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Abstract—Global navigation satellite systems (GNSSs) may
transmit data to provide additional services. Since the resources
reserved for these data are typically fixed and the message rate is
low, we propose to split long messages into shorter packets and
properly schedule their transmission from the entire constellation
of satellites. Considering an efficient data transmission (useful
for example for search and rescue messages), we aim at the
scheduling of packets on the satellites on multiple rounds with
two objectives: either a) the minimization of the maximum
latency among all receivers, or b) the maximization of the
average received packets per round. We first derive bounds on
the performance of any GNSS single or multi-round scheduling
solution, on which the proposed scheduling solutions are based.
Then we introduce the scheduling problems that turn out to be
integer linear programming (ILP) problems. Lastly, we assess
their performance, showing that our solution minimizes the
maximum latency, while the scheduling targeting the average
latency outperforms existing literature solutions.

I. INTRODUCTION

Global navigation satellite systems (GNSSs) transmit sig-
nals enabling the estimation of position velocity and time
(PVT) by receivers. Additionally, they also periodically broad-
cast data messages carrying useful information for navigation,
such as ephemeris and almanacs. Recently, studies have been
conducted to support new services, such as authentication
data, search-and-rescue (SAR), and short messaging [1]–[3]:
these solutions require as well the broadcast of further data
messages. Such data transmissions are particularly useful in
remote areas, where other communication services or side
channels are not available. In this case, hybrid satellite-Internet
solutions such as those provided by the high accuracy service
(HAS) [4] cannot be adopted.

We focus on the transmission of messages, such as SAR
messages or short messages, and we aim at minimizing the
time by which a message is received by a device on the
ground, in the following denoted as latency. Since GNSS are
characterized by low data rates (in the order of a few hundred
bit/s, e.g., 50 bit/s for GPS L1 C/A [5, Chapter 4] and blue
125 bit/s for Galileo E1B [6]), latency becomes significant,
especially for long messages. To overcome this issue, we must
exploit the specific broadcast nature of the satellite signal
and the availability of multiple satellites in view from ground
receivers.

Conventional beamforming techniques of multiple-input-
multiple-output (MIMO) systems cannot be applied in this
context: although the transmission from multiple satellites to

a single receive antenna can be modeled as a multiple-input-
single-output (MISO) channel, it is not possible to ensure a
synchronous reception of the signal in all possible positions of
the receiver, due to the distance among the transmit antennas
of different satellites. Moreover, the satellite orbits modify
their visibility by the receiver, further preventing coordination
among satellites at the symbol level.

The problem of latency minimization for broadcasting ser-
vices has been studied in different contexts, e.g., wireless
sensor networks (WSN) [7] and cognitive radio networks
(CRN) [8]. Still, our scenario has significant differences,
namely: a) no feedback channel is available from the receiver
to the transmitter; b) the bipartite graph modeling the network
is not complete, since only a subset of satellites is in view of
each receiver; c) the position of transmitters and receivers is
periodically changing over time, hence the scheduling solution
will be time-variant and periodic. Thus, we must develop
solutions specifically targeted to the GNSS context.

In this context, the typical solution is the carousel schedul-
ing strategy [9], where each different packet is scheduled
sequentially in time. This solution is currently used for dissem-
inating the almanacs, used to aid the receiver’s signal acquisi-
tion phase. With the carousel strategy, only the almanacs for
two space vehicles (SVs) are retrieved within each sub-frame
(i.e., 30 s) [6].

Still, at packet level, the diversity provided by multiple
satellites can be exploited. Indeed, by splitting the mes-
sage into several packets and transmitting them via different
satellites and specific spreading code, ground receivers can
collect the packets and obtain the entire message. For Galileo
open service navigation message authentication (OS-NMA),
the subset of satellites distributing the authentication data
dynamically changes, and no user knows in advance which
satellite is actually transmitting the message [10]. Still, a
message splitting approach has been proposed for OS-NMA
in [11] and [12]. In this context, the use of random fountain
codes has been proposed [13] to increase the reliability of the
packet dissemination. No further link-level solution has been
proposed for OS-NMA yet. A fountain code-based solution
was also proposed in [9] and compared to the carousel strategy
used for dissemination of the I/NAV messages in Galileo [6].

In this scenario, a key issue is the scheduling of packets
on the different satellites which can be performed in advance
according to a deterministic rule. In fact, the positions of
the SVs at any instant are easily predictable and the set of
satellites in view from any point on the surface of the earth
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can be consistently determined. By assigning a specific packet
to be broadcast by each satellite, we can determine the ground
position where it will be reliably received. Yet, only a few
studies are available on this topic, in the literature. Message
allocation strategies are proposed for HAS in [14], [15] taking
into account the satellite positions but not the actual receivers’
visibility. Moreover, in those works, the authors focus on the
dissemination of a fixed number of packets (10), while we
consider a more general scheduling problem.

Defined coverage as the fraction of area from which they
receive the whole message, in [16] the authors proposed a solu-
tion to maximize the coverage for fast message transmission,
i.e., the fraction of receivers that can obtain all the packets
and reconstruct the message at once. However, it was shown
that no scheduling strategy could achieve full coverage and
reliable reception for 4 packets at the same time with the
Galileo system, therefore this solution is only effective for
short messages. Here, we focus instead on solutions for multi-
round scheduling, targeting longer message scenarios.

In this paper, we propose a scheduling of packets over both
the satellites and the time, for fast message transmission to
overcome the limitations of existing solutions. Then the pack-
ets can also be re-transmitted several times by the satellites
until they are reliably received over earth. We denote as round
the time used for the transmission of a single packet and
consider that the transmission of the entire message spans
several rounds. The scheduling of packets on the satellites
among multiple rounds can be performed with two alternative
objectives: either a) the minimization of the maximum latency
among all receivers, or b) the maximization of the average
received packets per round. In the first case, we consider
latency as the key metric and aim at minimizing it for the
receiver in the worst conditions. With the latter objective
instead, we aim at maximizing the data rate. A third objective
is a variation of b), where we also aim at maximizing the
coverage at each round.

We first establish bounds on both the average number of
different received packets and the maximum latency, under the
maximum-diversity scenario, wherein each receiver obtains a
different packet from each satellite in view. Then, we leverage
the bounds to derive scheduling algorithms. We show that
under slow variations of visibility conditions across rounds,
the scheduling problem minimizing the maximum latency can
be split into separate scheduling problems for each round.
A single round scheduling is then formulated as a binary
integer linear programming (BILP) problem. We also consider
the problem of maximizing the average received packets per
round, for which we first quantize the coverage area and then
obtain a BILP problem. Numerical results show the validity of
our solution and the improvement with respect to the solution
in [16], obtaining reduced average and maximum latency.

The rest of the paper is organized as follows: in Section
II we introduce the system model and the metrics used for
GNSS message transmission; Section III states the optimal
bounds for average, maximum latency and maximum average
received packets analyzing the maximum diversity scenario; in
Section IV we propose solutions for the minimum maximum
latency problem and the maximum average number of different

received packets. Section V collects the numerical results of
the performance of the proposed algorithms. Lastly, we draw
some conclusions in Section VI.

II. SYSTEM MODEL

We consider a scenario where a set S = {1, . . . ,M} of M
GNSS satellites aim at transmitting a message p. The message
is split into K packets of equal size, (p1, . . . , pK). All the
packets are needed to reconstruct p, i.e., no form of packet
coding is considered. Time is divided into rounds, each of
duration T , in which each satellite transmits one packet. The
transmission of p may last multiple rounds. Each packet is in
general transmitted by multiple satellites over multiple rounds
to reach all ground receivers.

Message p is to be received by ground receivers over a
region A: let αs,n(x) be the elevation angle of the satellite
s ∈ S at round n with respect to position x ∈ A; then we will
consider satellite s as visible (i.e., its signal can be correctly
received in x) if αs,n(x) ≥ αmin where αmin is a threshold
typically fixed by the receivers. Typical values for αmin are in
the range [5◦, 15◦] [17, §15.7].

Indeed, by picking a large αmin, we are potentially dis-
carding useful satellites. However, signals coming from low-
elevation satellites are subject to atmospheric and multipath
distortion, or possibly even blocked by nearby obstacles [5,
§7], hence these signals can typically be discarded a priori
without degrading the performance of the receiver. We intro-
duce the satellite visibility maps as

vs,n(x) ≜

{
1 if αs,n(x) ≥ αmin,

0 if αs,n(x) < αmin,
(1)

indicating that satellite s is visible by a receiver in x during
round n if vs,n(x) = 1. Notice that we choose a value
constant for ease of reading. This model may be modified
by considering a different masking elevation angle for each
position, αmin(x), which models a map with a receiver placed
in an open sky condition or in an urban scenario, etc.. We
consider that the relative positions of satellites and receivers
change over the rounds: however, since T is much smaller
than the orbital period of the satellites, we assume the satellite
position to be static within each round.

We make the following assumptions for each GNSS re-
ceiver:

1) has a buffer with size at least equal to the length of p, to
store all the received packets.

2) receives without error the packet transmitted from any
visible satellite, i.e., we assume perfect error-correcting
coding.

3) can decode all the packets sent by all satellites in view
at the same time without interference degradation; this
is typically achieved by transmitting messages in a code
division multiple access (CDMA) fashion and using a
different code for each satellite.

During round n, satellites and ground receivers perform the
following operations:
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1) satellite s ∈ S obtains packet πs,n ∈ {1, . . . ,K} from the
ground segment; the choice of πs,n is the true subject of
the scheduling discussed in the next Section;

2) satellite s transmits packet πs,n;
3) each receiver in a position x such that vs,n(x) = 1

decodes the packet;
4) if the receiver has already obtained packet πs,n during

previous rounds or from another satellite, it discards the
packet, otherwise it stores the packet in its buffer;

5) once the receiver has collected all the K packets, it
reconstructs message p and waits for a new message.

Note that the proposed protocol is compatible with any
channel code mechanism, e.g., the Fountain codes used, for
instance, in [1], [9], [14]. Moreover, our solution can also
be applied without channel coding. Indeed, our solution is
compatible with any existing GNSS standard.

Additionally, we remark that unlike other proposed pro-
tocols, such as [14], [15], ours are more general and make
no particular assumption on the number of packets to be
disseminated, the region to be covered, or the SVs’ position:
thus, we could use this scheme to schedule a message either
over a specific region A (e.g., Europe) or using only a limited
subset of the satellites, instead of the whole set S, e.g., by
scheduling different messages to different subsets of satellites.

A. Performance Metrics

The transmission scheduling at round n is defined by a
partition of S, Sn = (S1,n, . . . , SK,n), where Sk,n is the set
of satellites transmitting packet k at round n. The transmission
scheduling from round 1 to n is Pn = (S1, . . . ,Sn). In
general, we aim at finding a scheduling strategy that allows the
receivers in A to recover p in a short time. We now introduce
three specific metrics that will be used to design the scheduling
algorithms, namely a) the average number of different received
packets, b) the maximum latency, and c) the average latency.

a) Average Number of Received Packets: the first metric
is related to the number of different received packets in a
given time and in a given area, thus it merges coverage and
throughput performance. By introducing the availability of
packet k at position x by round n

uk,n(Pn,x) ≜

{
1 if

∑n
m=1

∑
s∈Sk,m

vs,m(x) > 0,

0 otherwise,
(2)

we count the total number of different received packets at
position x up to round n, as

ηn(Pn,x) ≜
K∑

k=1

uk,n(Pn,x). (3)

This indicates the amount of data received as more rounds are
carried out in a given position. Lastly, by averaging the above
quantity over the area A, we obtain the average number of
different received packets in A up to round n is

η̄n(Pn) ≜
1

|A|

∫
A

ηn(Pn,x)dx. (4)

This metric is related to the coverage up to the current frame.
Note however that a high value of η̄n(Pn) does not ensure

that all points in the area have received the same number of
packets.

b) Maximum Latency: the second metric is referred to as
the latency, i.e., the number of rounds necessary for a receiver
to obtain all the K packets and reconstruct p. First, we define
the latency for a receiver in position x as

τ(P ,x) ≜ min

{
n : ηn(Pn,x) = K

}
, (5)

where P = (S1,S2, . . .) is the scheduling sequence at all
rounds. The maximum latency is defined as the maximum
latency among all receivers in the area A, i.e.,

τmax(P) ≜ max
x∈A

τ(P ,x). (6)

The latency is a relevant metric for several applications,
in particular in automation, including self-driving cars or
unmanned aerial vehicles. Minimizing the maximum latency
means to keep under control the latency in the worst-case
scenario, which is a suitable criterion for time-critical ap-
plications. Still, considering the maximum latency may be
significantly penalizing for the average number of different
received packets. Therefore, we also consider another metric
related to the latency.

c) Average Latency: the third metric is the average
latency for all receivers in area A, obtained by integrating
(5) over A, as

τ̄(P) ≜
1

|A|

∫
A

τ(P ,x)dx. (7)

On one hand, keeping the average latency under control does
not guarantee good performance in the worst-case, but only
on average. On the other hand, this milder metric may allow
better performance in terms of average received packets, as it
will be shown in the following.

III. PERFORMANCE BOUNDS

In this Section, we obtain bounds on the average number
of different received packets, coverage, and latency. We will
also exploit these results to prove the optimality of one of
the proposed scheduling algorithms and develop the solution
described in Section IV-C. Finally, these will be also used
as either upper or lower bounds to evaluate the proposed
algorithms’ performance.

The first bound relates the average number of different
received packets to the coverage of the area and the total
number of different received packets, i.e., the coverage and
the throughput, as already mentioned when introducing the
metric. About the coverage, from the availability of packet k at
position x by round n, uk,n(Pn,x), we obtain the availability
of the entire message at position x by round n as

ûn(Pn,x) ≜

{
1 if

∏K
k=1 uk,n(Pn,x) > 0,

0 otherwise,
. (8)

This denotes the receivers that at round n were able to actually
receive all the K packets. Next, we can formally introduce
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the (fractional) coverage of A by round n by integrating the
availability of the message over the coverage area A, as

ūn(Pn) ≜
1

|A|

∫
A

ûn(Pn,x)dx . (9)

All the above expressions always counted just the different
packets: in the next, we will consider instead the total number
of received packets.

About the average number of received packets, we define
the total number of received packets (possibly with repetitions)
at position x up to round n as

Cn(x) ≜
∑
s∈S

n∑
m=1

vs,m(x), (10)

and its average over A, i.e., the number of received packets
per area, as

C̄n =
1

|A|

∫
A

Cn(x)dx. (11)

We can now formulate the following proposition given
upper and lower bounds to the average number of received
packets.

Proposition 1. The average number of different received
packets is bounded as

Kūn(Pn) ≤ η̄n(Pn) ≤ min(K, C̄(n)). (12)

Proof. We start proving the left hand side: given the sequence
of partitions Pn such that ūn(Pn) = β, at least a fraction β
of the receivers obtained all the K packets at the end of the
nth round, therefore the average number of delivered packets
is at least K β, i.e., η̄n(Pn) ≥ Kūn(Pn).

For the right hand side, we can write

Cn(x) =
∑
s∈S

n∑
m=1

vs,m(Pm,x) ≥ ηn(Pn,x), (13)

then by averaging both sides of (13) over A and considering
that ηn(Pn,x) ≤ K, we obtain (12).

From this bound we observe that a solution Pn achieving
full coverage also maximizes the average number of different
received packets, with η̄n(Pn) = K; on the other hand, among
the sequences Pn that achieve the same partial coverage, some
may obtain a higher average number of different received
packets. This result will be used for the development of the
scheduling algorithm in Section IV-C.

A. Maximum Diversity Scenario

We also derive bounds on the maximum and average latency.
In this case, we focus on a particular scenario, that we
denote as maximum diversity scenario, characterized by the
fact that each receiver obtains a different packet from each
satellite in view. This is clearly a very favorable condition,
not always met in practice, since in each round the receiver
obtains the maximum number of packets, for a given set
of satellites in view. Thus, we will obtain bounds on the
performance associated with a best-case scenario. In formulas,
the maximum diversity scenario can be alternatively described

by indicating that the message is received once K satellites
have been in view, and thus Cn(x) = K packets have been
received. In terms of the availability of the entire message at
position x by round n we have

û∗
n(x) =

{
1 if Cn(x) ≥ K

0 if Cn(x) < K
, (14)

or alternatively, the total number of different received packets
at position x up to round n is

η∗n(x) = min(K,Cn(x)). (15)

Note that in both û∗
n(x) and η∗n(x) we omitted the indication

of the scheduling Pn, as we are considering an ideal scenario
which may not be feasible, i.e., for which no scheduling allows
to achieve such performance.

However, this ideal scenario will provide bounds on the
latency metrics. In particular, by averaging over the area,
we obtain upper bounds on the average number of different
received packets η̄∗n and the coverage ū∗

n. These values are
upper bounds for the performance achieved in any scenario,
i.e., we always have

η̄n(Pn) ≤ η̄∗n, ūn(Pn) ≤ ū∗
n. (16)

The latency in the maximum diversity scenario for the receiver
in position x is

τ∗(x) ≜ T min

{
n : û∗

n(x) = 1

}
, (17)

from which we obtain correspondingly τ∗max, τ̄∗. These values
are bounds for the performance achieved with any scheduling
solution, i.e., we always have

τmax(P) ≥ τ∗max, τ̄(P) ≥ τ̄∗, ∀P . (18)

IV. SCHEDULING SOLUTIONS

In this Section, we propose scheduling algorithms for the
considered multi-round multi-packet transmission problem.
We first aim at minimizing the maximum latency τmax(P) and
propose a solution that is optimal under a suitable condition
on Cn(x), the total number of received packets up to round n.
Then, we observe that the min-max latency algorithm neither
minimizes the average latency nor maximizes the throughput.
Still, to optimize these two metrics, we should jointly schedule
transmission at all rounds, as from (7) and (27). This leads to
an extremely complex solution. In summary, propose three
heuristic approaches: a) minimizing the maximum latency,
which however does not minimize the average latency, b)
maximizing the average received packets per round, and c)
maximizing the coverage as the primary objective and the
average received packets per round as a secondary objective.

A. Minimization of the Maximum Latency (MIN-MAX)

We now consider the problem of finding a scheduling P
that minimizes the maximum latency among all the receivers,
i.e.,

min
P

τmax(P). (19)
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Algorithm 1 Min Max Latency Solution
Input: K,A
Output: P
n← 0, K ′ ← K
while K ′ > 0 do
n← n+ 1
vs,n(x)← comp_visibility_maps(n,A)
Kn ← 1; γ ← 1;Pn ← {S}
while Kn < K ′ and γ = 1 do
{P ′

n, γ} = solve_max_cov(A,Kn, vs,n(x))
if γ = 1 then
Pn = P ′

n

Kn ← Kn + 1
end if

end while
K ′ = K ′ −Kn

end while

First, we observe that the problem (19) is equivalent to the
cascade of several problems, one for each round as shown by
the following proposition and can be solved accordingly.

Proposition 2. Let Cmin,n ≜ minx∈A Cn(x), if

Cmin,n =

n∑
m=1

min
x∈A

∑
s∈S

vs,m(x). (20)

the min-max latency problem is equivalent to maximizing the
number of packets that can be transmitted in a single round
with full coverage.

We report the proof in the Appendix.
Condition (20) essentially states the equivalence between

the minima of the sum, i.e., Cmin,n, and the sum of the
minima. This condition can easily be met in this context since
if the round duration T is small enough, the visibility map
vs,m(x) does not exhibit dramatic changes between rounds,
hence, with high probability, minx∈A

∑
s∈S vs,m(x) stays

constant for a few rounds. This allows requirement (20) to
be met. We will confirm the optimality of this approach in
Section V, showing that minx∈A

∑
s∈S vs,m(x) = 4 for most

rounds.
Hence, we propose the following algorithm. Let Kn be the

number of different packets transmitted at round n and not
transmitted in previous rounds, so that

∑
n Kn = K. Then,

Kn is chosen as the maximum number of packets that can be
transmitted in a single round with full coverage. To this end,
we iteratively increase Kn starting from K = 1 and resort
to the BILP algorithm of [16] to compute the corresponding
coverage γ, until we reach full coverage. The resulting solution
is reported in Algorithm 1, where K ′ = K−

∑
n Kn represents

the number of packets left to be transmitted.
In the algorithm we exploit the following functions:

comp_visibility_maps : computes the satellite posi-
tions at round n and outputs the visibility maps, vs,n(x);
solve_max_cov : implements the (single round) coverage
optimization [16], which we have shown to be effective for
small K values.

Algorithm 1 follows a divide-and-conquer approach. If the
algorithm is iterated for n rounds, the overall computational
cost is n times the cost of the single round scheduling solution,
which from [16] is exponential in the size |A| and the number
of packets to be transmitted, Kn ≤ Cmin,n. However, since
Cmin,n is typically small (Cmin,n ≈ 4), in practice we expect
the algorithm to converge quickly.

We now observe that the min-max latency algorithm neither
minimizes the average latency nor maximizes the throughput.
Still, to optimize these two metrics, we should jointly schedule
transmissions at all rounds, as from (7) and (27), yielding a
high-complexity solution. Then, in the following we consider
two other suboptimal approaches.

B. Maximization of the Average Number of Different Received
Packets (MRP)

We now consider the problem of maximizing the average
number of different received packets η̄n(Pn) at each round n,
i.e., given Pn−1, the sequence of partitions up to round n−1,
we aim at solving the optimization problem

max
Sn

η̄n({Pn−1,Sn}) ∀n. (21)

Note that Pn−1 = (S1, . . . ,Sn−1).
First, we convert the integrals over the area (for the average

number of different received packets) into sums over a discrete
set of points Ω ⊂ A, following the approach of [16]. We
consider the corresponding tessellation A = {A(x),x ∈ Ω},
where ⋃

x∈Ω

A(x) = A (22)

and
A(x) ∩A(x′) = ∅, if x ̸= x′. (23)

Ideally, all the points of the same tile have the same satellites in
view, i.e., it should hold vs,n(x) = vs,n(x)

′ ∀s ∈ S, ∀x′ ∈ A
for each tile A(x). However, this would require to recompute
sampling Ω and the tessellation at each round. In order to
avoid this issue, we keep Ω fixed. Moreover, each tile has
normalized area

a(x) =
|A(x)|
|A|

x ∈ A(x), (24)

thus, in this framework, the integrals over A of the per-
formance metrics of Section II-A need to be considered as
weighted sums.

First, we can formulate the following BILP problem

Problem 1 (Single Round Maximization). Given for all the
sampled positions x,

• the visibility maps vs,n(x),
• the normalized tile area a(x)
• and the availability of each packet up to round n − 1,
uk,n−1(Pn−1,x)

choose the scheduling Sn for round n, that maximizes the
average number of received packets, η̄n({Pn−1,Sn}), and
update the availability map uk,n(Pn,x).
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The mathematical formulation of this Problem is reported
on Appendix B and can be solved through well-known ap-
proaches, e.g., the Branch and Bound technique [18, §9].

Algorithm 2 is the proposed strategy for the Maximization
of the Average Number of Different Received Packets (MRP),
where marp_max solves (1) and round_eval is a function
that takes as input the set of received packets at the end
of the previous round, uk,n−1(Pn−1,x), and outputs the
coverage and the set of received packets at the end of round
n, uk,n({Pn−1,Sn},x), by using (2)-(9).

With this approach we iterate at each round the solution of
problem (21), thus the overall computational cost is linearly
dependent on the solution of (21) itself. The solution of the
BILP problem using Branch and Bound has a cost that is
exponential in the number of constraints. More in detail, called
Ns = |Ω| the number of sampling points of the surface
A, we have M + KNs constraints. Thus, the computational
complexity depends on both the chosen sampling and the
number of packets to be transmitted.

C. Maximization of the Average Number of Different Received
Packets among Maximum Coverage Solutions (MRP-MC)

We now observe there may be several scheduling achiev-
ing maximum coverage with different numbers of distinct
transmitted packets. Thus, we propose a scheduling algorithm
that at each round n, given the set of received packets for
each receiver up to the previous round, uk,n−1(Pn−1,x),
first maximizes the coverage ūn(Pn) and then maximizes the
average number of different received packets η̄n(Pn), among
all the scheduling solutions that achieve coverage. In formulas,
at round n, considering the sequence of partitions up to round
n− 1 as fixed, we have to solve

max
Sn∈M

η̄n({Pn−1,Sn}),with (25a)

M = {S∗
n = argmax

Sn

ūn({Pn−1,Sn})}. (25b)

This is the cascade of two maximization problems. Thus,
following the approach of the previous Section, we formulate
both optimizations as BILP problems to be iteratively solved,
as for Problem 1.

Problem 2 (Single round coverage maximization). Given the
same inputs of Problem 1, choose the scheduling Sn for round
n, that maximizes the coverage function ūn({Pn−1,Sn}).

Algorithm 2 MRP
Input: K,Ω
Output: P
n← 1, ū0 ← 0
uk,0(P0,x)← 0, ∀k ∈ {1, . . . ,K},x ∈ Ω
while ūn−1 < 1 do
vs,n(x)← comp_visibility_maps(n,Ω)
{Pn, η̄n} ← mrp_max(Ω,K, vs,n(x)uk,n−1(x))
{ūn, uk,n(Pn,x)} ←
round_eval(Ω,P , vn(x), uk,n−1(Pn−1,x))
n← n+ 1

end while

Problem 3 (Single round throughput maximization with max-
imum coverage). Given the same inputs of Problem 1 and
2 and the coverage ūn({Pn,Sn}), obtained by the latter,
choose the scheduling Sn for round n that maximizes the
average number of received packets η̄n({Pn−1,Sn}) and
update the availability map uk,n(Pn,x).

The mathematical formulations of these Problems are re-
ported on Appendix C.

Algorithm 3 iteratively solves (25), by using the following
functions:
compute_uBound computes the upper bound η∗n, by using
(16);
solve_max_cov and mrp_mc_max are respectively the
optimization of the BILP Problems 2 and 3;
is_feasible computes the upper bound of Equation (16)
verifying if it is possible to achieve a solution with non-null
coverage (i.e., ū∗

n > 0). Note that if Cn(x) < K ∀x ∈ A,
i.e., all the receivers obtained less than K packets, (14) yields
ū∗
n = 0, thus all the scheduling solutions will achieve zero

coverage. So, we can skip the coverage maximization step,
saving computational power in the early rounds, where we
noticed that the computations typically take longer.

Algorithm 3 MRP-MC
Input: K,Ω
Output: P
n← 0, ū0 ← 0
uk,0(P0,x)← 0, ∀k ∈ {1, . . . ,K},x ∈ Ω
while ūn < 1 do

n← n+ 1
vs,n(x)← comp_visibility_maps(n,Ω)
η∗n ← compute_uBound(vs,n(x),Ω)
if is_feasible(K, vs,n(x), uk,n−1(Pn−1,x)) then
Pn ← solve_max_cov(Ω,K, vs,n(x), uk,n(Pn,x))
{ūn, η̄n, uk,n(Pn,x)} ←
eval_state(Ω,Pn−1, vn(x), uk,n−1(Pn−1,x))
if η̄n ≤ η∗n AND ūn(Pn) ≤ 1 then
Pn ← mrp_mc_max(Ω,K, vn(x), uk,n−1(Pn−1,x), ūn)
{ūn, ηn, uk,n} ←
round_eval(Ω,Pn−1, vn(x), uk,n−1(x))

end if
else
Pn ← mrp_mc_max(Ω,K, vn(x), uk,n−1(x), 0)
{ūn, η̄n, uk,n} ← round_eval(Ω,Pn−1, vn(x), uk,n−1(x))

end if
end while

Concerning the computational cost, in the worst-case sce-
nario, two optimizations per round are performed, each of
them involving the solution of a NP problem. As for the
MRP, the cost exponentially increases with the number of con-
straints: for the maximum coverage we have M +Ns(K +1)
with Ns = |Ω|, while for the maximum coverage, we get
M +Ns(K + 1) + 1 constraints.

D. Computational Complexity of the Proposed Solutions

Table I summarizes the complexity of the proposed schedul-
ing solutions. All the problems are formulated by using ILP,
therefore these are NP-complete problems with an exponential
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computational cost, depending on the high number of involved
variables and constraints [19]. First, the MIN-MAX requires
the solutions of n problems, to be solved sequentially; each
problem deals with the scheduling of Kmin ≤ K messages,
thus it has M + KminNs constraints. The MRP combines n
problems, each with M + KNs constraints. The MRP-MC
requires the solution of two problems per round, the first
with M + KNs constraints and the second with M + (K +
1)Ns + 1 constraints. Hence since the cost of the second is
(exponentially) higher than the first, the computational cost
is O (n exp(M + (K + 1)Ns + 1)). Finally, we consider the
optimal solution that computes the scheduling by considering
all n the rounds altogether. For instance considering Algorithm
2, we can modify it to consider multiple rounds all at once.
Hence the variables (and constraints) in the MRP solution
are now multiplied by n, i.e., exp(nM + nKNs) constraints.
Indeed, for non-trivial values of K or Ns, such a solution is
not computationally feasible.

TABLE I
COMPLEXITY OF THE SOLUTIONS FOR THE MESSAGE SCHEDULING

PROBLEM, CONSIDERING n ROUNDS, M SATELLITES, K MESSAGES, AND
AN AREA SAMPLING FACTOR Ns .

Solution Complexity
MIN-MAX O (n exp(M +KminNs))

MRP O (n exp(M +KNs))

MRP-MC O (n exp(M + (K + 1)Ns + 1))

Optimal Solution O (exp(nM + nKNs))

V. NUMERICAL RESULTS

𝑁𝜆

𝑁𝜑

Fig. 1. Pictorial representation with the resulting tessellation and the dis-
semination process for K = 3. All the satellites but SV3 are considered to
be in view. The receiver is able to retrieve the message since it has in view
satellites transmitting K different messages.

Let S0 be the Galileo GNSS constellation with 24 medium
Earth orbit (MEO) satellites distributed over 3 orbital planes
with spherical orbits. For a more realistic simulation, we did
not consider the whole set S0 set but only S ⊂ S0, the
subset of satellites that are connected to one of the uplink
station (ULS), as done in [1], [14], [15], [20]. For Galileo,
the ULSs are located in Svalbard (78.2◦N, 15.4◦E), Kourou
(5.2◦N, 52.7◦W), Papeete (17.5◦S, 149.4◦W), Sainte-Marie,
Réunion (20.9◦S, 55.5◦E) and Nouméa (21.9◦S, 166.0◦E). In
particular, we consider the four SVs that are the closest to
each of the five uplink station (ULSs), hence S contains 20
SVs.
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Fig. 2. Maximum latency maxt τmax for the carousel, random, MIN-MAX,
MRP, MRP-MC, and scheduling algorithms. The bound on the maximum
latency obtained from (18) is also shown.

To build the visibility map (1), we consider a masking
elevation angle αmin = 10◦. Fig. 1 illustrates the resulting
tessellation and the dissemination procedure. Note that, to
guarantee at least 4 satellites in view globally, a full GNSS
constellation allows many more satellites in view in average,
as shown later in the results (e.g., Fig. 3 ).

We let A be the whole (spherical) Earth surface, and the
sample set Ω is obtained by uniformly sampling the latitude
and longitude axis respectively with Nλ = 24 and Nφ = 48
respectively. We use the same tessellation for all the rounds.
For x = (ϕ, λ) the corresponding tile is [φ − π/(2Nφ), φ +
π/(2Nφ)]×A(x) ∈ [λ−π/Nλ, λ+π/Nλ] with (normalized)
area

a(x) = a(φ, λ) =
1

Nλ
cos(φ) sin

(
π

2Nλ

)
. (26)

The orbital period of a Galileo satellite is Torb = 14 h and
4min are distributed in 3 orbital plans and equally spaced.
For the numerical simulation, we consider a fast message
transmission that starts every 10min and spans a time interval
of ≈ Torb .

Indeed, a finer time resolution does not yield significant
changes in the visibility map (1). The duration of a round is
T = 30 s, equal to the duration of a Galileo sub-frame [6] or a
GPS frame [21]. Of course, a much finer time granularity may
be needed in more dynamic contexts, such as when scheduling
the transmission for a low Earth orbit (LEO) satellite system.

In the following, we will report the performance results of
the MIN-MAX scheduling algorithm, the MRP scheduling al-
gorithm, and the MRP-MC scheduling algorithm. Additionally,
as means of comparison, we will consider both the random
scheduling solution, described also in [16], and the (pure)
carousel strategy, where all the SVs transmit the same packet
sequentially. Indeed, this strategy yields τ̄ = τmax = τ(x) =
K rounds, ∀x ∈ Ω.

A. Maximum Latency
Fig. 2 shows the maximum latency maxt τmax, maximized

over a time period Torb, as a function of the number of
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Fig. 3. Average received packets per round E(η̄n) vs the round index n the
MIN-MAX, MRP, MRP-MC, and random scheduling algorithms and average
bound on the maximum average received packets (15), for K = 10 and 20.

packets per message, K, for the MIN-MAX, MRP, MRP-MC,
and the random and carousel algorithms. We also show the
(maximum of) the maximum latency achieved by bound (18).
The MIN-MAX scheduling achieves the best performance for
all values of K, while other solutions in general exhibit a
higher average maximum latency. Moreover, the MIN-MAX
scheduling always reaches the bound maxt[τ

∗
max], computed

from the maximum diversity scenario, which suggests the
optimality of this approach in the worst-case scenario. As
expected the worst performance is achieved by the carousel
strategy, followed by the random scheduling solution.

B. Average Received Packets per Round

Fig. 3 shows the average received packets per round E(η̄n)
as a function of the round index n, for the various scheduling
algorithms, focusing on K = 10 and 20 packets, as average
and extreme values among the considered values of K. Also
in this case, the average is taken with respect to the satellite
positions in the Torb interval. We also report the bound on the
average received packets per round η̄∗n obtained in Section III.
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Fig. 4. Average latency E[τ̄(P)] vs K, where the average is taken with
respect to the positions of the satellites over their periods, for various
scheduling approaches, and the average of the bound on the average latency
E[τ̄∗(P)].

Clearly, the MRP approach, which has been explicitly
developed to maximize this metric, achieves the best results.
Still, the MRP-MC that uses η as a secondary metric, achieves
just a slightly lower value of η̄n. Here, the MIN-MAX
scheduling is outperformed by all the others, including the
random scheduling: this is because, by using the MIN-MAX
and excluding low values of K, we do not transmit all K
packets in one round, but just a subset per round (typically 4
packets). Unlikely the other solutions typically broadcast more
packets per round. Moreover, these plots show that, in both
cases, most of the packets are actually delivered in the first
rounds; during the latter rounds, the effort is to deliver to the
receivers that are still missing some of the packets, typically
the receivers that have been in low visibility conditions. We did
not report the performance of the carousel strategy: this would
achieve E(η̄) = n, thus obtaining the worst performances
among the considered algorithms.

C. Average Latency

Fig. 4 shows the average latency E[τ̄(P ] as a function
of K, where, as described above, the average is taken with
respect to the satellite positions, for the various scheduling
approaches. We also report the average of the lower bound on
the average latency E[τ̄∗(P)], as from (18). The behavior of
the average latency for the MIN-MAX scheduling is due to
the fact at each round only 4 (or 5) packets are transmitted
(see Fig. 2). For K > 12 all the scheduling strategies diverge
from E[τ̄∗(P)]: still, we remark that the maximum diversity
scenario, described in Section III-A is a non-realistic condition
that clearly cannot be met in practice. In this case the MRP,
and MRP-MC scheduling outperforms both the MIN-MAX
and the random scheduling, achieving a lower average latency.
In particular, the MRP-MC scheduling achieves the lowest
average latency as maximizes the number of receivers that
get all the packets at each round. The (pure) carousel strategy
achieves by far the worst performance, with E[τ̄ ] = K.
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D. Average Throughput

In order to summarize the results, we now introduce the
throughput (in packets per round) as

ω(P) ≜
1

|A|

∫
A

K

τ(P ,x)
dx. (27)

Fig. 5 shows the average throughput E[ω(P)] (27) as a
function of K, where the average is taken with respect to
the positions of the satellites over their periods as described
above, for various scheduling approaches. First, we note that
the average throughput grows linearly for all the scheduling
techniques up to K = 4 since full coverage is always
achieved. Interestingly, the highest throughput is achieved by
the MRP-MC scheduling K = 7 packets at a time, achieving
a throughput ω ≈ 6.05 packets per round. For comparison,
the random scheduling solution only delivers (approximately)
3.62 packets per round.
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Fig. 5. Average throughput E[ω(P)] (27) vs K, where the average is taken
with respect to the positions of the satellites over their periods, for various
scheduling approaches.

For K > 7 the performance drop: indeed, by increasing K,
the receivers need more rounds to obtain all the packets. A
considerable fraction of the receivers has in view less than 7
SVs, thus, by having K > 7 we are forcing these receivers to
wait for additional rounds. A similar behavior is shown also by
the MIN-MAX algorithm: since we find that the highest K that
allows all the receivers to obtain all the packet is (typically)
K = 4 packets when using K = 5, the first round is devoted
to delivering the first 4 packets; next, we use an additional
round just to transmit the last packet. This also shows that, in
general, increasing K does not necessarily increase the actual
throughput.

E. Performance in realistic scenario

To provide realistic results, we test the proposed algorithms
in a condition where we have a non-null page error rate
(PER). We model each channel between an SV s and a
receiver in position x as an erasure channel, with a PER
q(θs(x)), where θs(x) is the satellite elevation angle with
respect to the receiver position at round n. The relationship

between PER and elevation angle has been derived from [22].
Considering the scheduling solution P , the probability of
having successfully received packet k within round n is

pk,n(x) = 1−
n∏

m=1

∏
s∈Sn,k

q (θs (x)) . (28)

Thus, the probability that the receiver in position x reconstruct
the message within round n is the probability of having
received all the packets,

p̃n(x) =

K∏
k=1

pk,n(x) . (29)

Finally, we compute the fraction of receivers on A with
probability at least 1− ϵ as

a⋆n =
∑
x∈Ω

1 (p̃n(x)− (1− ϵ)) a(x) , (30)

where 1 is the unit function, that is 1(·) = 1 if and only if the
argument is non negative. In particular, we pick ϵ = 1 · 10−2.

Figure 6 shows the period average of the area (30) versus
the round index n, choosing K = 5 and K = 15 as
examples of low and high values of K, respectively. We
considered the MIN-MAX, MRP, MRP-MC, and the random
scheduling solutions. The same considerations apply to both
plots: immediately after the first rounds, where the random
and the MIN-MAX achieve the best results, the MRP-MC
achieve the best results. This is particularly evident for the
K = 15 case, where at the 6th round, the MRP-MC obtains
E[a⋆n] ≈ 0.99 while random scheduling achieves only 0.16.
We did not report the performance of the carousel strategy: this
yield E[a⋆n] = 1(K), since the last packet is not transmitted
until the Kth round. For both K = 5 and K = 15, the carousel
is outperformed by both MRP and MRP-MC.

VI. CONCLUSIONS

In this paper, we have proposed a model and several
solutions for the multi-round message scheduling problem in
GNSS. In detail, we defined proper metrics of the problem,
i.e., coverage, average number of different received packets,
and latency, and we analytically derived general lower and
upper-performance bounds. These bound were derived under
the maximum diversity conditions, i.e., assuming that there
exists a scheduling such that all the receivers obtain a different
packet from each satellite in view.

Next, we proposed one solution for the maximum latency
minimization that, under conditions easily met in practice,
achieves optimality at a reduced computational cost. Sim-
ulation results show that the MIN-MAX latency algorithm
achieves the optimal maximum latency and is close to achiev-
ing the maximum latency achieved in the maximum diversity
scenario. In particular, we were able to find a scheduling
solution with a maximum latency of 4 rounds for scheduling
16 packets, which coincides with the optimal one.

Next, we proposed heuristic solutions for the average
latency minimization, the MRP and the MRP-MC. These
achieved interesting performances in terms of average latency
and are close to reaching the optimal average latency. The best
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Fig. 6. Average received packets per round E[a⋆n] vs the round index n
the MIN-MAX, MRP, and MRP-MC and random scheduling algorithms, for
K = 5 and K = 15.

results are achieved by the MRP-MC algorithm, the improved
version of the MRP, where we also maximize the number
of receivers obtaining the whole message. In particular, for
K = 7, the MRP-MC delivers on average 6.05 packets per
round, with an average latency of 1.27 rounds. For comparison,
with the same parameters, the random scheduling solution
achieves instead an average throughput of 3.62 packets per
round and an average latency of 1.91 rounds.

Finally, we evaluate the performance of our scheme in a
more realistic scenario, where each channel is modeled as an
erasure channel. Still, the best results were achieved by the
MRP-MC algorithm: for K = 15 by using the MRP-MC we
get that ≈ 99% of the receivers on Earth to obtain the packet
with a success probability of 99% in 6 rounds, versus the 16%
of the random scheduling algorithm.

In future works, we will design and develop solutions that
minimize the latency also taking into account the PER in the
objective function.
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APPENDIX A
PROOF OF OPTIMALITY OF THE MIN-MAX LATENCY

To prove Proposition 2 we need the following Proposition.

Proposition 3. If a scheduling sequence P is such that
ηn(Pn,x) ≥ Cmin,n ∀n and ∀x ∈ A, then it minimizes the
maximum latency, achieving the bound (12), i.e., τmax(Pn) =
τ∗max.

Proof. From Proposition 1 we observe that, even in the
maximum diversity scenario, û∗

n = 1 implies C̄∗
n(x) = K

∀x ∈ A, therefore also C∗
min,n = minx∈A C∗

n(x) = K. Thus,
we can write the lower bound to the latency for the receiver
in position x as

τ∗max(x) = T min

{
n : Cmin,n = K

}
, (31)

which means that even in the maximum diversity scenario
it is possible to deliver K packets to a receiver only if it
had at least K satellites in view. Let n∗ be the minimum
number of rounds that satisfies condition (31) for all the
receivers on A. Exploiting the hypothesis, after exactly n∗

rounds by using scheduling P that satisfies the hypothesis,
we will have delivered at least Cmin,n∗ = K packets to all
the receivers. Thus, P is indeed the scheduling that achieves
τmax(Pn) = τ∗max.

Now we can recall Proposition 2 and prove it.

Proposition 2. If (20) holds, the proposed min-max latency al-
gorithm achieves the optimal latency, i.e., τmax(Pn) = τ∗max.

Proof. The proposed Algorithm 1 delivers Km packets at
round m, where Km is the largest number of packets that
can be delivered in round m with full coverage, i.e, Km =
minx∈A

∑
s∈S vs,m(x). Hence, after n rounds, from (20) we

will deliver

ηn(Pn,x) =

n∑
m=1

Km =

n∑
m=1

min
x∈A

∑
s∈S

vs,m(x) = Cmin,n.

(32)
However this also satisfies the requirements of Proposition
3, thus the proposed min-max latency algorithm achieves
optimality.

APPENDIX B
BILP FORMULATION OF PROBLEM 1

First, we introduce the indicator variables

ys,k,n =

{
1 if s ∈ Sk,n,

0 if s /∈ Sk,n,
(33)

which converts the search of the set Sn into the choice of
the variables ys,k,n and, Problem (21) can be written as the
following BILP problem

Problem 1. At round n, given the coefficients (for x ∈ Ω)

vs,n(x) ∈ {0, 1} s∈ S (34a)
uk,n−1(Pn−1,x) ∈ {0, 1} k∈ {1, . . . ,K}, (34b)

a(x) ∈ [0, 1] (34c)

maximize over the variables (for k ∈ {1, . . . ,K})

ys,k,n ∈ {0, 1} s ∈ S, (34d)

the objective function

η̄n({Pn−1,Sn}) =
∑
k,x

a(x)uk,n({Pn−1,Sn},x), (34e)

under the following constraints ∀k ∈ {1, . . . ,K}, x ∈ Ω,
s ∈ S. ∑

k

ys,k,n =1, (34f)∑
s

ys,k,nvs,n(x) + uk,n−1(Pn−1,x) ≥ uk,n({Pn−1,Sn},x).

(34g)

Notice that (34e) is exactly equation (4) rewritten for the
fixed sampling set Ω.

APPENDIX C
BILP FORMULATIONS OF PROBLEMS 2 AND 3

In this Section we introduce the BILP formulations for
Problems 2 and 3. First, we consider the single round coverage
maximization of Problem 2, used to derive (25b).

Problem 2 (Single round coverage maximization). At round
n given the coefficients for x ∈ Ω

vs,n(x) ∈ {0, 1} s ∈ S, (35a)
uk,n−1(Pn−1,x) ∈ {0, 1} k ∈ {1, . . . ,K}, (35b)
a(x) ∈ [0, 1] (35c)

for k ∈ {1, . . . ,K} maximize over the variables

ys,k,n ∈ {0, 1} i ∈ S, (35d)

the coverage objective function

ūn({Pn−1,Sn}) =
∑
x∈A

a(x)ûn({Pn−1,Sn},x), (35e)

under the constraints (for all k ∈ {1, . . . ,K}, x ∈ Ω, s ∈ S),∑
k

ys,k,n =1, (35f)∑
s

ys,k,nvs,n(x) + uk,n−1(Pn−1,x) ≥uk,n({Pn−1,Sn},x),

(35g)∑
k

uk,n({Pn−1,Sn},x) ≥Kûn({Pn−1,Sn},x).

(35h)

Finally, we report the Single round throughput maximization
with constrained coverage of Problem 3 that solves (25a).
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Problem 3 (Single round throughput maximization with con-
strained coverage). At round n given the coefficients (for
x ∈ Ω)

vs,n(x)∈ {0, 1} s∈ S (36a)
uk,n−1(Pn−1,x)∈ {0, 1} k∈ {1, . . . ,K}, (36b)

a(x)∈ [0, 1], (36c)
ūn∈ [0, 1] (36d)

maximize over the variables

ys,k,n∈ {0, 1} k ∈ {1, . . . ,K}, s ∈ S, (36e)

the objective function

η̄({Pn−1,Sn}) =
∑
x∈Ω

a(x)
∑
k

uk,n({Pn−1,Sn},x),

(36f)
under the constraints (35f),(35g),(35h) and∑

x∈Ω

a(x)ûn({Pn−1,Sn},x) ≥ ūn (36g)
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