaker climate policies (good news for high
pollution companies) or a reduced concern over global warming.

3For example, the Netherlands, Germany, Norway, Switzerland, Finland, etc., as summarised by Benzie
et al. (2019) and Carter et al. (2021). West et al. (2021) study the cross-border climate change impact for
the whole Europe.
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Our analysis is based on the Quantile VAR model (Chavleishviliy and Manganelli, 2021
and Montes-Rojas, 2019), where, at given quantiles, we postulate the existence of interdepen-
dence of the conditional quantiles from the lagged values of the series of interest. We first
examine the existence of climate transition risk spillover using the Wald test by Koenker
and Bassett (1982). We then construct the connectedness network at both the lower and
upper quantiles to study the level of risk spillover among financial markets. To construct the
network, we apply the simulation-based generalised forecast error variance decomposition
(GFEVD) (also based on the QVAR framework) proposed by Lanne and Nyberg (2016) and
then, based on the GFEVD, we construct the connectedness table of Diebold and Yilmaz
(2014).

Mathematically speaking, the methodology is designed to measure whether an observed
extreme change in the local carbon risk premium is impacted by past changes of the carbon
risk premium in other markets (through the Wald test) and to which extent observed local
shocks can be explained by past foreign shocks (as detected through the GFEVD). Economi-
cally speaking, such predictability/co-movement among shocks of different markets implies
that local investors update their beliefs not just based on local climate event information but
also on foreign information, that is, the potential future impacts of foreign climate shocks to
local companies that are expected by local investors. For example, new green revolutionary
technology found in the US may be perceived by investors in China as a possible future
impact to China’s fossil fuel sector and we may thus observe changes in the carbon risk
premium in China. Such perception of foreign shock impacts can be affected by many factors
such as socio-economic relations between the two markets (trade, geopolitical relationships,
etc.), which we will also explore in our paper.

We provide evidence to the existence of transition risk spillover across markets. We
find that the climate transition risk spillover pattern varies among markets. Specifically,
with different pairs of markets, it takes different periods for risks to move from one market
(country) to another. In most cases, the risk can spill over within six weeks. Also, the risk
spillover is asymmetric – positive shocks and negative shocks have different spillover patterns.
For more extreme local climate shocks (larger shocks), they are more likely to be affected by
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foreign shocks and are affected by more recent foreign shocks.

We then studied to what extent the climate transition risk can spillover across borders. In
the long run, around 20% of extreme local shocks come from outside. The level of spillover is
higher for negative shocks than for positive shocks, and the transmission pattern is different
between negative and positive shocks. For positive shocks, Canada and the US are the largest
risk receiver, with around 25% of the risk coming from outside. For both types of shocks,
Europe is the main contributor of the risk spillover.

We also find that the causes behind the climate shocks is important in determining the
risk spillover pattern. For example, we find that extreme shocks during the COVID period
have a different risk spillover pattern from the pre-COVID period. As a result, the role of risk
spillover for one market could change across time. For example, in terms of risk spillover for
positive shocks, the US changes from a net risk contributor to a net receiver. China changes
from a net risk receiver to a net risk contributor in most recent periods. Japan is a net risk
receiver in most of the time.

Finally, we investigate the determinants of the climate transition risk spillover by studying
the level of spillover one market may receive from others. The determinants vary among
different markets. For Canada, a higher market risk spillover has a negative effect on the
spillover of negative climate shocks. For Japan, trade activities have a negative impact on the
spillover of positive climate shocks. An increase in the local climate sentiment means a lower
positive risk spillover for Australia. We also find that a positive change in oil price volatility
indicates a lower risk spillover of positive shocks and a higher risk spillover of negative shocks.
We find a mixed effect of geopolitical risk on the risk spillover for Europe and Australia.

Our contribution is three-fold. Firstly, we contribute to the literature about the systemic
nature of climate risk. Various recent studies try to provide a discussion on how we we should
measure climate risk spillovers (Li et al., 2021, Carter et al., 2021, West et al., 2021, Benzie
et al., 2019 and Challinor et al., 2018). However, none of these studies are able to provide a
method to quantify the climate risk spillover. We provide empirical evidence to the current
literature on how and to what extent the climate transition risk is transmitted through
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financial markets globally by building a connectedness network. The work by Khalfaoui et al.
(2022) study the climate risk spillover using a similar Quantile VAR method to ours, but they
only focus on the US market and study how US stock market is affected by local climate
shocks.

Secondly, our results contribute to a series of recent researches on how climate events can
affect asset prices. Bressan et al. (2022) measure the asset-level physical risk by considering
the impact of actual climate disasters on the cash flow and discount rate of assets. Pastor et al.
(2021) develop an equilibrium model showing how investor green taste plays a role in affecting
the return premium between green and non-green assets. Giglio et al. (2021b) study how real
estate prices are affected by their exposure to climate risk (measured by their location to areas
with more climate disasters). Hsu et al. (2022) show that uncertainty about environmental
policy is priced as the return difference between pollutant and non-pollutant companies. We
extend this line of research by showing that foreign climate shocks can also affect local asset
prices, because investors may also update their beliefs based on international information and
because company operation may also be affected by changes in their foreign business partners.

Finally, we propose a new method to quantify and proxy the transition risk in the market,
which extends several recent works in the literature about how to hedge the climate risk.
Engle et al. (2020) use the climate news index to construct the hedging portfolio. Alekseev
et al. (2021) propose a new method to hedge climate risk by considering shocks on climate
beliefs generated by extreme local heat events and shareholder disclosure on climate risks.
For investors, our method can be used to calculate exposure of their portfolios to climate risk
as well as to form hedge portfolios for climate transition risk. For regulators, such proxy of
climate transition risk could be used in economic models to evaluate the possible impact of
climate change-related policies.

The paper is organised as follows. We first offer a discussion in Section 2 to show how we
capture the transition risk and how we measure the risk spillover. We then describe in Section
3 the data we use and the transition risk in different markets. Section 4 shows how and to
what extent the transition risk is spilled over across markets. We deepen our discussion in
Section 5 by investigating the determinants of the transition risk spillover. We set out our
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conclusions in Section 6.

2 Methodology

2.1 Capturing Climate Transition Risk

To study the transition risk spillover, we first have to find an indicator for the climate
transition risk. The first possible choice is to use indicators that are calculated based on
actual climate change data (e.g., natural disasters, climate-change-related policies, etc.).
For example, Germanwatch publishes the Global Climate Risk Index and Climate Change
Performance Index for each country every year.4 The Global Climate Risk Index tackles the
physical risk. It measures to what extent countries and regions have been affected by impacts
of such whether events as floods or storms, and is calculated based on the frequency and
intensity of extreme weather events. The Climate Change Performance Index evaluates the
climate-related policies and actions taken by each country.

Another option is to look at the financial markets. Recent empirical studies show that
the climate transition risk is being priced in the financial market (Bolton and Kacperczyk,
2022, Bolton and Kacperczyk, 2021, Lemoine, 2021 and In et al., 2019). Specifically, climate
transition risk materialises as the “carbon risk premium”: polluting companies (companies
with high carbon dioxide emissions, or high-emission companies) are found to have a higher
stock return than greener companies (low-emission companies). If the carbon risk premium
is a realization of transition risk, then changes in the risk premium itself represents shocks of
climate transition risk, and can thus be used as an indicator for climate transition risk. For
example, Choi et al. (2020) show that when the local temperature is abnormally high, people
revise their beliefs about climate change and in the financial market, stocks of high-emission
firms underperform firms with low emissions and the relationship reverses during normal
times. Monasterolo and de Angelis (2020) find that the weight of the low-carbon indices
within an optimal portfolio have tended to increase after the Paris Agreement. Faccini et al.
(2021) show that changes in the climate policy is being priced in the risk premium. Apart
from the stock market, such carbon risk premium is also found in derivatives (Ilhan et al.,

4https://www.germanwatch.org/en.
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2021) and loans (Ehlers et al., 2022).

The transition risk captured in the second option is better than in the first one as it
reflects how much climate change events are being materialised as asset price movements,
which is more relevant when we want to measure how climate shocks are affecting the economy.
In our paper, we use the second option to construct the indicator for the climate transition risk.

Literature on the carbon risk premium is still limited, but there are several strands of
theories explaining the drivers of the risk premium. Some scholars speak from the risk
perspective, saying that high-emission companies are riskier due to a higher exposure to
shocks in the technology and policy, and thus a higher return (Bolton and Kacperczyk, 2021
and Hsu et al., 2022). Others argue that such risk premium is a compensation for investors
preferences over greenness (Pastor et al., 2021). In a similar vein, some scholars argue that
investor climate sentiment5 is the main driver of the carbon risk premium – changing investor
climate sentiment due to shocks of climate transition risks would result in changes in risk
premiums. Santi (2023) find that stocks of high-emission firms underperform low-emission
ones when investor climate sentiment increases.

Specifically, we capture the transition risk using the following steps. We first calculate
the carbon risk premium as:

RC
t ≡ RLowEms

t −RHighEms
t , (2.1)

where RLowEms
t is the return of low-emission portfolios and RHighEms

t is the return of high-
emission portfolios. In Appendix A, we offer a detailed description of the process we use to
construct the carbon risk premium, which closely follows the two-sort process of Fama and
French (1993). We then filter out the market risk component using the following regression:

RC
t = α+β1Mktt + eCt , (2.2)

we then estimate the AR (1) process for the residual of the above regression:
5The climate sentiment is a concept similar to market sentiment, and it measures the investors optimistic

or pessimistic beliefs about climate change that are not based on the facts at hand (Santi, 2023 and Baker
and Wurgler, 2006).
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eCt = α+δeCt−1 + ut. (2.3)

Finally, we capture the transition risk as the innovation (ut) of the above AR(1) process:

CRiskt ≡ ût = eCt − α̂− δ̂eCt−1. (2.4)

In the above process, we first filter out the market risk part of the carbon risk premium
and then use the unexpected change of the filtered series as an indicator for the transition risk.
In Eq. (2.4), we use the innovation from the AR(1) process to emphasis the “unexpected”
part of the changes, because investors only update their beliefs when the information is
unexpected (Pastor et al., 2021).

In Eq. (2.2), we control for market risk factors (Mktt), because the return movements
of a financial market-based portfolio (RLowEms

t and RHighEms
t ) may also be from financial

markets shocks but not necessarily the climate-related events. A rather tempting choice is to
add other Fama/French risk factors such as the size factor or the value factor to filter out
other risks. The key issue here is how we expect climate transition shocks to affect companies.
If climate shocks are to affect a company’s future operations, then the carbon risk premium
should contain part of the risk that is related to size or value, which means that filtering
out this part of the risk will undermine the true impact of climate transition risk shocks to
companies. For this reason, we do not add other risk factors.

It is worth discussing the interpretation of CRiskt before moving on. Long-term climate
transition risk materialises as shocks from climate transition risk events (green technol-
ogy, climate-change-related regulations, etc.), which cause investors to update their be-
liefs/expectation about companies, and thus a change in the carbon risk premium. In short,
CRiskt is the materialisation of climate transition risk shocks in the financial markets.

CRiskt should be close to zero in normal times. Then, when climate change events
happen, we can observe changes in the risk premium (positive or negative). When there are
positive changes (CRiskt > 0), it means that there are positive shocks from climate events
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that pushes an increase in the return for low-emission companies, for example, the signing of
the Paris Agreement or a national carbon tax. The negative situation (CRiskt < 0) is more
complicated. When there are negative changes, it means a shock that causes an increase in
the return of high-emission companies. A possible situation would be a weakening of climate
policies (due to a country completing the carbon-reduction goal in advance) or a reduction in
the concern over global warming (due to new green technology). Another possible situation
would be the “reverting” force: since the carbon risk premium is negative in normal times,
after extreme positive shocks pushing the risk premium to change from negative (normal) to
positive, negative shocks can be observed so that the carbon risk premium goes back (reverts)
from a positive state to a negative (normal) state. From a transaction point of view, prices
of low-emission companies are pushed up by positive shocks, but as the price becomes higher,
the return becomes lower and we may thus observe negative shocks after positive shocks.

2.2 Climate Transition Risk Spillover

After getting the CRiskt, we verify whether there is a climate transition risk spillover by
studying the interaction of CRiskt in different markets. Specifically, we want to see if past
shocks in one market contribute to future extreme shocks in other markets. If the answer is
yes, then there a transition risk spillover exists from one market to another. However, the
next question would be: why should there be predictability relationships between CRiskt in
different markets? What are such predictability relationships really capturing?

There is no equilibrium model that can be readily applied to describe the mechanism
of climate transition risk spillover. Several works have discussed possible pathways of how
climate risks (including physical risks and transition risks) can transmit across borders:
Finance, People, Trade, Biophysical, Geopolitical and Psychological (Carter et al., 2021,
Benzie et al., 2019 and Hildén et al., 2016). The biophysical pathway can be cross-border
ecosystems (e.g. floods or droughts upstream in a river basin). The trade pathway involves
trading activities in international markets. The finance pathway means the flow of public and
private capitals and the people pathway means the movement of people across borders. The
geopolitical pathway means climate-related impacts on international relations and strategies.
The psychological pathway means actions of different actors based on their perceptions and
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communication of cross-border risks and opportunities.

If changes in the carbon risk premium are accompanied by shifts in the investor’s beliefs
about climate change (as discussed in the previous sub-section), then the psychological
pathway should explain why shocks happened in other areas should be captured by local
markets – investors update their beliefs not only based on local climate events information but
also on foreign information. That is, investors would expect foreign shocks to have impacts
on local companies. Of course, such perception of foreign shock impacts can also be affected
by other types of pathway. For example, if the two countries have a high level of trading
activities, then climate shocks to companies in other region are more likely to be perceived
as future possible impacts on local companies.

We study the transition risk spillover by looking at two situations: when CRiskt is
extremely high and extremely low. We study the extreme climate transition risk spillover
for two reasons. Firstly, small changes in the carbon risk factor RC

t could be due to normal
price fluctuations but not necessarily climate events. Secondly, from a risk management
perspective, what worries investors and regulators most is the transition risk that may cause
huge fluctuations in the market and in their asset value. Studying extreme negative shocks
also partly rules out the “reverting” situation where there are small negative shocks after
extreme positive shocks.

2.3 Measure Risk Spillover

We apply the framework of quantile vector autoregressive (Quantile VAR) model. The
Quantile VAR model is similar to the VAR model except that every equation in the system
is a quantile regression. The model can be used to evaluate the interaction of quantiles of
endogenous variables in the system. Then, based on the model, we conduct the simulation-
based generalised variance decomposition proposed by Lanne and Nyberg (2016) and finally
construct the risk spillover table based on the connectedness network of Diebold and Yilmaz
(2014). The connectedness network should show the the level of transition risk spillover.
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2.3.1 Quantile VAR Model (QVAR)

We refer to the discussion in Su (2020) and Chen et al. (2022) to apply the quantile VAR
model. The basic element of the QVAR model is quantile regression. The quantile regression
explains the τth quantile a time series (Yt) given the vector of explanatory variables Xt :

F−1(τ, Yt|covariates) = Xtβ(τ), (2.5)

where F−1(Yt) is the inverse of probability distribution function of the random variable. β(τ)
is estimated conducting the following minimisation.

β(τ) = argmin
β(τ)

T∑
t=1

(τ − 1{Yt<Xtβ(τ)}) |Yt −Xtβ(τ)| .

The M -order quantile VAR process of the n-variable system is as follows:

Yt = c(τ) +
M∑
i=1

Bi(τ)Yt−i + εt(τ), t = 1, ..., T, (2.6)

with

Q(τ, Yt) = c(τ) +
M∑
i=1

Bi(τ)Yt−i,

where Yt is the K-vector endogenous time series; τ is the quantile level; K is the number of
variables. c(τ) is the K-vector of intercepts at quantile τ . Bi(τ) for i = 1, ...,M is the lagged
coefficients for quantile τ . Each equation in the quantile VAR system is estimated under
quantile regression in Eq.(2.5) (i.e., Bi(τ) comes from the quantile regression estimation).
εt(τ) is the vector of residual terms, with Q(τ, εt(τ) | Yt−1, ..., Yt−M) = 0. The stationary
condition of the QVAR model is similar to that of the VAR model.6

2.3.2 Testing Direct Risk Spillover under QVAR

Unlike studies that focus on the risk spillover among different financial markets, in which we
may have some prior knowledge of the existence of spillover, when it comes to the climate
transition risk spillover, we do not have prior knowledge on the following three important

6See proposition 1 of Chavleishviliy and Manganelli (2021).
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issues: firstly, whether between two countries there exists climate transition risk spillover;
secondly, if the existence is confirmed, at which lag will there be a spillover; and thirdly, at
which quantile level (τ) will there be risk spillover.

To address those issues, we conduct the Wald test proposed by Koenker and Bassett
(1982). Specifically, consider the quantile regressions from the QVAR model with a lag of
two for example:

Q(τ, y1t) = α(τ) + β1,1y1,t−1 + β1,2y1,t−2 + β2,1y2,t−1 + β2,2y2,t−2, (2.7)

where we want to test whether the above model is sufficient to explain the conditional quantile
of y1t compared to the following model:

Q(τ, y1t) = α(τ) + β1,1y1,t−1 + β1,2y1,t−2 + β2,1y2,t−1 + β2,2y2,t−2 + β3,1y3,t−1 + β3,2y3,t−2, (2.8)

and we have the null hypothesis being

H0 : R
 β3,1

β3,2

 =
 0

0

 , (2.9)

where R is the constraint matrix for coefficients. If the null hypothesis cannot be rejected, this
means past values of variable y3,t do not have a significant predictive power to the conditional
quantile of y1,t. Put it in our case, it means that past climate transition risk shocks in the
foreign market (y3,t) do not contribute to extreme shocks in the local market (y1,t), and thus
there is no climate transition risk spillover from y3,t to y1,t. We will examine the relationship
from one lag to ten lags. We will also examine the relationship at different τ levels from 80%
to 99% and from 1% to 20%.

2.3.3 Quantile General Forecast Error Variance Decomposition (QGFEVD)

Based on the QVAR model, we apply the Quantile GFEVD based on the GFEVD proposed
by Lanne and Nyberg (2016):

13



λij(H) =
∑H−1
h=0

[
QGIY (H, ε∗j,t(τ),Ft−1)i

]2
∑H−1
h=0

∑n
j=1

[
QGIY (H, ε∗j,t(τ),Ft−1)i

]2 , (2.10)

where QGIY (H, ε∗j,t(τ),Ft−1) is the Quantile Impulse Response Function (QIRF), defined as:

QGIY (H, ε∗j,t(τ),Ft−1) ≡ Q
(
τ, Yt+H | ε∗j,t(τ) = εj,t(τ) + δj,Ft−1

)
−Q (τ, Yt+H | Ft−1) .

(2.11)
Q(τ, Yt+H | ·) (a K × 1 vector) denotes the conditional quantile of Yt+H . Q(τ, Yt+H | ε∗j,t(τ) =
εj,t(τ) + δj,Ft−1) is the conditional quantile given a shock δj at time t, where δj means
a shock to variable j. Q(τ, Yt+H | Ft−1) is the conditional quantile without the shock.
We choose the shock δj (through bootstrapping) from the history of quantile residuals
εj(τ), so that a shock at time t to variable j means that variable j changes to its τth
quantile (i.e., let εj,m(τ) denote the chosen quantile residual, then δj = −εj,m(τ)⇒y∗j,t =
αj(τ) +∑M

i=1
∑K
k=1 βi,k(τ)yk,t−i + εj,t(τ)− εj,m(τ) = yj,t − εi,m(τ) = Qm(τ, yj,t)).

Therefore, the above definition of QIRF means that, given the K-variable QVAR system
of (2.6), we give a shock to variable j at time t and check how the quantile of Yt changes
H periods after.7 QGIY (H, δj,Ft−1) is thus a (K × 1) vector that shows the response of
the K-variable QVAR system to a variable specific shock of j in H periods. Accordingly,
QGIY (H, δj,Ft−1)i (with subscript i) is the ith element of the vector, and measures the
response of variable i to shock j in H periods.

Subsequently, the QIRF has an economic interpretation in our case: at time t, when there
are large shocks from climate events, such that transition risk in market j becomes very
large/small (changes to its τth quantile), how and to what extent it could contribute to the
extreme transition risk shocks of other markets H periods after. Therefore, QIRF provides
additional information to the Wald test by showing how much the transition risk spills over
to different markets.

7The definition of QIRF is still under discussion in the literature, see, for example, Chavleishviliy and
Manganelli (2021), Montes-Rojas (2019) and White et al. (2015). The key here is to define it properly to
answer our research question – we want to check how the QVAR system changes H periods after given a
shock in time t. The definition in our paper partly refers to Montes-Rojas (2019).
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Given the definition of QIRF, the numerator of QGFEVD in Eq. (2.10) measures the
aggregate cumulative (from h = 0 to H − 1) response of variable i to shock j, and the
denominator is the cumulative response of variable i to all shocks (i.e., we give a shock to
every variable). Therefore, λij(H) shows the percentage response of variable i to shock j and
by construction, Σn

j=1λij(H) = 1.

One aspect worth mentioning is that the quantile residual (εt(τ)) is different from the
error in the mean (i.e., the residual term based on linear regression, εt). In Koop et al. (1996)
and Pesaran and Shin (1998)’s work, the generalised impulse response function is based on
the error in the mean (εt):

GIY (H, δj,Ft−1) = E(Yt+H | εj,t = δj,Ft−1)− E(Yt+H | Ft−1)
= AHE(εt | εj,t = δj) = AHΣejσ−1

jj δj
,

where AH is the MA representation coefficient of a VAR model; εt is assumed to fol-
low multi-variant normal distribution, such that E(εt | εjt = δj) has an analytical so-
lution: E(εt | εjt = δj) = Σejσ−1

jj δj. In comparison, the only restriction on εt(τ) is
Qτ (εt(τ) | Yt−1, ..., Yt−p) = 0. Therefore, unless we make further distributional assump-
tions about the quantile error εt(τ), we may not be able to obtain an explicit function of
QGIY (H, ε∗j,t(τ),Ft−1), which means that a simulation-based method is needed. We provide
in Appendix B on how we use simulation-based method to calculate the QIRF.

After obtaining the forecast error decomposition, we apply the connectedness framework
of Diebold and Yilmaz (2014) and calculate directional spillover form variable j to variable i
as:

Σn
j=1λ̃ij(H), j 6= i.

And the directional spillover form variables i to other variable j is measured as:

Σn
i=1λ̃ij(H), i 6= j.

Given these directional spillover, net spillovers from market i to all markets j can be calculated
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as the difference between gross shocks transmitted to and gross shocks received from all other
markets:

S(H) = Σn
i=1λ̃ij(H)− Σn

j=1λ̃ij(H), i 6= j. (2.12)

Finally, we check the total spillover index as:

TS = 1
n

n∑
i,j=1

λ̃ij(H), i 6= j. (2.13)

3 Data and Climate Transition Risk Statistics

3.1 Company Data

Six major markets are included in our sample: the United States, China (including Hong
Kong), Europe (including UK), Canada, Australia and Japan. The weekly price data of
each company will be used to address time zone issue caused by using daily data. The
return is calculated in a logarithm manner as Ri,t = Ln( Pi,t

Pi,t−1
) for each company i and time

t in each market. In total, we have 443 weekly return observations from January 2013 to
June 2021. We do not include the time period in earlier years because there were not many
companies disclosing their sustainability information. In addition, the climate sentiment is
a phenomenon that only appear in recent years (Giglio et al., 2021a). In the US, we have
1920 companies in the sample; in China, we have 464 companies; Japan, 420 companies;
Canada, 293 companies; Australia, 310 companies and for Europe, we have 1310 companies.
As for the market return used in Eq. (2.2), we use S&P 500 (US), the average of Hang Seng
Index (Hong Kong) and the Hu-Shen 300 (China), EUROSTOXX 50 (Europe), S&P/TSX
Composite Index (Canada), S&P/ASX 200 (Australia) and S&P Japan 500 (Japan).

3.2 Carbon Emissions

The Ekion Datastream Database will be used in our analysis. We download the month-end
carbon emission measure for companies with available data from 2012/12 to 2021/05 (103
months of data in total). The CO2 emission will be used in calculating the carbon risk
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premium. We use the “Estimated CO2 Equivalents Emission Total”, which shows the total
CO2 and CO2 equivalents emission in tonnes in one year at a company-level and includes
both direct (scope 1) and indirect (scope 2) emissions. The data comes from either company’s
self-disclosure in the annual report, or from the carbon emission model developed by Eikon,
which follows the greenhouse gas emission protocol.8 To account for the size effect, we also
download the month-end value of market value for each company, and we calculate the
emission to market value (MV) as:

Cm,i = CO2m,i
MVm,i

, (3.1)

where CO2m,i is the month-end value of carbon emissions of that year for company i. Note
that CO2m,i is updated annually but not necessarily at the beginning of each year (due to
different fiscal years of each company), and for this reason we download the month-end value
of the carbon emissions for each company.

3.3 Climate Transition Risk Statistics

Table 1 shows the statistics of transition risk time series for each market calculated as in
Eq.(2.4). From Panel A, we can see that Canada has the highest level of standard deviations,
followed by Australia. Europe and the US have the lowest standard deviation. Panel B shows
the correlation among different transition risk time series. The correlation between the US,
Europe and Canada is higher than the correlation with other markets. This is unsurprising
considering the level of connections among the three markets.

8https://www.refinitiv.com/content/dam/marketing/en_us/documents/fact-sheets/esg-carbon-data-
estimate-models-fact-sheet.pdf
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Table 1: Transition risk Statistics for Each Market
Panel A: Transition risk statistics in each market
CRisk Stat. US CN JP CAN AUS EU

Mean 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Std. 1.16% 1.45% 1.26% 2.18% 2.03% 1.01%

Max. 4.44% 5.21% 6.62% 18.42% 9.16% 3.59%

Min. -5.26% -7.81% -5.38% -8.69% -5.99% -3.55%
Panel B: Correlation among the transition risk series of different markets

US CN JP CAN AUS EU

US 1

CN 0.16 1

JP 0.24 0.15 1

CAN 0.51 0.10 0.17 1

AUS 0.25 0.14 0.13 0.31 1

EU 0.56 0.17 0.28 0.55 0.41 1
Note: Panel A shows the statistics of the transition risk time series in each market (from 7 January 2013 to
28 June 2021, 443 weekly observations). Panel B shows the correlation among transition risk time series in
different markets, all with 1% significance level.

Figure 1 shows the graphs of the transition risk time series. Transition risks in different
markets have similar trends over the years: when major climate events occur, we see huge
positive/negative values of the transition risk series, which means that our method is able
to capture the climate transition risk. In normal times when there are no major climate
events such as climate summit or policy changes, for example from mid-2017 to mid-2019,
the transition risk series have small fluctuations. This observation supports our choice of
studying the transition risk spillover through extreme values of CRiski,t – major climate
events are closely associated with large values of CRiski,t.

Apart from having similar trends, there are two major differences among transition risk
series in different markets. The first is that, when a global climate change event occurs,
different markets respond with different strengths. For example, after the 2014 UN climate
summit, we observe a sharp positive value in Canada (Panel B of Figure 1) but a moderate
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positive value in the EU and the US; and the positive values observed in China and Japan are
quite small. We explain that investors in different markets may have different criteria/tastes
for climate change, such that the same climate change event could trigger different levels of
reactions. The second difference is that during periods where there are no global-wide events
(2018 – 2019), the transition risk in different markets is different. This could be due to that
climate events in different markets are different.

An interesting observation is that, with the outbreak of the COVID-19 crisis (an event
that is not related to climate change) , there were also huge positive values observed (e.g.,
Panel B, Canada, the green line). This could be explained by the fact that during the crisis,
investors preference for green assets strengthened and there are sudden fund inflow into
low-emission companies. Dong et al. (2019) explain such phenomenon as “flight to quality”
effect: during crisis periods, investors change from low sustainability performance stocks to
high sustainability performance stocks. Santi (2023) also find that investors climate sentiment
may change according to the economic cycle.
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Figure 1: Graphs of Transition Risk Series (CRiski,t) in Each Market
Panel A: Weekly transition risk time series

Panel B: Cumulative value of transition risk series

s
Note: Panel A shows the weekly time series of transition risk in each market. Panel B shows the cumulative
value of the transition risk time series for different markets, which is calculated as:

∑T

t=1
CRiski,t. In each

graph, we plot major climate change events that happened during our sample period.
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4 Transition Risk Spillover

4.1 Is There a Transition Risk Spillover?

In Table 2 – 3, we present the results of the Wald test from lag one (one week) to lag ten
(ten weeks). In each lag, we include past values of the six markets. Table 2 shows the test at
the upper tail from τ = 80% to τ = 99% and Table 3 shows the test results at the lower tail
from τ = 1% to τ = 20%. We also present a summary of the number of pairs with significant
Wald test results at each lag and at each quantile in Figure 2. The first observation is that,
as we move towards more extreme quantiles (to 1% and 99%), there are more pairs observed.
In addition, at τ = 1% and τ = 99%, risk spillovers are observed within three weeks, while
for less extreme quantiles like τ = 5% and τ = 95%, we start to observe the risk spillover for
most markets after six weeks.

Recall that under our setting, a more extreme quantile means a larger local climate shock.
Therefore, the above observations imply that, first of all, for climate transition risk shocks,
more extreme local shocks are more likely to be affected by foreign shocks (more pairs of
spillover near more extreme quantiles); and secondly, more extreme local shocks are affected
by more recent foreign shocks (spillovers of more extreme quantiles observed within shorter
periods). Our explanation is that extreme shocks are normally triggered by major events,
such as the Paris Agreement or the Climate Summit, as can be seen from Panel B of Figure
1. These events can usually spread faster and are more likely to spread across regions than
normal events.

We also find that, given a certain quantile, with different pairs of markets, it takes different
periods for transition risks to spill over. For example, at τ = 5%, shock in Japan takes
one week to transfer to China, and in the situation of the US to the China, it takes three
weeks to transmit across borders. This implies that investors absorb and update their beliefs
with different speed in terms of information from different countries. In most cases, the
transition risk can spillover within six weeks and there are fewer cases found within two weeks.

Given a certain lag, the transition risk spillover is asymmetric between the lower tail and
the upper tail. For example, at a lag of five, shocks in the US can spill over to China at

21



τ = 5% but not at τ = 95%. One explanation is that if investors in one market respond to
foreign shocks that are expected to have impact on local companies, it means that not all
shocks are supposed be transferred, because not all local shocks will have foreign impacts.
We also find more pairs of risk spillover relationships at the lower tail than at the upper tail.

Table 2: Wald Test Results for Different Lags at the Upper Tail
Lag = 1 Lag = 3

Lag = 5 Lag = 6

Lag = 8 Lag = 10

Note: The table shows the p-value of the Wald test based on the QVAR model. “US-CN” means the test
of whether past climate transition shocks in the US contributes to future extreme shocks China; “CN-US”
means the test of if China contributes to the US, and so on. Only p < 5% will be marked in colour. A darker
colour means a smaller p-value and thus a stronger relationship.
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Table 3: Wald Test Results for Different Lags at the Lower Tail
Lag = 1 Lag = 3

Lag = 5 Lag = 6

Lag = 8 Lag = 10

Note: The table shows the p-value of the Wald test based on the QVAR model. “US-CN” means the test
of whether past climate transition shocks in the US contributes to future extreme shocks China; “CN-US”
means the test of if China contributes to the US, and so on. Only p < 5% will be marked with colour. A
deeper colour means a smaller p-value and thus a stronger relationship.
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Figure 2: Number of Pairs with Significant Wald Test Results
Panel A: Wald test results summary at the upper tail

Panel B: Wald test results summary at the lower tail

Note: The graph shows the number of pairs with significant Wald test results across quantiles. Each line
represents a lag. Panel A shows the results of upper tail and Panel B shows the results for the lower tail.
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4.2 Risk Spillover In a Network

In the previous section, we showed that at the lag of six we observe a fair amount of pair-wise
risk spillover. For this reason and also to avoid including too many parameters in our QVAR
model, we constructed our connectedness network based on a lag of six weeks. In addition,
according to the results in the previous sub-section, it seems that we may have different levels
of risk spillover across quantiles, because we observe more pairs of spillover relationship at a
more extreme quantile. For this reason, we first show the averaged transition risk spillover
index over the whole upper/lower tail and then look in detail at the spillover of each quantile.

Table 4 shows the average transition risk spillover index at the upper tail and lower tail
for the whole sample period. For the upper tail, we first estimate the spillover index at each
quantile from τ = 80% to τ = 99% and then calculate the average. The similar applies to
the lower tail from τ = 1% to τ = 20%. The “From” column in those panels measures to
what extent (the percentage) the observed local extreme shocks are contributed by historical
foreign climate shocks. The total spillover index (the bottom-right element) is the average
of the elements in the “From” column and it measures the average spillover level in the
network. Elements in the “Net” are calculated as “To” minus “From”, and are interpreted as
the “netted” risk spillover level after considering both how much shocks received and how
much shocks gave. Note that when forming a network, unlike the Wald test, what we are
measuring are both the direct and indirect spillover effects.

Panel A shows the transition risk spillover at the upper tail. Canada and the US receive
the highest risk spillover of all other markets, with around 25% of the risk coming from
outside. Europe is the main contributor of the risk spillover (with the highest value in the
“To” row), followed by the US. We can explain by the fact that most major climate events
happened in these two markets, as can be seen in Panel B of Figure 1, and thus shocks in
other markets are affected by the two markets. We also observe a very high level of risk
spillover from Europe to the US. This is possibly due to that the two economies have close
connections. On average, around 19% of the transition risk in each market comes from outside
(the total spillover index).

At the lower tail (Panel B), compared with the upper tail, the total spillover index is
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larger, partly due to the fact that the directional spillover is higher at the lower tail, as is
shown in our previous analysis. Europe and the US still remain the largest risk transmitter.
We observe a change in the risk transmission pattern from the upper tail to the lower tail.
For example, Canada changes from net receiver to net risk transmitter due to its increased
impact to China. For the US, the country receives a higher risk spillover from Europe at
lower tail than at the higher tail. Such changing risk spillover pattern implies that channels
for positive and negative risk spillover can be different.
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Table 4: Static Spillover among Different Markets
Panel A: Spillover index at the upper tail

Upper Tail US CN JP CAN AUS EU From

US 76.83 2.55 2.16 3.20 2.33 12.92 23.17

CN 2.89 86.94 1.68 1.70 2.28 4.52 13.06

JP 4.60 2.83 82.99 3.12 3.79 2.67 17.01

CAN 3.93 4.12 2.89 74.52 3.56 10.99 25.48

AUS 4.76 2.39 1.38 2.60 85.04 3.84 14.96

EU 3.14 3.12 5.54 2.18 4.87 81.15 18.85

To 19.31 15.01 13.65 12.80 16.83 34.94 18.76

Net -3.86 1.95 -3.37 -12.68 1.86 16.09

Panel B: Spillover index at the lower tail

Lower Tail US CN JP CAN AUS EU From

US 77.71 2.02 3.28 5.37 2.59 9.04 22.29

CN 4.18 77.47 4.35 7.56 2.44 4.00 22.53

JP 2.32 2.68 82.14 5.85 2.38 4.64 17.86

CAN 5.37 5.75 2.42 76.07 3.04 7.36 23.93

AUS 4.56 1.90 2.82 2.85 81.04 6.84 18.96

EU 10.23 3.39 3.34 4.94 3.89 74.21 25.79

To 26.65 15.73 16.21 26.56 14.33 31.88 21.90

Net 4.36 -6.80 -1.65 2.63 -4.63 6.09

Note: The table shows the climate transition risk spillover network. Panel A is the result for extreme positive
shocks (upper tail) and Panel B shows the results for extreme negative shocks (lower tail). The column
named “From” shows total directional spillover from all other markets to market i, whereas the row named
“To” shows total directional spillover to all other markets from market j. The row “Net” shows the total net
pairwise directional spillover (to minus from). The bottom-right element (bold one) is the total spillover,
which measures the total level of spillover of the network.

We then present in Figure 3 and 4 the results at different τ levels. Figure 3 shows the
From, To and Net spillover index at both tails and Figure 4 shows the total spillover index.
We can see that as we move to more extreme quantiles, the level of spillover increases, which
confirms our previous analysis of the Wald test, where we observe more pairs of directional
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spillover at a more extreme quantile. We observe a change in the the Net spillover index after
the 5% and 95% quantiles. For example, in Panel A of Figure 3, we find that for Europe, the
To index decreased drastically from τ = 95% to τ = 99%, such that Europe changes from net
risk transmitter at τ = 95% to net receiver at τ = 99%. The opposite happens with China:
the To index increased drastically such that China changes from net receiver at τ = 95% to
net risk transmitter at τ = 99%. Similarly, at the lower tail (Panel B) we also observe a
change of role for Europe, China and Japan.

Figure 3: Spillover at Different τ Levels
Panel A: Spillover index at the upper tail

Panel B: Spillover index at the lower tail

Note: The graph shows the spillover index at different τ levels. Panel A shows the net spillover index (left)
and total spillover index (right) at the upper tail, with τ ranging from 81% to 99%. Panel B shows the
spillover index at the lower tail, with τ ranging from 1% to 19%.
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Figure 4: Total Spillover Index at Different τ Levels

Note: The graph shows the total spillover index at different τ levels. Panel A shows the net spillover index
(left) and total spillover index (right) at the upper tail, with τ ranging from 81% to 99%. Panel B shows the
spillover index at the lower tail, with τ ranging from 1% to 19%.

To investigate the changes in the above examples in the upper tail, we provide in Table 5
the spillover at τ = 95% and 99%. It can be seen that changes of To index in Europe and
China are due to changes in the To spillover index to Canada. Compared to the 95% level,
at τ = 99%, Canada receives a higher percentage of shocks from China and lower percentage
from Europe. The changing To spillover index to Canada means that more extreme local
shocks in Canada (99%) receive different sources of risk from less extreme ones (95%).

To examine why this is happening, we provide in Figure 5 the transition risk time series
for Canada, where we plot major events that took place in Europe and China. It can be
seen that, out of four shocks around 99% quantile in Canada, two are mainly caused by
the COVID and two are by major events happened in 2014 (COP 20 and Climate-Smart
Agriculture). In comparison, shocks around 95% are spread more evenly across time and
COVID takes a smaller role than at 99%.
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Table 5: Static Spillover at Different Quantiles
Panel A: Spillover index for τ = 95%

τ = 95% US CN JP CAN AUS EU From

US 71.38 3.75 3.69 4.10 3.72 13.35 28.62

CN 7.68 72.47 1.58 4.30 3.27 10.70 27.53

JP 14.43 5.54 71.96 2.77 2.68 2.63 28.04

CAN 5.58 3.90 1.80 63.22 5.73 19.78 36.78

AUS 13.23 1.55 1.47 3.58 74.83 5.35 25.17

EU 9.72 2.22 6.13 2.15 9.07 70.71 29.29

To 50.63 16.96 14.67 16.91 24.47 51.80 29.24

Net 22.01 -10.57 -13.38 -19.88 -0.70 22.51

Panel B: Spillover index for τ = 99%
τ = 99% US CN JP CAN AUS EU From

US 65.75 7.15 2.51 10.64 5.43 8.53 34.25

CN 7.95 69.67 4.62 4.27 2.82 10.68 30.33

JP 12.08 3.22 64.13 11.63 8.17 0.77 35.87

CAN 12.60 21.51 5.09 41.21 10.97 8.62 58.79

AUS 8.94 12.16 3.75 9.30 62.95 2.90 37.05

EU 3.66 6.09 5.02 10.41 9.64 65.18 34.82

To 45.23 50.13 20.98 46.24 37.03 31.51 38.52

Net 10.98 19.80 -14.89 -12.55 -0.03 -3.31
Note: The table shows the climate transition risk spillover network for the whole period. Panel A is the
result for extreme positive shocks at τ = 95%. Panel B shows the results for extreme negative shocks at
τ = 99%.
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Figure 5: Graphs of Transition Risk Series for Canada

Note: The figure shows the climate transition risk series for Canada, where we plot major climate change
events that happened in Europe, China and Canda.

Therefore, our explanation is that, since 95% and 99% extreme shocks in Canada have
different economic backgrounds, the types of foreign shocks that can have impacts on them
are also different, which then results in different risk transmission patterns. If our conjecture
is correct, then by only focusing on the pre-COVID period sample, the Net spillover index
for Europe and China will not change the sign and the To spillover index from Europe and
China to Canada should not change too much when we change from 95% to 99%.

To examine this, we provide the Net spillover index for the two markets calculated based
on the pre-COVID period sample in Figure 6. As can be seen, although we observe a change
in the level of Net spillover index, we do not see a change of role. We then provide the Net
spillover index at τ = 95% and 99% for the pre-COVID period in Table 6. As can be seen, the
To index of China and Europe to Canada have smaller changes compared to the full-sample
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results.

Table 6: Static Spillover at Different Quantiles (Pre-COVID)
Panel A: Spillover index for τ = 95%

τ = 95% US CN JP CAN AUS EU From

US 52.89 3.13 15.02 6.03 11.53 11.41 47.11

CN 2.86 60.89 5.76 13.48 7.64 9.37 39.11

JP 5.30 2.04 73.74 5.35 5.21 8.37 26.26

CAN 2.87 4.11 3.52 75.32 6.34 7.84 24.68

AUS 4.75 4.89 4.26 9.06 70.77 6.28 29.23

EU 2.48 3.39 2.98 8.06 7.96 75.13 24.87

To 18.26 17.56 31.53 41.98 38.69 43.25 31.88

Net -28.86 -21.55 5.27 17.30 9.46 18.38

Panel B: Spillover index for τ = 99%
τ = 99% US CN JP CAN AUS EU From

US 52.94 5.57 21.32 3.21 12.91 4.04 47.06

CN 7.31 64.32 9.58 7.31 4.29 7.19 35.68

JP 4.48 2.03 73.35 3.60 10.67 5.87 26.65

CAN 4.40 4.97 6.56 59.36 11.07 13.64 40.64

AUS 11.32 3.35 5.11 10.29 56.62 13.31 43.38

EU 8.30 2.18 6.10 9.26 10.34 63.82 36.18

To 35.81 18.10 48.68 33.68 49.28 44.05 38.27

Net -11.25 -17.58 22.02 -6.96 5.90 7.87
Note: The table shows the climate transition risk spillover network for the pre-COVID period. Panel A is
the result for extreme positive shocks at τ = 95%. Panel B shows the results for extreme negative shocks at
τ = 99%.
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Figure 6: Dynamic Spillover for China and Europe (pre-COVID)

Note: The graph shows net spillover index at different τ levels for China and Europe during the pre-COVID
period.

Of course, the COVID crisis might only be one of the many factors that lead to the
changing risk spillover pattern across quantiles, because we still see a drastic change of Net
spillover for Canada from 95% to 99% during the pre-COVID period. However, the above
analysis does indicate an important trait of climate transition risk spillover: climate risk
spillover pattern depends on the causes of local climate risk shocks, and this is particularly the
case over shorter periods, where climate shocks are only caused by fewer events. That being
said, our averaged results in Table 4 based on the full-sample show how climate transition risk
could spill over among different markets in the long run. In fact, the risk spillover pattern is
quite stable from τ = 80% to τ = 95% and from τ = 5% to τ = 20%, which means that the
averaged results across quantiles still provide a meaningful reference of spillover pattern in
the whole tail.

4.3 Dynamic Spillover

In the previous section, we show that the spillover pattern over shorter periods may change
over time. In this sub-section, we discuss the dynamic climate transition risk spillover based on
a rolling-window scheme. We provide in Figure 7 – 9 the net spillover, from- and to-spillover
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for each market, with a window size of 200 weeks and a step size of one week. The lag is six
weeks as before. Figure 7 shows the total spillover index. Unlike the previous full-sample
results, where we find that the spillover level is higher at the lower tail, the total level of
spillover is intertwined between the lower and upper tails. We do observe an increase in the
level of spillover at both tails during the COVID period. The level of spillover calculated
under the rolling window is also higher than the level of spillover calculated over the full
sample period. One explanation is that, if we evaluate the spillover using the full sample,
we include both periods of low spillover (such as 2017–2018) and high spillover to estimate
one set of coefficient estimation in the QVAR model. Therefore, under such setting, periods
of low transmission have a higher impact on the coefficient over shorter period, where we
only may include periods with high spillover, and we thus observe a larger spillover level over
shorter periods.

Figure 7: Total Spillover Index at Both Tails

Note: The graph shows the total spillover index under the rolling-window method, with window size of 200
weeks and a step size of one week. The red line is for the lower tail and black line is for the upper tail.

Figure 8 and 9 present From- and To-spillover for each market. At both tails, Europe
is the main risk contributor, followed by the US, which is in line with the observation with
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the full sample period. In comparison, Japan and China are the net receiver in most times.
However, the role of risk transmitter/receiver can change over time. For example, at the
upper tail, US changes from net risk contributor to net receiver in 2019. China changes
from net risk receiver to net risk transmitter in most recent periods, which could be due to
increased carbon-related policy activities by the Chinese Government in recent years. Since
the source of transition risk shocks are different in different periods, the pattern of climate
risk transmission can also be different. Another observation is that the “To” plot is often
more volatile than “From” in most markets at both tails. This is reasonable to some extent,
because the “To” column shows the climate transition risk that is being spilled over and
amplified to all other markets.
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Figure 8: Dynamic Spillover at the Upper Tail
US Europe China

Australia Japan Canada

Note: The graph shows the dynamic spillover at the upper tail under the rolling-window method, with
window size of 200 weeks and a step size of one week. The red line is total “From” and black line is “To”.
The distance between the two lines is the net spillover. We coloured the area in red to denote a negative
net spillover ( From > To, the net receiver) and grey to denote a positive net spillover (To > From, the net
giver). A positive value in the net spillover means the market is transmitting an impact and a negative value
means the market is receiving an impact from other markets.
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Figure 9: Dynamic Spillover at the Lower Tail
US Europe China

Australia Japan Canada

Note: The graph shows the dynamic spillover at the lower tail under the rolling-window method, with
window size of 200 weeks and a step size of one week. The red line is total “From” and black line is “To”.
The distance between the two lines is the net spillover. We coloured the area in red to denote a negative
net spillover ( From > To, the net receiver) and grey to denote a positive net spillover (To > From, the net
giver). A positive value in the net spillover means the market is transmitting an impact and a negative value
means the market is receiving an impact from other markets.

4.4 Robustness

We check the robustness of two settings in this sub-section: spillover under different lags and
the dynamic spillover under different window sizes. The forecast period is fixed at H = 10.
We first present in Figure 10 the net spillover results for different lags, from lag one to lag
ten. Panel A shows the net spillover index for each market. We can see that for large risk
transmitters like Europe and the US, the net spillover does not change the sign after a lag of
five. The same applies for large risk receivers like Canada and China. Panel B shows the
total spillover index at different lags. The total spillover index increases as we increase the
lag. Then, the index remains stable after approximately six lags, which further justifies our
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choice in previous analysis.

We then provide in Figure 11 the total spillover index for a window of 150, 200 and 250.
We do not see a drastic change in the level of spillover. At the upper tail, we do observe a
higher level a shorter window (150) after COVID . This can be explained by the fact that
given a smaller sample, extreme values observed during the COVID period have a higher
impact on the estimated coefficient. However, the trend is similar among the three window
settings. Therefore, our rolling window analysis results are also robust in different window
settings.

5 Determinants of Transition Risk Spillover

5.1 The Model

After studying how and to which what the climate transition risk transmits among global
markets, a further important question is what drives the transition risk spillover. To tackle
this issue, we conduct the following time-series regression to study the risk spillover for each
country:

FSTaili,k = β0 + β1FS
Tail
i,k−1 +4FSMkt

i,k + β34V IXi,k + β44Tradei,k
+β64Sentimenti,k + β74σoilk +4GPRi,k + ui,t

, (5.1)

where FSTaili,k means the “From” spillover index for country i in window k under a rolling
window scheme, with “Tail” being “Upper” or “Lower”. The rolling window setting is the
same as in previous sections: a 200-week window size, a lag of six weeks and a step size of
one. By studying the “From” risk spillover index of each region, we try to identify which
factor is contributing to the level of shocks a country could receive from outside. We study
whether the following variables that corresponds to pathways discussed in Benzie et al. (2019)
can affect the climate transition risk spillover:

1. Finance Factor:

• Market risk spillover (FSMkt
i,k ): since we are measuring the spillover though the

interaction among financial markets, the risk spillover among financial markets
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itself may impact the spillover of the transition risk. Specifically, in each window,
we calculated the market spillover index (the “From” index) using the forecast
error decomposition of Pesaran and Shin (1998), based on the market index in each
market. A higher value of FSMkt

i,k means a higher level of risk spillover received in
window k for market i.

2. Trade Factor:

• Trade volume (Tradei,k): the total trade volume (the sum of export and import)
of each country is downloaded from Eikon (Refinitiv), with monthly frequency and
seasonally adjusted. We then calculate the average monthly value of each window.

3. Climate Related Factors:

• Oil price volatility (σoilk ): the oil price comes from the West Texas Intermediate
(WTI) crude oil price, with weekly frequency.9 σoilk is calculated as the standard
deviation of weekly prices of each window k.

• The climate sentiment (CCi,k): the climate sentiment measures local investors’
attention to climate change. The climate sentiment index here is the Google
Trends index for the keyword of “climate change” and “global warming”, which
calculated based on the number of searches in a given period for a given region.10

We first download of the weekly index and then calculated the average of each
window.

4. Geopolitical Factor:

• Geopolitical risk index (GPRi,k): The geopolitical risk index is created by Caldara
and Iacoviello (2022) using a text-based analysis for each country.11 A higher
value means a higher geopolitical risk faced by one country. The data are with a
monthly frequency and we calculate the average monthly value for each market i
in each window k.

9https://fred.stlouisfed.org/series/WTISPLC
10Since Google service is not available in China, we use the Baidu Index, an index based on Baidu.com,

the largest search engine in China.
11Data downloaded from https://www.matteoiacoviello.com/gpr.htm on Month Oct., 2022
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Because each variable has different measures, we standardise all variables (both dependent
and independent) across windows (minus the average and divided by the standard deviation),
so that estimated coefficients are comparable. In addition, we use the change of each variable.
We use the robust error to address the heteroskedasticity. As in previous sections we show
that the investor climate sentiment will also increase during the crisis period, and in the
meantime climate risk spillover pattern may change over time, we focus our regression study
on the pre-COVID period from 2013 to 2019.

Following the discussion in sub-section 2.2, if we explain the risk spillover measured by the
QVAR model as local investors incorporate foreign shocks, then in Eq. (5.1), we are trying to
study whether such an incorporation process is affected by other factors. For example, if β4

is positive at τ = 95% for Europe, mathematically speaking, it means that a higher export
volume in Europe indicates a higher level of risk spilled over from outside. Economically
speaking, this means that higher trading activities will facilitate the incorporation process,
such that future extreme positive shocks in Europe contain more information from past
shocks in other markets.

Then, the question is: why might that happen? Or more specifically, why trading activities
(or other factors) will facilitate the incorporation process? Extreme local shocks, as discussed
before, are driven by changing investors climate change beliefs. Such changing beliefs lead to
the selling/buying of high-emission/low-emission companies. Possible motivations behind
the selling/buying activities may be rational: investors expected future possible changes
to the cash flow/discount rate of local high/low emission companies or can be “irrational”:
investors simply have a taste for low-emission companies and this taste is affected by climate
events happened in other markets. Therefore, under both situations, if trading activities of
a country (or other factors) are taken as factors that contribute to climate transition risk
spillover by local investors, we may observe β4 to be positive. All that being said, the true
mechanism still remains to be discovered given the very limited studies in this field.
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5.2 Regression Results

Table 7 shows the regression results for the upper tail and Table 8 for the lower tail. The
coefficient of market risk spillover is negative for Canada for the lower tail. An increase
in the market risk spillover indicates greater market uncertainty. In the case of climate
transition risk, higher market uncertainty could mean that investors become more concerned
about high-quality investments (i.e., low-emission companies), and thus may contribute to
the transition risk spillover at the upper tail (where low-emission companies are preferred)
and have negative impact of risk spillover at the lower tail. However, the effect of market
risk spillover on climate risk spillover is quite limited as we only observe a weak negative
contribution for Canada and the coefficient is insignificant for other countries.
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Table 7: Regression Results for Spillover Index at the Upper Tail
Dep. var. = FSUpper

i,k

Country US CN JP CAN AUS EU
Column (1) (2) (3) (4) (5) (6)

FSUpper
i,k−1

0.7189*** 0.7607*** 0.7799*** 0.6931*** 0.6839*** 0.7815***

(14.86) (15.16) (17.61) (11.23) (12.34) (14.88)

4FSMkt
i,k

0.0691 0.0205 -0.0755 0.0028 0.0428 0.0148

(1.31) (0.37) (-1.42) (0.03) (0.61) (0.27)

4Exporti,k
-0.0020 -0.0557 -0.1200* 0.0078 -0.1977 0.2049

(-0.03) (-0.96) (-1.87) (0.06) (-0.61) (1.27)

4Sentimenti,k
0.0416 -0.0130 0.0325 0.0718 -0.1078*** -0.0677

(0.85) (-0.47) (0.86) (0.83) (-2.80) (-1.39)

4σoil
t

-0.0220 -0.0799* -0.0850* -0.1536* -0.0884 -0.0216

(-0.43) (-1.68) (-1.68) (-1.76) (-1.22) (-0.40)

4GPRi,k

-0.0181 -0.0519 -0.0337 0.0134 -0.0677* 0.1126***

(-0.38) (-1.29) (-0.80) (0.21) (-1.67) (2.91)

Constant
0.1019** 0.0226 -0.0801 -0.1307 0.1107 -0.1949*

(1.99) (0.49) (-1.59) (-1.55) (0.54) (-1.81)
Observations 161 161 161 161 161 161

R2 0.52 0.68 0.67 0.58 0.64 0.75
VIF 1.44 1.36 1.35 1.15 1.48 1.29

Note: The table shows the regression results for model (5.1) at the upper tail. Each column represents
the regression for one market. In total, there are 156 observations from31 October 2016 to 31 December
2019. We report in the brackets the t-statistics. The “VIF” row is the average variance inflation factor of all
explanatory variables and a VIF smaller than 10 means a low level of multicollinearity.
* Statistical significance at the 10% level.
** Statistical significance at the 5% level.
*** Statistical significance at the 1% level.
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Table 8: Regression Results for Spillover Index at the Lower Tail
Dep. var. = FSLower

i,k

Country US CN JP CAN AUS EU
Column (1) (2) (3) (4) (5) (6)

FSLower
i,k−1

0.8379*** 0.7740*** 0.8078*** 0.8485*** 0.8427*** 0.8076***

(14.27) (16.48) (14.37) (17.72) (20.00) (18.44)

4FSMkt
i,k

0.0527 -0.0452 0.0281 -0.1259* 0.0050 -0.0558

(1.04) (-1.28) (0.93) (-1.96) (0.09) (-0.98)

4Exporti,k
0.0487 0.1135 0.0620* -0.0123 0.0482 0.1457

(0.75) (1.75) (1.76) (-0.11) (0.18) (0.97)

4Sentimenti,k
-0.0453 -0.0024 0.0268 0.0661 -0.0415 -0.0430

(-1.05) (-0.08) (1.12) (1.43) (-1.28) (-0.77)

4σoil
t

0.0918* 0.1413*** 0.1031*** -0.0584 -0.0176 -0.0711

(1.95) (3.24) (2.88) (-1.25) (-0.29) (-1.33)

4GPRi,k

-0.0053 0.0086 -0.0516 -0.0041 -0.0408 -0.1213***

(0.72) (1.40) (0.32) (-0.29) (0.97) (2.06)

Constant
-0.0053 0.0086 -0.0516 -0.0041 -0.0408 -0.1213

(-0.12) (0.17) (-1.55) (-0.07) (-0.25) (-1.23)
Observations 161 161 161 161 161 161

R2 0.80 0.78 0.83 0.73 0.75 0.79
VIF 1.44 1.36 1.35 1.15 1.48 1.29

Note: The table shows the regression results for model (5.1) at the lower tail. Each column represents
the regression for one market. In total, there are 156 observations from31 October 2016 to 31 December
2019. We report in the brackets the t-statistics. The “VIF” row is the average variance inflation factor of all
explanatory variables and a VIF smaller than 10 means a low level of multicollinearity.
* Statistical significance at the 10% level.
** Statistical significance at the 5% level.
*** Statistical significance at the 1% level.

The coefficient of trade is negative for Japan at the upper tail and positive at the lower
tail, which implies that increased trade activities are associated with a decreased climate
risk spillover in the upper tail and an increased climate risk spillover at the lower tail. Our
explanation is that increased exports are associated with economic growth, where investors
become less concerned about high-quality investment. That being said, the relationship
between trade and climate risk spillover is complicated and can change to different causes
behind the export growth. In fact, current literature find both positive and negative effects
of trade on climate risk. A recent report by the World Bank states that trade helps mitigate
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the effects of climate change12 while Feng and Li (2021) argue that international trade should
be an important channel for climate risk propagation.

A positive change in the local climate sentiment means a lower risk spillover from other
markets at the upper tail for Australia. This can be explained by the fact that positive
changes in the local climate change sentiment could mean the occurrence of local climate
events and thus lower percentage of climate risk spillover from outside.

A positive change in the oil price volatility (4σoilt ) implies a lower risk spillover at the
upper tail and a higher risk spillover at the lower tail in most markets. An increase in oil price
volatility entails increased concerns over fossil fuel-based investments. In both situations,
companies and investors becoming less likely to invest in fossil fuel-related investments (such
as green technology) that have high capital costs and long payback periods. In that situation,
there could be less spillover for positive shocks. Finally, we find a mixed effect regarding
the geopolitical risk (4GPRi,k): in the upper tail, the coefficient is positive for Europe and
negative for Australia, while in the lower tail, the coefficient is negative for Europe.

6 Conclusion and Policy Recommendation

Climate change is a global phenomenon, which means that climate events in one place may
transmit to other places due to the socio-economic relationship between countries in the
world. If the transition risk can transmit across borders, it will affect investors and companies
who have high exposure to the transition risk. Since long-term transition risk materialises
in the financial markets, we study the transition risk spillover through financial markets.
Specifically, we first construct a proxy of climate transition risk using the risk premium
between low-emission companies and high-emission companies to capture the transition
risk. Then, we measure the transition risk spillover by studying the interaction of the proxy
of transition risk among six markets: the United States, China (including Hong Kong),
Europe (including UK), Canada, Australia and Japan. We study two scenarios of transition
risk spillover: when there are extreme positive transition risk shocks and extreme negative

12https://openknowledge.worldbank.org/server/api/core/bitstreams/5d543ded-1163-5fc6-8fe8-
319d913cf269/content
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transition risk shocks.

As we have no prior knowledge of the existence of climate risk spillover, we first study
the pair-wise directional risk spillover among the six markets. We find that the transition
risk spillover pattern varies between countries and also across quantiles. Specifically, given
a certain quantile, it takes different periods for transition risks to spillover across different
pairs of markets, which implies that investors absorb and update their beliefs at different
speeds in terms of information from different countries. In most cases, the transition risk
can spill over within six weeks. Also, the transition risk spillover is asymmetric between the
lower tail and the upper tail. We also find that for more extreme transition risk shocks, they
are more likely to be affected by foreign shocks and are affected by more recent shocks.

We then study to what extent the transition risk can spill over across borders. On average,
around 20% of extreme local shocks come from outside. The level of transmission is higher
for negative shocks than for positive shocks and the transmission pattern is different between
negative and positive shocks. For positive shocks, Canada and the US receive the highest
risk spillover among all other markets, with around 25% of the risk coming from outside. For
both types of shocks, Europe is the main contributor of the risk spillover.

Interestingly, we find that the transmission pattern also changes when shocks become more
extreme. We explain this phenomenon by the fact that the causes behind the climate shocks
play a crucial role in affecting the risk spillover pattern, especially over a shorter period. For
example, we find that extreme shocks during the COVID period have a different risk spillover
pattern from the pre-COVID period. For this reason, we further study the spillover across
time. We find that the role risk transmission could change across time. For example, at the
upper tail, the US changes from a net risk contributor (before 2018) to a net receiver (end of
2018 and 2019). China changes from a net risk receiver in early periods to net risk transmitter
in more recent periods. This is because during different periods the source of transition
risk shocks are different, and thus the pattern of climate risk transmission may also be different.

We further investigate the determinants of the transition risk spillover by studying the
level of risk spillover one market can receive from others. Our regression results vary between
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different markets. We find that when there is an increase in the financial risk spillover received
from other markets, the climate risk spillover received for at the lower tail is lower in Canada.
For Japan, increased trade activities are associated with a lower climate risk spillover at the
upper tail and a higher climate risk spillover at the lower tail. An increase in the local climate
sentiment means a lower risk spillover for Australia at the upper tail. We also find that a
positive change in the oil price volatility means a lower risk spillover at the upper tail and
a higher risk spillover at the lower tail in most markets. The effect of geopolitical risk is mixed.

The results of our paper have some implications for policymakers and investors. We have
seen that local extreme climate shocks observed in the financial markets can be contributed
by past foreign shocks, which means that for policymakers, the externalities of local policies
to other markets should be considered when forming a local policy, especially when there is
a mutual risk spillover relationship between two countries. The existence of a risk spillover
also means that policymakers, when evaluating the climate change impact, should consider
potential impact from outside. For banks and investors who are exposed to climate risk
shocks, it means that, apart from local climate policies, foreign climate-related policies may
also impact their investments. In addition, we find that the same type of climate shock can
have different impacts when it comes different countries and periods. This has also been
proven in our analysis – patterns of transition risk spillover changes according to different
time periods, markets and types of shocks. Therefore, it is also important for policymakers
and market participants to consider the type of climate shocks when evaluating the climate
risk spillover over a short period.

Furthermore, we have shown that the drivers of the climate transition risk spillover also
depends on the intrinsic characteristics of the different regions, which indicates a possible
pathway for further research: to focus on the climate risk spillover between specific markets
and explore the channels for the climate risk spillover. Finally, since in our paper we assume
a linear setting of climate risk spillover, future studies could also be based on the non-linear
risk spillover between countries.
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A Procedure to Construct the Carbon Risk Premium

We construct the risk premium under the two-sort strategies proposed by Fama and French
(1993), with the following procedure:

• Company Selection: for every month m, companies that have enough carbon emission
data from the last period (month m − 1) will be included in the factor construction
process. We also follow Amihud (2002) and the literature to exclude “penny” companies
– companies whose price is below USD 5 at the time of formation in the US market. We
check our sample of the US market and find that companies with a price below USD 5
make up around 5% of the total stocks. Therefore, since we are studying the global
market, to align the standard across markets, we remove those companies with a price
lower than the 5% quantile at the time of formation in each market.

• Independent Sort: we sort companies according to the month-end market value of
month m−1. All are labelled into two groups: B(ig) and S(mall). The cut-off line is the
median (50%) of all companies. Then, we again sort according to the CO2 emissions.
We set 30%/70% as the cut-off, and label the companies into three groups: H(igh)
Emission, M(edium) E, L(ow) Emission. The result of the sort is a 2× 3 label group.

– Portfolio Construction: We construct value-weighted portfolios within each label
group, and obtain the risk premium as

RC
t = 0.5× (LB + LS)− 0.5× (HB +HS) (A.1)

That is, we calculate the risk premium as the return difference between low-emission
companies and high-emission companies. For each month, we sort once and get
a time series of one month. For example, at June 2014 we sort and construct
value-weighted portfolios using information from 2014/05. Then, the return of
value-weighted portfolios from June 2015 to May 2016 will be used to construct
the risk premium.
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B Simulation-based Method to Calculate the QIRF

In this section, we provide a discussion of how we use the simulation-based method to calculate
the QIRF. The process is similar to Koop et al. (1996) and Lanne and Nyberg (2016). The
goal is to simulate the following quantile impulse response:

QGIY
(
H, ε∗j,t(τ),Ft−1

)
= Q

(
τ, Yt+H | ε∗j,t(τ) = εj,t(τ) + δj,Ft−1

)
−Q (τ, Yt+H | Ft−1) .

In the above function, we aim to calculate the response of a variable specific shock. The shock
size is δj, which is predetermined. The following process applies to calculate the response to
a given shock δj:

1. Given the sample data, we estimate the model (2.6) and calculate the residuals ε̂t(τ) (a
matrix of (K × T )).

2. We assume a constant covariance matrix for the residuals, and calculate the empirical
covariance matrix Ω̂(τ) for ε̂t(τ). We then convert the correlated residuals into uncorre-
lated by multiplying the inverse of a Cholesky factorisation of the estimated covariance
matrix: ξ̂t(τ) = P−1ε̂t(τ), where Ω̂(τ) = PP

′ .

3. Draw randomly M times from ξ̂t(τ) (in our case, we set M to be 5,000). For every
draw m (m = 1, 2, ...,M):

(a) We obtain a matrix of ξ(m)(τ) = (K × (H + 1)) (i.e. for every draw m, we
take (H + 1) vectors, with replacement, from the sample). Then, we recover the
independent residual to dependent residuals: ε(m)(τ) = Pξ(m)(τ).

(b) Based on the model (2.6), we use the ε(m)
t (τ) and Yt−1 to calculate the realization

of Y (m)
t+H(Ft−1).

(c) From the residual of variable j , we draw one δ(m)
j (i.e. we set the shock size to be

the history of residual).

(d) Based on the model (2.6), we set ε∗t (τ) = ε(m)(τ)(1) +


0
δ

(m)
j

...

0

, where ε
(m)(τ)(1)
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equals to the first column of ε(m)
t (τ) and


0
δ

(m)
j

...

0

 is a (K × 1) vector with only

jth value to be non-zero. We then use ε∗t (τ), ε(m)(τ)(2:H+1) and Yt−1 to calculate
the realization of Y (m)

t+H

(
ε∗j,t(τ) = εj,t(τ) + δ

(m)
j ,Ft−1

)
.

4. After obtaining M realizations, we calculate the empirical quantile of the simulated
Y

(m)
t+H(Ft−1) and Y (m)

t+H(ε∗j,t(τ),Ft−1)

Q̂
(
τ, Yt+H | ε∗j,t(τ) = εj,t(τ) + δj,Ft−1

)
= qτ

({
Y

(m)
t+H(ε∗j,t(τ) = εj,t(τ) + δj,Ft−1)

}M
m=1

)
Q̂ (τ, Yt+H | Ft−1) = qτ

({
Y

(m)
t+H(Ft−1)

}M
m=1

)
(B.1)

5. Finally, the variable-specific impulse response is

ˆQGIY
(
H, ε∗j,t(τ),Ft−1

)
= Q̂

(
τ, Yt+H | ε∗j,t(τ) = εj,t(τ) + δj,Ft−1

)
− Q̂ (τ, Yt+H | Ft−1)

We apply the above process to each variable from j = 1, ..., K to calculate the QIRFs. Then,
the simulated ˆQGIY

(
H, ε∗j,t(τ),Ft−1

)
is put into Eq. (2.10), as shown below, to calculate the

QGFEVD:

λ̂ij(H) =
∑H−1
h=0

[
ˆQGIY

(
H, ε∗j,t(τ),Ft−1

)
i

]2
∑H−1
h=0

∑n
j=1

[
ˆQGIY

(
H, ε∗j,t(τ),Ft−1

)
i

]2 .
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C Robustness Check

Figure 10: Dynamic Spillover at Different Lags
Panel A: Net spillover for each market at different lags

Panel B: Total spillover at different lags

Note: The graph shows spillover index at different lags. Panel A shows the net spillover index for each
market at the upper tail (left) and at the lower tail (right) . Panel B shows the total spillover index.
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Figure 11: Dynamic Spillover with Different Window Sizes
Panel A: Total spillover over time at the upper tail

Panel B: Total spillover over time at the lower tail

Note: The graph shows the dynamic spillover with different window size settings at the upper tail (Panel A)
and at the lower tail (Panel B).
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