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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Farm byproducts were explored for 
bioenergy to achieve SDGs and carbon 
neutrality. 

• GIS-MCDA was combined with machine 
learning to assess impacts on bioenergy 
potential. 

• Spatiotemporal and DEMATEL bridge 
the biosphere–anthroposphere nexus for 
bioenergy. 

• For stable 1012 kJ biogas from rice/ 
wheat biomass, the MCDA pinpointed 
45–66 sites. 

• A scalable bioenergy model is presented, 
which can boost sustainability and 
guide policies.  
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A B S T R A C T   

Addressing the global challenge of energy sustainability and global directives on farming emissions, the United 
Nations, the European Union, and China have led with strict targets for clean energy, renewable share growth, 
and carbon neutrality, highlighting a commitment to collective sustainability. This work is situated within the 
ambit of the Sustainable Development Goals (SDGs), advocating for a transition towards renewable energy 
sources. With substantial and accessible bioenergy resources, notably in Hubei Province, China, biogas tech
nology has emerged as an emission-cutting solution. This research, focused on the Jianghan Plain, employs an 
integrated approach combining spatial analyses with machine learning tools to evaluate crop yield stability over 
two decades, with the aim of maximising the biogas yield from agricultural byproducts, i.e., crop straw and 
livestock manure. Using Multi-Criteria Decision Analysis (MCDA), which is informed by grey-based DEMATEL, 9 
constraints and 13 environmental, social, and economic criteria were assessed to identify optimal sites for biogas 
facilities. The findings underscore the significant bioenergy potential of agricultural byproducts from the plain of 
6.3 × 1012 kJ/year at an 11.4 kJ/m2 density. Stability analyses revealed consistent biomass availability, with rice 
in Gongan and Shayang and wheat in Jiangling being the primary contributors. Through the MCDA, 45–66 
optimal biogas plants were identified across 4 critical counties (Zhongxiang, Shangyang, Jingshan, and Yichen), 
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balancing the energy supply and demand under various stable scenarios. Furthermore, this study demonstrated 
the criticality of moderate biomass stability for stakeholder consensus and identified areas of high stability 
essential for energy demand fulfilment. Theoretically, this study offers a practical model for bioenergy resource 
exploitation that aligns with global sustainability and carbon neutrality goals to address the urgent need for 
renewable energy solutions amidst the global energy crisis. Practically, this study sets a precedent for policy and 
planning in environmental, agricultural, and renewable sectors, signifying a step forwards in achieving envi
ronmental sustainability and an energy-efficient future.   

1. Introduction 

The global energy landscape is facing a significant crisis, primarily 
due to an overreliance on non-renewable energy sources and the envi
ronmental impacts associated with their use. This situation necessitates 
a shift towards renewable energy sources, aligning with the 2030 
Agenda for Sustainable Development (SDGs) (Willett et al., 2019). In 
response, the United Nations (UN) aims for global clean energy access by 
2030 and net zero emissions by 2050, and has secured over $400 billion 
for clean energy initiatives (UNDP, 2021). Simultaneously, the Euro
pean Union (EU) updated its Renewable Energy Directive, setting 
ambitious goals for member states to reach a 32 % renewable energy 
share by 2030, which was later raised to 40 % (EU, 2021). China is 
working towards achieving carbon neutrality by 2060, aiming to reduce 
its greenhouse gas (GHG) emissions by 2.3 billion tonnes, prioritising a 
transition towards renewable energy and reducing its reliance on coal 
(IEA, 2021). 

Agricultural byproducts are considerable and accessible for bio
energy production. In Europe, the annual potential of these bioresources 
is estimated at 950 million tonnes (Kumar Sharma et al., 2022), while it 
was estimated at 4 billion tonnes globally in 2018, primarily consisting 
of 20 % crop straw and 70 % livestock manure (Zhao et al., 2018). Fully 
utilising agricultural byproducts can significantly address the energy 
crisis and environmental pollution, promoting renewable energy (SDG 
7) and sustainable land use (SDG 15) (Adamu et al., 2023). To this end, 
policies and guidelines have been enacted to facilitate bioenergy pro
duction from farm and biomass handling, reducing its environmental 
impacts (2001/81/EC, 2001). Biogas technology offers a promising so
lution (Liang et al., 2023a, 2023b). For instance, the EU has experienced 
significant growth in biogas electricity, with an installed capacity of 
11.9 GW, generating 55.8 TWh (Eurostat, 2020). Moreover, the capacity 
of biogas to reduce GHG emissions by 115 t with just 10,000 m3 un
derscores its crucial role in China’s efforts to achieve carbon neutrality 
by 2060 (Li, 2022). Specifically, Hubei Province in central China, which 
generates 10 % of the total agricultural byproducts, is an ideal site for 
biogas development due to the high energy demand coupled with the 
current energy shortage (Liu et al., 2023). With its extensive agriculture 
and high crop straw and livestock manure production, the Jianghan 
Plain in Hubei provides a strong foundation for biogas technology. 

However, evaluating the wide-ranging impacts, including the tech
nical, environmental, social, and economic advantages, of biogas pro
jects is crucial for aiding bioenergy planning on the plain (Ferrari et al., 
2022b). To sustainably leverage the bioenergy potential of agricultural 
byproducts, advanced modelling techniques capable of handling 
nonlinear agricultural data patterns are essential. Among artificial in
telligence (AI) methods, the backpropagation neural network (BP-ANN) 
stands out for its effectiveness in deciphering nonlinear relationships in 
datasets influenced by dynamic climate changes (Shi et al., 2023). It has 
demonstrated remarkable accuracy in predicting crop yields and bio
energy potentials (Elavarasan, 2020). For bioenergy potential estima
tion, Shi et al. (2024) used BP-ANN to demonstrate that crop straw had a 
potential of 2.1 × 109 MJ on the Jianghan Plain of Hubei (R2 > 0.83). 
They utilised the accumulated net primary productivity (NPP, kgC/m2) 
of crops as it prioritises crop distribution more effectively. For livestock 
manure, Liu et al. (2023) demonstrated that the biogas potential of 
plains from livestock manure was 9 × 108 MJ, which is 28.28 % lower 

than that from straw. As CSY (2022) reported, the annual biogas pro
duction in this plain is >4 × 108 MJ via large-scale biogas projects (AD 
volume > 500 m3). 

To fully harness bioenergy potential, thorough spatial analysis is 
vital for optimising bioresource exploitation and simplifying the supply 
chain, given the dispersed nature of agricultural byproducts such as 
crop-sown areas (Yan et al., 2021). Thus, creating stable crop spatio
temporal maps is crucial for accurately calculating straw yield to assess 
biogas production feasibility and efficiency, as shown in previous mul
titemporal yield pattern analyses (Blasch et al., 2020). The innovation of 
combining multiple yield maps has been demonstrated using PCA and K- 
Means clustering to reveal long-term variability and stability. This 
approach identifies consistent high-yield zones that affect straw avail
ability (Pascucci et al., 2018). In addition to PCA and K-means, tools 
such as hierarchical clustering, quantile-based binning, and decision 
trees are used to delineate stability zones through statistical learning and 
pattern recognition, benefiting from the “no free lunch” principle 
(Table S4) (Shi et al., 2023). Integration of algorithms can enhance large 
dataset clustering for efficiency, scalability, and flexibility and can also 
minimise errors (Sarker, 2022). Moreover, apart from the integration of 
both crop grain yield and pasture total green dry matter to form a Sta
bility Index (McEntee et al., 2020), the spatiotemporal presence of crops 
can also be utilised by assessing the frequency and regularity of crop 
appearances rather than only the yield amounts. This approach allows 
for effective mapping of biomass availability for energy production and 
is critical for ensuring a reliable biomass supply for biogas production. 

Guided by biogas potential estimates and spatiotemporal stability 
maps, the strategic development of biogas plants aims to achieve effi
cient allocation. A key strategy involves siting plants near settlements 
for district heating use, offsetting hosting drawbacks with heating ad
vantages (Leduc et al., 2010). Alternatively, selecting sites away from 
densely populated areas addresses concerns related to “Not-In-My-Back- 
Yard” effects (Batel et al., 2013). Therefore, the criteria and constraints 
should be defined. Ferrari et al. (2022a) summarised three main criteria, 
i.e., social, economic, and environmental. They defined 8 constraints, e. 
g., water bodies, road networks, and harvesting costs, for multicriteria 
decision models/analyses (MCDM/A) (Hajkowicz and Collins, 2007). 
Among these methods, the analytic hierarchy process (AHP), despite 
being used the most often (58 %), has limitations in modelling, such as 
consistency and non-interpretability (Saaty, 1987). To address this issue, 
the fuzzy decision-making trial and evaluation laboratory (F-DEMATEL) 
method, which is used in 5 % of reviewed MCDM/A articles due to 
complex data processing, effectively structures criteria and scores, 
especially with the grey sharpening process (Bai and Sarkis, 2013). This 
approach navigates the subjectivity and uncertainty in decision-making 
when gathering survey data and offers insight into criteria in
terrelationships at biogas plant sites (Jeong and Ramírez-Gómez, 2018). 
Technically, the geographic information system-multicriteria decision 
analysis (GIS-MCDA) method for spatial assessment can be used to 
optimise site selection and supply-demand schemes. GIS-MCDA in
tegrates spatial data with multicriteria decision-making processes, 
allowing for comprehensive evaluation of various factors in geographic 
contexts (Brahma et al., 2016). Ferrari et al. (2021b) demonstrated the 
significance of land use and efficiency in biogas plant development, with 
further research emphasising its effectiveness in distributing supply 
hubs for community benefits across localities, where spatial/network 
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analysts are widely used (Jesus et al., 2021). 
Previous studies have focused mainly on crop residues such as straw, 

but our work uniquely integrates both straw and livestock manure, 
considering crop variability and the latest field research. This holistic 
approach improves biogas potential assessments and enhances practical 
applications in diverse agricultural settings. By including policy impacts 
and ensuring data interpretability, our study contributes to more 
informed and effective bioenergy policies. Therefore, our study aims to 
answer the following questions:  

• What is the distribution of biogas potential from straw and livestock 
manure on the Jianghan Plain in relation to crop spatiotemporal 
stability? 

• What outcomes do biogas plants yield, considering diverse view
points, and what dynamics govern the decision-making elements?  

• Where are the optimal biogas plant sites, and how well do they 
balance supply and demand under differing stakeholder perspectives 
and spatiotemporal conditions? 

Leveraging GIS-MCDA, our research provides innovative insights 
into optimal biogas plant siting, offering a scalable solution for renew
able energy and carbon neutrality. This approach advances bioenergy 
technology, promotes sustainable practices, and minimises environ
mental impacts. Our findings can impact bioenergy policy, potentially 
setting new standards in environmental, agricultural, and renewable 
energy domains and advancing a sustainable, energy-efficient future. 

2. Materials and methods 

2.1. Data preparation and collection 

2.1.1. Study area 
The Jianghan Plain in Hubei, a leading agricultural region, is 

particularly well suited for bioenergy research and plant siting due to its 
supportive policies, advantageous geography, and favourable agro- 

climate (Shi et al., 2024). This study investigated 19 counties, as 
shown in Fig. 1(a). 

Crop straw (8 × 109 kg, 91 % of annual production, i.e., from rice, 
wheat, and maize) and livestock manure (2 × 1011 kg, 96 %, i.e., from 
pigs, cows, goats, and poultry) are key biomass sources (CSY, 2022). 
Rice is typically categorised as single-season early rice (SE-rice) or late 
double-season rice (LR-rice) based on its phenological traits and culti
vation methods. 

2.1.2. Data collection 
This research primarily used spatial and survey/statistical datasets 

encompassing 8 types of data: crop maps, crop primary productivity, 
geographic and socioeconomic spatial elements, site suitability ques
tionnaires, cost surveys, and livestock production (e.g., number of 
livestock, feeding cycles, and production-discharge coefficients) (Ferrari 
et al., 2021a). Table 1 lists the data sources, and descriptions are pre
sented in Table S1. 

The spatial data included the ChinaCropPhen, TerraClimate, 
MOD17A3HGF, and point of interest (POI) databases, along with 
administrative regions and road network systems. Some data, such as 
crop primary productivity for calculating biogas potential from straw, 
were based on previous findings (Shi et al., 2024). Data analysis was 
conducted by GIS, involving functions such as spatial analysis (e.g., 
reclassification, resampling, masking, zonal statistics), and optimisation 
using network analysis (e.g., location-allocation), ensuring consistency 
in the temporal-spatial dimensions and resolution. Specifically, all the 
data were resampled to a 1 km resolution (~1 km) for spatial analysis. 

The survey/statistical datasets were essential for calculating biogas 
yield and siting biogas plants, and are shown in Table 2 (biomass-to- 
energy conversion coefficients) and Table S2. For site suitability, we 
distributed questionnaires to global surveyors (Section 2.3) using MCDA 
to analyse 20 valid responses and generate overlay weights for spatial 
analysis (Section 2.4). 

The datasets are described in Table S1. 

Fig. 1. Topographic map of the study area: (a) biogas potential map and (b) bioenergy sources and contributions. Biogas potential from crop straw and livestock 
manure are marked with crosses. The stacked bars in (a) show storage potential and proportions, and the point density indicates the distribution. The pie chart in (b) 
shows the 2020 bioenergy sources from four types of straw and manure, with nearly equal contributions. SE-rice straw and pig manure were the largest contributors. 
The data are from Table 1. 
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2.1.3. Biogas potential and analysis 
The biogas potential/density calculations are based on data listed in 

Tables 2 and S2. The data are from Table 1 (CSY, 2022) and Liu et al. 
(2023). For calculations, based on the off-field rates and facility survey 
(Table S2), ‘Daily products’ and ‘Feeding days’ represent the daily 
manure output and feeding duration before slaughter, respectively, 
affecting biomass estimates. ‘Dry biomass’ refers to demoisturised 
biomass, which reduces handling costs. The ‘AD rate’ is used to assess 
the anaerobic digestion efficiency for energy output, and the ‘energy 
content’ measures the energy per unit of dry biomass for biogas calcu
lations. Moreover, the accumulated NPP values were determined in 
previous work using the BP-ANN model (Shi et al., 2023, 2024). 

The biomass content, i.e., the accumulated NPP (straw: 8.4 × 109 kg) 
and manure production averaged 6.3 × 109 kgC and 1.9 × 1011 kg, 

respectively, from 2001 to 2020. In 2020, they were 6 × 109 kgC and 1.3 
× 1011 kg. This resulted in an average energy content of 6.3 × 1012 kJ, 
which decreased to 6 × 1012 kJ in 2020. After conversion (Table 2), the 
available biogas potential was 4.7 × 1011 kJ. Regional biogas density 
indices (BD, kJ/m2) were mapped and are displayed as density dots in 
Fig. 1(a), revealing a level of 11.4 kJ/m2 on the plain over two decades. 

2.2. Spatio-temporal stability analysis 

Four crop datasets obtained from ChinaCropPhen (~1 km, 2001- 
2019) and ChinaCP (~500 m, 2015–2021) served as the foundational 
data for this work (Table 1). After ensuring consistency between the two 
datasets (R2 > 0.77, illustrated in Fig. S1), they were merged by 
resampling (~1 km), masking, and reclassifying. This reclassification 

Table 1 
Breakdown and description of data collection.  

Spatial database Data sources Geospatial type/ 
counts 

Period Data extraction Unit Details 

Crop maps ChinaCropPhen (Luo et al., 2020) Raster (~1 km 
resolution) 

2001–2019 Crop planting areas km2 For SE-rice, late LR-rice, maize, wheat 

ChinaCP (Qiu et al., 2022) Raster (~500 m) 2015–2020  
Net primary 

production 
(NPP) 

(Shi et al., 2024) Raster (~500 m) 2001–2020 Accumulated NPP kgC 
MOD17A3hgf (Running and Zhao, 
2021) 

Raster (~500 m) 2001–2020 NPP/GPP kgC 

GIS datasets ( 
Table 3) 

NASADEMhgt (Zeng et al., 2023) Raster (~30m_DEM) 2000 Slope degree (SL) degree – 
LandScan_HD (Lloyd et al., 2019) Raster (~90 m) 2022 Population density 

(PD) 
km− 2 – 

GDPGrid_China (Huang et al., 
2014) 

Raster (~1 km) 2010 GDP per capita (GDP)  – 

China Historical Geographic 
Information System (CHGIS) (Dong 
et al., 2017) 

Vector (polylines/ 
points:13) 

2013 Gas pipelines (GP) km Gas pipelines and nodes 

OpenStreetMap (OSM) (Zhao et al., 
2021) 

Vector 
(polylines:37,660) 

2019 Road network density 
(RN) 

km Railways, expressways (max speed: 110 
km/h), national roads (80), provincial 
roads (80), city roads (60) 

Vector 
(polylines:1243) 

Water bodies (WB) km Rivers, canals 

Vector (polygon:959)  km2 Lakes, pools 
Vector 
(polygon:8349) 

Residential & 
accommodation (RA)  

Building layouts 

Points of Interest 
Map (POIs) 

Amap and Baidu-Map (Zeng et al., 
2023) 

Vector 
(points:17,075) 

2022 RA – Houses, apartments, hotels, resorts 

Vector (points:1645) Scenic area (SA)  Historic/scenic spots, natural reservations 
Vector 
(points:57,746) 

Public services (PS)  Cultural services, bureaus, health care 
facilities 

Vector 
(points:187,154) 

Commercial & 
shopping (CS)  

Financial centres, shopping malls 

Vector 
(points:31,241) 

Corporate & industrial 
(CI)  

Industrial zones, agriculture/forestry 
areas   

Statistic database Data acquisition Geographic scope Period Data extraction Unit Details 

Site suitability survey AHP questionnaires Global (20 surveyors, 
13 constraints, 9 
levels) 

2023 MCDA final scores ( 
Table 4)  

Suitability criteria and levels (1–9) 

Comprehensive use of 
agricultural 
byproducts 

Field survey (Ferrari et al., 2022b;  
Liu et al., 2023), Yearly books 
(statistical records) (CSY, 2022) 

County level 2021 Harvesting costs 
(HC) 

CNY Transport costs, packing costs 

Transport radius km Cut-off values (radius < 30 km) 
Livestock manure 
production 

kg Yearly production of pigs, cattle, goats 
and poultry, daily production of 
manure, and feeding days of livestock 

Biomass seasonality 
(BS) 

kg Storage capacity, biomass stability 
scenarios (I-III) 

Straw utilisation – Off-field straw use for fuel, feed, base, 
fertiliser, and materials (Table S2) 

2001–2020 Facility data  Facility upgrades and efficient-use 
rates 

Biogas projects Yearly books City levela 2019 Large-scale projects 
(AD volume > 5000 
m3) 

m3 Existing projects (108), biogas 
production (1.8 × 107 m3) (Table 5)  

a City: Refers to a prefecture-level city in China overseeing multiple counties. County: An administrative division under city governance, including urban and rural 
areas. 
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accurately labelled crop areas as “SE” (for SE-rice), “LR” (LR-rice), 
“Maize”, and “Wheat” by phenology. Pixels that consistently repre
sented the full phenological cycles of these four crops, described in 
Table S1, which combine the key stages, e.g., green-up, emergence, 
transplanting, heading, and maturity dates, were selected. Pixels 
meeting these criteria were assigned “1” for cultivated areas and “0” for 
non-cultivated areas. 

The spatial distribution captures crop occurrences over the last 20 
years, reflecting the average crop presence per county. A lower standard 
deviation (SD) indicates greater crop stability, which is essential for a 
consistent biomass supply for biogas production. This analysis involves 
(i) compiling ‘Zonal Statistics’ results (Table S3), with rows for counties 
and columns for statistics; (ii) identifying zones with stable (low SD) and 
unstable (high SD) crop occurrences, which is critical for reliable 
biomass availability; and (iii) pinpointing counties with high or low crop 
presence to inform strategic biogas plant siting. 

Temporal dynamics refer to the number of pixel points in each 
county that have consistently appeared above a specific threshold over 
two decades. Here, the “threshold” delineates the frequency of crop 
pixel appearances, categorising the stability into high (Scenario I), me
dium (Scenario II), and low (Scenario III) groups. This classification, 
which is pivotal for agricultural management, employed clustering 
tools, e.g., K-Means, HC, and QB, the DT classifier, and the Jenk Natural 
Break algorithm (with GIS) to robustly analyse crop consistency 
(Table S4). The setting of clusters and thresholds highlights areas of 
stable/unstable crop growth, aiding in strategic planning by visualising 
crop occurrence stability and thus enhancing the accessibility of biomass 
sources in the decision-making process. According to Sarker (2022), the 
steps include the following:  

(i) Database call. The analysis used ‘sklearn.cluster’ for K-means 
clustering optimisation with inertia and elbow graph visual
isation. The HC employed ‘scipy.cluster.hierarchy’ for dendro
gram creation and ‘AgglomerativeClustering’ for analysis. The 
QB used ‘pandas’ for weight calculations and data binning. The 
DT applied ‘sklearn.tree’ for classification by mean square error 
(MSE), tuning with ‘max_leaf_nodes’.  

(ii) Cluster number determination. Using the Algorithms K-Means and 
QB with the elbow method, HC with Ward’s distances and DT 
with MSE and max-leaf nodes revealed the optimal number of 
clusters. 

(iii) Sequential clustering. The results were grouped into optimal clus
ters sequentially. Stability levels were then determined by 
combining manual adjustments (i.e., JNB) with algorithmic 
analysis for accurate stability categorisation.  

(iv) Comparison and integration. The least stable group identified by 
each algorithm was discarded, and the remaining data were 
categorised into low- to high-stability groups. These groups were 
then averaged across the outcomes of all algorithms to ensure a 
consistent and comprehensive analysis of the stability scenarios 
(I-III). 

Furthermore, to ensure the reliability of both spatial and temporal 

stability, it is essential to maintain consistency by examining the cor
relation coefficient (R2) between the mean values and SD from both 
temporal dynamic and spatial distribution analyses. A high correlation 
(R2 > 0.7) demonstrated the consistency and variability of spatiotem
poral stability for interpreting both temporal and spatial properties. 

2.3. MCDA for biogas plant suitability assessment 

2.3.1. Available areas 
Primarily, decision-making should define theoretically available 

biogas plant location areas. These areas were obtained by applying a 
series of territorial constraints and directly removing the constraint 
areas (Table 3). Our study defined 9 shape-format constraints and used 
‘proximity’ tools to create protective buffer zones (Section 3.2). 
Compliance with all constraints was mandatory, as failing even one 
results in site exclusion. 

2.3.2. Preference criteria 
Before the preference investigation, three main criteria were 

considered, namely, environmental, social, and economic aspects (Fer
rari et al., 2022a), which were divided into 13 sub-criteria (Table 3). The 
environmental criteria included considerations such as proximity to 
water bodies (e.g., rivers and canals), slope gradient, and the presence of 
historic or scenic areas. Social criteria included population density, 
residential and accommodation areas, public services (e.g., cultural 
buildings, health-care facilities), and commercial/shopping areas (e.g., 
financial districts, shopping malls, supermarkets). The economic criteria 
included road network density, gas pipelines, corporate and industrial 
areas, harvesting costs (i.e., transport and packing expenses), GDP per 
capita, and biomass seasonality (i.e., the stability of crop planting and 
storage capacity in hubs). 

To obtain a multidimensional assessment, participatory approaches 
have been included either through information based on the perception 
of the value of criteria or by providing the ranks/weights on the relative 
importance of each element. Hence, the questionnaires rated criteria 
from unimportant (1) to extremely important (9), with self-comparisons 
of 0, to assess preferences similar to the AHP method (Fig. S7(a)). The 
survey included 20 experts, policy-makers, and local residents who were 
active in rural construction and agricultural energy and who were 
seeking professional insights. This process yielded twenty 16 × 16 
original matrices. 

2.3.3. Grey-based DEMATEL 
The grey-based DEMATEL method combines grey system theory to 

handle uncertainty and incomplete information, enhancing the ability of 
the DEMATEL method to model complex cause–effect relationships 
among criteria. Grey interval matrices were constructed to evaluate the 
assessment via the steps in Fig. S7 (Bai and Sarkis, 2013): 

(i) Upper (Omax) and lower (Omin) direct impact matrices after stand
ardisation. The original matrices were decomposed into lower and 
upper bounds to reflect the judgement range (Table S5). The 
lower bounds gave little importance to extreme values, reducing 

Table 2 
Coefficients of the biomass-to-energy conversion.   

SE- 
rice 

LR- 
rice 

Maize Wheat  Pig Cow Goat Poultry Ref. 

Accumulated NPP 
(kgC) 

BP-ANN output (Shi et al., 2024). Daily products 
(kg) 

5.3 20.6 2.4 0.1 (Chiumenti et al., 2019; Ferrari et al., 2021a; Yan 
et al., 2021; Zhang et al., 2012) 

Feeding days 199 365 365 210 
Dry biomass 25 % Dry biomass 30 

% 
27 
% 

49 % 48 % 

AD rate 0.55 0.58 0.6 0.57 AD rate 0.42 0.3 0.49 0.3 
Energy content 

(MJ/kg) 
15 16 18 17 Energy content 

(MJ/kg) 
21 20 12 15  
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their impact, and adjusted middle values based on their closeness 
to a low point, calculated via [1/8 + (vij-2)] × 0.75/7. On the 
other hand, the upper bounds focused on the highest values, 
lessening the importance of those further away via [1/8 + (uij-1)] 
× 0.75/7, thereby thoroughly reflecting the opinions. Then, to 
average all the standardised metrics, Omax and Omin were 
obtained.  

(ii) Sharpening and Normalising Matrices (Osharp and N). To enhance 
the interrelationships, we integrated the grey relational re
lationships to calculate Osharp (Table S6): 

sij = yij
[
Max

(
uj
)
− Min

(
vj
) ]

+Min
(
vj
)
;

since Min(uj) = Min(vj) = 0, it was simplified to 

sij =
vijMax

(
uj
)
− vij

2 + uij
2

Max
(
uj
)
− vij + uij

(1)  

where uij, vij, and sij represent the elements of Row i and Column j (i,j =
1,2, …,16) in Omax, Omin, and Osharp; we define 

ũij =
uij − Min

(
uj
)

Max
(
uj
)
− Min

(
vj
), ṽij =

vij − Min
(
vj
)

Max
(
uj
)
− Min

(
vj
) thus  

yij =

ṽij

(

1 − ṽij

)

+ ũij
2

1 − ṽij + ũij
.

Next, to ensure comparability of the data, the chords of the two 
maxima were taken for normalisation of the sharpened matrices to 
obtain Nmax, Nmin, and Nsharp (Table S7).  

(iii) Total Relation Matrix (T) and DCMR analysis. T was derived from 
N to depict the comprehensive influence among subcriteria 
(Table S8) since all values of N converge to a null matrix (ϑ) 
(Banks et al., 1997): 

T =
(
tij
)

16×16 =
∑∞

k=1
Nk ̅̅̅̅̅̅̅̅̅̅→

ϑ= lim
k→∞

Nk

T = N(I − N)
− 1 (2)  

where I is the identity matrix. 
After defining the degree of influence (D), degree of being influenced 

(C), degree of centrality (M), and degree of causality (R), the DCMR table 
was denoted as follows: 
{

Di|Ci|Mi|Ri}≝

{
∑16

j=1
tji

⃒
⃒
⃒
⃒
⃒

∑16

j=1
tij

⃒
⃒
⃒
⃒
⃒

∑16

j=1

(
tji + tij

)
|
∑16

j=1

(
tji − tij

)
}

(3) 

Tmax, Tmin, and Tsharp were obtained by following Eqs. (2) and (3) to 
construct DCMRs among the lower, sharpened, and upper matrices 
(Table S9), and further analysis through topological invariance under
scored the significance and influence of these parameters within the 
decision-making network. 

Subcriteria with high M, as the key nodes in the causal network, 
reflected both highly influencing (‘influencer’) and being influenced 
(‘influencee’). Sub-criteria with positive R were denoted as the driving 
forces (Jeong and Ramírez-Gómez, 2018). 

2.3.4. Final scores of the MCDA 
We used M to determine the initial scores and R to adjust the scores 

for the causal network. This approach helped manifest the priorities, 
especially for sub-criteria of close M values, considering the influence 
chains (Bai and Sarkis, 2013). The process normalised M and R (as MN 
and RN), adjusted for the influence direction, and calculated the final 
scores (Tables 4 andS10): 

Wi = MNi +RNi⋅H (RNi) (4)  

where H (⋅) is the Heaviside step function. 
Eq. (4) prioritises the influence of subcriteria on others, de- 

emphasising the more influenced ones. Thus, the final weights (ωi) 
were calculated by WiN to determine the suitability related to all criteria 
judged by all surveyors. 

2.4. Spatial and network analysis 

The dataset has 13 sub-criteria in shape, raster, and table formats, 
including 9 distance-related constraints (WB, SL, SA, RA, PS, CS, RN, GP, 
and CI, in Section 2.3.1) and 4 gradient variables (PD, GDP, HC, and BS), 
as outlined in Table 3. The constraints set biogas plant proximity to 
locations at 9 levels according to the Euclidean distance. Gradient var
iables guide area selection based on value preferences, classifying both 
data types and county-level results (BS and HC) into 9 levels by char
acteristics. All the data were converted to an ~30 m resolution raster 
format for precise analysis. 

Table 3 
Constraints and criteria considered in biogas plant candidate sites.  

Site suitability survey Constraints 

Criteria Subcriteria MCDA 
assessment 

Buffer (m) Description 

Environmental Water bodies 
(WB) 

Maximise 
distance 

150 (river/ 
canal), 300 
(lake/pool) 

Areas are 
excluded if 
they are 
too close to 
sensitive 
zones, had 
steep 
slopes 
(>15 %), 
or under 2 
ha, too 
small for a 
facility. 

Slope (SL) Minimise 
the slope 
degree 

15◦

Scenic area (SA) Maximise 
distance 

500 

Social Population 
density (PD) 

Minimise 
the number 
residing 
within 2 km 

– 

Residential and 
accommodation 
(RA) 

Maximise 
distance 

1000 

Public services 
(PS) 

300 (cultural 
services), 500 
(bureaus), 
1000 (health- 
care) 

Commercial and 
shopping 
centres (CS) 

300 
(financial, 
shopping), 
500 
(catering) 

Economic Road network 
density (RN) 

Maximise 
road 
density and 
minimise 
the distance 

100 
(railway), 60 
(expressway, 
national- 
way), 40 
(provincial- 
way, city 
road) 

Gas pipelines 
(GP) 

Minimise 
distance 

10 

Corporate& 
industrial (CI) 

Maximise 
distance to 
avoid 
mutual 
interference 

100 

Harvesting costs 
(HC) 

Minimise 
harvesting 
costs 

– 

GDP Maximise 
plants with 
lower GDP 

– 

Biomass 
seasonality (BS) 

Maximise 
plants in 
high- 
capacity 
areas 

–  
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2.4.1. Spatial suitability analysis 
The sensitivity analysis for biogas site selection focused on the 

MCDA, excluding the BD or spatiotemporal stability. Using ‘weighted 
overlays’, two sets of suitability maps were created based on three 
criteria (environmental, social, economic) and stakeholder views (ex
perts, policy-makers, locals), scoring suitability from low to high (levels 
1–9) through raster calculations. 

Subsequently, we combined the BD and spatiotemporal stability with 
the MCDA, which was weighted at 25 % across the three scenarios, 
yielding 9 suitability maps for biogas sites. These data were then con
verted to shape format (points), considering land-use covers and prox
imity requirements for plant locations. This approach robustly identified 
candidates, setting solid groundwork for subsequent allocation analysis. 

2.4.2. Biogas plant siting network analysis 
The ‘Location-Allocation’ tool, part of the Network Analyst extension 

in ArcGIS Pro, was used for network analysis to identify the optimal sites 
for biogas plants from the candidate locations. This tool is used to 
determine the most efficient layout of facilities based on the distribution 
of demand points (Ferrari et al., 2022b). It helps place facilities to 
maximise service coverage, minimise transportation costs, and balance 
demand. The key inputs include:  

(i) Road networks. This involves the geometric and technical details 
of the transport network, including maximum speed, one-way 
streets, and restricted roads (Table 3). For our analysis, the 
road network data were configured and input to accurately 
represent the actual transport routes for effective logistics 
planning.  

(ii) Demand points. These are locations that require biogas services. 
Each point is assigned a weight indicating its significance. In our 
study, demand points were identified using local biomass data 
and consumer locations, with residential and accommodation 
(RA) points chosen due to their high biogas demand (Teng et al., 
2022).  

(iii) Facilities. These include ‘candidates’ (potential sites for biogas 
plants), ‘required’ (mandatory sites), and ‘competitors’ (alterna
tive sites). Our focus was on ‘candidate’ sites (Section 2.4.1) to 
model a coordinated, noncompeting system of biogas facilities. 

Additionally, the steps and parameters in our analysis include 
specifying a cut-off value for the maximum transport distance to model 
transportation costs. We applied ‘Maximise Attendance’ to prioritise the 
placement of facilities in a way that maximises the coverage of demand 
points. 

3. Results and discussion 

3.1. Spatio-temporal stability maps 

Crop distribution highlights both spatial and temporal variation. 
Fig. 2(a) shows the spatial distribution of the four crops every five years. 
SE-rice and wheat dominated crop planting, with consistent distribu
tions across counties. Fig. 2(b) shows the mean crop recurrence over 
time with error bars for the standard deviation (SD), indicating the 
frequency of the four crops in each county. More crop occurrences are 
illustrated in Figs. S2 and S3 to show the mean values and variability. 
SE-rice showed a stable, high mean and low SD, notably in Gongan and 
Shayang; wheat was most stable in Jiangling, followed by Zhongxiang. 

For the temporal dynamics, using four algorithms, the optimal 
number of clusters was determined to be k = 4. This was confirmed by 
the elbow method, Ward’s distance, and MSE analysis with max-leaf 
nodes (Fig. S4). SE-rice and wheat were classified as ‘highly stable’ for 
>17 occurrences, with LR-rice and maize thresholds of 11 and 5, 
respectively (Figs. 3(a) and S5). Excluding the least stable scenario, 
three stability scenarios (I-III) are depicted in Fig. 3(b). The ‘Spatial 
Analyst’-reclassified pixel points from ‘2’ (III) to ‘4’ (I) for the stability of 
the four crops are shown in Fig. 5 and specified in Fig. S6. Additionally, 
it displays crop coverage stability at ~1 km resolution, with colours and 
shades indicating the crop types and stability. Stable and numerous SE- 
rice crops dominate the west, while wheat is central. In scenarios I-III, 
highly stable crops accounted for 24 % of the points analysed. 

Moreover, Fig. 4 shows R2 > 0.77 for the means and 0.86 for the SDs, 
indicating a strong correlation between the spatial and temporal sta
bility, thus validating the spatiotemporal plots. These data, combined 
with the biogas potential (Fig. 1(a)), guided site selection via network 
analysis for straw logistics. 

3.2. Available areas for siting biogas plants 

The nine constraints, categorised into point, linear, and planar types, 
are based on the GIS layers (Fig. S11). The point data included six types 
across 294,867 locations: SA (1645), RA (houses, 17,075), PS (57,746), 
CS (187,154), GP (nodes, 6), and CI (31,241). The linear data consisted 
of two types over 38,917 locations: WB (river/canal, 1243), RN 
(37,660), and GP (pipelines, 7), with the RN including 19 railways, 2471 
expressways, 1525 national ways, 4539 provincial ways, and 29,106 
suburban/urban roads. The two types of planar data comprised 9308 
locations: WB (lake/pool, 959) and RA (building layout, 8349) plus 
county-level HC and BS data derived from table-based data. Then, all 
constraints were overlaid with buffer zones. After applying buffer zones 
and additional restrictions on the GDP, SL, and PD, as specified in 
Table 3, a raster calculation excluding these zones identified available 
areas for biogas plants, as illustrated in Fig. 6. 

3.3. MCDA determination of suitable sites for biogas plants 

3.3.1. Insights on preferences and impacts 
The Tmin, Tsharp, and Tmax matrices, representing the DCMR decision 

from the grey-based DEMATEL, are depicted in heatmaps (experts in 
Fig. 7(a), others in Fig. S12). The process, illustrated in Tables S5–S8, 
resulted from Eqs. (1) and (2). The lower-sharpened-upper links are 
depicted as the trajectories in Fig. 7(b)(c). These heatmaps clarify the 
general emphasis on subcriteria, revealing the diverse perspectives in 
decision-making. Specifically, experts preferred environmental criteria, 
as evident from the pronounced colour intensity, with SL and SA 
demonstrating a strong interrelationship indicated by their proximity in 
hierarchical clustering (Euclidean distance). Policy-makers preferred 
social criteria (PS, CS, and RA), with PS and CS being closely related. 
Local residents also emphasised environmental criteria. 

To clarify the factors influencing decisions, Eq. (3) breaks down T 
into DCMR decision (Table S9) insights into the causal networks 

Table 4 
MCDA scores for biogas plants.  

Criteria Final MCDA score (W) 

Experts Policy-makers Residents 

Environmental WB 0.1880 0.1981 0.1978 
SL 0.0532 0.0335 0.0605 
SA 0.0529 0.0360 0.0979 

Social PD 0.1236 0.1043 0.0651 
RA 0.1186 0.0735 0.0847 
PS 0.0599 0.0648 0.0561 
CS 0.0575 0.0658 0.0562 

Economic RN 0.0566 0.0601 0.0592 
HC 0.0571 0.1053 0.0853 
GDP 0.0575 0.0787 0.0594 
BS 0.0574 0.0592 0.0593 
GP 0.0584 0.0601 0.0592 
CI 0.0592 0.0605 0.0593 

Column sparklines (WB-CI) 
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depicted in Figs. 7(d) and S12(g)(h):  

(i) Driving force. The “centrality-causality” plots reveal the varying 
importance of the driving factors (subcriteria with R > 0) among 
the stakeholders. The experts focused on WB, PD, and RA (Fig. 7 
(b)); the policy-makers focused on WB, HC, PD, GDP, and RA 
(Fig. S12(c)); and the residents focused on environmental criteria 
and RA, HC, and PD (Fig. S12(d)). Experts view these factors as 
less critical, noting most subcriteria as “the resulting ones”. 
However, instability in these forces is suggested by overlapping 

or intersecting pairs (e.g., PD × RA, CS × HC for experts; HC ×
PD, GDP × RA for policy-makers; RA × HC, PS × BS for resi
dents), suggesting the potential for change with different judge
ments. Evidently, experts’ views seem more stable, with fewer 
intersecting pairs. Despite varying emphases, the M values show 
slight differences across groups, underscoring the complex 
interplay of social and economic factors. 

(ii) Influencer vs. “influencee”. In the “influencing-influenced” scat
terplots (Figs. 7(c), S12(e)(f)), the analysis revealed the top 
influencers according to the experts (WB, PD, RA, PS), policy- 

Fig. 2. Spatial distribution: (a) annual crop distribution maps and (b) county-level spatial variability statistics. The extent of cultivation of various crops remained 
relatively constant, with some yearly variations in number and area. The statistical significance (mean ± SD, n = 19) shows spatial stability across counties. 
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makers (PD, HC, RA, WB), and residents (WB, HC, RA, PD), with 
WB, PD, RA, and HC emerging as key influencers. Considering 
environmental, social, and economic impacts, these factors 
should be tightly regulated. Conversely, for influencees, experts 
highlighted CI, GP, GDP, and CS; policy-makers chose CS, CI, PS, 
and GP; and residents opted for CI, CS, GDP, and BS, making CI, 
CS, GP, and GDP the key influencees requiring protection, espe
cially in economic and social contexts during biogas plant con
struction. Additionally, it also suggests a rotation in influencers 
among environmental, social, and economic criteria, with envi
ronmental influencees consistently ranking last. This indicates a 
lesser direct impact of environmental factors on biogas plant 
development than their indirect effects on social and economic 
benefits, which are more susceptible.  

(iii) Causal networks. An in-depth analysis of Figs. 7(d) and S12(g)–(h) 
revealed a diverse hierarchy of factors influencing biogas project 
site selection. WB stands out as a universally key environmental 
factor. PD and RA are also emphasised, highlighting the consid
erable social influence on and impacts of biogas initiatives. The 

detailed significance of biogas projects was further explored by 
expanding on these insights (Liang et al., 2023a, 2023b). 

Overall, integration of the judgement of M and R factors is essential 
for effectively assessing biogas plant site selection, highlighting the 
critical interplay between environmental, social, and economic factors. 

3.3.2. Final scores of the MCDA 
According to Eq. (4), the final scores (W) of the MCDA are presented 

in Tables 4 and S10. The results of a weighted overlay analysis with the 
final MCDA scores are depicted in Fig. S13. Among the environmental 
criteria, protection of water bodies and systems (WB, 56–74 %) was the 
most important, followed by protection of scenic and historic areas (SA, 
14–27 %). Among the social criteria, the most considered criteria were 
the distances from the high population potential (PD, 25–34 %) and the 
urban or residential accommodation areas (RA, 24–33 %). Finally, 
among the economic criteria, the harvesting cost of straw (HC, 17–25 %) 
was most considered, followed by the stimulus potential for GDP growth 
(GDP, 16–19 %), the ability of firms to cooperate or hedge against 
competitive risks (CI, 14–17 %), and transport costs and accessibility 
(RN, BS, GP, 14–16 %). 

3.4. Spatial suitability for siting biogas plants 

By applying the final scores combined with the crop stability maps 
(Figs. 5 and S14), suitability maps based on three criteria and from three 
types of stakeholders were produced. The boxes showing ‘Env’, ‘Soc’, 
and ‘Eco’ in Fig. 8 and ‘Exp’, ‘Pol’, and ‘Res’ in Fig. S15 indicate the most 
suitable areas, providing a strategic balance of conditions conducive to 
biogas development. 

For environmental protection, the top biogas project sites, i.e., ‘Env- 
1’ in western Yicheng, ‘Env-2’ in northern Jingshan, and ‘Env-3’ in 
central-western Shayang, were identified. These sites had 299 pixels at 
the highest environmental suitability (level 9 in Fig. 8(d)), with a sub
stantial presence at levels 7 and 8. They were also prominent in social 
and economic evaluations. Socially, the highly suitable areas are evenly 
spread, enhancing community living but excluding central Tianmen, 
western Zhijiang and Jingzhou, and eastern Caidian, with 13,557 pixels 
at level 9. Economically, the 604 pixels at level 9 for top suitability are 
focused in the northern, central, eastern, and southeastern areas across 
nine counties, e.g., Yicheng and Zhongxiang, favouring plains near lo
gistic routes and avoiding northeastern slopes (Fig. 1(a)). This reflects a 
strategy to minimise costs and boost economies in populous yet less 

Fig. 3. Temporary dynamic analysis: (a) yearly changes in planted pixel points, 
(b) classification. The classification (Section 2.2), using four algorithms for 
temporal stability, is illustrated in Fig. S4. 

Fig. 4. Spatio-temporal consistency tests using (a) mean values and (b) SD. The R2 value, calculated using the SST and SSE via R2 = 1 – SSE / SST, indicates a strong 
correlation and consistency in the spatial distribution and temporal dynamics. 
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affluent regions, with social criteria showing broader high suitability 
coverage than economic criteria, which prioritises strategic locations 
(Dreher et al., 2024). Stakeholders agreed on the most suitable biogas 
project areas despite their different decision-making styles and criteria 
scores, with no identification of level 9 suitability. Policy-makers fav
oured northern (Yicheng, Zhongxiang, Jingshan, and Tianmen), western 
(Shayang), and southeastern (Jianli) locations (Fig. S15(b)). This com
parison shows experts’ wide site recognition, policy-makers’ strategic 
focus, and residents’ selectivity, underscoring the importance of inte
grating diverse perspectives for optimal site selection that balances 
expertise, policy goals, and local preferences. 

In general, the analysis revealed a complex suitability network across 
plains with central prime sites and potential areas such as ‘Env-3’, ‘Soc- 
7’, and ‘Eco-9’ on the flanks. 

3.5. Network decision-making under spatio-temporal scenarios 

3.5.1. Biogas plant candidates 
Considering the land-use area (16,380 m2 for ABPs) and a minimum 

distance of 0.5 km to avoid interference, a 2-ha threshold filtered out 
unsuitable areas (Ferrari et al., 2021b). By overlaying the biogas 

potential with spatiotemporal stability, this process transformed raster 
data (levels 7–9) into points, generating candidate points for three sta
bility scenarios and various decision-making perspectives. Fig. S16 re
veals that the experts in Scenario I targeted a few key areas for biogas 
candidates, with Scenario II showing their increased openness to 
moderate-stability regions, and Scenario III further widening the net (49 
% increase at the plain level, compared to Scenario I), especially in 
Yicheng (62 % increase compared to Scenario I) and Zhongxiang (146 % 
increase). Policy-makers started conservatively in Scenario I, focusing 
on Jingshan (149 candidates), Yicheng (320 candidates), and Jiangling 
(11 candidates), but by Scenario III, they significantly broadened their 
scope (24 % increase at the plain level), particularly in Jingshan (82 % 
increase) and Zhongxiang (from 2 candidates to 16), suggesting a bal
ance between crop stability and socioeconomic factors. Local residents 
concentrated their choices in Shayang (1235 candidates) and Yicheng 
(821) in Scenario I. Nevertheless, by Scenario III, they showed the 
greatest flexibility, with considerable increases in candidates across 
various regions (38 % increases at the plain level), reflecting their 
adaptability to the evolving stability criteria. 

Overall, Fig. S16(d) shows that Shayang is a preferred biogas site, 
with Yicheng gaining interest from experts and residents in less intense 

Fig. 5. Crop stability maps: (a) three scenarios fused with local magnification and (b) a high-stability scenario.  
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Fig. 6. Available and restricted areas for siting biogas plants: (a) available areas in the plain, (b) local magnification of available areas, (c) local restricted/buffer 
zones (see Figs. S8–S11 for more details). 
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Fig. 7. MCDA decisions of experts: (a) total relation matrices (Tsharp) heatmap, (b) trajectory plots for centrality-causality (M-R), (c) influencing-influenced (D–C) 
linkage and scatterplot, and (d) causal network diagram. The heatmap used Pearson correlation and complete-linkage clustering with Euclidean distance, including a 
hierarchical dendrogram. The M-R and D–C graphs show the DEMATEL results via Eqs. (1)–(3), highlighting the driving forces and relationships dynamically shown 
in the network diagram (the shape size represents the |R| value). Fig. S12 shows the decisions of policy-makers and locals. 
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Fig. 8. Suitability maps assessed by (a) environmental (Env), (b) social (Soc), (c) economic (Eco), and (d) pixel counts with 9 suitability levels based on three criteria.  
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scenarios, while policy-makers favoured Jingshan, reflecting varied 
evaluation criteria. Caidian, Gongan, Honghu, and Shishou were 
excluded due to unsuitability. The candidate site expansion from Sce
narios I-III indicates a shift towards more inclusive selection criteria. 

3.5.2. Selected sites for biogas plant development 
This study focused on large-scale biogas plants, with RA locations 

(17,075) serving as demand points, which were equally weighted to 
candidate points in Network Analyst. Fig. 9 shows 45 facilities selected 
in Scenario I, increasing to 61 in Scenario II and 66 in Scenario III, with 
experts having the most influence on site selection (decision-making 
share 64–65 %, Table S12). Local residents had a significant impact 
(33–52 %), while policy-makers contributed the least (20–27 %). The 
analysis indicates that expert and resident choices align with higher 
demand and more efficient solutions due to the weighted analysis of 
demand points. 

For Scenarios I-III, Fig. S17 shows site selection clustering around 
specific coordinates but with overall dispersion, indicating spread-out 
facilities. In Fig. 9(a)–c), expert and resident decisions aligned with 
energy supply needs to the west and south, while policy-makers focused 
on the east and north, highlighting geographical differences in decision- 
making. 

Furthermore, by examining the centroid differences between various 
decisions and stability in Fig. 9(e)–(h), we found that the preferences of 
these stakeholders varied across different scenarios. The demand 
centroid was (30.445, 113.002). For Scenario I, the intercentroid dis
tances ranged from 9.6 km (expert-resident) to 33.4 km (policy-resi
dent), and their distances to the demand centroid ranged from 51.7 km 
(expert) to 68.8 km (policy-maker). For Scenario II, the distances ranged 
from 3.1 km (expert-resident) to 27.4 km (policy-resident), and the 
demand centroid ranged from 60.1 km (resident) to 68.4 (policy-maker). 
For Scenario III, distances ranged from 6 km (expert-resident) to 33.8 
km (policy-resident), and the demand centroid ranged from 63.4 km 
(resident) to 68.8 km (policy-maker). 

Accordingly, the intercentroid distances reveal varying stakeholder 
agreement across the stability scenarios, with Scenario II showing the 
closest alignment between experts and local residents, suggesting that 
moderate stability fosters consensus. Higher stability enhances energy 
demand coverage through efficient straw acquisition. Farthest from 
demand, policy-makers could improve rural energy planning by incor
porating expert and local insights, resulting in more comprehensive 
policies and evaluations for biogas site selection. 

Practically, our analysis compared site selection with yearly bio
energy report data, focusing on large-scale biogas projects (CSY, 2022). 
Local biogas production partly mirrors the energy market demand. 
However, as listed in Table 5, the correlation coefficient (R2

N-G = 0.57), 
indicated imbalances between existing projects and demand, with some 
areas having excess projects and others facing shortages, affecting eco
nomic efficiency. Our study revealed stronger correlations (R2

i-G = 0.9 for 
Scenario I, 0.89 for Scenario II, and 0.88 for Scenario III), suggesting that 
our selections more closely match demand and promote supply-demand 
balance (Valenti et al., 2018). 

For policy-makers, our findings provide insights into rural energy 
planning. High stability improves accuracy and energy coverage, 
whereas moderate stability fosters consistent stakeholder decisions, 
enhancing policy outcomes. Key counties, e.g., Zhongxiang, Shangyang, 
Jingshan, and Yicheng, are vital for supplying biogas to energy- 
demanding cities and overall plains, e.g., Jingmen, Tianmen, Jingz
hou, Xiangyang, Qianjiang, and Xiaogan, supported by transport net
works. For convenience, the coordinates of the selected biogas plant 

sites are provided in Table S13. 

4. Conclusion 

Our study on the Jianghan Plain, which used GIS-MCDA to evaluate 
biogas plant locations based on the bioenergy potential of agricultural 
and livestock byproducts and stability over time, yielded significant 
findings. The Jianghan Plain has significant bioenergy capacity (Section 
2.1.3), with an estimated bioenergy content of 6.3 × 1012 kJ over 20 
years and a biogas potential of 4.7 × 1011 kJ for 2020. Spatiotemporal 
analysis (Section 3.1) revealed consistent biomass availability (Section 
3.2) from crops such as rice in Gongan and Shayang and wheat in 
Jiangling, which are essential for biogas production. By incorporating 
environmental, social, and economic criteria, our MCDA method pin
pointed optimal locations for biogas plants, and varied stakeholder 
preferences for criteria, e.g., water bodies, slope, population density, 
GDP, industry, etc., influence the decision-making process (Section 3.3). 
Network and scenario analyses identified 45 to 66 suitable facilities, 
mainly in 4 key counties, showing that moderate stability in biomass 
supply aligns with decision-maker consensus, while more stable areas 
are crucial for meeting energy demands (Section 3.5). Hence, it is vital to 
integrate expert and local feedback in policy-making. 

The methodology and findings highlight the critical role of choosing 
sites with reliable biomass for biogas projects, as confirmed by our 
stability analysis. Our GIS-MCDA framework is versatile, catering to 
diverse site selection needs, making it suitable for broader bioenergy 
applications. Incorporating stakeholder perspectives ensures that our 
projects align with local needs and support, while flexible scenario 
planning helps people navigate agricultural and environmental un
certainties. Aligning with global sustainability and carbon neutrality 
goals, our framework offers a practical model for bioenergy resource 
exploitation, which sets a precedent for policy and planning in envi
ronmental, agricultural, and renewable sectors. This signifies a step 
forwards in achieving environmental sustainability and an energy- 
efficient future. 

Furthermore, testing the framework beyond the Jianghan Plain in 
diverse geographical and agricultural settings will validate its adapt
ability and scalability. Adapting our methodology for various bioenergy 
resources, e.g., woody biomass or municipal waste, by adjusting the 
MCDA criteria and inputs can broaden its application and utility. 
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Fig. 9. Biogas plant sites and distribution across scenarios: (a) Scenario I plants, (b) Scenario II plants, (c) Scenario III plants, (d) zonal plant statistics, (e) Scenario I 
coordinates with marginal plots, (f) Scenario II coordinates, (g) Scenario III coordinates, (h) demand point distribution. The ‘Location-Allocation’ tool in Network 
Analyst modelled plant distribution using ‘Maximise Attendance’ with a linear cost function and a 30 km cut-off. The centroid ellipse is at 95 % confidence, and the 
marginal curves used kernel smoothing parameters (Table S11). 
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Table 5 
Comparison of regional facility choices with survey data and evaluation of decision-making performance.  

Region Facility Survey data 

City County I II III Existing large-scale biogas projects 
(N) 

Annual production 
(G, 104 m3) 

Jingzhou 

Jingzhou  1  1  2 

34 220.7 

Shashi  0  0  0 
Jiangling  1  1  1 
Songzi  2  4  5 
Gongan  0  0  0 
Shishou  0  0  0 
Jianli  1  1  1 
Honghu  0  0  0 

Xiantao Xiantao  2  2  2 5 91.2 
Qianjiang Qianjiang  1  2  2 6 120 
Tianmen Tianmen  0  0  0 9 250.5 
Wuhan Caidian  0  0  0 0 0 

Xiaogan 
Yingcheng  0  0  0 

11 104.7 Hanchuan  4  5  5 

Jingmen 
Shayang  12  13  12 

33 874.4 Zhongxiang  7  12  13 
Jingshan  8  11  12 

Xiangyang Yicheng  6  9  11 9 148.4 
Yichang Zhijiang  0  0  0 1 2.8 
Correlation R2

i-G  0.90  0.89  0.88 R2
N-G = 0.57 

R2
i-G: Facilities from Scenarios I-III (annual gas production); R2

N-G: Existing large-scale biogas plants (annual gas production); G: Amount required by users/markets. 

Z. Shi et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.scitotenv.2024.174665
https://doi.org/10.1016/j.scitotenv.2024.174665
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0005
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0005
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0005
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0010
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0010
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0010
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0010
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0015
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0015
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0020
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0020
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0025
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0025
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0030
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0030
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0035
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0035
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0035
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0040
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0040
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0040
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0045
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0050
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0050
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0055
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0055
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0060
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0060
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0065
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0065
https://ec.europa.eu/eurostat/databrowser/NAMQ_10_GDP/default/table
https://ec.europa.eu/eurostat/databrowser/NAMQ_10_GDP/default/table
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0075
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0075
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0075
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0080
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0080
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0080
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0085
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0085
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0090
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0090
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0090
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0095
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0095
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0100
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0105
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0110
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0110
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0110
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0110
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0115
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0115
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0115
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0120
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0120
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0120
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0125
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0125
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0125
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0130
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0130
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0135
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0135
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0135
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0140
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0140
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0145
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0145
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0145
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0150
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0150
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0150
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0155
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0155
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0155
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0160
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0160
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0160
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0160
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0165
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0165
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0165
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0165
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0170
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0170


Science of the Total Environment 947 (2024) 174665

17

Running, S., Zhao, M., 2021. MODIS/Terra Net Primary Production Gap-Filled Yearly L4 
Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC. 

Saaty, R.W., 1987. The analytic hierarchy process-what it is and how it is used. 
Mathematical Modelling 9 (3–5), 161–176. 

Sarker, I.H., 2022. AI-based modeling: techniques, applications and research issues 
towards automation, intelligent and smart systems. SN Computer Science 3 (2), 158. 

Shi, Z., Ferrari, G., Ai, P., Marinello, F., Pezzuolo, A., 2023. Artificial intelligence for 
biomass detection, production and energy usage in rural areas: a review of 
technologies and applications. Sustain Energy Technol Assess 60, 103548. 

Shi, Z., Ferrari, G., Ai, P., Marinello, F., Pezzuolo, A., 2024. Bioenergy potential from 
agricultural by-product in 2030: an AI-based spatial analysis and climate change 
scenarios in a Chinese region. J. Clean. Prod. 436, 140621. 

Teng, Y., Lin, P.W., Chen, X.L., Wang, J.L., 2022. An analysis of the behavioral decisions 
of governments, village collectives, and farmers under rural waste sorting. Environ. 
Impact Assess, Rev, p. 95. 

UNDP, 2021. United Nations Development Programme (UNDP). A Research Handbook. 
Springer, International Conflict and Security Law, pp. 761–777. 

Valenti, F., Porto, S.M.C., Dale, B.E., Liao, W., 2018. Spatial analysis of feedstock supply 
and logistics to establish regional biogas power generation: a case study in the region 
of Sicily. Renew. Sustain. Energy Rev. 97, 50–63. 

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., 2019. Food in the 
Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food 
systems. Lancet 393 (10170), 447–492. 

Yan, B., Yan, J., Li, Y., Qin, Y., Yang, L., 2021. Spatial distribution of biogas potential, 
utilization ratio and development potential of biogas from agricultural waste in 
China. J. Clean. Prod. 292. 

Zeng, J., Ribeiro-Navarrete, S., Ning, Z., Mardani, A., 2023. The intermediary effect of 
intelligent Amap-related traffic efficiency on haze pollution. Transportation 
Research Part E: Logistics and Transportation Review 178, 103262. 

Zhang, T., Bu, M.d., Geng, W., 2012. Pollution status and biogas-producing potential of 
livestock and poultry excrements in China. Chinese J. Ecol. 31 (5), 1241–1249. 

Zhao, N., Teng, J., Chen, Y., 2018. Current situation and analysis of agricultural waste 
management in China. World Environment 4 (4), 44–47. 

Zhao, X., Zhou, Y., Chen, W., Li, X., Li, X., Li, D., 2021. Mapping hourly population 
dynamics using remotely sensed and geospatial data: a case study in Beijing. China. 
GIScience & Remote Sensing 58 (5), 717–732. 

Z. Shi et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0175
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0175
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0180
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0180
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0185
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0185
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0190
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0190
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0190
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0195
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0195
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0195
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0200
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0200
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0200
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0205
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0205
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0210
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0210
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0210
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0215
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0215
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0215
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0220
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0220
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0220
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0225
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0225
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0225
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0230
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0230
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0235
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0235
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0240
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0240
http://refhub.elsevier.com/S0048-9697(24)04814-9/rf0240

	Assessment of bioenergy plant locations using a GIS-MCDA approach based on spatio-temporal stability maps of agricultural a ...
	1 Introduction
	2 Materials and methods
	2.1 Data preparation and collection
	2.1.1 Study area
	2.1.2 Data collection
	2.1.3 Biogas potential and analysis

	2.2 Spatio-temporal stability analysis
	2.3 MCDA for biogas plant suitability assessment
	2.3.1 Available areas
	2.3.2 Preference criteria
	2.3.3 Grey-based DEMATEL
	2.3.4 Final scores of the MCDA

	2.4 Spatial and network analysis
	2.4.1 Spatial suitability analysis
	2.4.2 Biogas plant siting network analysis


	3 Results and discussion
	3.1 Spatio-temporal stability maps
	3.2 Available areas for siting biogas plants
	3.3 MCDA determination of suitable sites for biogas plants
	3.3.1 Insights on preferences and impacts
	3.3.2 Final scores of the MCDA

	3.4 Spatial suitability for siting biogas plants
	3.5 Network decision-making under spatio-temporal scenarios
	3.5.1 Biogas plant candidates
	3.5.2 Selected sites for biogas plant development


	4 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A Supplementary data
	References


