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Abstract

The Strong CP problem is one of the most challenging and long-standing puzzles in physics
beyond the Standard Model. In this thesis we review the formulation of the problem and thor-
oughly examine some of the most promising solutions put forth over the years. We first delve
into both perturbative and non-perturbative aspects related to topological angles, including
the issue of their perturbative renormalization. Then we identify and scrutinize two distinct
classes of solutions addressing the Strong CP problem: UV solutions and those based on a
Peccei-Quinn symmetry. Among the latter, we offer a brief overview of the QCD axion and
its associated quality problem. To address this issue we propose an explicit model for a heavy
axion, dubbed Grand Color axion, and study its phenomenology in detail. Next, we shift our
focus to UV solutions. We start by illustrating the logic behind models of spontaneous P/CP
violation, specializing then to the particular case of Nelson-Barr models. We meticulously
investigate these models, pinpointing a naturalness issue inherently structured in this class
of solutions. Finally, we present a set of scenarios designed to tackle this new problem and
implement these ideas in a concrete UV realization.
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Chapter 1

Introduction

Unveiling the fundamental laws of Nature is an extremely complex and challenging quest.
Nevertheless, centuries of strenuous experimental and theoretical effort brought us to an
understanding of our Universe which goes far beyond imagination. The result of this effort
culminated in a simple yet amazingly successful theory known as the Standard Model of
particle physics (SM).

Despite its incredible success, the Standard Model does not come without its own set of
challenges and questions. Among these, the Strong CP problem is certainly one of the most
intriguing puzzles. This introductory chapter starts with a concise review of the mathematical
structure of the SM in section 1.1, providing the essential tools for the formal definition of
the Strong CP problem in section 1.2. The last part of section 1.2 offers a glimpse about
possible approaches to address the Strong CP problem, laying the groundwork for the detailed
exploration undergone in the remaining chapters of this work as outlined in section 1.3.

1.1 Standard Model of Particle Physics

From a mathematical viewpoint, the Standard Model is formulated as a relativistic quantum
field theory in four spacetime dimensions with gauge group

SU(3)C × SU(2)L × U(1)Y. (1.1.1)

The SU(3)C factor mediates what are known as the strong interactions or Quantum Chromo-
dynamics (QCD), while SU(2)L × U(1)Y represents the unified electroweak interactions.

The matter content of the SM is comprised of a number of fermionic fields named quarks
(charged under QCD) and leptons, and a single complex scalar field (Higgs field). Their
charges are summarized in table 1.1. Additionally, each fermionic field comes in three gener-
ations or flavours.

Given the content of table 1.1, the Standard Model lagrangian is defined simply as the

1



CHAPTER 1. INTRODUCTION

SU(3)C SU(2)L U(1)Y

qL 3 2 +1
6

uR 3 1 +2
3

dR 3 1 −1
3

ℓL 1 2 −1
2

eR 1 1 −1
H 1 2 +1

2

Table 1.1: Matter content of the Standard Model. qL, uR, dR are the quarks doublets and
singlets, while ℓL, eR are the leptons doublets and singlets. H is the scalar Higgs field.

most general renormalizable lagrangian compatible with gauge and Lorentz symmetries:

LSM = −1
4G

a
µνG

µν a − 1
4W

i
µνW

µν i − 1
4BµνB

µν

+ q̄L,ii /DqL,i + ūR,ii /DuR,i + d̄R,ii /DdR,i + ℓ̄L,ii /DℓL,i + ēR,i /DeR,i + (DµH) †DµH

− (Yd)ij q̄L,iHdR,j − (Yu)ij q̄L,i ˜︁HuR,j − (Ye)ij ℓ̄L,iHeR,j + h.c.

+ µ2|H|2 − 1
2λ|H|

4

+ θ
g2

32π2G
˜︁G+ θL

g2
L

32π2W
˜︂W + θY

g2
Y

32π2B
˜︁B.

(1.1.2)

Some explanations are required. The first two lines include the covariant derivatives of the
fields; their definitions are given in the conventions chapter. In particular, Gaµν ,W i

µν and Bµν
are the field strength of the SU(3)C, SU(2)L and U(1)Y gauge groups, respectively. The
index associated to each fermion is their flavour index; in the following we will often leave it
implicit. The third line identifies the Yukawa interactions, given in terms of three complex
matrices Yu, Yd, Ye and ˜︁H = ϵH∗, where ϵ is the Levi-Civita tensor in the SU(2)L space. The
fourth line encodes the Higgs field potential. The last line defines the topological terms, that
we will discuss extensively in chapter 2.

The Higgs potential is minimized at v =
√

2µ/
√
λ ≃ 246 GeV [1], where H(x) = (0, v +

h(x))T /
√

2. This gives rise to the electroweak symmetry breaking. The gauge group SU(2)L×
U(1)Y is broken to U(1)EM, describing electromagnetic interactions. The would-be Nambu-
Goldstone bosons (NGBs) arising from the spontaneous symmetry breaking of the gauge
group are eaten by the gauge bosons associated to the broken generators, giving rise to the
massive W± (charged under U(1)EM) and Z (neutral) bosons. Furthermore, electroweak
symmetry breaking is responsible for the generation of the fermions’ masses. Splitting the
SU(2)L doublets as qL = (uL, dL)T and ℓL = (νL, eL)T , these are encoded in

Lm = − v√
2
Yd d̄LdR −

v√
2
Yu ūLuR −

v√
2
Ye ēLeR + h.c. . (1.1.3)

2



1.1. STANDARD MODEL OF PARTICLE PHYSICS

The physical masses are extracted upon performing a singular value decomposition of the
Yukawas in Lm, achieved by rotating every fermionic field f = dL, dR, uL, uR, eL, eR via a
unitary matrix Uf . Such a rotation shifts the topological parameters of the gauge fields, as
we will see later, and generates flavour- and CP-violating couplings between the up and down
quarks:

LFV = − gL

2
√

2
VCKM ūLγ

µdLW
+
µ + h.c. (1.1.4)

Flavour and CP violation in the weak sector is thus described by the unitary Cabibbo-
Kobayashi-Maskawa matrix VCKM = UuLU

†
dL

and mediated by the heavy W± bosons.

Naturalness

The simple and elegant theory we just sketched is able to explain an incredible amount of
phenomena that we observe in Nature. Yet, some key pieces of the puzzle are still missing.
An obvious one is gravity. Naïve attempts of quantizing the Einstein-Hilbert action lead to a
theory which is not extrapolable to arbitrary high energy scales. The experimental observation
of neutrinos masses is also incompatible with the simple model (1.1.2). And the list goes on,
with the questions of Dark Matter, Baryogenesis, etc.. These are all indisputable indications
that the Standard Model needs to be extended. Now, whatever ultraviolet (UV) completion
of the Standard Model is there, one expects (or rather, hopes) it to be able to reproduce
the Standard Model parameters and particle content with little to no fine-tunings, much like
the SM does with physics below the electroweak scale. For this to be true, the dimensionless
combinations of the low-energy effective theory (namely the SM) parameters that one can
build should all have O(1) values, unless they are protected by selection rules associated to
a symmetry1. Theories failing these expectations are said to possess a naturalness problem.
The perhaps most spectacular example of a naturalness problem is given by the cosmological
constant problem. Taking as UV cutoff of the SM the reduced Planck mass MP ≃ 2.4× 1018

GeV, defining the scale around which a quantum theory of gravity is expected to live, one finds
a fine-tuning of 120 orders of magnitude: Λexp ∼ 10−120M4

P [3]. Another, popular example is
the weak-Planck hierarchy problem. The dimensionful parameter µ2 in the Higgs potential is
not protected by any symmetry and therefore one naïvely expects µ2 ∼M2

P. The experimental
value of the Higgs mass m2

H = 2µ2 ≃ 125 GeV [1] fails the naïve expectation and defines a
naturalness problem.

It is important to stress that, strictly speaking, a naturalness problem is not a problem for
the effective theory under consideration. From the effective theory perspective the incrimi-
nated “unnatural” parameters are not calculable and can only be experimentally determined.
Explaining the smallness of these parameters without evoking fine-tunings is a challenge for
the UV completion itself. Sometimes finding a clever mechanism to achieve this is relatively
easy, as for the smallness of the pions’ masses compared to the QCD confinement scale. Often

1This principle is quantitatively summarized in the ’t Hooft naturalness’ criterion [2], asserting that a theory
is natural if, for all its parameters p which are small with respect to their fundamental scale pUV, the limit
p → 0 corresponds to an enhancement of the symmetry of the system. This automatically guarantees the
stability of these parameters under the Renormalization Group flow.

3



CHAPTER 1. INTRODUCTION

the challenge is harder and the solutions tend to grow in complexity. Regardless, the presence
of naturalness problems likely points to the existence of some sophisticated mechanism within
the underlying UV theory. And this is exactly what happens when one starts looking for
solutions to another, popular naturalness problem: the Strong CP problem.

1.2 The Strong CP problem

The Strong CP problem is a naturalness problem immediately arising upon comparing the
strength of weak and strong CP violation in the Standard Model2. In its renormalizable
version, indeed, these are the only two observable sources of CP violation3.

Weak CP violation is described in terms of the irreducible phase, δ, of the CKM matrix4

VCKM =

⎛⎜⎝ c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎞⎟⎠ (1.2.1)

and is therefore associated to processes mediated by the weak interactions. Actually, in
physical observables δ never shows up alone but always in combination with the mixing angles
in the so called Jarlskog Invariant [4]:

J = s2
12s13s23c12c

2
13c23 sin δ. (1.2.2)

The reason is very clear: if any of the mixing angles is either 0 or π/2 (mod π), a pair of quarks
becomes degenerate and one can always perform a chiral SU(2) flavour rotation to eliminate
the phase δ which becomes now unphysical. This property becomes explicit if we try to express
J in terms of flavour invariants built using the Yukawas Yu, Yd, two of the fundamental
CP-violating quantities in the Higgs basis. Their spurious flavour transformations Yu →
UqLYuU

†
uR
, Yd → UqLYdU

†
dR

, together with the fact that we have three generations, lead to
only one independent CP-odd invariant:

I /CP = det
[︂
YuYu

†, YdYd
†
]︂
. (1.2.3)

Expressing this quantity in the basis Yu = ˆ︂Yu, Yd = VCKMˆ︂Yd, we get

I /CP = 2i(y2
t − y2

c )(y2
t − y2

u)(y2
c − y2

u)(y2
b − y2

s)(y2
b − y2

d)(y2
s − y2

d)s2
12s13s23c12c

2
13c23 sin δ

(1.2.4)

where we immediately notice that the expression vanishes as soon as a pair of quarks becomes
degenerate, as expected. The last factor is precisely the quantity J defined earlier.

2See section 2.2 for the general definition of CP and 4.1 for its definition within the SM.
3CP violation associated to the SU(2)L × U(1)Y topological angles is unobservable at low energies. By

means of a chiral rotation the SU(2)L angle can always be moved in front of the U(1)Y topological term, that
unlike non-Abelian group does not feature non-perturbative phenomena such as instantons (see chapter 2).
Also, we are not including right-handed neutrinos and the associated UPMNS which would bring additional
CP-odd phases.

4We stick to the standard parametrization adopted in [1]. Here, cij ≡ cos θij and sij = sin θij .
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1.2. THE STRONG CP PROBLEM

As of today, the Jarlskog invariant has been precisely measured in a multitude of experi-
ments which set J = 3.00+0.15

−0.09× 10−5. Independent measurements of the mixing angles allow
to determine the value of the phase δ [1]:

δ = 1.196+0.045
−0.043 . (1.2.5)

Importantly, the suppression of J is due to the smallness of the mixing angles rather than the
strength of CP violation in the weak sector, encoded in δ which is of O(1).

The origin of CP violation in the strong sector, instead, is associated to the other irre-
ducible CP-odd parameter θ̄. This is given by a flavour invariant combination of the CP-odd
quantities θ, the QCD topological angle, and the overall phase of the Yukawas:

θ̄ = θ − arg detYuYd. (1.2.6)

This quantity is invariant under the anomalous U(1)A rotation of the quarks qL → e−iα/2qL,
uR → eiα/2, dR → eiα/2dR, sending θ → θ + 2Ngα and (Yu, Yd) → eiα(Yu, Yd), and not
protected by any symmetry except CP itself.

The θ̄ parameter is quite peculiar: precisely thanks to an anomalous U(1)A rotation it can
be entirely put in front of the QCD topological term, which is a total derivative (G ˜︁G = ∂µKµ)
and is therefore not associated to any vertex in ordinary perturbation theory (more on this
in chapter 2). This renders θ̄ apparently unphysical. As we will discuss in chapter 2 in
more detail, however, it is when we take into account non-perturbative phenomena that this
parameter becomes observable. And in QCD this happens when it becomes strongly coupled.
By far, the most important observable to which θ̄ is associated is the neutron electric dipole
moment dn. Precisely because of the non-perturbative nature of θ̄ it is difficult to make
analytical predictions for dn, which can be estimated as (see section 2.1.2):

dn ∼ cne
mu

m2
n

θ̄ (1.2.7)

In this expression mn is the neutron mass, mu the up-quark mass, e the electromagnetic
coupling and cn an incalculable constant expected to be in the range |cn| ∈ [1, 10]. The most
recent experimental searches for dn set |dn|/e < 1.8 × 10−26 cm at 90% C.L. [5], that upon
employing (1.2.7) translates in the upper bound

|θ̄| < O(0.5− 5)× 10−10. (1.2.8)

The comparison between (1.2.5) and (1.2.8) is what defines the Strong CP problem. The
huge hierarchy between CP violation in the strong and the weak sector is a clear symptom
that whatever completion of the SM is there, it must be either highly non-generic or extremely
fine-tuned in order to explain a cancellation in θ̄ of order 10−10 while maintaining sizeable CP
violation in the weak interactions5.

Excluding the fine-tuning option, solutions to the Strong CP problem within the four-
dimensional QFT realm6 fall into two broad categories:

5It is worth pointing out, though, that even if a small θ̄ is not technically natural, its running within the
SM first appears at 7-loops. Hence, it can be effectively treated as stable under the Renormalization Group
(RG) flow (see section 2.2). Later we will show that this is not true in generic beyond the SM extensions, and
a big θ̄ can be regenerated by the RG flow.

6We will not discuss String Theory solutions.
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CHAPTER 1. INTRODUCTION

i) axion-like solutions;

ii) UV solutions.

This classification can be understood in terms of the spurious transformation properties of θ;
namely its anomalous shift symmetry and P/CP-odd nature. Solutions exploiting the former
lead to what is known as the axion mechanism, and comprise the first of the two categories.
In this case the SM is extended in such a way that the anomalous axial transformation
shifting θ becomes a real symmetry of the theory, the Peccei-Quinn symmetry, broken only
by the topological term of QCD due to its anomalous nature. The spontaneous breaking of
this symmetry at high-scales leads to an IR theory composed of the SM supplemented by a
pseudo Nambu-Goldstone boson, the axion, whose potential generated at strong coupling by
the topological term is responsible for stabilizing the axion at a value which effectively renders
θ̄ unphysical. These elegant and dynamical solutions to the Strong CP problem are however
jeopardized by the anomalous nature of the PQ symmetry itself, which must be of extremely
high quality to ensure that the Strong CP problem is actually solved. For this reason, this
class of solutions is known to be typically afflicted by a quality problem.

Solutions exploiting the P/CP property of θ, instead, define the class of UV solutions to
the Strong CP problem. In this approach P/CP is assumed to be an exact symmetry of the
theory at high energies, spontaneously broken at lower scales by the vacuum expetation value
of some scalar field. While very elegant, the non-trivial challenge that such approaches face is
that of generating a sizeable amount of weak P and CP violation and a chiral matter content
while simultaneously ensuring (1.2.8).

1.3 Outline of the work

In the remaining chapters of this work we will try to convey the main ideas behind the two
approaches just sketched by presenting some concrete works that have been put forth recently,
focussing in particular on the original publications [6–9].

Chapter 2 is devoted to a more in-depth study of physics associated to topological angles,
that in the previous section we just alluded to. This deviation is crucial in order to fully
appreciate the nature of the problem itself. In section 2.1.1 we will review non-perturbative
effects to which θ̄ is intrinsically tied, such as instantons and the neutron electric dipole
moment. Then, in section 2.2, taken from the work [6], we will move to the issue of the
perturbative renormalization of the topological angles. We will show how this question is
both of theoretical interest and practical relevance, particularly in relation to UV solutions
to the Strong CP problem.

Chapter 3 focuses on axion-like solutions to the Strong CP problem. In sections 3.1, 3.2
we will provide a review of the basic principles of the axion mechanism and its associated
quality problem. The latter will naturally lead us to section 3.3, taken from [7], where we
will study constructions in which the axion is more stable because of an increased size of
its potential as induced by an additional strongly coupled group confining at a scale much
bigger than the QCD one. For this approach to work an almost perfect alignment between
the two potentials is required. As we will show, this can be obtained in a model in which

6



1.3. OUTLINE OF THE WORK

QCD and the new group are unified at high-scales in a bigger Grand Color group [7], whose
construction we will present thoroughly including the details of the effective axion potential
and the phenomenology of the model.

Chapter 4 deals with UV solutions to the Strong CP problem. After a brief review of
the Spontaneous P/CP violation approach in section 4.1, we will quickly move to particular
realizations denoted Nelson-Barr models. In section 4.2, taken from [8], we will study in detail
the issue of generating an O(1) phase δ in models where CP is an exact UV symmetry, and
we will quantitatively estimate the size of θ̄ generated after the spontaneous breaking of CP
occurs. This will lead to the discovery of a new naturalness problem rooted in this kind of
solutions, which we will overcome in section 4.3, taken from [9], by building an explicit UV
completion of the Nelson-Barr effective theory in which CP violation is mediated to the SM
in a super-soft way.

A final summary and possible future directions will be presented in chapter 5.

7
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Chapter 2

Topological Angles

In a simple gauge theory, a topological angle θ is the coupling associated to the topological
operator Q(x):

Q(x) = g2

64π2 ϵ
µνρσδabGaµν(x)Gbρσ(x) ≡ g2

32π2G
˜︁G. (2.1)

This operator is odd under conventional P and CP but gauge and Lorentz invariant, and
should therefore be included in the lagrangian of any renormalizable gauge theory. However,
a closer look reveals that (2.1) is actually negligible in ordinary perturbation theory. The
reason is that it can be written as a total derivative

G ˜︁G = ∂µK
µ (2.2)

where the current Kµ is called Chern-Simons current

Kµ = 8ϵµνρσ tr
(︃1

2Aν∂ρAσ −
ig

3 AνAρAσ
)︃

= 4ϵµνρσ tr
(︃1

2AνGρσ + ig

3 AνAρAσ
)︃
. (2.3)

In ordinary Feynman diagrams calculations, the fields are assumed to die off sufficently fast
at infinity in order to work in the Fourier-transformed momentum space. This means that the
operator Q(x), being essentially a boundary term (

∫︁
d4xQ(x) =

∫︁
d4x ∂µK

µ =
∫︁

|x|→∞ d3xK⊥

), does not contribute to the effective action and therefore to the perturbative expansion1.
Beyond the perturbative approach, however, it is possible to find gauge field configurations for
which the integral of Q(x) is not identically vanishing. These field configurations are called
istantons and are characterised by an integer number ν associated to the operator (2.1),

1For example, correlators for G˜︁G with two external legs are encoded in the partition function as

Z ⊃
∫︂

d4x Aa
µ(x)

∫︂
d4y Aa

ν(y) Gµν(x − y) (2.4)

where Gµν(x − y) is an ordinary Feynman diagram. Since it is impossible for Gµν(x − y) to contain two
derivatives contracted with a Levi-Civita tensor, this term cannot be associated to (2.1). Here the subtlety lies
in the fact that in this expression integration by parts has been performed assuming that the boundary term
gives no contribution.

9



CHAPTER 2. TOPOLOGICAL ANGLES

∫︁
d4xQ(x) = ν. Splitting the gauge field in a background given by these configurations plus

quantum fluctuations dying off sufficiently fast at infinity, the path-integral is then divided in
different sectors classified by the value of the integer ν:

Z =
∫︂
Dϕ eiS+iθ

∫︁
d4xQ(x) =

∑︂
ν

eiθν
∫︂
Dϕν eiSν =

∑︂
ν

eiθνZν (2.5)

where ϕ includes all the field entering in the action S including the gauge field fluctuations.
In other words, the parameter θ is not unphysical but actually enters in a non-trival way in
the partition function, behaving much like an angle (hence the name topological angle). The
rôle of the instanton configurations in the path-integral and ultimately in determining the
gauge theory vacuum will be the subject of the next section’s investigation. We will find that
θ actually does enter in physical observables, eventually leading in the case of QCD to the
Strong CP problem as defined in chapter 1. For the very same reason it is also natural to
wonder about the renormalization of the topological parameter, a question which has both
theoretical and practical relevance. This aspect will be covered in section 2.2, which is taken
from the original work [6].

2.1 Beyond Perturbation Theory

In this section we are interested in studying non-perturbative effects associated to the operator
(2.1). This will naturally lead us to the concept of instantons and to the structure of the
vacuum of gauge theories. Our discussion will be concise and mostly based on the expositions
in [10–12]; other good references on the subject are [13–15]. Finally, we will discuss their
applications to QCD and other non-perturbative phenomena relevant for phenomenology.

2.1.1 Instantons

Instantons are solutions to the classical equations of motion of the gauge fields that are
localised in Euclidean time and space, nowhere singular and with a finite action. The reasons
to consider an Euclidean spacetime instead of a Minkowski one are twofold: first, the path
integral and its expansion are much more well-defined in Euclidean spacetime, where the action
is positive definite and therefore the path-integral convergent. Second, we are interested in
performing a semiclassical expansion of the path integral. In quantum mechanics, the WKB
approximation tells us that this is done by considering solutions to the classical equations
of motion with a Wick-rotated (imaginary) time. In quantum field theory, this amounts to
consider our theory on a Euclidean spacetime and expand around field configurations with
finite action (infinite actions would result in a zero in the path-integral).

The conversion from Minkowksi to Euclidean is done through a Wick rotation:

x0 = −ix4. (2.1.1)

where x4 is the Euclidean time coordinate. In this way scalar products become aµbµ =
−(a · b)E, so that the metric is effectively Euclidean. Since we want the Euclidean action to

10



2.1. BEYOND PERTURBATION THEORY

enter in the path integral as e−SE , we define it as SE = −iS|x0=−ix4 . Taking into account
that d4x = −id4xE, the pure gauge action without the topological term becomes

SE =
∫︂
d4xE

1
4G

a
µνG

a
µν (2.1.2)

where now we do not need to distinguish upper and lower indices any more. Quantities
involving an odd number of Levi-Civita tensors, instead, pick up an additional imaginary
factor: in this way the topological operator becomes∫︂

d4xQ(x) = −i
∫︂
d4xE

g2

64π2

(︃
+ i

2ϵ
µνρσ
E GaµνG

a
ρσ

)︃
=
∫︂
d4xE

g2

32π2G
˜︁G ≡ ∫︂ d4xEQE (2.1.3)

and so enters in the Euclidean action as S′
E = SE − i

∫︁
d4xEQE . From now on we will drop

the subscript which denotes Euclidean quantities.
In the semiclassical approximation, the starting points are solutions to the classical equa-

tion of motions which have finite action. Therefore we must look for gauge field configurations
which satisfy

DµGµν = 0 (2.1.4)

and such that the action (2.1.2) is finite. Let us start from the latter requirement. Since we
are in Euclidean spacetime, we start by considering a sphere S3 ⊃ R4 at some fixed radius
r2. Because the measure in (2.1.2) scales as ∼ r3, finite action requires that the field strength
must behave as Gµν ∼ r−3 for r → ∞, and so naively Aµ ∼ r−2. However, for r → ∞ the
gauge potential can also approach a pure gauge configuration:

Aµ(x)|r→∞ = − i
g

(∂µU)U−1 + o

(︃ 1
r2

)︃
(2.1.5)

so that Gµν(x)|r→∞ = 0. Now, to be concrete consider the simple case of a G = SU(2) gauge
group. Since topologically SU(2) ∼ S3

3, what we are looking for are effectively maps from
S3 (the asymptotic boundary of Euclidean spacetime) to S3 (gauge group transformations).
These maps, however, are not all continuously deformable into each other: they are classified
in equivalence classes which are encoded in what the mathematicians call the fundamental
groups Πn(G). In the case at hand the relevant group is Π3(S3) = Z. Therefore, solutions
to the classical equations of motion can be labeled by an integer, the Pontryagin number ν.
This number, also called Brouwer degree or winding number, can be expressed in terms of an
integral over the volume form of the gauge group4:

ν = 1
24π2

∫︂
S3

trU−1dUU−1dUU−1dU = 1
24π2

∫︂
S3
d3θ ϵijk trU−1∂iUU

−1∂jUU
−1∂kU. (2.1.7)

2Note that the radius includes also the Euclidean time direction, r =
√︁

x2
1 + x2

2 + x2
3 + x2

4.
3This is because an SU(2) transformation can be written, thanks to the Pauli matrices identities, as eiα·σ =

u01+ u · σ subject to the constraint u2
0 + u · u = 1 coming from the requirement of unitarity. This identifies a

sphere S3 in the parameter space (u0, u).
4It is straightforward to verify that this quantity is a topological invariant. Under coordinates transforma-

tions this is clearly invariant since it is a volume form (the transformation of the Levi-Civita tensor compensates
the Jacobian factor from the measure). Under an infinitesimal gauge transformation, δU = iδα(x)ataU ≡ αU .
From δU−1 = −U−1δUU−1 and ∂iUU−1 = −U∂iU

−1, we get δ(U−1∂iU) = U−1∂i
(︁
δUU−1)︁U = U−1∂iαU and

11



CHAPTER 2. TOPOLOGICAL ANGLES

To gain an understanding of what this number represents, consider the 1-dimensional case
S1 → U(1) ∼ S1. Given the S1 coordinate θ ∈ [0, 2π], we can have infinitely different maps
given by

V (m)(θ) = eimθ. (2.1.8)

where m is an integer. The Pontryagin number in this case is given by

ν = 1
2πi

∫︂
S1

(V (m))−1dV (m) = 1
2πi

∫︂ 2π

0
dθ e−imθ (im) eimθ = m (2.1.9)

and indeed Π1(S1) = Z. Therefore, the index m is telling how many times the gauge group
manifold S1 is wrapped by the mapping. In the case of interest, Π3(S3), the analogous quantity
is given by the formula (2.1.7). But in this formula the quantities appearing in the trace are
nothing else than the asymptotic values of the gauge field (2.1.5):

ν = (ig)3

24π2

∫︂
S3
d3θ nµϵµνρσ trAνAρAσ (2.1.10)

where nµ is the vector orthogonal to S3 as embedded in R4. Because on this configuration
Gµν = 0, using the definition (2.3) together with Stokes theorem and (2.2) we get

ν = (ig)3

24π2

∫︂
S3
d3θ nµ

(︃ 3i
4gKµ

)︃
= g2

32π2

∫︂
d4x ∂µKµ = g2

32π2

∫︂
d4xG ˜︁G. (2.1.11)

This result in telling us something very important. Even though in perturbation theory
the operator Q(x) (2.1) seemed to be completely negligible, its integrated value labels the
topological sector in which the gauge field is living. These sectors are topologically distinct,
in the sense that there is no homotopy5 that maps a field configuration with one topological
index to another with a different index. As we will see in a moment this has profound
consequences on the physical structure of the gauge theory vacuum and ultimately on the
relevance of the topological angle. Before doing this, however, we still need to find explicit
instanton configurations; that are profiles satisfying (2.1.5). These can be found in terms of
the natural map from S3 to S3:

U (1) = x4 + ix · σ
r

r2 = xµxµ = x2 + x2
4 (2.1.12)

so

δν = 3
24π2

∫︂
S3

d3θ ϵijk tr ∂iα∂jUU−1∂kUU−1 = − 3
24π2

∫︂
S3

d3θ ϵijk tr ∂iα∂jU∂kU−1 (2.1.6)

Using integration by parts, the boundary term can be dropped since we are taking infinitesimal transformations
and the remaining terms are of the form ϵijk∂j∂kU that vanish identically.

5Transformations continuously connected to the identity. In this context they are also called “small gauge
transformations”.

12



2.1. BEYOND PERTURBATION THEORY

which results in6 ⎧⎨⎩Ai = i
g

1
r2 [xi − σi (x · σ + ix4)]

A4 = −1
g

1
r2 x · σ

. (2.1.15)

If we plug this quantity in (2.3) we get Kµ = 16xµ/g2r4, from which

g2

32π2

∫︂
d4xG ˜︁G = g2

32π2

∫︂
S3
d3θ nµKµ = g2

32π2
16r2

g2r5

∫︂
S3
r3dΩ3 = 1. (2.1.16)

where we used nµ = xµ/r and
∫︁
S3
dΩ3 = 2π2, confirming that this configuration has a non-

trivial topology with winding number ν = 1. Configurations with a generic winding number ν
can be obtained by simply taking powers of U (1), U (1) → U (ν) = (U (1))ν . Now, given (2.1.16)
it is clear that Aµ cannot be pure gauge over the whole spacetime, but only at the boundary.
A solution of the equations of motion over the whole spacetime can be found by employing
the ansatz Aµ = f(r)(−i/g)(∂µU (ν))(U (ν))−1, plugging it in (2.1.4) and solving for f(r). In
this way, one finds [16]

Aµ = r2

r2 + ρ2

(︃
− i
g

)︃
(∂µU (ν))(U (ν))−1. (2.1.17)

This solution becomes the pure gauge configuration we previously found as r →∞, and as a
consequence of (classical) scale invariance depends on an arbitrary parameter ρ, whose inverse
represents the size of the instanton. Given the profile of the globally defined solution, we can
also compute its action. There is actually a nice trick that we can employ in order to avoid
the cumbersome brute-force calculation, starting from the simple observation

tr (Gµν ± ˜︁Gµν)2 ≥ 0. (2.1.18)

Because trGµνGµν = tr ˜︁Gµν ˜︁Gµν , it follows that

trGµνGµν ≥
⃓⃓⃓
trGµν ˜︁Gµν ⃓⃓⃓ . (2.1.19)

Therefore the action is minimized by field configuration which are self-dual, Gµν = ˜︁Gµν . It
is straightforward to verify that our solution (2.1.17) is exactly self-dual7. Therefore, because

6The gauge field can also be written as

Aµ = ηiµν
xν
r2 σi (2.1.13)

where ηiµν are the t’Hooft symbols

ηiµν = ϵiµν4 + δaµδ4ν − δ4µδaν . (2.1.14)

This rewriting illuminates the nature of the solution as map S3 → S3. The symbols mix gauge and spacetimes
indices. In particular, they are antisymmetric in [µν] and therefore they live in the adjoint of SO(4) ≃
SU(2) × SU(2). But being also self-dual, ηiµν = ϵµνρσηiρσ/2, they actually belong to the adjoint only of the
first SU(2) factor (4 ⊗A 4 → (3, 1) + (1, 3)). Then the solution is nothing else than a map from the spacetime
SU(2), belonging to the Euclidean Lorentz group SO(4), to the gauge group SU(2), i.e. a map S3 → S3.

7Actually, this could also be seen as the starting point to find instanton solutions, as originally done in [16].
Being the requirement Gµν = ˜︁Gµν a first-order differential equation for Aµ, solving this is considerably easier
than solving (2.1.4).
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of (2.1.16) we already know the value of its action:

SE =
∫︂
d4x

1
2 trGµνGµν =

⃓⃓⃓⃓∫︂
d4x

1
4G

˜︁G⃓⃓⃓⃓ = 1
4

32π2

g2 |ν| =
8π2

g2 |ν| . (2.1.20)

This result confirms the non-perturbative nature of the instanton solution, whose action scales
as 1/g2. The action increases together with the winding number, meaning that in the path-
integral the less suppressed contributions come from instantons with ν = 1.

2.1.2 θ−vacua

The instanton solution found in the previous section was interpret as being a lump localized
in space and time. However, this interpretation is by no means unique. There is a much more
illuminating perspective which amounts to thinking about instantons as configurations which
evolve in (Euclidean) time, as shown in figure 2.1. The boundaries I and III at x±

4 → ±∞ are
S3’s, connected by a cylinder II along x4. The integral (2.1.10) becomes

ν = (ig)3

24π3

[︃∫︂
I,III

d3θ ϵ4ijk trAiAjAk +
∫︂ ∞

−∞
dx4

∫︂
II
d2θi ϵiνρσ trAνAρAσ

]︃
. (2.1.21)

To perform these integrals it is convenient to move to a gauge in which A4 = 0, so that the

A

x−
4 x+

4

S3S3

III III

Figure 2.1: Instanton as an evolution in Euclidean time. The boundaries at x±
4 → ±∞ are

S3’s.

integral over II becomes null (it requires an index among {ν, ρ, σ} to be 4). Focussing on the
charge ν = 1 case, the required gauge transformation S must satisfy

SA4S
−1 − i

g

∂S

∂x4
S−1 = 0 (2.1.22)

which upon using (2.1.17) becomes

∂S

∂x4
= S

ix · σ
r2 + ρ2 . (2.1.23)
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2.1. BEYOND PERTURBATION THEORY

The solution to this differential equation reads [12]⎧⎪⎨⎪⎩
S = e

i x·σ√
x2+ρ2 θ

θ = arctan
(︃

x4√
x2+ρ2

)︃
+ θ0

(2.1.24)

where θ0 is an integration constant. Taking θ0 = (n + 1/2)π leads to the correct instanton
interpretation: indeed, for integer n this transformation sets A4 = 0 everywhere and

Ai −→

⎧⎨⎩− i
g∂ihnh

−1
n x+

4 →∞
− i
g∂ihn−1h

−1
n−1 x−

4 → −∞
(2.1.25)

with

hn = (h1)n =
(︃
e
i x·σ√

r2+ρ2 π
)︃n

. (2.1.26)

Both hn and hn−1 are clearly elements of SU(2), but are not homotopic. The field profiles in
(2.1.25) are again standard mappings from S3 to S3

8 with topological number n and n − 1,
respectively, so that indeed

ν = (ig)3

24π3

[︃∫︂
III
d3x ϵ4ijk trAiAjAk −

∫︂
I
d3x ϵ4ijk trAiAjAk

]︃
= n− (n− 1) = 1 (2.1.27)

We conclude that a single instanton with charge ν can be seen as process in (Euclidean) time
which changes the topological number of the asymptotic vacuum by ν units. In view of this
interpreation, the picture of the gauge theory vacuum takes a new perspective: there are in-
finite vacuum states labelled by their winding number n, |n⟩, and instantons take us from |n⟩
to |n+ ν⟩. Between the asymptotic vacua Gµν is different from zero, so the field possesses a
positive energy which must be overcome in order for the instanton process to happen. Classi-
cally this of course forbidden, but quantum mechanically we know that the amplitude for such
tunnelling process is proportional to the Euclidean action ∼ exp(−8π2|ν|/g2). Indeed, denot-
ing |n⟩ the vacuum with topological number n, in the Euclidean path-integral representation
of field theory

⟨n| e−HT |m⟩J =
∫︂
DAν=n−me

−SE+
∫︁
d4x JµAµ (2.1.28)

where H is the Hamiltonian and Jµ the source associated to the gauge field with instanton
number ν. Since |n⟩ are not the true eigenstates of the Hamiltonian, the real vacuum should
be given by a linear combination of them [17,18]:

|θ⟩ =
∞∑︂

n=−∞
e−inθ |n⟩ (2.1.29)

8Within this mapping the spacetime S3 consists of the whole R3 positioned at x±
4 → ±∞, with the points at

space infinity identified by the complex exponential. This parametrization is different from the one in (2.1.12),
where the starting S3 was identified by the condition xµxµ = r2 and the integral was performed on the sphere
angles. Here the integration region is xi ∈ (−∞, ∞).
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where θ is a real parameter which defines the θ-vacua. We can see that this is the correct
combination by considering a gauge transformation gm changing the topological number by
m units9, gm |n⟩ = |n+m⟩: since H is gauge invariant the vacuum must be an eigenstate of
gm, and indeed

gm |θ⟩ =
∑︂
n

e−inθgm |n⟩ =
∑︂
n

e−inθ |n+m⟩ = eimθ |θ⟩ . (2.1.30)

Therefore, in analogy with what happens in quantum mechanics with Bloch waves, θ defines
a “pseudo-momentum” which labels physically inequivalent sectors that do not communicate.
In particular, the vacuum-to-vacuum amplitude for two different θ-vacua reads

⟨θ′| e−HT |θ⟩J =
∑︂
n,m

e+imθ′
e−inθ ⟨m| e−HT |n⟩

=
∑︂
n,m

ei(m−n)θeim(θ−θ′)
∫︂
DAn−me

−SE+
∫︁
d4x JµAµ

= 2πδ(θ − θ′)
∑︂
ν

eiθν
∫︂
DAνe

−SE+
∫︁
d4x JµAµ

= 2πδ(θ − θ′)
∑︂
ν

∫︂
DAνe

−S′
E+
∫︁
d4x JµAµ

(2.1.31)

where in the third line we have relabelled ν = m−n and exploited the identity ∑︁m e
im(θ−θ′) =

2πδ(θ − θ′). The new action S′
E appearing in the last line is given by

S′
E = SE − iθν = SE − i

g2

32π2

∫︂
d4xG ˜︁G (2.1.32)

where we have used (2.1.11) to represent the winding number ν in terms of the operator
Q(x). Thus, in this semiclassical approximation the complex structure of the gauge theory
vacuum gives rise to an effective lagrangian term which is nothing else than the topological
operator Q(x) we started with, (2.1). The topological angle θ becomes now more than just
a (apparently unphysical) coupling, but a fundamental selection rule labelling completely
disjoint vacua of the theory as coded in δ(θ − θ′) in (2.1.31), which holds up to arbitrary
insertions of gauge-invariant operators. Of course, being just a semiclassical analysis, we
expect this naïve picture to break down when quantum effects become important. Indeed, as
we will see later, in QCD the topological angle θ becomes a true observable parameter rather
than a label for the vacuum. Finally, for simplicity our analysis has focused on a SU(2) gauge
theory, but it actually generalises to any non-Abelian group (including, of course, QCD). This
is guaranteed by Bott’s theorem [19], which states that any continuous mapping S3 → G can
be continuously deformed into a mapping to any SU(2) subgroup of G. Therefore as long
that G ⊃ SU(2), which is true for any non-Abelian compact Lie group, our analysis goes
through completely unchanged. For Abelian gauge theories, instead, Π3(S1) = 1 and there is
no analog of the winding number.

9As a clarification, we stress that gauge transformations changing the topological number of the vacuum do
exist. These are not continuously connected to the identity and called “large gauge transformations”. However,
according to the previous instanton interpretation, these shift both the asymptotic winding numbers by the
same amount and are thus fundamentally different from instantons.
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2.1. BEYOND PERTURBATION THEORY

Vacuum Energy

The instanton action found in section 2.1.1 can be used to determine the dependence of the
vacuum energy on the topological angle θ. Consider the relation (2.1.31) that we just found,

⟨θ′| e−HT |θ⟩ = 2πδ(θ − θ′)
∑︂
ν

e−iθν
∫︂
DAνe

−SE . (2.1.33)

in which now we are omitting the source Jµ, since it will not play any role. In the T →∞ limit
the exponent in the left-hand side of the equation becomes the energy of the vacuum, since
the contributions from the rest of the Hamiltonian eigenstates are exponentially suppressed:

⟨θ| e−HT |θ⟩ =
∑︂
n

e−EnT ⟨θ|n⟩ ⟨n|θ⟩ T→∞−−−−→ e−E(θ)T | ⟨θ|θ⟩ |2 ≡ e−E(θ)V (2.1.34)

where in the last we have explicitly written a volume factor to mod out the energy density
E(θ). Therefore, in this approximation the vacuum energy density is given by

E(θ) = − 1
V

log
(︄∑︂

ν

e−iθν
∫︂
DAνe

−SE

)︄
= − 1

V
logZ(θ). (2.1.35)

The leading contribution in the sum over instantons comes from the one instanton and one
anti-instanton configurations with |ν| = 1, since these have the less suppressed action SE =
8π2/g2. Thus

E(θ) = − 1
V

logZ0 −
1
V

log
(︄

1 +K−1e
iθe

− 8π2
g2 +K+1e

−iθe
− 8π2

g2 + . . .

)︄
(2.1.36)

where, at leading order in g2, the factors K±1 are given by integrating the one-loop fluctuation
of the gauge field around the instanton/anti-instanton configuration. These factors always
include a power of the volume, K±1 = V K, coming from translational invariance together
with the fact that we must integrate also over the instanton position. We also are assuming
that K+1 = K−1, a result that is found in explicit calculations [13]. Therefore10

E(θ)− E(0) ≈ −2Ke− 8π2
g2 cos θ. (2.1.37)

This result is particularly interesting because it highlights two important features. First of all,
the energy is minimised at the CP-conserving value θ = 0 mod 2π. This is not a coincidence,
but a general property of vector-like gauge theories (including pure Yang-Mills theories) as
proved in an historical work by Vafa and Witten [21]. Making a nod to next chapter, if we
imagine replacing θ by a dynamical field then its potential as generated by instantons naturally
relaxes its vacuum expectation value (vev) to a CP-conserving value. This will basically set
the stage for the axion mechanism as a dynamical solution to the Strong CP problem. Second,
we can estimate the scale at which the instantons become relevant by substituting to g2 its

10This result can be obtained in a more refined way using the Dilute Instanton Gas Approximation (DIGA),
see [10,13,20].
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1-loop value g2(µ) = 8π2/β0 log(µ/Λ), where β0 is the coefficient of the 1-loop β−function
and Λ is the confinement scale. As a typical scale for µ we can take the inverse of instanton
size ρ, so that

E(θ)− E(0) ≈ −2Ke−β0 log(1/ρΛ) cos θ = −2K(ρΛ)β0 cos θ. (2.1.38)

Since in a proper path-integral treatment we should actually integrate over ρ, we see that
the leading contribution comes from instantons of size ρ ≳ 1/Λ. Unfortunately, this is ex-
actly the regime in which our semiclassical analysis is no more valid. The lesson is that
instantons should be regarded as useful objects to gain a qualitative understanding of the
non-perturbative effects which are going on (as we have seen), but should not be used for
quantitative predictions. Indeed, in the regime of validity in which instanton calculus is valid,
ordinary perturbation theory is much more predictive.

2.1.3 QCD

In this section we briefly elaborate on some consequences of what we discovered in the pre-
vious section, particularly in relation to QCD. More detailed treatments can be found in the
references provided in the text.

The U(1)A Problem

The U(1)A problem was an apparent inconsistency in the Nambu-Goldstone bosons’ spectrum
of QCD. At energies far below the electroweak scale (but above the QCD confinement scale),
the colored sector of the SM can be described in terms of a very simple lagrangian:

LC = −1
4GG+ θ

g2

32π2 G
˜︁G+ q̄L,ii /DqL,i + q̄R,ii /DqR,i −Mij q̄L,iqR,j + h.c. (2.1.39)

where qL,i, qR,i are the chiral components of the lightest quarks (i = {u, d, s}, Nf = 3), M
is the (complex) mass matrix and θ is the QCD topological angle. This lagrangian features
a U(3)L × U(3)R = SU(3)V × SU(3)A × U(1)V × U(1)A flavour symmetry group, classically
broken only by the presence of the masses11. The mass matrix M can always be made diagonal
and real (Mij = miδij) thanks to a U(3)L×U(3)R rotation, and generically leaves intact only
the U(1)V vectorial subgroup. In particular, the current non-conservation for the Abelian
U(1)A symmetry, generated by qi → exp(iαγ5)qi, reads

(classically)
∂µJ

µ
5 = 2iMij q̄iγ

5qj

Jµ5 =
∑︂
i

q̄iγ
µγ5qi

(classically). (2.1.40)

The QCD dynamics spontaneously breaks the axial symmetries by developing a vev for the
fermion bilinear:

⟨q̄L,iqR,j⟩ = f2
πΛC δij (2.1.41)

11And by the gauging of U(1)EM, that for the moment we are neglecting.
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which leaves invariant only the SU(3)V × U(1)V subgroup, as predicted by Vafa and Wit-
ten [22]. The spontaneous breaking of the axial symmetries delivers 2N2

f −N2
f = 9 Nambu-

Goldstone modes, which are described as oscillations around the bilinear vev in an effective
lagrangian that goes by the name of chiral lagrangian [23,24]. Following the CCWZ construc-
tion [25,26], the NGBs Πa are packed in a matrix U defined in terms of the broken generators
tā of SU(3)A × U(1)A as

U = eiΠ
ātā/fπ

Πātā =

⎛⎜⎜⎜⎝
π0 + η8√

3 +
√︂

2
3η1

√
2π+ √

2K+

√
2π− −π0 + η8√

3 +
√︂

2
3η1

√
2K0

√
2K− √

2K0 − 2√
3η8 +

√︂
2
3η1

⎞⎟⎟⎟⎠
(2.1.42)

where the fields appearing in Π ≡ Πātā are the pions, the kaons and the η-mesons. In
particular, η1 is the NGB of the U(1)A symmetry. This matrix transforms under chiral
symmetries as U → LUR†, so treating the quark masses as small compared to the chiral
lagrangian scale, the leading order effective lagrangian consistent with chiral symmetries reads

Lno-anomaly
χPT = f2

π

4 tr ∂µU∂µU† + f2
π

4 B0 tr
(︂
U†M + UM†

)︂
+ h.o. . (2.1.43)

From this lagrangian we can read off the mesons’ masses and, for instance, derive the famous
Gell-Mann-Okubo relation 4m2

K = 3m2
η + m2

π [27, 28] (in the limit mu = md), where η is a
combination of η8 and η1. But this also leads to a mass for the orthogonal combination, η′,
comparable to that of the other pseudo-NGB. In particular, Weinberg [29] was able to obtain
the approximate bound

mη′ ≲
√

3mπ. (2.1.44)

Experimentally, no such particle is found. While π,K and η all have masses compatible with
(2.1.43), the candidate for η′ is much more massive: mη′ ≃ 958 MeV [1], which compared to
mπ ≃ 134 MeV strongly violates the bound (2.1.44). This puzzle defines what was known as
the U(1)A problem, namely no NGB is there for the spontaneously broken U(1)A symmetry.
It is worth mentioning that also a second U(1)A problem was present, related to the decay
η′ → 3π. A chiral lagrangian calculation including U(1)EM effects and exploiting the relation
(2.1.40) shows that the amplitude for this process should vanish [30]. Experimentally, however,
the width of this decay channel is consistently not null [1]. Thus we are led to a second paradox,
again related to the U(1)A symmetry.

The solution of the U(1)A problem(s) lies in the fact that the current non-conservation
equation (2.1.40) is actually incorrect. It is altered by quantum effects, which lead to the so
called ABJ anomaly relation [31]:

∂µJ
µ
5 = 2iMij q̄iγ

5qj − 2Nf
g2

32π2G
˜︁G. (2.1.45)
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Therefore, the flavour rotation needed to make M diagonal and real actually shifts θ, meaning
that the correct U(1)A invariant effective topological angle is given by

θ̄ = θ − arg detM. (2.1.46)

The additional term in (2.1.45) proportional to the topological density can be interpreted
as due to the non-invariance of the path-integral measure under U(1)A transformations of
the fermions [32]. Note, however, that we can in any case define another axial current by
exploiting (2.2):

J̄
µ
5 = Jµ5 + 2Nf

g2

32π2K
µ (2.1.47)

meaning that, apparently, we still have a conserved axial current apart from the explicit
breaking due to the fermion masses. Thus we still expect a mass for the η′ comparable
to that of the other mesons: equation (2.1.45) alone cannot be the end of the story. The
key missing piece is that the current J̄µ5 defined in (2.1.47) is not gauge invariant, because
the Chern-Simons current, unlike Jµ5 , is not. If we consider only trivial gauge backgrounds,
this would not be an issue and all the story we just outlined would go through unchanged.
However we known that there are non-trivial background, given by instantons. These violate
the conservation of the axial charge (in the limit mi = 0) by 2Nfν units [33]:

Q̄5 =
∫︂
S3
d3θ nµJ̄

µ
5 = Q5 + 2Nf

g2

32π2

∫︂
S3
d3θ nµK

µ

↓
∆Q̄5 = 2Nfν.

(2.1.48)

Therefore, the chiral symmetry defined by the current (2.1.47) is not really a symmetry of
the theory. It is explicitly broken by the non-perturbative instantons. For this reason, we do
not expect any Nambu-Goldstone mode coming from the further breaking due to the fermion
condensate: the mass of the η′ is dominated by instantons effects, which become relevant at
the scale at which the group confines. Thus we expect mη′ ∼ ΛC, which is now perfectly
compatible with its measured value. The U(1)A problem is solved.

The connection between instantons and the θ−vacuum is actually more interesting in the
presence of exactly massless fermions. Suppose there are NA of them, and as in section 2.1.2
call gν the gauge transformation changing the topological number of the vacuum by ν units:
gν |n⟩ = |n+ ν⟩. Then [Q̄5, gν ] = 2νNAgν , meaning that gν acts like a raising operator and so

Q̄5 |n⟩ = 2nNA |n⟩ . (2.1.49)

Thus, states with winding number n have a definite chirality. In particular, under a chiral
rotation by an angle α,

e−iαQ̄5 |θ̄⟩ =
∑︂
n

e−inθ̄−iα2nNA |n⟩ = |θ̄ + 2αNA⟩ ≡ |θ̄
′⟩ . (2.1.50)
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Since [H, Q̄5] = 0, this means that the theory is invariant under the shift θ̄ → θ̄
′. In other

words, the parameter θ̄ becomes unphysical in the presence of massless fermions. Again with
a nod to chapter 3, this is essentially the core of the massless up-quark proposal as a solution
to the Strong CP problem.

It is also possible to show that associated to each instanton of charge ν there are chiral
zero-modes of the fermion Dirac operator such that the net chirality is exactly ν [34]. This
result is encoded in the Atiyah-Singer index theorem [35], which formalizes our previous
qualitative argument. These zero-modes suppress topological transitions, but the concept of
θ−vacuum is still required on the basis of the cluster decomposition principle [17]. They also
imply a non-vanishing vev for operators with non-zero chirality, hinting towards a proof of
chiral symmetry breaking.

Strong Coupling: η → ππ and Neutron EDM

The last topics we will discuss before moving to the next section are two historical observables
which experimentally provide the most constraining bounds on the QCD topological angle:
the CP-violating η-meson decay η → ππ and the neutron electric dipole moment. These
processes appear in the strong coupling regime and therefore it is not possible to perform a
first-principle calculation starting from the lagrangian (2.1.39). We can, however, estimate the
size of these effects using chiral perturbation theory in the large-N limit, where the effects of
the chiral anomaly are suppressed and therefore we can treat the η′ within this framework [36].
Although the discussion of the CP-violating η decay will be self-contained, the one of the
neutron EDM will be just qualitative since its derivation within chiral perturbation theory is
quite involved and eventually ill-defined. Our exposition will follow [37], and slightly differs
from the historical ones [38,39] which employ current algebra techniques.

1. η → ππ

The starting point is the CCWZ construction of the chiral lagrangian. We introduce the
two coset representatives ξL,R = ξL,R(Π) of U(3)L×U(3)R, where Π are the Nambu-Goldstone
fields, transforming under chiral rotations g = (L,R) as

ξL → LξL h
†(g,Π), ξR → RξR h

†(g,Π). (2.1.51)

The NGBs matrix given in (2.1.42) corresponds to U = ξLξR
†. The leading order mesonic

lagrangian in the small momentum, small M and large-N expansion reads

LLO
χPT = f2

π

4 tr ∂µU∂µU† + f2
π

4 B0 tr
(︂
U†M + UM†

)︂
− f2

π

4
a

N

[︃
i

2
(︂
log detU − log detU†

)︂
− θ̄

]︃2
+ h.o. .

(2.1.52)

The difference with respect to (2.1.43) is given by the term in last line, which includes the
effects of the anomaly. Its form is fixed by the spurious transformation property of the
topological angle, θ̄ → θ̄ + 2αNf , under anomalous chiral rotations L = R† = eiα, together
with spurious P invariance (P: U → U†, θ̄ → −θ̄) and large-N counting. To make use of this
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lagrangian we must first minimise the potential of the NGBs, which because of the last term
is misaligned from U0 = ⟨U⟩ ∼ 1. In particular, since M is diagonal the minimum must be of
the form U0 = diag(eiϕu , eiϕd , eiϕs) and for convenience let us define Hermitian matrices χ,H
such that B0M

†U0 = χ + iH. The minimisation of the potential leads to the Dashen-Nuyts
conditions [40,41]

B0mi sinϕi = − a

N

⎛⎝θ̄ +
∑︂
j

ϕj

⎞⎠ ≡ − a

N
θ̄

′ (2.1.53)

which clearly imply H = −θ̄′(a/N)1. Redefining U →
√
U0U
√
U0, the lagrangian becomes

LLO
χPT = f2

π

4 tr ∂µU∂µU† + f2
π

4

{︃
tr
(︂
U†χ+ χ†U

)︂
− a

N

[︃
θ̄

′2 − 1
4 log2

(︃ detU
detU†

)︃]︃
−iθ̄′ a

N

[︃
tr
(︂
U − U†

)︂
− log

(︃ detU
detU†

)︃]︃}︃
+ h.o. .

(2.1.54)

where now ⟨U⟩ = 1, and so we can expand the fields Π around the origin. There a couple
of interesting things to notice. First, in the chiral limit (χ = 0), the η1 meson still gets a
mass m2

η1 = 3a/N from the second term in the braces. This originates from the anomaly, as
we already discussed in the previous section. Second, the term in the last line generates CP-
violating interactions between the mesons. Their strength is determined by θ̄′, which however
at this point cannot be directly linked to θ̄ since it involves additional phases coming from U0.
To understand the dependence on θ̄ we should find the physical masses of the mesons to fix
the phases. This is easily done in the isospin limit (mu = md ≡ m), where the minimisation
implies ϕu = ϕu ≡ ϕ. In this limit we get

m2
π = B0m cosϕ

m2
K = B0(m cosϕ+ms cosϕs)/2

(2.1.55)

and a mixing between η8 − η1

M2
η8−η1 = B0

3

(︄
m cosϕ+ 2ms cosϕs

√
2 (m cosϕ−ms cosϕs)√

2 (m cosϕ−ms cosϕs) ms cosϕs + 2m cosϕ+ 9
B0

a
N

)︄
(2.1.56)

with eigenstates (︄
η
η′

)︄
=
(︄

cos θP − sin θP
sin θP cos θP

)︄(︄
η8
η1

)︄

tan 2θP = 2
√

2(m cosϕ−ms cosϕs)
m cosϕ−ms cosϕs + 9

B0
a
N

= 4
√

2(m2
K −m2

π)
2(m2

K −m2
π)− 9a/N .

(2.1.57)

The physical masses satisfy m2
η +m2

η′ − 2m2
K = 3a/N , so using the latest mesons data [1] and

setting N = 3 we obtain
√
a ≃ 850 MeV and θP ≃ −19◦. At this point we have all that we

need to solve the system (2.1.53) and express θ̄′ as a function of θ̄ and the experimental meson
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masses. Unfortunately this leads to an overly complicated analytical expression. However,
since for θ̄ = 0 the absolute minimum occurs at ϕi = 0 [42, 43], we can approximate (2.1.53)
to the lowest order in the angles ϕi to get

a

N
θ̄

′ ≃ θ̄
N
a +∑︁

i
1

B0mi

≈ 1
2m

2
π θ̄ (2.1.58)

where in the last equality we only kept the contribution 2(B0m)−1 ≃ 2m−2
π at the denominator,

which is the dominant one according to (2.1.55) and to the numerical value of a. In this way
we fixed the θ̄ dependence of the CP-violating couplings in the lagrangian (2.1.54), which we
can now use to compute the width of η → ππ. In particular, the last line of (2.1.54) contains

LLO
χPT ⊃

a

N
θ̄

′ 1√
3fπ

(︂√
2 sin θP − cos θP

)︂
η π+π−

≃ m2
π

2
√

3fπ
θ̄
(︂√

2 sin θP − cos θP
)︂
η π+π−

(2.1.59)

from which we can immediately compute the decay rate [37–39]:

Γ(η → ππ) = m4
π

192πf2
πmη

θ̄
2 (︂√2 sin θP − cos θP

)︂2
(︄

1− 4m2
π

m2
η

)︄1/2

. (2.1.60)

Using the latest constraints on the branching ratio of this process [1], we can finally set the
bound

(η → ππ) .|θ̄| ≲ 1.7× 10−4 (η → ππ) . (2.1.61)

This bound is slightly stronger than the ones from [37–39] due to improvements in the mea-
surements of the η widths. Hearteningly, though, the theoretical predictions do coincide12.

2. neutron EDM

In non-relativistic quantum mechanics, the neutron electric dipole moment is encoded in
the Hamiltonian as

H ⊃ −dn E · Sn (2.1.62)

where E stands for the electric field and Sn the spin operator of the neutron. In relativistic
quantum field field theory, the analogous observable is induced by the lagrangian operator

L ⊃ − i2dn n̄σ
µνγ5nFµν (2.1.63)

written in terms of the electromagnetic field strength Fµν and the neutron Dirac field n(x)
(see e.g. [44]). The θ̄-dependence of dn is obtained, therefore, by adding the baryon fields to

12There is a mismatch of a factor of 2 with respect to [39] due to the different normalization of fπ (fπ →
fπ/

√
2), while the expressions for the mixing η1 − η8 coincide at leading order.
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the chiral lagrangian and performing an analysis similar to what we have done for η → ππ.
Unfortunately, in this case the procedure is less straightforward and much more ill-defined
for multiple reasons. First of all, baryons are not (psedo-)NGBs and therefore acquire a mass
of order the confining scale ΛC. This means that to have a consistent description in terms
of an effective theory we should treat them as heavy matter fields with three-momentum at
most of order ∼ mπ (in an expansion known as heavy baryon χPT [45]). Thus we cannot
consider creation/annihilation processes, which however are fortunately not required to discuss
observables in which we have just one baryon in the initial and final states, i.e. EDMs. Second,
the purely mesonic chiral lagrangian admits topological configurations, the Skyrmions, which
seem to exactly match the baryons’ spectrum [46, 47]. Apparently, thus, explicitly adding
baryons to the chiral lagrangian results in some kind of double counting. Third, as we will
see in a moment, the operator (2.1.63) is generated at 1-loop by the exchange of virtual
mesons. The regularisation of the associated divergences requires the introduction of counter-
terms which are incalculable, thus making the exact computation somehow pointless. For
all these reasons we will just sketch the procedure needed in order to extract dn from chiral
perturbation theory; the complete calculation can be found in [37]. It is amazing, however,
that just by dimensional analysis and symmetry arguments we can obtain an estimate for dn
which is remarkably close to the actual result. We know, from section 2.1.2, that θ̄ becomes
unphysical if any of the quarks becomes massless. Therefore dn should be suppressed by
at least one power of the lightest quark mass, in this case mu. Since [dn] = −1, we must
account for its mass dimension with the only other relevant scale at our disposal, mn (the
EDM is measured at momentum transfer q2 ≃ 0). Finally dn should be proportional to the
electromagnetic coupling e, being a dipole, and of course to the only CP-odd parameter θ̄.
Therefore, our estimate can be expressed as

dn ∼ cne
mu

m2
n

θ̄ (2.1.64)

where cn is a constant that we cannot establish at this point. Plugging in the most recent
data [1] and taking cn ∼ O(1) we get dn ∼ 3 × 10−16 cm. The most recent search [5] sets
|dn|/e < 1.8× 10−26 cm at 90% C.L, translating in

(neutron EDM) .|θ̄| ≲ 10−10 (neutron EDM) . (2.1.65)

This simple estimate gives a bound much stronger than (2.1.61) and is surprisingly close to
exact calculation result, as we will see in a moment.

The procedure to obtain dn within the chiral lagrangian framework requires some addi-
tional technicalities with respect to the simple η → ππ calculation. First, we must introduce
the baryon octet

B(x) =

⎛⎜⎜⎝
Σ0√

2 + Λ0√
6 Σ+ p

Σ− −Σ0√
2 + Λ0√

6 n

Ξ− Ξ0 − 2√
6Λ0

⎞⎟⎟⎠
B

g−→ h(g,Π)B h†(g,Π).

(2.1.66)
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The kinetic terms of the baryons and now also of the mesons,

Lkin = f2
π

4 trDµUD
µU† + tr B̄iγµDµB, (2.1.67)

are given in terms of a covariant derivative accounting for local G transformations

DµU = ∂µU + ilµU − iUrµ
DµB = ∂µB + [Γµ, B]

(2.1.68)

such that DµU
g−→ LDµUR

† and DµB
g−→ hDµBh

†. The quantities appearing in (2.1.68) are
the left- and right-handed currents, transforming as

lµ
g−→ LlµL

† + i∂µLL
†

rµ
g−→ RrµR

† + i∂µRR
†

(2.1.69)

and the connection Γµ,

Γµ = 1
2
[︂
ξR

† (∂µ + irµ) ξR + ξL
† (∂µ + ilµ) ξL

]︂
. (2.1.70)

In the simple but relevant case of U(1)EM the currents read lµ = rµ = eQAµ, with Q =
diag(2/3,−1/3,−1/3), and give rise to the electromagnetic interactions of the mesons and
the baryons. The additional chirally-invariant operators relevant for the neutron EDM are

L ⊃− 1
2D tr B̄γµγ5{ξµ, B} −

1
2F tr B̄γµγ5 [ξµ, B]

− b1 tr B̄χ̃+B − b2 tr B̄Bχ̃+

(2.1.71)

where ξµ and χ̃± are defined in terms of ξL,R, the spurion χ̃ = B0M and the currents as⎧⎨⎩ξµ = i
[︂
ξR

† (∂µ + irµ) ξR − ξL† (∂µ + ilµ) ξL
]︂

χ̃± = ξ†
Rχ̃

†ξL ± ξ†
Lχ̃ξR

(︁
ξµ, χ̃±

)︁ g−→ h(g,Π)
(︁
ξµ, χ̃±

)︁
h†(g,Π).

. (2.1.72)

The minimisation of the meson potential (2.1.52) required the redefinition U →
√
U0U
√
U0,

which can be seen as redefining the coset representatives as ξL,R →
√
U0ξL,R. Since U0 and χ̃

are both diagonal, and exploiting the relation χ̃†U0 = χ+ iH = χ− i(a/N)θ̄′
1, this amounts

to shifting

χ̃± → χ̃± − i
a

N
θ̄

′ (︂
U† ∓ U

)︂
(2.1.73)

which applied to (2.1.71) leads to CP-violating interactions between the mesons and the
baryons

L /CP ⊃ −ib1
a

N
θ̄

′ tr B̄(U − U†)B − ib2
a

N
θ̄

′ tr B̄B(U − U†). (2.1.74)
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The counterpart involving χ induces a splitting in the baryon masses which completely fixes
b1, b2. The redefinition, instead, does not affect the CP-even F and D terms, whose couplings
are fixed by semileptonic hyperons’ decays. At this point we have, in principle, all the nec-
essary ingredients to perform the 1-loop calculation leading to the effective operator (2.1.63).
A sample diagram is given in figure 2.2, where at leading order only one CP-odd insertion is
required, the other being the F/D coupling. The diagram is UV divergent and needs to be
regularised appropriately in terms of (incalculable) counterterms. The full calculation is cum-
bersome and can be found in [37]. The numerical result, cutting off the loop integral at the

n n

γ

p

π−

Figure 2.2: Example diagram contributing to the neutron EDM at 1-loop in the chiral la-
grangian. The photon is to be attached both to the π− and to the proton. Other diagrams
include a virtual exchange of a K+ and a Σ−.

baryon mass scale, reads dn/e ≃ 3.3 × 10−16 cm. This is compatible with results from other
techniques available, including current algebra [38, 39], QCD sum rules [48], holography [49]
and lattice QCD calculations [50, 51] and gives a bound on θ̄ very close to the one from our
estimate (2.1.65). Interestingly, the exact same calculation can be repeated to compute the
Λ hyperons EDM’s, which however only provide the negligible bound |θ̄| ≲ 2 [37].

2.2 Renormalization

The previous analysis showed how in quantum gauge theories the topological angles give rise
to very interesting phenomena, even though they seemed associated to operators apparently
unphysical from a perturbative point of view. In particular, in the case of QCD we showed
how at strong coupling θ gives rise to CP-violating observables such as the neutron EDM
or rare meson decays. From a quantum field theory point of view, then, it is only natural
to wonder about its renormalization group evolution. Since θ does not parametrize vertices
for the quantum fluctuations, however, perturbatively it can represent at most a counterterm
necessary to reabsorb (finite and divergent) corrections to CP-violating diagrams with external
background gauge fields (for instance associated to instanton configurations). In other words,
in perturbation theory θ can only get additively renormalized because of contributions induced
by the other couplings.

A first distinction we can make is between finite and infinite renormalization effects. Finite
(threshold) corrections to θ are very common. In generic theories these occur at tree-level,
when crossing a CP-violating fermion mass threshold, and even more often at loop level.
In the case of the QCD θ angle, for example, ref. [52] found that the leading order finite
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correction is a 3-loop effect when matching to the effective field theory below the W± mass.
Infinite corrections are more rare, and a necessary condition for these contributions to actually
occur in a mass independent renormalization scheme is that the theory under consideration
possesses polynomial CP-odd flavour-invariant combinations of the couplings (other than θ)
that can contribute to13

βθ = µ
dθ

dµ
. (2.2.1)

In the Standard Model the first such combination, proportional to (1.2.4) [53, 54], appears
at very high powers in the Yukawa couplings and therefore indicates that, if present, the
UV divergence that renormalizes θ should occur at the prohibitive 7-loops order. In generic
renormalizable theories this can occur earlier, as we will see in 2.2.2, but still not before the
2-loops order. However, it is not difficult to find non-renormalizable theories that induce
divergent corrections to θ already at 1-loop. For example, at 1-loop the SMEFT operator
cg2|H|2G ˜︁G/Λ2 gives the minimal subtraction result [55]

1-loop SMEFTβθ = −4cm
2
H

Λ2 (1-loop SMEFT). (2.2.2)

Unfortunately, this effect is power-law suppressed and therefore practically irrelevant in the
presence of a large gap between the IR scales and the UV cutoff. In this section, instead, we
will present concrete examples of renormalizable theories that can induce infinite corrections
to θ and we will identify the leading order structure of the beta function βθ in any mass-
independent renormalization scheme. We will also elaborate on the subtleties encountered in
a perturbative treatment of θ and show how to concretely approach the calculation of βθ in
dimensional regularization. Finally we will discuss some interesting implications of a non-null
βθ.

This section and appendices 2.A, 2.B are taken from the original work [6].

2.2.1 θ in Perturbation Theory

As mentioned many times in this chapter, in a semi-classical approach to quantum field
theory the bare fields are split into a classical finite-action background overlapping with the
vacuum plus quantum fluctuations that vanish sufficiently fast at the boundary. The path
integral includes a sum over all inequivalent background configurations, so that the generating

13Interestingly, reversing this argument we can rigorously prove that in some theories θ is not infinitely
renormalized at any order. An example are Yang-Mills theories, where this property follows trivially because
there are no flavour-invariant CP-odd phases other than θ, and hence there is nothing that can contribute
perturbatively to βθ. The same holds for QCD, since once the phases in the quark mass matrix are removed via
anomalous chiral rotations of the fermions, CP violation is entirely encoded in θ̄. Another instance is provided
by supersymmetric gauge theories, where the exact one-loop running of the holomorphic gauge coupling reveals
that the theta angle does not run because of the absence of CP-odd (holomorphic) combination of the other
marginal couplings.
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functional explicitly reads14

Z[J0] =
∑︂
ϕ0c

eiθ0
g2

0
32π2

∫︁
G0c ˜︁G0c+i

∫︁
J0ϕ0c

∫︂
Dδϕ0 e

iS[ϕ0c+δϕ0]+i
∫︁
J0δϕ0

=
∑︂
ϕ0c

eiθ0
g2

0
32π2

∫︁
G0c ˜︁G0c ˆ︁Z[J0, ϕ0c]

(2.2.3)

where now with respect to (2.5) we have been more careful in distinguishing the backgrounds
ϕ0c from the fluctuations δϕ0, and we have explicitly indicated that the fields and couplings
entering in (2.2.3) are the bare ones, as opposed to the renormalized ones. In particular, since
the quantum fluctuations vanish at the boundary,

∫︁
G0 ˜︁G0 =

∫︁
G0c ˜︁G0c and so the angles θ can

act only as counterterms in computations with external background fields. Now, an actual
evaluation of (2.2.3) is necessarily regularization-scheme dependent. In the following we will
specialize on dimensional regularization (Dim-Reg), in which space-time is continued to d

dimensions with coordinates xµ =
{︂
xµ̄, xµ̂

}︂
, where µ̄, ν̄, · · · = 0, 1, 2, 3 and µ̂, ν̂, · · · denote the

(d − 4)-dimensional indices. In Dim-Reg the very definition of topological term forces us to
define the Levi-Civita tensor and deal with the famous γ5 problem. So far the only known
consistent prescription is the ’t Hooft-Veltman-Breitenlohner-Maison scheme [56, 57], where
the Levi-Civita tensor is a formal object ϵµ̄ν̄ᾱβ̄ that carries only 4-dimensional indices. In
other words, the (d− 4)-dimensional indices µ̂, ν̂, · · · of an arbitrary vector do not contribute
when contracted with this tensor. An important implication is that

G0 ˜︁G0 ≡
1
2G

µ̄ν̄
0 Gᾱβ̄0 ϵµ̄ν̄ᾱβ̄ = ∂µ̄K

µ̄
0 (2.2.4)

is 4-dimensional divergence of a (xµ-dependent) vector. Hence the regularized quantity∫︁
ddx G0c ˜︁G0c contains a non-trivial residual (d − 4)-dimensional integral and is not a topo-

logical term in d dimensions.
The d-dimensional continuation of (2.2.3) formally represents a set of regularized Green’s

functions. Therefore, such a path integral violates two of the familiar properties of the topo-
logical angle: its periodicity in 2π and its role as compensator (spurion) of the abelian axial
symmetry. The technical reason for the first loss boils down to the fact that, as a conse-
quence of (2.2.4), the bare angle θ0 is not the coefficient of a topological operator in the
regularized theory. The second loss occurs because anomalies are d-dependent; as a result,
in d-dimensions a shift of the coefficient of G ˜︁G does not fully compensate an axial rotation.
An intuitive way of arriving to the same conclusions is provided by dimensional analysis: the
engineering dimension of the bare coupling in Dim-Reg is [θ0] = d − 4, and it is therefore
impossible for θ0 to be periodic in 2π or even to shift via the dimensionless parameter of the
axial transformation while retaining its µ-independence in d-dimensions.

To recover the topological nature of the theta angle, as well as its role as a compensator
for abelian axial transformations, one has to derive the renormalized 4-dimensional version
of the path integral. In general this procedure requires a renormalization of the topological

14Throughout this section we implicitly assume that the gauge-fixing preserves the background gauge invari-
ance.
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angle as well. Renormalization renders (2.2.4) a genuinely (4-dimensional) topological term
and the background-dependence in the 4-dimensional limit of the path integral (2.2.3) reduces
to a dependence on the topological index ν. The renormalized coupling θ is periodic in 2π and
transforms via a shift under abelian axial rotations. This ensures in particular that physical
amplitudes are invariant under unitary field transformations.

βθ from (extra)-ordinary diagrams

In the Minimal Subtraction scheme, the relations between the bare couplings θ0, ξ0i (the latter
denoting all couplings except θ0) and the renormalized couplings θ and ξi read (in d = 4− ϵ
dimensions)

ξ0i = µρiϵ[ξi + Zξi ]
θ0 = µ−ϵ[θ + Zθ].

(2.2.5)

By definition Zθ = ∑︁∞
n=1 ϵ

−nZθ,n(ξi) contains no finite term, and similarly for Zξi , so that
the 4-dimensional beta functions βξ ≡ limd→4 µdξ/dµ read

βξi = ρjξj∂Zi,1/∂ξj − ρiZi,1
βθ = ρiξi∂Zθ,1/∂ξi + Zθ,1

. (2.2.6)

In the above ∂Zθ/∂θ = ∂Zξi/∂θ = 0 because θ does not appear in Feynman diagrams. As
customary for ordinary couplings, also the beta function of θ is controlled by the simple
pole Zθ,1/ϵ. Diagrammatically, the latter counterterm is defined to subtract the divergent
contributions to the connected, CP-odd vertices with external background gauge fields in
(2.2.3) :

ˆ︁Z[J0, ϕ0c] ⊃ −
Zθ,1
ϵ
i
g2

0
32π2µ

−ϵ
∫︂
ddxGc0 ˜︁Gc0. (2.2.7)

The divergent corrections to the external legs are removed via a renormalization of the back-
ground field, Aµ0c = (g/g0)Aµc , so that g2

0G0c ˜︁G0c = g2Gc ˜︁Gc. The divergence remaining in
(2.2.7), if any, must be subtracted by Zθ,1.

A word regarding the actual computation of Zθ,1 is now needed. After all the topolog-
ical term does not represent an ordinary vertex, so how can the combination of ordinary
vertices generate divergent corrections to it? The key point is that (2.2.7), in order to be
non-vanishing, must be a functional of classical backgrounds with non-trivial asymptotic be-
havior. This implies the calculation of Zθ,1 must be dealt with care. In particular, integration
by parts cannot be performed lightly, as opposed to what is customary done when dealing
with external sources for asymptotic states. An alternative way to calculate the divergent
diagrams contributing to Zθ,1 may be via the trick proposed in [58]. The idea is to promote
the CP-odd couplings to non-propagating fields, i.e. “axions”, in the intermediate steps and
then send them to constant values at the very end of the computation. In this way

∫︁
ddx θG ˜︁G

would describe an ordinary vertex with θ(x) and a number of gluons, which is non-vanishing
as long as the external θ(x) carries a momentum. It is now plausible that ordinary Feynman
diagrams with external gluons and non-dynamical axions contain divergent contributions that
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need to be subtracted by
∫︁
ddx θG ˜︁G, very much like ordinary diagrams were shown in [58] to

be capable of generating finite threshold corrections to θ15. Thus we see that the divergent
contributions to θ can be obtained via non-standard perturbative calculations, either by di-
rectly evaluating (2.2.7) in position space [59] or via the method proposed in [58]. There is
actually a third approach to calculate directly βθ, based on conventional perturbative methods
typically employed in renormalizing composite operators. We will describe this approach in
a moment. However, we stress that whatever method is adopted one has to pay particular
attention to how chirality is implemented. The divergent contribution we are interested in
is proportional to the Levi-Civita tensor and must arise from a fermion trace involving the
γ5 matrix. A consistent treatment of the latter has to be implemented, and at present in
Dim-Reg the unique option seems to be given by the ’t Hooft-Veltman-Breitenlohner-Maison
scheme. Unfortunately, using this scheme might complicate the calculation a bit, due to
the non-standard anti-commutation properties that γ5 satisfies and the necessity of introduc-
ing ad-hoc symmetry-restoring counterterms in order to preserve non-anomalous (global and
gauge) chiral symmetries.

βθ from Operator Mixing

Exploiting the powerful framework of the local renormalization group (see appendix 2.B), it
possible to show that in a generic renormalizable quantum field theory the renormalization
group equations take the form [60]

µ
d

dµ

(︄
∂µJ

µ

Ȧ
OĪ

)︄
= −

(︄
γȦḂ 0
γĪḂ

∂
∂ξĪ
βJ̄

)︄(︄
∂µJ

µ

Ḃ
OJ̄

)︄
(2.2.8)

where Jµ
Ȧ

are the (conserved or anomalous [61]) currents of the global symmetries of the the-
ory, OĪ denote the marginal interactions, ξĪ the associated couplings, and βĪ = µdξĪ/dµ. We
consider a theory without classically relevant operators for simplicity, but their inclusion is
straightforward and does not affect our discussion16. The equations (2.2.8) provide an inter-
esting third way of computing the beta-function of θ. To see why, let us start by discussing the

15Now that the topological term behaves as an ordinary vertex, one may naively expect θ to be able to
show up in matrix elements as well as in the beta functions. It turns out however that this cannot happen.
One way to see it is that the renormalized S-matrix amplitudes must be periodic functions of θ. Yet, the
new vertex described by the topological term is measured by the strength θg2/32π2. Hence the only way
it can contribute to renormalized amplitudes and beta functions is via powers of θg2/32π2. However there
is no way that a perturbative function of θg2/32π2 and the other couplings be invariant under θ → θ + 2π
unless the dependence on θg2/32π2 is actually absent altogether. The situation is completely different when
non-perturbative effects are taken into account, since in that case inverse powers of the gauge coupling cannot
be excluded a priori and a dependence on θg2/32π2 can be turned into a periodic function of the sole θ.

16A complete basis of OĪ ’s includes two sets of marginal operators: OĪ = {EĪ′′ , OĪ′ }. The interactions
OĪ′ are those that define the bare action. These are multiplied by sources ξĪ′ whose background values
represent the ordinary couplings of the theory. The EĪ′′ ’s denote instead redundant marginal interactions.
They include evanescent operators as well as operators that vanish via the equations of motion. They are
not associated to any actual coupling of the theory. However they must be included in the functional integral
multiplied by spacetime-dependent sources ξĪ′′ in order for OĪ to form a closed set of composite operators under
renormalization. The background value of such sources vanishes. Because the ξĪ′′ ’s are not actual couplings,
their (background-value) beta functions are proportional to the ξĪ′′ ’s themselves times functions of the true
couplings ξĪ′ , i.e. the operators EĪ′′ are multiplicatively renormalized. With this observation we see that
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consequence of (2.2.8) on the CP-odd sector of QCD. The marginal CP-odd operators are the
divergence of the singlet axial current, ∂µJµA, and the topological term G ˜︁G (modulo operators
that vanish via the equations of motion). By CP invariance the anomalous dimension matrix
contains a block diagonal 2 by 2 subgroup involving these two operators only (the operators
that vanish on-shell do not affect the following discussion). From (2.2.8) one confirms that
this takes the form discussed in [62]. The vanishing γȦJ̄ = 0 entry is understood as a result
of the fact that in Dim-Reg the current JµA renormalizes multiplicatively, being the unique
gauge-invariant axial current of the theory, and the same is true for its derivative. Equation
(2.2.8) reveals that the G ˜︁G-G ˜︁G element of the anomalous dimension, often denoted by γ

G˜︁G
in the literature, is given by γ

G˜︁G = ∂β
G˜︁G/∂ξG˜︁G, with ξ

G˜︁G being the renormalized coupling

ξ
G˜︁G ≡ θg2

32π2 . (2.2.9)

Crucially, θ cannot appear in any perturbative calculation, so all our expressions are evaluated
at ξ

G˜︁G = 0 = θ. As expected, in the external source formalism the latter can only occur with
derivatives [63]. Because µd(θg2)/dµ = βθg

2 + θβg2 we find [6]:

γ
G˜︁G = ∂

∂ξ
G˜︁GβG˜︁G

⃓⃓⃓⃓
⃓
ξ
G˜︁G=0

= ∂

∂ξ
G˜︁G

[︄
βθ

g2

32π2 + ξ
G˜︁Gβg2

g2

]︄⃓⃓⃓⃓
⃓
ξ
G˜︁G=0

=
βg2

g2 . (2.2.10)

In the last equality it is crucial that βθ nor βg2 depend on θ, or equivalently ξ
G˜︁G. The resulting

relation between γ
G˜︁G and the beta function of the gauge coupling is consistently observed in

explicit calculations [64,65]17 and proven in [66,67]. Note that βθ disappears from this relation
and (2.2.10) would still hold even if it was non-trivial. Yet, we know that βθ = 0 in QCD
because of the argument given in the introduction: by CP invariance of the theory the only
quantity that could appear in βθ is θ itself, but this can never happen in perturbation theory.

Suppose now we extend QCD introducing in the Lagrangian new CP-violating dimension-
4 operators OĪ with Ī ̸= G ˜︁G, e.g. Yukawa couplings. A priori these may mix with the
topological term as well as the derivative of the axial current. Yet, according to (2.2.8) the
anomalous dimension matrix has a lower triangular form. This is because by dimensional
analysis the renormalized axial and Chern-Simons currents cannot contain a component of
the bare dimension-4 interactions OĪ0, they can only mix among each other following the
pattern described above. On the other hand, nothing forbids the renormalized OĪ to contain
a linear combination of ∂µJµA,0, G0 ˜︁G0. The lower-triangular structure can also be understood
as a consequence of the independence of the anomalous dimensions and beta functions on
θ, i.e. ∂β

Ī ̸=G˜︁G/∂ξG˜︁G = 0 [61]. Interestingly, equation (2.2.8) demonstrates that (2.2.10)
remains valid even in the presence of the new interactions OĪ (Ī ̸= G ˜︁G). More importantly,
however, the new CP-violating couplings make it possible for θ to get additively renormalized,

(2.2.8) describes a familiar pattern of RG-mixing: the anomalous dimension matrix for {EĪ′′ , OĪ′ } has a lower
triangular form in which the redundant operators renormalize among each other whereas the OĪ′ renormalize
via a mixture of themselves, ∂µJµ

Ȧ
, and EĪ′′ .

17We use a different convention than these authors. For us the scaling dimension of an operator is dcl + γ,
with dcl the engineering dimension.
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and (2.2.8) turns out to contain important information on βθ. The component of −µdOĪ/dµ
proportional to G ˜︁G is (for Ī ̸= G ˜︁G) [6]:

γĪG = ∂

∂ξĪ
β
G˜︁G
⃓⃓⃓⃓
⃓
ξ
G˜︁G=0

= ∂

∂ξĪ

[︄
βθ

g2

32π2 + ξ
G˜︁Gβg2

g2

]︄⃓⃓⃓⃓
⃓
ξ
G˜︁G=0

= g2

32π2
∂

∂ξĪ
βθ. (2.2.11)

Equation (2.2.11) may be interpreted as an indirect procedure for deriving βθ. The latter may
indeed be extracted by integrating the off-diagonal element γĪG of the anomalous dimension
matrix of the CP-violating operators, roughly measured by the amount of G0 ˜︁G0 contained
in OĪ , with respect to the couplings ξĪ that contribute additively to βθ. Interestingly, this
procedure does not require the background field method nor promoting the CP-odd phases to
spurion fields. It can be carried out using ordinary perturbation theory because the anomalous
dimension matrix is to be calculated assuming a non-vanishing momentum is flowing into the
relevant operators, such that even G ˜︁G describes an ordinary vertex.

2.2.2 βθ in Renormalizable QFTs

Having shown how to extract the beta function of the topological angle, we will now identify
the explicit form of the leading order βθ for generic renormalizable quantum field theories.
The most general lagrangian can be compactly written in terms of Weyl fermions ψi and real
scalars ϕa as

L =− 1
4g2
AB

FAµνF
Bµν + 1

2(Dµϕ)a(Dµϕ)a + ψ†
i iσ̄

µ(Dµψ)i

−
(︃1

2Ya ijψiψjϕa + hc
)︃
− λabcd

4! ϕaϕbϕcϕd + θAB

64π2 ϵ
µνρσFAµνF

B
ρσ

+ (relevant couplings) + (gauge fixing) + (ghosts),

(2.2.12)

where (Dµψ)i = ∂µψi − iAAµTAijψj and (Dµϕ)a = ∂µϕa − iAAµSAabϕb. The gauge generators TA
are hermitian whereas SA are purely imaginary hermitian, and hence anti-symmetric. The
fermions and scalars are in general in a reducible representation of the gauge group, and the
indices i, j, · · · (ranging from 1 to some integer Nψ) and a, b, · · · (ranging from 1 to Nϕ) include
both gauge and flavour components. The coupling λ is fully symmetric, and Y is symmetric
in the fermionic indices. The gauge symmetry is an arbitrary product of abelian factors and
simple groups Ggauge = ΠGG. The indices A,B, · · · run over the adjoint representation of
Ggauge and the (real) gauge coupling g2

AB is to be interpreted as the direct sum of identities in
the non-abelian part of that space plus a symmetric part for the abelian factors. Note that
the normalization of the gauge fields is non-canonical, so that the gauge bosons’ propagators
are proportional to g2

AB.
Gauge invariance restricts the form of some of the couplings in (2.2.12). In particular, the

topological term, as the gauge couplign metric, must be proportional to the identity δABG in
any non-abelian components G and symmetric, but potentially with off-diagonal entries, in
the abelian factors:

θAB =
∑︂

G=non−Ab.
θGδ

AB
G +

∑︂
G1,G2=Ab.

θABG1,G2 . (2.2.13)
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Another implications of gauge invariance is

SAabYb = YaT
A + (TA)∗Ya. (2.2.14)

which we will extensively use later. Note that none of these relations depend on the space-time
dimension and hence can be assumed to hold in Dim-Reg as well.

CP and Flavour Symmetry

We want to identify which combinations of the couplings can appear in βθ. In Dim-Reg the
renormalization group evolution of θ is necessarily controlled by the marginal couplings of the
theory. Classically relevant interactions are therefore not important in the present discussion
and have not been explicitated in (2.2.12). To proceed we first have to familiarize with the
approximate symmetries of our theory.

In the absence of interactions the lagrangian (2.2.12) enjoys a large global symmetry that
includes a flavour symmetry that rotates the matter fields, one that rotates vectors, and CP:

Gflav × Gglob × CP. (2.2.15)

The flavour symmetry Gflav ≡ U(Nψ) × O(Nϕ) rotates all fermions among each other and
acts similarly on scalars, the group Gglob rotates the vectors leaving g2

AB in (2.2.12) invariant
and finally CP acts as usual up to unitary rotations. Precisely because of this freedom, the
simultaneous actions of Gflav × Gglob × CP can actually be interpreted as transformations
belonging to a generalized CP symmetry, sending

ψi(x)→ Uijϵψ
†
j(Px), ϕa(x)→ Oabϕb(Px), AAµ (x)→ RABPνµABν (Px) (2.2.16)

where U,O,R are matrices respectively of U(Nψ), O(Nϕ), Gglob and we defined Pνµxν = xµ.
In the following this distinction will not make any difference, and for simplicity we will keep
distinguishing CP from the flavour symmetry as in 2.2.15. However the notion of generalized
CP will prove useful in the analyses of chapters 3, 4.

The symmetry (2.2.15) is explicitly broken by the gauge generators, the Yukawa and scalar
couplings as well as anomalies. Yet, it can be formally restored by promoting TA, SA, Ya, λ, θ
to spurions with transformations designed to exactly compensate (2.2.16) so that the theory
is manifestly invariant under the full group (2.2.15)18. Explicitly, the transformations of the
spurions TA, SA, Ya, λ under Gflav × Gglob × CP are given by

TAij → −RABUimU∗
jn[TB]∗mn

SAij → −RABOimOjn[SB]∗mn
Ya ij → U∗

imU
∗
jnOab[Ybmn]∗

λabcd → OamObnOcpOdqλmnpq.

(2.2.17)

The renormalized coupling θAB should also be interpreted as a spurion. It is a complete
singlet of O(Nϕ), a 2-index symmetric tensor of Gglob, and is also U(Nψ)-invariant except for

18In Dim-Reg the addition of counterterms is generically necessary to render the theory formally invariant
under the axial part of U(Nψ). We assume this is done order by order in perturbation theory.
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its anomalous subgroup. Denoting with TAr the generators of each irreducible representation
r of the gauge group modulo flavour degeneracies, and by Ur the flavour rotation among the
fermions in r, the spurious Gflav × Gglob × CP transformation of θ explicitly reads

θAB → −RAMRBN
{︄
θMN − 2

∑︂
r

arg detUr trTMr TNr

}︄
. (2.2.18)

Here the overall minus is necessary to compensate the P-odd nature of ϵµνρσFAµνFBρσ.
The beta function µdθAB/dµ is not affected by the anomalous shift of the topological term

and therefore is a complete singlet of the flavour symmetry Gflav and CP-odd in the sense that

µ
d

dµ
θAB → −RAMRBNµ d

dµ
θMN . (2.2.19)

The beta function is a linear combination of functions IAB of the spurions (2.2.17) multiplied
by real numerical coefficients, since its calculation involves no branch cuts. The quantities IAB
are obtained by contracting the indices of the spurions with the invariant tensors δij , δab, g2

AB

that define the kinetic terms. In the language of Feynman diagram, this is just a consequence
of the fact that any diagram contributing to the beta function is obtained by contracting
vertices with propagators. In order to appear in βθ the tensors should transform precisely
as in (2.2.19). Yet, from (2.2.17) follows that under the full symmetry (2.2.15) any 2-index
tensor function of (2.2.17) transforms as

IAB(T, S, Y, λ)→ RAMRBNIMN (T ∗, S∗, Y ∗, λ∗) (2.2.20)

The minus signs of (2.2.17) cancel out because Gglob-covariance forces IAB to be built out of an
even number of (scalar plus fermion) gauge generators. Now, to reproduce the transformation
of µdθAB/dµ the tensors must satisfy IAB(T ∗, S∗, Y ∗, λ∗) = −IAB(T, S, Y, λ), and of course
be real. We thus conclude that it is the imaginary part of the invariant that has the correct
CP-odd property, namely19

µ
d

dµ
θAB =

∑︂
α

cα Im
[︂
IABα

]︂
, (2.2.21)

where cα are real numbers and α is some label. In other words, the CP-odd invariants that
define βθ are the imaginary parts of the Gflav-singlet, 2-index tensors of Gglob. A theory that
does not possess any such quantity cannot renormalize θ. This is what happens in Yang-Mills
theories as well as QCD. In the next subsection we will show the explicit form of the leading
order contribution to βθ in arbitrary renormalizable theories of the form (2.2.12).

19The relations IAB(T ∗, S∗, Y ∗, λ∗) = [IAB(T, S, Y, λ)]∗ = −IAB(T, S, Y, λ),the first equality following
from the fact that all coefficients are real and the second from the requirement that (2.2.20) reproduces
(2.2.19), are equivalent to Re [IAB(T ∗, S∗, Y ∗, λ∗)] = Re [IAB(T, S, Y, λ)] = 0 and Im [IAB(T ∗, S∗, Y ∗, λ∗)] =
− Im [IAB(T, S, Y, λ)].
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The 3-loop Diagrams

Following the method described above, we can identify all the structures that can potentially
contribute to βθ at any perturbative orders. We present an analysis up to 2-loops order in
appendix 2.A. What we find is that there are no 1-loop-sized 2-index tensors that are CP-odd,
and therefore that the 1-loop beta function must vanish. The first non-trivial contribution to
βθ potentially arises at 2-loops and is controlled by a unique structure [6]:

µ
d

dµ
θAB = c

ℏ2

(16π2)2 Im IAB(2) +O(ℏ3), (2.2.22)

where c is an ordinary number expected to be of order unity and

IAB(2) = tr
{︂

(Y ∗
a [TA]∗YbY ∗

a Yb − Y ∗
a YbY

∗
a [TA]∗Yb)TB

}︂
= tr

{︂
(Y ∗
a YcY

∗
b Yc − Y ∗

c YaY
∗
c Yb)TB

}︂
SAab

= 1
2 tr {Y ∗

a YcY
∗
b Yc − Y ∗

c YaY
∗
c Yb} (SASB)ab

(2.2.23)

is the only invariant with non-vanishing CP-odd component (i.e. an imaginary part) at O(ℏ2).
Note that symmetry under the exchange A ↔ B in the first and third lines of (2.2.23) is a
consequence of cyclicity of the trace as well as symmetry of the Yukawa under the exchange
of the fermionic indices and hermiticity of the gauge generators, whereas in the second line of
(2.2.23) also (2.2.14) is needed.

The invariant I(2)
AB has been written in three different forms employing the identity (2.2.14).

These expressions provide complementary information about the properties that a theory must
possess in order to renormalize θAB at this order. For instance, from the second and third
lines in (2.2.23) it is evident that there would be no 2-loop beta function if the scalars were
gauge-singlets, i.e. if SA = 0. To show this using the expression in the first line is less
immediate: one has to use (2.2.14) with SA = 0 to prove that Y ∗

a YbT
A = TAY ∗

a Yb, from
which consistently follows that the first line of (2.2.23) vanishes. Actually, a more careful
inspection reveals that the scalar fields have to belong to at least two different representations
of G. To prove this we distinguish between non-abelian and abelian gauge groups. In the case
the indices A,B are associated to a non-abelian gauge group, from (2.2.13) we know that the
relevant part of the beta function is the one proportional to δG

AB. If all the scalars belonged
to the same representation, then contracting the latter with the expression in the third line
of (2.2.23) would give a Casimir times the identity in the scalar index space. This implies
that the invariant would vanish as tr {Y ∗

a YcY
∗
a Yc − Y ∗

c YaY
∗
c Ya} = 0. In the case A,B refer

to abelian gauge groups the generators can all be taken diagonal, i.e. SAab = qAa δab and so
(SASB)ab = qAa q

B
a δab. As before, we see that when the charges qAa , qBa do not depend on the

index a then the combination of scalar generators is again proportional to the identity δab and
the third line of (2.2.23) is identically zero.

The three equivalent forms of (2.2.23) also help us identify the diagrams that contribute
to the 2-loop beta function, e.g. if we adopted the background field method. These are
illustrated in fig. 2.3, with the ⊗ indicating the insertion of the external background gauge
field. The topology in Fig. 2.3a is responsible for generating the invariant in the first line
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(a) (b) (c)

Figure 2.3: Topologies of the diagrams generating the CP-odd invariant (2.2.23). Crossed
circles represent insertions of the external gauge field. Topology (a) refers to the form in
(2.2.23) written in terms of two fermionic generators, topology (b) to the one in terms of
one fermionic and one scalar generator, and topology (c) to the one in terms of two scalar
generators. It is intended that each diagram within a given topology should be properly
symmetrized. Figure taken from [6].

of (2.2.23), the one in fig. 2.3b is associated to the second line of (2.2.23) and finally the
topology of Fig. 2.3c to the third form of the CP-odd invariant. The overall correction to βθ
must include a sum over all three topologies. We emphasize that these are effectively 3-loop
diagrams, and yet they contribute to the 2-loop order beta function because θ appears in
the action multiplied, in the canonically normalized field basis, by a loop factor g2ℏ/32π2.
The coefficient c in (2.2.22) is model-independent and may be derived calculating the above
diagrams in any model with a non-vanishing IAB(2) , as for example in the toy scenario discussed
later. We will not explicitly compute it here because the calculation goes far beyond the
author’s technical abilities. Yet, there is circumstantial evidence that an explicit computation
would find c ̸= 0. Indeed, ref. [68] presents a calculation of the beta function of the gauge
coupling at 3-loop order using the background field method. The class of diagrams considered
there includes those of fig. 2.320. Consistently, those authors find that the beta function of
the gauge coupling is controlled by the set of CP-even invariants of appendix 2.A, including
in particular the CP-even component of our IAB(2) (namely its real part). This gives confidence
that the evaluation of the diagrams in fig. 2.3 will not cancel against each other. The result
c = 0 would thus be rather surprising, and would indicate the presence of an accidental
cancellation.

2.2.3 Implications for the Strong CP problem

Adopting the logic outlined in the previous subsection, it easy to discover that in the renor-
malizable version of the Standard Model the first contribution to βθ arises at least at 7-loops

20In practice the calculation is very different, though, because here we are interested in the CP-odd contri-
butions proportional to the Levi-Civita tensor, whereas in [68] the authors were allowed to take ϵµ̄ν̄ᾱβ̄ = 0.
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and reads [53,54]

βθ = ℏ7

(16π2)7 det
[︂
YuYu

†, YdYd
†
]︂ {︂
a1 g

′2 + a2 tr
(︂
YuYu

† − YdYd†
)︂}︂

+O(ℏ8) (2.2.24)

where the terms proportional to a1, a2 are there to comply with the selection rule associated
to the symmetry {u, H̃, Yu} ↔ {d,H, Yd}, which would otherwise make βθ vanish. This
implies that the renormalization group evolution of θ is numerically negligible, leaving open
the possibility that the absence of CP violation in low energy QCD be the result of some
unknown mechanism at very short distances ∼ 1/Λ, even close to the Planck scale, that sets
θ̄(Λ) ≈ 0. The numerical stability of θ = 0 is however not a generic property in field theory,
that as we have seen may potentially develop a non-trivial renormalization of the theta angle
already at 2-loops. This demonstrates that UV solutions of the Strong CP problem cannot
work if the effective field theory below Λ is completely generic and has unsuppressed Yukawa
interactions. Actually, the radiative instability of UV solutions to the Strong CP problem is
typically worse than naively expected. First of all, arbitrary extensions of the Standard Model
would necessarily feature new mass scales, and it is well-known that threshold corrections can
affect the topological angles at tree and loop order as we will see in chapter 4. What we want
to stress here is another subtle effect: despite the fact that the beta function of θ is generically
at 2-loop order, physical phases typically renormalize at 1-loop. By physical phases we mean
those special combinations of the renormalized couplings, namely those combinations that are
invariant under unitary rotations of the fields, that enter observables. We have seen that θ
is not invariant under anomalous rotations of the fermions, see (2.2.18), and therefore the
physical rescaling invariant quantity of interest must take the form

θ̄ = θ + f({ξi}), (2.2.25)

where f is a model-dependent function. When no f with the required properties exists then
no invariant can be built out of θ and that parameter is unphysical. The physical angle runs
according to

βθ̄ = βθ + ∂f

∂ξi
βξi . (2.2.26)

The symmetry properties of βθ̄ are precisely the same as those of βθ. In particular, both
must be proportional to the imaginary parts of the invariants IAB. Yet, while βθ and βξi
are polynomial in the couplings, it may happen that ∂f/∂ξi brings inverse powers of the ξi’s
that are not compensated by βξi . In such a situation βθ̄ develops negative powers of the
couplings in front of the invariants IAB, which in practice indicates that βθ̄ arises at an order
in perturbation theory that is lower compared to βθ. We will see explicitly below how this
can occur in a concrete toy model. In this respect, the Standard Model is special because this
enhancement cannot appear. Indeed, in pure Standard Model θ̄ = θ− Im tr log YuYd and we
have

βθ̄ = βθ − Im trY −1
u βYu − Im trY −1

d βYd . (2.2.27)

Since by the accidental flavour symmetries βY = β′
Y Y , for some polynomial β′

Y , then βθ̄ is
made up of the very same polynomial structures of couplings as βθ. This fact for example
ensures that the estimates of [53,54] are robust.
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A Toy Model

Let us consider an extension of the Standard Model in which we introduce two Weyl fermions
with charges ψ ∼ 3 and ψc ∼ 3 under SU(3)c, a singlet scalar ϕ1 and a scalar octet ϕ2 ∼ 8.
These fields are all neutral under the electroweak group. The Lagrangian reads

L = LSM + 1
2(∂ϕ1)2 + 1

2(Dϕ2)2 + ψ†i /Dψ + ψc†i /Dψc

− (m+ y1ϕ1)ψψc + y2 ψψ
cϕ2 + h.c.− V (ϕ1, ϕ

2
2, |H|2)

(2.2.28)

In addition to the CP-odd parameters of the Standard Model, this theory features two more
phases. On top of that, the rescaling-invariant QCD theta angle contains a new contribution
because θ is now affected by chiral rotations of ψ,ψc as well. A natural definition of the
phases (the definition of the Jarlskog invariant is the standard one (1.2.4)) is given by

φy = arg (y1y
∗
2)2

φm = arg y2
1y

2
2(m∗)4

θ̄ = θ − arg detYuYd − argm.
(2.2.29)

All these CP-odd parameters run already at 1-loop:

µ
dφy
dµ

= − 4
16π2 sinφy

[︃
|y1|2 + 4

3 |y2|2
]︃

µ
dφm
dµ

= + 4
16π2

[︃
|y1|2

(︃
sinφy − 2 sin φy + φm

2

)︃
+ 4

3 |y2|2
(︃
− sinφy + 2 sin φy − φm2

)︃]︃
µ
dθ̄

dµ
= − 2

16π2

[︃
|y1|2 sin φy + φm

2 + 4
3 |y2|2 sin −φy + φm

2

]︃
.

(2.2.30)

As opposed to the Standard Model, this is also true for θ̄ because the phase of the exotic
fermion mass has a non-trivial renormalization group evolution. Therefore, βθ̄ arises at 1-
loop. Instead, the result (2.2.22) applied to this model reads21 [6]:

IAB(2) = 3 Im
[︂
(y1y

∗
2)2
]︂
δAB. (2.2.31)

21Given the expression (2.2.31), it is interesting to verify the earlier claim that the 2-loop βθ requires at
least two scalars with different gauge representations. Indeed, if we replace ϕ2 with another scalar singlet (or
ϕ1 with another scalar in the adjoint) that invariant would not be generated by any diagram. The reason is
that in such a scenario the kinetic term of the scalars would possess a O(2) symmetry that rotates (ϕ1, ϕ2).
As usual this flavour symmetry is explicitly broken by the interactions, but may be formally resurrected by
promoting all the couplings to spurions, as described earlier. The pair (y1, y2) would be formally a doublet of
O(2) and βθ should be a singlet. However (2.2.31) does not meet this requirement. Manifestly O(2) invariants
are yaya, which is not invariant under axial rotations of the fermions, and yay∗

a, which is CP-even. There is no
combination of the former that is simultaneously CP-odd and invariant under axial rotations, besides of course
the one involving θ, which we know has no perturbative effect. Note that the quantity yaϵabyb = i Im [y1y∗

2 ]
is SO(2)-symmetric and CP-odd, but in order to have an invariant under Z2 ⊂ O(2) one would need an even
power of it, thus resulting in a CP-even combination.
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and so

βθ = c

(16π2)2 (+3) Im
[︂
(y1y

∗
2)2
]︂

+O(ℏ3)

= 3c
(16π2)2 |y1|2|y2|2 sinφy +O(ℏ3)

(2.2.32)

meaning that the latter beta function is always subdominant and can be neglected. Indeed
it would be enough to have either a small y1 or a small y2 in order to suppress βθ, but
this would not stop θ̄ from running. Similarly, sinφy = 0 would suppress βθ but not βθ̄ if
sinφm ̸= 0. Only under the simultaneous conditions sinφy = sinφm = 0 the parameter θ̄
becomes approximately stable under the renormalization group, but this is obvious since in
that situation our theory introduces no new CP-odd phases compared to the Standard Model.

There is now an important point to stress. The definitions (2.2.29) (and more generally
(2.2.25)) are ambiguous because any combination of invariants is also invariant. Yet, the
ambiguity in defining the physical theta angle arises only from a UV perspective. Its IR
definition is basically fixed by experiments. In the Standard Model one usually takes θ −
arg detYuYd because at leading order in a perturbative expansion in Yukawas (masses) this is
precisely the quantity observed in low energy processes. The situation is similar here. Indeed,
because the new fermions ψ,ψc are colored, phenomenologically we expect |m| ≳ 1 TeV; at
scales below the mass threshold |m| we can thus integrate them out such that our theory
reduces to the Standard Model with topological angle given by

θ̄SM = [θ − arg detYuYd − argm]µ=|m| +O(ℏ), (2.2.33)

where the small corrections are due to 1-loop threshold effects. We thus see that the UV
ambiguity is resolved: within the accuracy we are working the rescaling-invariant topological
angle defined in (2.2.29) is precisely the one constrained by low energy experiments. The
distinction between θ̄SM and θ̄ is 1-loop order, and so the difference in their beta functions
starts at 2-loops. Hence the statement that θ̄ runs already at 1-loop in fact also applies to
the physically relevant CP-odd parameter measured in experiments. An UV solution of the
Strong CP problem that enforces the condition θ̄(Λ) = 0 would not be able to explain the
absence of CP violation in low energy QCD, unless a non-trivial conspiracy among different
UV parameters is present.

Finally, what would happen if we set m = 0? Such an alternative scenario may still be
phenomenologically viable provided the exotic fermion gets a mass y1v1 from the vacuum
expectation value of the singlet ⟨ϕ1⟩ = v1. This model introduces a unique new phase φy
whereas the definition of the QCD topological angle is apparently ambiguous. Again, the
ambiguity is resolved by observing that the QCD angle at the matching scale reads

θ̄SM = [θ − arg detYuYd − arg y1v1]µ=|y1v1| +O(ℏ). (2.2.34)

Again, in order to have a small |θ̄SM| there should be a cancellation between the phase of
y1, which runs at 1-loop, and θ − arg detYuYd, which does not run before 7-loops. This
cancellation is not stable unless sinφy = 0, i.e. unless we recover the same amount of CP
violation as in the Standard Model.
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In conclusion, the lesson is clear: generic extensions of the Standard Model feature several
flavour-invariant CP-odd phases with non-trivial renormalization group evolution, such that
there are no simple UV conditions that ensure |θ̄SM| stays small. Solutions of the Strong CP
problem that are able to deal with this are rare and will be discussed in chapter 4.
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Appendices

2.A CP-odd Invariants for βθ Up to Two-Loops

In this appendix, taken from [6], we build the flavour-invariants for βθ introduced in 2.2.2 and
identify the CP-odd ones. We approach the problem perturbatively. By counting the powers of
ℏ in the flavour-singlet structures one sees that corrections to the 1PI vertex with two external
gauge bosons proportional to g2cgY 2cY λcλ correspond to diagrams with n = cg+cY +cλ loops.
Yet, the associated contribution to Zθ,1 is a 1-loop factor smaller because the definition of
the θ vertex includes a factor g2ℏ/16π2. This implies that in order to find a correction of
n-loop size to the beta function, hereafter denoted by β

(n)
θ , one should calculate an n + 1-

loop diagram. On pure dimensional grounds, therefore, corrections to βθ are expected to be
controlled by

β
(1)
θ : g4, g2λ, g2Y 2

β
(2)
θ : g6, g4λ, g2λ2, g4Y 2, g2Y 2λ, g2Y 4

· · ·

(2.A.1)

In this appendix we will content ourselves with 1- and 2-loop size effects, namely β(1,2)
θ , though

the formalism we adopt can be extended up to arbitrary order. Up to this order it is rather
straightforward to argue that only the terms involving the Yukawa couplings have some real
chance of being CP-odd, as we now show.

A general renormalizable gauge theory without scalar quartics and Yukawas always con-
serves CP (if the topological angles can be neglected, which is the case perturbatively). Hence
there cannot be any CP-odd invariant IAB built out of TA, SA only. Purely bosonic flavour-
invariants cannot work either. They depend on SA, λabcd and are automatically CP-even.
Indeed, λ is real whereas SA are purely imaginary. To build a CP-odd combination we would
need an odd number of SA, which cannot be covariant under rotations of the adjoint index
because the only invariant tensor at our disposal for contractions is g2

AB. This conclusion is
expected on account of that the Feynman diagrams we are interested in must be proportional
to the Levi-Civita tensor, and therefore fermion traces are strictly necessary to generate them.
Actually, we can explicitly demonstrate that even the combinations g2λ, g2λ2 and g4λ can be
discarded. Recall that a fermion loop is necessary, so such invariant must include traces of
the fermion generator. The only g2λ invariant we can have is trTATBλaabb and is manifestly
real, i.e. CP-even, since the fermionic trace gives the direct sum of identities in the adjoint
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index multiplied by (real) fermion Casimirs. Similar considerations apply to the g2λ2 invari-
ants, which are of the form trTATBλ2 with all possible contractions of the scalar indices.
Whatever contraction is taken the invariant is CP-even. Finally, at order g4λ we can have
structures of the form trTTTTλ, trTT trTTλ, and trTTSSλ. The former two are man-
ifestly real because the potential CP-violating contribution would have to come exclusively
from the fermionic generators, and we have recalled above that this is not possible. The last
one may either contain [SMSN ]abλabcc or [SMSN ]aaλbbcc, which are both real. We did not
include structures with a single scalar generator because those vanish: the (anti-symmetric)
scalar indices in SA should necessarily be contracted with those (symmetric) of λ. Similarly,
three scalar generators would require the fermionic trace trT = 0, which vanishes in the
absence of mixed gravity-gauge anomalies.

We conclude that, at least up to the perturbative order considered here, the Yukawa
couplings are strictly necessary to build the CP-odd flavour-invariants IAB of the theory
(2.2.12). For convenience it is useful to introduce the basic covariant combinations in which
they can appear:

ΥA1···An
ab;ij ≡ Y ∗

a ik(TA1)∗ · · · (TAn)∗Yb kj . (2.A.2)

These objects transform under fermion rotations precisely as TA, under scalar rotations as
the product of two Yukawas, whereas under gauge boson rotations in an obvious way. We
will use this compact notation to write the possible invariants appearing in β

(1,2)
θ .

Absence of β(1): Two-Loops Diagrams

At lowest order we have a very limited number of flavour-invariant structures that can con-
tribute. They are so few that we can write them explicitly:

g2Y 2 : trT (ATB)Υaa, trT (AΥB)
aa , trT (ATB) tr Υaa, S(A

mnS
B)
mn tr Υaa. (2.A.3)

Here and in the following tr · · · denotes a trace over the fermionic indices and ( ) imply
symmetrization. We did not include invariants in which the scalar indices of SAab are contracted
with those of the Yukawas because thanks to (2.2.14) these can be written in terms of the
first and second invariants of (2.A.3). Furthermore, we did not include structures of the form
tr Υ(AB)

aa because tr ΥA1···An
ab = tr ΥabT

An · · ·TA1 due to the trace transposition property.
This relation will also be exploited later in enumerating the invariants of higher order.

None of the invariants in (2.A.3) is CP-odd. To see this note that the matrices Υaa, ΥA
aa

are hermitian and therefore their trace is real. This immediately tells us that the last two
structures are real. Similarly, the structures trTΥA are necessarily CP-even because they
are the trace of the product of two hermitian matrices, which is real. The first structure in
(2.A.3) is CP-even for the same reason, because T (ATB) is also hermitian.
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Terms in β(2): Three-Loops Diagrams

At the next order, the relevant structures are:

g2Y 2λ : trTTΥ0λ, trTΥ1λ, SS tr Υ0λ,

trTT tr Υ0λ

g4Y 2 : trTTΥ2, trTTTΥ1, trTTTTΥ0

trTT tr Υ2, SS tr Υ2, trTT trTΥ1, trTTT tr Υ1, SSS tr Υ1,

trTTTT tr Υ0, trTT trTT tr Υ0, SSSS tr Υ0

g2Y 4 : tr Υ2Υ0, tr Υ1Υ1, tr Υ1Υ0T,

tr Υ2 tr Υ0, tr Υ1 tr Υ1, trTT tr Υ0Υ0, SS tr Υ0Υ0

tr Υ0 tr Υ0 trTT, SS tr Υ0 tr Υ0

(2.A.4)

where to make our notation more compact the n in the expression Υn indicates the number
of adjoint indices in Υ. The indices are left implicit because many contractions are possible,
and again invariants where one scalar index must be contracted with a Yukawa have been
omitted because of (2.2.14).

g2Y 2λ Terms

Most of the g2Y 2λ terms are manifestly real once we take into account that the symmetry of
λ forces the scalar indices in [Υn]ab to be symmetrized or contracted among themselves, i.e.
Υ(ab) or Υaa. In either case the resulting Υ tensor is hermitian in the fermion indices. Hence
all traces are inevitably real and the invariants CP-even.

g4Y 2 Terms

Here the scalar indices are contracted among themselves; it is the possible contractions of the
gauge indices that increases the number of independent structures. However all the invariants
turn out to be CP-even because of properties of the gauge generators and gauge invariance.
Let us show this explicitly by considering the invariants of the form trTTΥ2. These are

g2
CD trT (ATB)ΥCD

aa

g2
CD trTCTDΥ(AB)

aa

(2.A.5)

and

g2
CD trTCT (AΥB)D

aa

g2
CD trTCT (A|ΥD|B)

aa

g2
CD trT (A|TCΥ|B)D

aa

g2
CD trT (A|TCΥD|B)

aa

(2.A.6)

where the contraction among adjoint indices is consistently performed with the metric g2
AB,

(2.2.12). In the first two structures, hermiticity of T (ATB) and Υ(MN)
aa ensures they are all

43



CHAPTER 2. TOPOLOGICAL ANGLES

CP-even. The other structures are also CP-even. To see this let us look for a CP-odd version
of the first invariant in (2.A.6), namely

g2
CD trT (A|TCΥ|B)D

aa − g2
CD trTCT (A|ΥD|B)

aa (2.A.7)

The indices C,D run over all possible adjoint indices. On the other hand, A,B are restricted
to a certain non-abelian group or to any two of the abelian factors. Consider first the case
A,B refer to a certain non-abelian group. Then TA,B commute with all the TC,D that are
associated to the other groups. In addition, θAB ∝ δABG and hence we should not simply
symmetrize but actually sum over A,B as well. As a result the above invariant identically
vanishes. Consider next the case in which A,B refer to the abelian groups. Then TA,B

commute with TC,D and the expression again identically vanishes. Similar considerations
show that all invariants in (2.A.6) are CP-even.

For invariants of the form trTTTΥ1, we have

g2
CD trT (A|TCTDΥ|B)

aa

g2
CD trTCTDT (AΥB)

aa

(2.A.8)

and

g2
CD trT (A|TCT |B)ΥD

aa]
g2
CD trTCT (A|TDΥ|B)

aa

g2
CD trT (ATB)TCΥD

aa

g2
CD trTCT (ATB)ΥD

aa

(2.A.9)

The expressions with the Casimir g2
CDT

CTD = ⊕GCG are manifestly real. The first and second
in (2.A.9) are real because they are the trace of the product of two hermitian matrices. A
potential CP-odd combination with the third structure is

g2
CD tr

{︂
TA, TB

}︂
[TC ,ΥD

aa]. (2.A.10)

An identical one is obtained from the last structure in (2.A.9). Again, these identically vanish
when imposing gauge-invariance. Namely, if A,B refer to indices of a non-abelian group, then
we should include a sum δABG and find that

{︂
TA, TB

}︂
is proportional to the Casimir CG of that

group. Hence it commutes with all TC and we get g2
CD trCG [TC ,ΥD

aa] = g2
CD tr [CG , T

C ]ΥD
aa =

0. The same result trivially applies also when A,B refer to the abelian groups.
The arguments just exposed can be applied to all the other invariants appearing in (2.A.4),

including the ones with the scalar generators. Therefore our conclusion is that all the g4Y 2

structures are CP-even.

g2Y 4 Terms

The structures g2Y 4 are more involved because the scalar indices can be contracted in several
different ways. For example tr Υ2Υ0 can be tr Υ(AB)

ab Υab, tr Υ(AB)
ab Υba, tr Υ(AB)

aa Υbb. Here
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it is crucial to observe that [Υab]† = Υba if Υ has less than two gauge indices, or even more
provided they are symmetrized. This way one finds that tr Υ2Υ0 are all CP-even. Similar
considerations apply to tr Υ1Υ1 as well as all the multi-trace expressions in (2.A.4). Including
the generator T , however, changes the game and leads finally to some interesting candidates.
We are thus left with the structure tr Υ1Υ0T . The CP-odd invariants of this form are

tr ΥA
ab[TB,Υab]

tr Υ(A
ab [TB),Υba]

tr Υ(A
aa [TB),Υbb]

(2.A.11)

where the first invariant is already symmetric in the adjoint indices, as follows from the trace
transposition property. The same property also shows that the second and third invariants are
actually equivalent. Furthermore, using (2.2.14) it is straightforward to prove that [Υaa, T

A] =
0, so the second and third expressions actually vanish. This ensures that the only non-
vanishing CP-odd invariant in (2.A.11) is the first one, which is therefore the only possible
contribution to the β−function of θAB at 3-loops. This is precisely IAB(2) of eq. (2.2.23).

2.B Topological Angles and Weyl Consistency Con-
ditions

The insertion of composite operators in correlator functions can be systematically described
by introducing in the bare Lagrangian appropriate spacetime-dependent sources for them (and
adding the appropriate counterterms). After having integrated out the dynamical fields one is
left with a generating functional for the time-ordered, connected correlation functions of the
renormalized operators. The local renormalization group [69–72] is a very powerful incarnation
of this general prescription. In that approach the Lagrangian is expanded in a complete basis
of operators O and all couplings of the theory become functions of spacetime, including the
metric that sources the energy momentum tensor. A local version of the renormalization
group equation for the operators O can be derived, and once all couplings are sent to their
constant (xµ independent but µ-dependent) this becomes exactly (2.2.8). Furthermore, Jack
and Osborn pointed out that the beta functions in a general P-conserving renormalizable
theory must satisfy a constraint

∂ ˜︁A
∂ξĪ

= TĪJ̄βJ̄ , (2.B.1)

where ˜︁A and TĪJ̄ are functions of the couplings (except θ) that appear in the Weyl anomaly
when all couplings are promoted to space-time dependent functions. Such conditions relate
terms of the beta functions of different couplings and different orders in perturbation theory,
and can serve as non-trivial consistency checks of multi-loop calculations. For example, eq.
(2.B.1) has been employed to resolve an ambiguity in the 4-loop beta function of the strong
gauge coupling in the Standard Model [73]. The very same tool can potentially be used
to extract information about the renormalization group evolution in general renormalizable
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theories like (2.2.12) (see e.g. [74]). In that case however one cannot a priori ignore the
topological angles. Irrespective of whether they vanish in the bare action, they may be
needed as counterterms and therefore generically possess a beta function that qualitatively
impacts (2.B.1). According to [61], the formal structure of (2.B.1) remains unchanged when
considering P-violating theories. The absence of an explicit dependence on θ then implies
that its Ī = θ component becomes

0 = Tθθβθ + TθY βY + Tθgβg + Tθλβλ, (2.B.2)
where θ, Y, g, λ schematically denote the couplings in (2.2.12). The same considerations de-
veloped in subsection 2.2.2 allow us to identify the tensorial form of TĪJ̄ . At leading order we
have [6],

TθABθCD = c1
g2
ACg

2
BD

(16π2)3 (2.B.3)

and

TθABY dY = c2
g2
ACg

2
BD

(16π2)3 tr
[︂
(Y †(TC)∗dY − dY †(TA)∗Y )TD

]︂
+ c3

g2
ACg

2
BD

(16π2)3 tr
[︂
(Y †dY − dY †Y )

{︂
TC , TD

}︂]︂ (2.B.4)

with c1,2,3 numerical coefficients. Note that TθY dY must be CP-odd. In extracting its form
a key role is played by the fact that CP-odd quantities can here depend on the derivative of
the couplings, as opposed to the discussion about the form of βθ. Analogously, one can see
that the CP-odd structures Tθgdg and Tθλdλ inevitably arise at a higher perturbative order.
Within a 2-loop accuracy the contributions proportional to βg, βλ can therefore be neglected
and (2.B.2) gives [6],

µ
dθAB

dµ
= c2/c1

16π2 tr
[︂
(Y †
a (TA)∗βYa − β

†
Ya

(TA)∗Ya)TB
]︂

+ c3/c1
16π2 tr

[︂
(Y †
a βYa − β

†
Ya
Ya)

{︂
TA, TB

}︂]︂
+O(ℏ3).

(2.B.5)

Plugging in the 1-loop beta function of the Yukawa coupling Ya, the fermionic trace propor-
tional to c3 does not contribute at 2-loops whereas the one proportional to c2 consistently
reproduces (2.2.22) provided 2c2/c1 = c. We thus find a fourth independent method for com-
puting the coefficient c of βθ. Establishing its numerical value would require knowing the
leading order Tθθ and TθY , which means performing a 1-loop and again a 3-loop calculation
respectively.

The remaining components of (2.B.1) are also quite consequential and deserve to be care-
fully explored. A naive counting suggests that, in employing the consistency relations of Jack
and Osborn with Ī = Y , the 2-loop βθ identified in this paper might be correlated to structures
appearing in the 3-loop βg, the 4-loop βY , and the 2-loop βλ via the 6-loop contribution in ˜︁A
of order g4Y 6. Furthermore, an inspection of the full system (2.B.1) reveals that the highest
perturbative order at which the g-Y -λ-θ beta functions enter in the consistency relations are
respectively 5-4-3-2.

46



47



Chapter 3

Axion

In this chapter we begin exploring the landscape of solutions to the Strong CP problem by
starting with the axion mechanism. In sections 3.1 and 3.2 we review the basic principles of
the axion solution and its associated quality problem. Section 3.3 is devoted to the study
of a particular heavy axion model designed to tackle this latter issue, and is taken from the
original work [7].

3.1 Peccei-Quinn Symmetry and the Axion Mechanism

The axion solution to the Strong CP problem exploits one of the spurious symmetry of the
QCD angle mentioned in chapter 1, namely its shift symmetry, by promoting it to an actual
symmetry of the theory except for the explicit breaking due to the anomaly itself. In the
presence of this anomalous symmetry, the Peccei-Quinn symmetry [75,76], physics is invariant
under an arbitrary shift of θ̄. With such a shift we can always set θ̄ = 0, meaning that no
strong CP violation is present1. The Strong CP problem is then effectively solved.

The first obvious way to implement such a symmetry would be having a massless quark,
presumably the lightest up-quark. We already noticed in section 2.1.2 how in the presence of
a massless fermion the topological angle becomes unphysical. Concretely, this is due to the
fact that a massless up quark would imply the presence of an anomalous U(1)PQ symmetry
acting as

uR −→ eiαuR. (3.1.1)

This transformation would leave the SM lagrangian invariant except for shifting θ̄ → θ̄ + α.
Taking α = −θ̄ would nullify θ̄, thus removing strong CP violation effects. Unfortunately,

1The request of the existence of an anomalous U(1)PQ symmetry can actually be reformulated as the
request that the theory is invariant under a generalized notion of CP, in which CP is combined with the
aforementioned anomalous symmetry. Concretely, if θ̄ shifts of an angle α under a U(1)PQ transformation,
under CP′= CP × U(1)PQ it transforms as θ̄ → −(θ̄ + α) (the minus sign due to ordinary CP, see eq. 2.2.18).
Thus, for the angle choice α = −2(θ̄ + kπ), k ∈ Z our theory is effectively CP′ invariant. One can then chose
to work in a basis in which θ̄ = 0, where CP′ coincides with ordinary CP and absence of strong CP violation
is more manifest.
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this minimal and appealing solution is not viable since the possibility for the up-quark to
be massless is currently ruled out at more than 20 standard deviations [77]. Interestingly,
thought, this result is quite recent. While at first sight it seems obvious that mu = 0 leads
to wrong predictions within the chiral lagrangian, the renormalized mass entering in this
framework is actually the sum of two contributions: one from the QCD lagrangian, that is the
usual mu, and the other from non-perturbative contributions e.g. due to instantons [78–81].
The size of the latter is approximately ∼ mdms/ΛC, which numerically is just about the size
required in order to get correct predictions within χPT. Ruling out mu = 0 was possible only
thanks to precise lattice studies which were not available until recently [82].

Being the massless quark solution not a viable option, the anomalous U(1)PQ must then be
implement by some beyond the Standard Model sector. If this symmetry gets spontaneously
broken at a sufficiently high scale fa the new sector decouples, leaving as a remnant a pseudo-
Nambu-Goldstone boson named axion. Due to to the anomalous nature of the Peccei-Quinn
symmetry, such particle inherits a coupling to the QCD topological term:

L ⊃ a

fa

g2

32π2G
˜︁G. (3.1.2)

This coupling explicitly breaks the shift symmetry of the axion2 and shows the axion mech-
anism at work: a redefinition of the axion field a/fa = ā/fa − θ̄ leaves the theory invariant
except for completely eliminating the QCD topological angle, thus “washing away” the Strong
CP problem.

As of today, the axion mechanism is by far the most popular solution to the Strong CP
problem. Its popularity can be understood as due to three good reasons:

i) Simplicity.
The axion solution just requires the existence of a global U(1)PQ, anomalous under
QCD, which gets spontaneously broken at some high scale fa. The minimality of these
assumptions is envied by all alternative solutions to the Strong CP problem, which
instead demand more complicated structures in the UV and are therefore viewed as less
plausible.

ii) Predictivity.
Irrespectively of how the Peccei-Quinn symmetry is implemented in the UV, the axion
solution clearly predicts the existence of a pseudo-Nambu-Goldstone boson with an irre-
ducible coupling to gluons (3.1.2). This coupling leads to interesting phenomenological
signatures that can be tested via a wide array of probes, including collider, astrophys-
ical, and cosmological observations. It is also responsible for generating a potential for
the axion when we hit the QCD confinement scale, as we will see in 3.1.1. Crucially, the
potential is such that ā is minimized at the CP-conserving value ⟨ā⟩ = 0 (equivalently
⟨a⟩ /fa = −θ̄) as a result of the Vafa-Witten theorem [21]. This aspect is actually fun-
damental, since in the absence of a stabilizing mechanism a random vacuum expectation
value for the axion may be generated effectively reintroducing an O(1) topological angle.

2The shift symmetry of the axion is the non-linear realization of the spontaneously broken original U(1)PQ
symmetry.
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iii) Compatibility with generic BSM scenarios.
Whatever fundamental source of CP violation is present at short distances, when we run
down to the QCD confinement scale it gets completely encoded in the QCD topological
angle and higher-dimensional LEFT operators3. The axion solution becomes “active” at
that very scale, where its potential is generated, and by relaxing θ̄ to zero it completely
removes the largest source of CP violation within the low energy effective field theory.
This remarkable property is particularly appealing because in presence of the QCD axion
fundamental questions such as the naturalness problem, the flavour puzzle, baryogenesis,
dark matter, etc., may all be addressed without the need to worry about possibly large
CP-odd phases in the new physics’ sector.

In the following we will not be particularly interested in how effectively the PQ-symmetry
is implemented, as long as the coupling (3.1.2) is present. However, for completeness we
mention the two main historical implementations due to Kim-Shifman-Vainshtein-Zakharov
(KSVZ) and Dine-Fischler-Srednicki-Zhitnitsky (DFSZ). For a more general overview of the
possible scenarios see [84].

Beyond the SM matter content, the “minimal” KSVZ axion [39,85] assumes the existence
of a vector-like quark Ψ, neutral under the weak interactions, and of a complete singlet
complex scalar field Φ . The most general renormalizable lagrangian compatible with a U(1)PQ
symmetry reads

LKSVZ = LSM + |∂µΦ|2 + Ψ̄i /DΨ− yΦΨ̄LΨR + h.c.− V (|Φ|, |H|) (3.1.3)

where the U(1)PQ is implemented as ΨL,R → e±iα/2ΨL,R,Φ → eiαΦ, clearly leaving (3.1.3)
invariant except for shifting θ → θ−α. The Peccei-Quinn symmetry is spontaneously broken
by the vacuum expectation value ⟨ρ⟩ = fa of the field Φ = ρ eia/fa , which leads to a mass
term MΨ = yfa for the vector-like fermion and to the massless NGB a, identified with the
axion. With a chiral rotation ΨL,R → e±ia/2ΨL,R the axion can be moved from the Ψ mass
term to the QCD topological term, leading to a low-energy effective theory comprised of the
SM plus an axion with the sole coupling (3.1.2).

The DFSZ model [86, 87] is basically a two-Higgs doublets (Hu, Hd) model supplemented
by a complete singlet complex scalar fields Φ. There are many possible variations depending
on which Higgs doublet couples to the leptons (Hd or H̃u = ϵH∗

u) and to the scalar potential
couplings between the doublets and Φ. The Peccei-Quinn charges are carried by Hu, Hd,Φ
and the SM quarks and leptons, and the resulting axion is in general a combination of all the
P-odd neutral scalar fields. The identification of the correct combination is straightforward
and can be found e.g. in [84]. Because in this case the Peccei-Quinn charges are carried also
by the SM fermions, an irreducible coupling of the axion also to the U(1)EM topological term
is present. This leads to the well-know ratio E/N = 8/3, where the coupling to photons is
written as (e2/16π2)(E/N)(ā/fa)F ˜︁F (in the minimal KSVZ model E/N = 0). Interestingly,

3“Low Energy Effective Theory”, that is the theory obtained integrating out the heavy SM weak bosons, the
Higgs particle and the top quark. The remaining theory contains non-renormalizable operators suppressed by
the heavy mass scales. The LEFT itself may inherits higher-dimensional operators directly from the SMEFT,
obtained integrating out heavy BSM physics. For a complete classification of the LEFT operators up to
dimension six and for the matching to the SMEFT see [83].
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the DFSZ model can be seen as an extension of the very first proposal of an axion model,
the Weinberg-Wilczek (WW) model [23, 88]. In this proposal no singlet Φ is present, but
a PQ symmetry is still there thanks to the two Higgs doublets. However, since the Peccei-
Quinn scale turns out to be about the same order of the electroweak scale, fa ∼ v, the axion
couplings to the SM particles are not sufficiently suppressed and this model was soon ruled
by laboratory searches [89–92]. This is the reason for which models in which fa is unrelated
to v are often called “invisible axion” models (contrary to the visible, but not found, WW
axion).

3.1.1 QCD Axion Potential

Irrespectively of the UV completion delivering the axion, the axion effective theory always
contains the irreducible coupling (3.1.2). Such coupling is responsible for generating a poten-
tial that, as predicted by the Vafa and Witten theorem [21], dynamically relaxes ⟨ā⟩ = 0. This
can be showed by observing that, at leading order in 1/fa, the axion can simply be treated as
an external source. Therefore, the argument of [21] goes through basically unchanged except
for replacing θ̄ → ā/fa. The vacuum energy as given by the Euclidean path integral still
satisfies [21]

e
−V E

(︁
ā
fa

)︁
=
∫︂
dµ e

i g2

32π2
∫︁
d4xE

ā
fa
G˜︁G ≤ ⃓⃓⃓⃓∫︂ dµ e

i g2

32π2
∫︁
d4xE

ā
fa
G˜︁G ⃓⃓⃓⃓ = e−V E(0) (3.1.4)

where dµ is the effective measure of the QCD Euclidean path integral, given by dµ =
det( /D +M) exp(−

∫︁
d4xE GG/4). Crucially, this is positive definite [22] and hence the abso-

lute value can be brought inside the functional integral. Being the integrand a pure phase in
the Euclidean formulation (as showed in 2.1.1), it has unit modulus and this concludes the
proof of 3.1.4. The inequality E(ā/fa) ≥ E(0) then ensures that the axion potential is indeed
minimized at the CP-conserving value ⟨ā⟩ = 0 mod 2π.

Concretely, a crude approximation to the axion potential is given by the one-instanton
energy dependence of the vacuum on the topological angle (2.1.38), simply replacing θ̄ → ā/fa.
Its cosine shape confirms that ⟨ā⟩ = 0. The axion mass can be obtained as

m2
a = δ2

δā2 logZ
(︃
ā

fa

)︃ ⃓⃓⃓
ā=0

= 1
f2
a

d

dθ̄
2 logZ(θ̄)

⃓⃓⃓
θ̄=0
≡ χtop

f2
a

(3.1.5)

where we defined the QCD topological susceptibility χtop, explicitly given by

χtop =
∫︂
d4x ⟨ g

2

32π2G
˜︁G(x), g2

32π2G
˜︁G(0)⟩ . (3.1.6)

The quantity χtop is very useful because it can be computed by means of chiral lagrangian
techniques and non-perturbative lattice studies [93]. It provides a good approximation to
the coefficient of the quadratic term in the axion potential, and most importantly fixes the
distinctive scaling of the axion mass with its decay constant:

m2
af

2
a = χtop. (3.1.7)
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Being the topological susceptibility a calculable constant, this relation essentially leaves the
QCD axion with only one free parameter.

The approximation (2.1.38) to the full potential of the axion is quite poor, since it is
obtained in a semi-classical regime which is nowhere close to the real QCD dynamics. A
much better approximation can be obtained within the chiral lagrangian framework. To this
end we first remove the coupling (3.1.2) by means of the chiral rotation qR → e−iā/NffaqR,
which leaves us with the lagrangian

L = Lkin − q̄LMe−iā/NffaqR + h.c.. (3.1.8)

At this point we can, as usual, expand the chiral lagrangian in terms of the NGBs matrix
U(Π) (2.1.42) and the mass Ma = Me−iā/Nffa , which is now axion-dependent. The leading
order potential, taking Nf = 2 for simplicity, reads

V LO(ā, π0) = −f
2
π

4 B0 tr
(︂
U†Ma + UMa

†
)︂

= −f
2
π

2 B0

[︃
md cos

(︃
ā

2fa
+ π0
fπ

)︃
+mu cos

(︃
ā

2fa
− π0
fπ

)︃]︃ (3.1.9)

where we neglected the dependence on the charged NGBs π±, since they are irrelevant for the
potential of the neutral fields as they cannot mix. The potential (3.1.9) can be rewritten as

V LO(ā, π0) = −m2
πf

2
π

√︄
1− 4mumd

(mu +md)2 sin2
(︃
ā

2fa

)︃
cos

(︃
π0
fπ
− ϕa

)︃
tanϕa ≡

mu −md

mu +md
tan

(︃
ā

2fa

)︃ (3.1.10)

which clearly shows that the π0 vev is proportional to ϕa. For fa ≪ fπ we can integrate out
π0, which at tree-level simply amounts to taking π0/fπ = ϕa. In this way we are left with the
effective axion potential

V LO
eff (ā) = −m2

πf
2
π

√︄
1− 4mumd

(mu +md)2 sin2
(︃
ā

2fa

)︃
. (3.1.11)

This potential is minimized at ⟨ā⟩ = 0, as expected, and provides the tree-level expression for
the axion mass

m2
a = mumd

(mu +md)2
m2
πf

2
π

f2
a

⇒ ma ≃ 5.7×
(︄

1012 GeV
fa

)︄
µeV. (3.1.12)

This value of the axion mass is consistent with (3.1.5) employing the most recent value χ1/4
top =

75.5(5) MeV [93]. It also highlights two important features. First, in the limit4 md ≫ mu,
the axion mass is suppressed by a power of mu. This is in accordance with the fact that

4Of course also the opposite limit is valid. Indeed the ratio mumd/(mu + md)2 can be written as
det M/( tr M)2, which vanished whenever a quark becomes massless. As usual mu is used an example since
experimentally the up-quark is found to be the lightest quark.
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for mu = 0 the shift symmetry of the axion becomes exact, since an axion shift can be
entirely compensated by a chiral rotation of the massless up-quark. In other words, a non-
anomalous U(1)PQ is there and broken spontaneously only by the QCD confinement: the
axion becomes an exact Nambu-Goldstone boson. Second, in the range fa ≳ 108 GeV the
axion is an extremely light pseudoscalar, even lighter than neutrinos. Therefore, experiments
looking for axions are quite peculiar since its long de Broglie wavelenght makes it behave
almost like a classical wave for which resonance cavities, for instance, are well-fit probes. We
will not dive into the details of the various past and ongoing experiments looking for the QCD
axion. A nice review can be found in [84]. Figure 3.1, taken from [94], shows the most recent
experimental constraints coming from axion searches. These set a lower bound on the QCD
axion decay constant given by fa ≳ 108− 109 GeV. Notably, the value fa ≃ 1012 GeV is quite
peculiar since in this range the axion can naturally account for all the dark matter present in
our universe via the misalignment mechanism [95–97].
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Figure 3.1: Collection of the most recent experimental constraints from axion searches in the
plane ma − gaγγ , where gaγγ is the axion coupling to photons written as L ⊃ gaγγ aF ˜︁F/4.
This is related to fa via gaγγ = (E/N)e2/8π2fa, where E/N is a constant depending on the
specific UV completion of the axion. The yellow band refers to the QCD axion prediction
(3.1.12) with some benchmark values for E/N (see [84] for details). Plot taken from [94].
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3.2 Quality Problem

The axion solution to the Strong CP problem is apparently elegant, simple and predictive.
However, there is a critical aspect that we have been neglecting so far. The entire mechanism
relies crucially on the presence of global U(1)PQ symmetry which must be exact to a very
high degree (that we will quantify in a moment), except for being anomalous. Any operator
apart from (3.1.2) explicitly violating this symmetry would generate additional contributions
to the axion potential and destabilize its vev from the CP-conserving value ⟨ā⟩ = 0, thus
effectively reintroducing θ̄ and the associated Strong CP problem. From a quantum field
theory perspective, global symmetries should be regarded as accidental and this particularly
applies to anomalous symmetries, which cannot be consistently promoted to local symmetries
at the quantum level. Therefore we expect that, if not forbidden for other reasons, generic
operators violating by p units the PQ-charge conservation should be present. These may be
generated as due to quantum gravity effects, which are conjectured to violate any symmetry
which is not gauged [98], or more agnostically as due to whatever UV completion is there
that, according to the totalitarian principle5, should generate these operators if allowed.

To quantify the sensitivity of the axion mechanism to these operators, let us consider an
explicit realization à la KSVZ where the axion appears as the phase of a complex U(1)PQ
field. A generic lagrangian operator of dimension n violating the PQ-charge by p units may
be written as (assuming n− p to be even)

L /PQ = λ∗

2fn−4
UV
|Φ|n−pΦp + h.c. (3.2.1)

This operator induces a shift in the effective potential (3.1.11) which takes the form

δV (ā) = |λ∗|
fna
fn−4

UV
cos (pā+ δλ∗) (3.2.2)

where δλ∗ = argλ∗ is the phase responsible of destabilizing the minimum of the axion from
⟨ā⟩ = 0. Without the need of explicitly minimizing the full potential, requiring that the
Strong CP problem is still solved, |θ̄eff| = | ⟨ā⟩ |/fa ≲ 10−10, can be roughly translated in the
constraint6 ⃓⃓⃓⃓

δV (ā = 0)
Veff(ā = 0)

⃓⃓⃓⃓
≲ 10−10. (3.2.3)

Taking the QCD axion effective potential to be parametrically of the size Veff(ā) ∼ f2
πm

2
π and

δV (ā) ∼ λ∗f
n
a /f

n−4
UV , for generic δλ∗ ∼ O(1) the above inequality can be turned into a lower

bound on the dimension n of the PQ-breaking operator:

n− 4 ≳
log

(︁
1010|λ∗|f2

a/m
2
a

)︁
log (fUV/fa)

. (3.2.4)

5“Everything not forbidden is compulsory”, typically associated to M. Gell-Mann [99] (although there are
some debates on the paternity of the principle as applied to quantum physics [100]).

6Around the unperturbed minimum ⟨ā⟩ = 0, the potential can be approximated as V (ā) ≃ m2
aā2/2 +

δV ′|ā=0ā + . . . . Therefore, at leading order ⟨ā⟩ ∼ δV ′|ā=0/m2
a ∼ [|λ∗| sin δλ∗ fn−1

a /fn−4
UV ]/[f2

πm2
π/f2

a ] and thus
θ̄eff ∼ [|λ∗| sin δλ∗ fna /fn−4

UV ]/[f2
πm2

π] ∼ δV (ā = 0)/Veff(ā = 0).
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Employing the lower bound fa ≳ 109 GeV and taking as UV the scale of quantum gravity
fUV = MP

7 with λ∗ = 1, we get the bound

fa = 109 GeV
fUV = MP

n ≳ 10
(︄
fa = 109 GeV
fUV = MP

)︄
(3.2.5)

Therefore, operators of dimension 9 or lower must be forbidden in order for the QCD axion to
solve the Strong CP problem: the anomalous U(1)PQ must be of extremely high quality. This
serious issue, often referred to as the axion quality problem [101–105], represents a major draw-
back of the simple QCD axion solution and essentially reintroduces a fine-tuning that, if not
addressed, is just a more sophisticated version of the original Strong CP problem. Ultimately,
this is due to the smallness of the QCD axion potential as compared to contributions from
additional uncontrollable sources of U(1)PQ-breaking, which are enhanced as a result of the
current constraints on fa being so stringent. The standard axion solution is thus apparently a
very delicate one. In the next section we will discuss how this problem may be alleviated within
quantum field theory and study in detail the particular proposal of the original work [7], from
which the bulk of the section and appendix 3.A are taken. However, it is worth mentioning
that the quality problem may actually be solved within quantum gravity itself. For example,
for fundamental axions such as the ones arising from string theory compactifications [106], the
axion shift symmetry is perturbatively exact as a result of the higher-form gauge symmetry
associated to its dual field. Non-perturbative breaking is typically exponentially suppressed
by the classical action, and in cases where the effect is calculable as in that of Euclidean
wormholes [107,108], the suppression may be enough to avoid the associated quality problem
if a sufficient number of axions is present [109] (see also [110] for an independent UV result).
Nevertheless, without a complete control over the quantum theory of gravity at play these
should be regarded only as special points that under no circumstances are to be preferred over
the ones where the problem is actually present, unless an explanation to exclude the latter is
found.

3.3 Heavy Axions and Grand Color

The QCD axion solution to the Strong CP problem is seriously threatened by the Peccei-Quinn
quality problem. There are two possible paths to address this issue within the four-dimensional
QFT realm. One can either find a mechanism to suppress the potentially dangerous Planckian
perturbations, or find new corrections to the potential such that the QCD contribution gets
effectively enhanced. In either case, unfortunately, one or both of the attractive properties
i), iii) of section 3.1 are lost.

Known theories that address the quality problem by suggesting mechanisms to suppress
quantum gravity perturbations typically invoke a number of ad-hoc global or gauge sym-
metries such that the PQ symmetry is accidentally protected up to operators of very high

7The Planck mass appearing here is the reduced Planck mass, MP = 1/
√

8πG = 2.435 × 1018 GeV. This is
the scale defining perturbation theory around gµν = ηµν for the Einstein-Hilbert theory, and has the correct
dimensionality to keep [S] = ℏ in (3.2.1).
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dimension. If the dimension is high enough, the induced effective potential (3.2.2) is so sup-
pressed that the resulting |θ̄eff| lays well below the experimental constraint, obliteraing the
axion quality problem. Many incarnations of this idea have been proposed, either relying on
large discrete symmetries [111–116], which can be made “local” as first suggested in [117], or
on new gauge U(1) [103, 105, 118–121] or non-Abelian symmetries [101, 122–124]. It is also
possible to achieve such protection in models where the axion is a composite pNGB of some
new confining dynamics [125–132]. Whatever the realization, this approach to the quality
problem relies on such an intricate structure at short distances that the conceptual simplicity
promised by the QCD axion gets partially if not completely overshadowed.

Rather than explaining why Planck-scale perturbations are suppressed compared to the
QCD-induced potential, one may alternatively build a model with a heavy axion, in which
the QCD potential is replaced by a much larger and more stable one. Here the challenge is
to identify a framework in which the new U(1)PQ-breaking effects are perfectly aligned with
the QCD-induced potential so that the overall energy is still minimized at a value | ⟨ā⟩ |/fa ≲
10−10, compatibly with current data. One option is realized in scenarios where the large axion
potential still comes from QCD but, as opposed to the standard mechanism, it is due to new
short-distance effects [133]. If the QCD coupling grows relatively large at some UV scale,
indeed, small instantons may become relevant, and such effects are naturally aligned with the
low energy QCD potential. Unfortunately, a strongly-coupled UV framework of this type is
intrinsically sensitive to the misaligning effect of whatever new CP-odd phases are present at
the UV cutoff [102,134]. To firmly establish the viability of this program it is thus necessary
to analyze a concrete realization. Currently, the only explicit and tractable model of this
type is the one of [135]. This work shows that under reasonable assumptions the Strong CP
problem may in fact be solved, though the required setup introduces a few copies of the color
gauge group along with a corresponding axion for each copy, and is therefore not as minimal
as one might have hoped. Another viable avenue is to postulate a scenario in which U(1)PQ
is anomalous under an additional non-abelian group C′. Provided the anomaly coefficient is
the same as the one of QCD, the axion coupling to the two sectors reads

Laxion ⊃
(︃
θ̄ + a

fa

)︃
g2

C
32π2G

a
µν
˜︁Gaµν +

(︃
θ̄

′ + a

fa

)︃
g2

C′

32π2G
′a
µν
˜︁G′aµν , (3.3.1)

with G′a
µν indicating the field strength of the C′ vectors. If it is possible to further identify a

structural condition that ensures

θ̄ = θ̄
′ (3.3.2)

up to corrections smaller than 10−10, then a unique axion ā/fa = θ̄ + a/fa can be defined.
Its potential may be naturally dominated by the C′ dynamics and be such that ⟨ā⟩ = 0,
analogously to QCD. In this framework one can obtain a sizable axion potential if the new
non-abelian sector becomes strong at scales ΛC′ ≫ ΛC, and the quality problem is improved.
The non-trivial task is explaining (3.3.2).

We may justify (3.3.2) by invoking a Z2 symmetry [136]. To realize this program a full copy
of the SM is however needed, and in particular the new confining group must be a mirror copy
of QCD, i.e. C′ = SU(3)C′ . The mirror symmetry must be softly broken in order to ensure
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that the mirror sector be sufficiently heavy to have escaped detection. If the soft breaking
is achieved via CP- and flavour-conserving interactions, any possible correction to (3.3.2) is
controlled by loops of the SM Yukawas and higher-dimensional operators. We already stressed
in chapter 2 how the former corrections are extremely small, while the latter can be taken
under control as well provided the soft breaking scale is sufficiently small compared to the
UV cutoff. These mirror models are currently the most studied incarnation of heavy axion
models [137–141].

Yet, there may be a simpler and more minimal way to justify (3.3.2) that does not require
invoking a discrete mirror symmetry. One may in fact embed color SU(3)C into a larger
Grand Color group at short distances, and then postulate the latter be broken into the SM
times the new confining group C′. In this setup the structure of eq. (3.3.1) emerges at the
symmetry-breaking threshold, with (3.3.2) easily satisfied at tree-level even when C′ is not
an SU(3). This class of models was first suggested in [142], without however providing a
concrete realization. Explicit models have been recently proposed in [143, 144], but slightly
deviate from the idea of [142] due to the presence of mass terms for the exotic fermions.
The latter make it difficult to ensure (3.3.2) remains protected against radiative effects. In
the following we will propose and study an explicit realization of the Grand Color scenario
that does not require the introduction of ad-hoc mass terms and robustly satisfies (3.3.2).
Anticipating later results, in our model the axion’s mass turns out to have a very distinctive
scaling [7]:

m2
a ∼

yuyd
N

f4

f2
a

(3.3.3)

where yu,d are the up- and down-quark Yukawas renormalized by the new confining dynamics
C′ = Sp(N − 3) at ΛC′ ∼ 4πf/

√
N . The choice C ′ = Sp(N − 3) is actually crucial to obtain

a realistic model of electroweak symmetry breaking, as explained in greater detail in section
3.3.2. Expression (3.3.3) differs from the one predicted by existing heavy axion models and
its magnitude falls somewhat in between mirror and UV-instanton models mentioned before.
It is significantly enhanced compared to the one predicted by potentials dominated by small
instantons. As a result, an improvement in axion quality is achieved with a significantly
smaller f , and hence a reduced sensitivity to physics at the cutoff scale. The scaling in (3.3.3)
is however suppressed compared to what is found in Z2-symmetric models, and so for a similar
axion mass our f needs to be larger.

3.3.1 A Grand Color Group

The gauge group of the model we consider is SU(N)GC × SU(2)L × U(1)Y′ and the entire
matter content, SM included, is reported in table 3.1. The Grand Color is an SU(N)GC gauge
group and the SM quarks are in the fundamental and anti-fundamental representations. In
order to cancel gauge anomalies, hypercharge must be partly embedded into the Grand Color
and an abelian factor U(1)Y′ , while to avoid triviality N must be odd [145]. Yet, the leptonic
sector remains basically the same as in the SM, whereas the scalar sector must include at
least two additional fields, Φ in the adjoint and Ξ in the 2-index anti-symmetric of SU(N)GC,
in order to break Grand Color in a phenomenologically viable way.
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SU(N)GC SU(2)L U(1)Y′

Q N 2 1
2N

U N 1 −1
2 −

1
2N

D N 1 +1
2 −

1
2N

ℓ 1 2 −1
2

e 1 1 +1
H 1 2 +1

2
Φ Adj 1 0
Ξ N⊗A N 1 1

N

Table 3.1: Minimal field content of the model [7]. The fermions are Weyls’. The scalars Φ,Ξ
are solely needed in order to break Grand Color into the SM gauge group.

The most general renormalizable Lagrangian for the fields in table 3.1 includes the standard
kinetic terms and topological angles, a scalar potential, and a Yukawa interaction with the
Higgs doublet H of the same form as in the SM8

LYuk = Y ∗
u QHU + Y ∗

d Q
˜︁HD + Y ∗

e ℓ
˜︁He+ hc, (3.3.4)

plus the operators QQΞ† and UDΞ. As explained in more detail later, though, the presence of
the latter interactions would spoil the key relation (3.3.2). These couplings can be forbidden
in several ways, for example gauging B-L, promoting Ξ to a composite scalar, or — perhaps
less elegantly — invoking a global symmetry. Which of these mechanisms is actually at work
is not a concern. In the following we will simply assume that (3.3.4) represent the full set of
renormalizable Yukawa interactions.

The breaking of Grand Color is obtained in two steps [7]:

SU(N)GC × SU(2)L × U(1)Y′
⟨Φ⟩−−→ SU(3)C × SU(N − 3)× SU(2)L × U(1)Y′ × U(1)GC
⟨Ξ⟩−−→ SU(3)C × Sp(N − 3)× SU(2)L × U(1)Y. (3.3.5)

In the first step the vev of a scalar Φ breaks SU(N)GC into SU(3)C × SU(N − 3)× U(1)GC.
The abelian factor is normalized such that the fundamental representation of SU(N)GC de-
composes as

N→ (3,1) 1
6 − 1

2N
⊕ (1,N− 3)− 1

2N
. (3.3.6)

The second step consists in breaking SU(N − 3)× U(1)GC × U(1)Y′
⟨Ξ⟩−−→ Sp(N − 3)× U(1)Y

through the vev of the Ξ component in the antisymmetric of SU(N − 3), which according to
8The conjugation in the definition of the Yukawas is required in order to be consistent with (1.1.2) (and

thus with the convention of [1]).
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(3.3.6) carries a U(1)GC charge equal to −1/N9. It follows that the unbroken U(1)Y charges
are the sum of U(1)Y′ and the U(1)GC generators. For simplicity we take both scalar vevs
of order fGC. Importantly, because none of the new scalars Φ,Ξ has Yukawa couplings one
can in principle promote both of them to composite operators. In that case there would no
hidden fine-tuning in requiring the Grand Color breaking scale be much smaller than the UV
cutoff, i.e. fGC ≪ fUV.

Below the Grand Color breaking scale fGC, the fields Q,U,D split into the direct sum of
the SM quarks plus exotic chiral fermions as shown in table 3.2. The exotic fermions ψq,u,d
inherit the Yukawa couplings to H from (3.3.4) and are therefore formally the same as the
SM ones up to renormalization effects. Crucially, however, there is no interaction between
the SM fermions and the ψ’s apart from higher-dimensional operators suppressed by fGC.
This implies that the flavour symmetries of the two sectors are effectively distinct: loops of
the Sp(N − 3)-charged sector will never be able to induce flavour-violating processes in the
SM. In addition, the field-basis invariant SU(3)C and Sp(N − 3) topological angles, inherited

SU(3)C Sp(N − 3) SU(2)L U(1)Y

Q =

⎛⎝ q

ψq

⎞⎠ 3 1 2 1
6

1 N− 3 2 0

U =

⎛⎝ u

ψu

⎞⎠ 3̄ 1 1 −2
3

1 N− 3 1 −1
2

D =

⎛⎝ d

ψd

⎞⎠ 3̄ 1 1 1
3

1 N− 3 1 1
2

Table 3.2: Decomposition of the quarks below the scale fGC. Here ψq = (ψqu , ψqd) is an elec-
troweak doublet. The SM hypercharge U(1)Y is the sum of U(1)Y′ and U(1)GC ⊂ SU(N)GC.

by Grand Color as shown in (3.3.1), at tree-level satisfy θ̄ = θ̄
′ = θ − arg detYuYd, where

θ denotes the SU(N)GC angle. Radiative effects can spoil this tree-level relation, and it is
mandatory for us to show that the misaligning affects are under control. There are three
different sources of radiative effects that can potentially invalidate (3.3.2): the scalar sector,
the Yukawa couplings, and non-renormalizable interactions. The vevs of Φ and Ξ are the order
parameters of Grand Color breaking and their insertion is necessary to generate a difference
in the two topological angles. Other than that, however, the scalar sector cannot appreciably
contribute to a violation of (3.3.2) since the most general renormalizable potential V (H,Φ,Ξ)
is automatically CP-conserving and its parameters can always be chosen so that CP does not
get broken spontaneously. Furthermore, all radiative corrections due to the Yukawa sector
(3.3.4) at and below fGC are known to be completely negligible [52–54]. Had we allowed
the presence of unsuppressed flavour-violating coefficients for QQΞ†, UDΞ, this nice property

9To avoid any confusion, by Sp(N − 3) we denote the group of symplectic unitary N − 3 matrices. Consis-
tently, non-triviality of the theory implies N − 3 is even.

59



CHAPTER 3. AXION

would not have held anymore10.
The bottom line is that in this model eq. (3.3.2) remains satisfied up to the desired

accuracy at the renormalizable level. The most dangerous non-renormalizable interactions are
dimension-5 and dimension-6 operators that contribute differently to the topological angles
once the scalars Φ,Ξ acquire a vev:

c̄5
fUV

g2
GC

32π2 ΦGGC ˜︁GGC,
c̄6
f2

UV

g2
GC

32π2 Φ†ΦGGC ˜︁GGC,
c̄′

6
f2

UV

g2
GC

32π2 Ξ†ΞGGC ˜︁GGC. (3.3.7)

The dominant effect comes from the first interaction, but this can be avoided by charging
Φ under an additional gauge symmetry, or postulating that Φ be the scalar responsible for
breaking U(1)PQ, in which case fa ∼ fGC. The last two operators are more model-independent
and imply |θ̄−θ̄′| ∼ f2

GC/f
2
UV. Taking the Planck scale as the UV cutoff, satisfying the relation

eq. (3.3.2) up to corrections of order 10−10 imposes the constraint fGC ≲ 1013 GeV. This
bound can be further relaxed if Φ,Ξ are composite operators.

Overall, the picture that emerges is qualitatively similar to the Z2-symmetric scenarios:
color and the exotic confining dynamics have basically the same topological angle if no Yukawa
couplings are introduced beyond Yu, Yd and the breaking of Grand Color is sufficiently soft.
Under these conditions a unique axion ā/fa = θ̄+ a/fa from the breaking of a U(1)PQ with a
Grand Color anomaly would automatically relax to zero the topological angles of both color
and C′ = Sp(N − 3). By making the latter confine at a scale f ≫ fπ much larger than QCD
we will see the axion mass can be enhanced and the axion quality improved while still robustly
solving the Strong CP problem. Actually, we will have to require f larger than the weak scale
because the exotic fermions carry electroweak charges.

We stress that the precise origin of the axion is not relevant. What matters is that its
couplings to the SU(3)C×Sp(N−3) topological terms be the same. In addition, we will work
under the hypothesis that

fa > f (3.3.8)

so that the tools of effective field theory can be employed in the following to study the
axion potential11. Scenarios in which fa > fGC automatically lead to equal couplings to the
SU(3)C × Sp(N − 3) topological terms. It is perhaps worth showing that the same may also
be true for fa < fGC. To see this let us for example UV complete the axion sector via an
interaction LPQ ⊃ yFF cΘ, with F (F c) fermions in the fundamental (anti-fundamental) of
SU(N)GC carrying U(1)PQ charge +1 and Θ a scalar of charge −2 responsible for breaking

10In this respect our approach differs qualitatively from [143,144], where the beyond the SM fermions filling
the Grand Color multiplet are decoupled by giving them large masses. Such a decoupling may also be achieved
in our model, where QQΞ†, UDΞ would generate a vector-like mass matrix M for the Sp(N −3) fermions below
fGC. Unfortunately, decoupling would typically violate (3.3.2) because M introduces a new physical CP-odd
phase that contributes to θ̄ at tree-level. In order to preserve |θ̄′ − θ̄| < 10−10 one would therefore be forced to
demand that | arg det M | < 10−10. Here we avoid this fine-tuning by forbidding the couplings QQΞ†, UDΞ.
This way the extra fermions remain chiral, like the SM fermions, and get trapped into the heavy Sp(N − 3)
hadrons.

11The opposite regime, with fa < f , may nevertheless provide a solution to the Strong CP problem but
requires a completely different study.
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U(1)PQ spontaneously at a scale ∼ fa. In such a model the axion acquires the very same
couplings to the SU(3)C × Sp(N − 3) topological terms even with fa < fGC because below
the Grand Color breaking scale F, F c split into the direct sum of fermions that are both
in the fundamental representation of SU(3)C and Sp(N − 3) and so have the same Dynkin
index. The phase in y does not affect this conclusion. Finally, we note that for definiteness
we decided to work within a KSVZ axion model, but it should be clear that a DFSZ model
would equally do.

3.3.2 The Axion Potential at Leading Order

At scales below fGC our model reduces to the SM plus an Sp(N − 3) gauge theory with
three families of fermions ψq = (ψqu , ψqd), ψu,d charged as shown in table 3.2, with Yukawa
couplings (3.3.4), and an axion ā equally coupled to color SU(3)C and Sp(N − 3). All the
scalars contained in Φ,Ξ acquire masses proportional to fGC and decouple.

The fate of the exotic fermions and the axion potential is completely determined assuming
that Sp(N − 3) confines at a scale f < fGC larger than v ≈ 246 GeV. This hypothesis is
certainly realized provided N ≥ 9. In order to get rid of an otherwise large mixing between
the axion and the η′ singlet of the Sp(N−3) dynamics we remove the axion from the topological
term via a rotation of the ψq,u,d. This can for example be achieved via a phase re-definition
ψu → eiā/3faψu, where the factor of 3 denotes the number of generations, which puts the
axion in front of the up-type Yukawas, i.e. Yu → eiā/3faYu.

The physics at confinement is better described in terms of a strong Sp(N − 3) dynam-
ics with an approximate SU(12) global symmetry under which the column vector Ψ =
(ψqu , ψqd , ψu, ψd) transforms as the fundamental representation. At confinement the chiral
condensates ⟨ψquψqd⟩ = −⟨ψqdψqu⟩ = ⟨ψuψd⟩ ∼ 4πf3/

√
N break SU(12)→ Sp(12) [146,147].

To demonstrate this we first observe that, because all bound states of Sp(N − 3) are bosonic,
’t Hooft anomaly matching implies that SU(12) must be broken. Finally, by the Vafa-Witten
theorem we know that the vectorial subgroup, namely Sp(12), should remain unbroken [148].
Crucially, the electroweak symmetry is part of the unbroken group. The choice C′ = Sp(N−3)
is essential to achieve this key property.

The pattern SU(12) → Sp(12) delivers 65 would-be Nambu-Goldstone bosons Π. These
are not exact because the weak gauging of SU(2)L × U(1)Y and the Yukawa couplings con-
stitute a small explicit breaking of SU(12). In particular 51 of the would-be NGBs acquire
positive mass squared of order g2f2, g′2f2 from loops of the SU(2)L×U(1)Y vectors [146]. The
other 14, denoted by Π0, are gauge-neutral and can in principle mix with ā, similarly to the
π0 in the standard QCD axion. It is the dynamics of these Π0 that controls vacuum alignment
and in particular the vacuum expectation value of the axion. The vev of the charged NGBs,
instead, vanish and can be ignored in our discussion. Incidentally, some of the charged NGBs
are electroweak doublets and mix with the fundamental H. The heavy linear combinations
are integrated out, whereas we assume that the mass parameter of H is such that there exists
a unique light eigenstate with a small and negative mass squared. This will play the role of
the Higgs doublet of the SM, HSM. The fine-tuning we just invoked is nothing but the usual
hierarchy problem12.

12Note that from this observation follows that the true SM Yukawa couplings in low-energy observables differ
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The dynamics of the neutral NGBs can be effectively described observing that the elec-
troweak symmetry leaves intact a smaller SU(3)q×SU(3)u×SU(3)d×U(1)B global subgroup of
SU(12), associated to the independent flavour rotations of ψq, ψu, ψd as well as the Sp(N −3)
baryon number under which ψu, ψd have charge opposite to ψq. The vacuum condensates
break this symmetry down to SO(3)q × SU(3)u−d. As a result the 14 neutral NGBs can be
effectively parametrized in terms of three matrices: a special, unitary and symmetric matrix
ΣL ∈ SU(3)q/SO(3)q, a special, unitary matrix ΣR ∈ SU(3)u×SU(3)d/SU(3)u−d, and finally
ηB, the NGB of U(1)B. The boson ηB remains an exactly massless state because the baryon
number is not explicitly broken. We will discuss its phenomenology in subsection 3.3.4. The
remaining 13 neutral scalars, along with the axion, acquire a potential from the Yukawa inter-
actions of ψq,u,d. We stress that these couplings are the same as those of the SM quarks at the
threshold fGC, though below that scale they renormalize differently. At the scale f relevant
for the present discussion the ψq,u,d couplings, which to avoid over-complicating our notation
will still be denoted by Yu,d, are expected to be somewhat larger than the SM Yukawas by a
flavour-universal factor due to loops of the Sp(N − 3) dynamics. Expanding in powers of Yu,d
the most general potential reads [7]:

Vneutral = cud
N
f4 trY ∗

u ΣRYd
†ΣLe

i ā
Ngfa + h.c. +O(Y 4, v2/f2), (3.3.9)

with Ng = 3 the number of generations. The dominant contribution arises from a loop of H
and the Sp(N − 3) dynamics. The factor of N has been identified using a large N scaling
and recalling that f2 ∝ N . The parameter cud is a real incalculable quantity. Subleading
corrections contain |HSM|2 and/or higher order insertions of the Yukawa couplings. The former
cannot affect qualitatively the potential; such corrections are necessarily small because we are
interested in the chiral regime v ≲ f (see also 3.3.4). The latter will be argued to be negligible
in subsection 3.3.3.

Contrary to the standard QCD axion, the theory under consideration contains a light
fundamental scalar with Yukawa couplings to the fermions Ψ and it is not possible to directly
apply the results of [21] in order to argue that ⟨ā⟩ = 0. The minimization problem is therefore
conceptually different from QCD. In particular, in QCD [21] imply that the vev of the pions
must vanish and the low energy dynamics contains no CP violation other than the one encoded
in θ̄. In our scenario, on the other hand, the axion effective potential can depend non-trivially
on the vacuum configuration of the Π0’s. We will have to prove ⟨ā⟩ = 0 by brute force. This
is what we will do in the next section.

Before turning to the minimization of the potential, though, we stress that (3.3.9) possesses
a ZNg ⊂ SU(4Ng) symmetry under which ΣR,L → e±i2πn/NgΣR,L. This discrete symmetry
signals the presence of a set of inequivalent vacua sharing the same perturbative mass spectrum
and axion vev, which may indicate a cosmological domain-wall problem if the temperature of
the Universe ever exceeded f13. This issue adds to the more familiar domain-wall problem of
axion models, which takes place at the scale fa > f .
compared to Yu,d, not only due to different RG effects, but also because of some mixing angle. We will neglect
these corrections since our results are anyway affected by uncertainties of O(1) from incalculable coefficients.

13These domain-walls are stable because Z3 ⊂ U(1)B, and explicit breaking of U(1)B occurs via effective
operators of an extremely high dimensionality, since the baryon number is very well protected by our gauge
symmetries.
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Minimisation

The potential (3.3.9) involves 14 fields (13 neutral NGBs Π0 and the axion ā), and its mini-
mization is highly non-trivial. To perform this task we find it convenient to first discuss the
properties of the more general structure

V LO
neutral = V0 (Π0/f) eiā/faNg + h.c., (3.3.10)

where the number of light fermion generations Ng as well as the explicit expression of V0
are left arbitrary. Interestingly, both the potentials of our model and that of the standard
QCD axion have precisely this form. Therefore some of the results discussed here have a
rather general validity. In particular, in appendix 3.A we demonstrate that the absolute
minimum of (3.3.10) is found by maximizing |V0|, whereas the axion vacuum is determined
by ⟨ā⟩ /fa = Ng(π − ϕ) mod 2π, where ϕ = argV0 at the extremum.

In the case at hand V0 is given in equation (3.3.9), and in the basis in which Yu = ˆ︁Yu is
diagonal can be written as

V0 = cud
N
f4 tr ˆ︁YuΣR

ˆ︁YdV †
CKMΣL

= cud
N
f4 [ ˆ︁Yu]i[A]ii, A = ΣR

ˆ︁YdV †
CKMΣL.

(3.3.11)

|V0| is maximized when A is aligned as much as possible along ˆ︁Yu, with the corresponding
entries satisfying |[A]33| > |[A]22| > |[A]11|. Suppose for the time being that it is possible to
find a configuration ΣL,R that fully diagonalizes A, so that the diagonal entries read [A]ii =
|[A]ii|eiϕi , where ϕi are phases subject to ϕ1 + ϕ2 + ϕ3 = 2πn because of the constraint
detA = det ˆ︁Yd ∈ R. Under this hypothesis |V0| would be maximized when ϕi = ϕj is
common to all entries, such that the trace becomes a coherent sum of terms, and the minimum
configuration would read ϕi = 2πn/Ng. The phase of V0 at the minimum would finally be
ϕ = arg cud + 2πn/Ng, and from eq. (3.A.7) we would infer that ⟨ā⟩ /fa = Ng(π− ( arg cud +
2πn/Ng)) = Ng(π − arg cud), or [7]

⟨ā⟩
fa

=

⎧⎪⎪⎨⎪⎪⎩
0 mod 2π if Ng = even
0 mod 2π if Ng = odd and cud < 0
π mod 2π if Ng = odd and cud > 0

. (3.3.12)

This shows that, as long as A can be diagonalized, the system has a natural tendency to
relax the axion to a CP-conserving vev. Thus the axion vev is usually vanishing, though
for odd Ng and positive cud we get ⟨ā⟩/fa = π. Despite being CP-conserving, the latter
option is not phenomenologically acceptable because incompatible with the Gell-Mann-Okubo
relations [38]. In the standard QCD axion the result of [21] ensures that ⟨ā⟩/fa = 0, which
implies that cud must be negative. In our model later on we will offer some argument indicating
that cud should be negative.

Unfortunately, it is possible to prove that as soon as Ng ≥ 3 the matrix A cannot be
exactly diagonalized because ΣL, being unitary-symmetric, does not contain enough degrees
of freedom to diagonalize A†A. In scenarios with Ng ≥ 3 the logic leading to (3.3.12) can
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thus at most be approximate. And yet, we find (at least for the physically relevant case
Ng = 3) that (3.3.12) remains valid. Despite the impossibility of diagonalizing A, in fact,
the relation detA = A11A22A33 + ∆ holds up to a very small perturbation ∆. Equation
(3.3.12) then applies because in a perturbative expansion for small off-diagonal elements the
dynamical phases of the three diagonal elements of A are determined at leading order to be
2πn/Ng. That is, the corresponding fluctuations fall into a deep potential well, which cannot
be destabilized by the next to leading corrections due to ∆. As a result the overall phase of
V0 is still determined by ϕ = arg cud + 2πn/Ng and the axion vev by (3.3.12), as if A could
be exactly diagonalized.

Even though the above arguments seem rather convincing, an explicit calculation would
help lifting any doubt on (3.3.12). Furthermore, an explicit analysis is necessary to compute
the masses of the NGBs and the axion. In the following we will thus verify (3.3.12) and
calculate the axion mass for Ng = 1, where in fact A is trivially diagonalized, as well as
for Ng = 2, where it can be fully diagonalized by the NGB matrices. Subsequently we will
consider the phenomenologically relevant case Ng = 3. Along the way we will argue in favor
of cud < 0.

Warming Up With Ng = 1 and Ng = 2

The Ng = 1 case is almost trivial, since the spectrum of NGBs is composed of a charged
composite Higgs, that is not relevant to vacuum alignment, and the exact flat direction ηB.
The potential simply reduces to a potential for the axion:

(Ng = 1)V LO
neutral = 2 cud

N
f4 yuyd cos

(︃
ā

fa

)︃
(Ng = 1) (3.3.13)

where yu, yd are the up and down quark Yukawas. This potential is minimised at ⟨ā⟩ /fa =
0 mod 2π if cud < 0 or ⟨ā⟩ /fa = π mod 2π if cud > 0, as expected from (3.3.12). The axion
mass is given by

(Ng = 1)m2
a = 2 |cud|

N
yuyd

f4

f2
a

(Ng = 1). (3.3.14)

It is possible to show that for Ng = 1 the parameter cud must be negative. The argument is
a bit involved and will only be sketched here.

Our argument starts by considering a modified Ng = 1 scenario in which Yu = Yd and only
the neutral component of the fundamental Higgs is dynamical. This is certainly not our model,
but its effective potential is just a simple generalization of ours because the UV diagrams that
generate it, in terms of fundamental fermions and H, are virtually identical to those in our
model modulo corrections of order v2/f2. In particular, the sign of the overall coefficient
cud is exactly the same in the two scenarios because determined by equal correlators in the
unperturbed Sp(N − 3) theory. The conclusion that the axion vev vanishes only for cud < 0
remains valid. But crucially, in the modified model the fermionic determinant arising from
the integration of Ψ is real and positive definite because the fermionic spectrum is effectively
doubled [22]. Therefore the result of [21] can be generalized [149] to argue that the axion
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must be minimized at zero, and hence indirectly that cud < 0. This for us is proof that the
coefficient cud in (3.3.13) is negative.

The minimization of the Ng = 2 case is more interesting. In this case the potential (3.3.9)
depends on a CKM matrix that can be written in terms of the Cabibbo angle:

VCKM =
(︄

cos θc sin θc
− sin θc cos θc

)︄
(Ng = 2). (3.3.15)

As anticipated earlier, we find two inequivalent vacua related by a Z2 symmetry. These are
given by

cud > 0 :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⟨ΣL⟩ = (±)

(︄
i cos θc i sin θc
i sin θc −i cos θc

)︄
,

⟨ΣR⟩ = (±)
(︄
i 0
0 −i

)︄
,

⟨ā⟩ = 0,

cud < 0 :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⟨ΣL⟩ = (±)

(︄
i cos θc i sin θc
i sin θc −i cos θc

)︄

⟨ΣR⟩ = (∓)
(︄
i 0
0 −i

)︄ , ⟨ā⟩ = 0.

(3.3.16)

With two generations the vacuum configurations precisely diagonalise A = ΣR
ˆ︁YdV †

CKMΣL,
and in both cases ⟨ā⟩ /fa = 0 consistently with (3.3.12). In this vacuum all scalar excitations
(except for the exact flat direction ηB) are massive.

The Ng = 2 case is so simple to handle analytically that we were able to find an explicit
expression for the effective axion potential. This is obtained by solving the equation of motion
for the neutral NGBs Π0 and plugging it back into Vneutral. It is a reliable approximation of
the axion self-couplings in the limit f ≪ fa in which the neutral NGBs are much heavier than
the axion. We find

(Ng = 2)Veff

(︃
ā

fa

)︃
= −2 |cud|

N
f4 tr ˆ︁Yu ˆ︁Yd

⌜⃓⃓⃓
⎷1− 4 det ˆ︁Yu ˆ︁Yd(︂

tr ˆ︁Yu ˆ︁Yd)︂2 sin2
(︃
ā

2fa

)︃
(Ng = 2),

(3.3.17)

which is consistently minimized at ⟨ā⟩/fa = 0 mod 2π. This result is reminiscent of the
potential of the QCD axion in 2-flavour QCD. The axion mass immediately follows:

(Ng = 2)m2
a = 2 |cud|

N

det ˆ︁Yu ˆ︁Yd
tr ˆ︁Yu ˆ︁Yd f4

f2
a

(Ng = 2). (3.3.18)

Equation (3.3.17) is very valuable because we will not be able to obtain an explicit expression
for Ng = 3. It is therefore useful to extract as much information as possible from it. First, we
observe that in the limit of a heavy second generation equations (3.3.17), (3.3.18) reduce to
(3.3.13), (3.3.14). This is a highly non-trivial check of the consistency of our results. It is a
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consequence of the fact that a large Yukawa coupling for the second generation implies that
a number of NGBs becomes much heavier than those associated to the light first generation.
Up to corrections suppressed by the heavy NGB mass, therefore, the potential should reduce
to the Ng = 1 case, which is what we see here explicitly. The very same logic constrains the
structure of the Ng = 3 potential, as we will verify numerically. A second important lesson
we can draw from (3.3.17), and more readily (3.3.14), is that the non-trivial dependence
of the axion potential should be controlled by det ˆ︁Yu ˆ︁Yd. This is also a very general result,
independent of Ng. Indeed, if any of the eigenvalues of Yu or Yd were to vanish the UV
Lagrangian would be invariant under an additional anomalous axial symmetry which could
be combined with U(1)PQ to obtain an exact unbroken one. In that situation the axion
would become an exact flat direction. Hence the axion potential must be proportional to at
least a power of all the eigenvalues. The quantity det ˆ︁Yu ˆ︁Yd is the simplest object with this
property. The axion mass squared cannot be simply proportional to the determinant unless
Ng = 1, however. By counting the units of ℏ we need at least 2Ng − 2 additional coupling
constants in the denominator, so dimensional analysis forces m2

a to be inversely proportional
to an appropriate combination of Yu, Yd as found in (3.3.18). This holds true also in the
SM, as noted in section (3.1.1). The significant hierarchy in the SM fermion masses and the
decoupling properties mentioned in the previous paragraph, together indicate that the axion
mass in our model is always numerically close to (3.3.14).

The Real World: Ng = 3

Having checked the simplified scenarios Ng = 1, 2, we can now turn to the realistic case
Ng = 3. The previous calculations support the correctness of (3.3.12), and as such we expect
the leading order potential (3.3.9) to be minimised at ⟨ā⟩ /fa = 0 (π) for cud < 0 (> 0).
Unfortunately, in the case Ng = 3 the potential involves 14 fields and it is not possible to
approach the problem analytically. For this reason we employ a customised MATHEMATICA
algorithm which enables us to numerically find the minimum of the potential up to a very high
accuracy. The minimisation procedure is repeated many times in order to statistically validate
the result. The Yukawa couplings that appear in the potential are renormalized at the scale
∼ 4πf/

√
N by the Sp(N−3) dynamics. As a benchmark we employ the PDG data for VCKM [1]

and the numerical values of ˆ︁Yu, ˆ︁Yd that correspond to the SM quark Yukawas evaluated at the
TeV scale [150]. Changing the numerical value of these couplings does not affect our results
qualitatively. What we find is exactly (3.3.12): the distinct vacua configurations are related
by a Z3 symmetry ΣR,L → e±i2πn/3ΣR,L; all vacua give rise to the same A, which is diagonal
up to small off-diagonal elements; the axion is minimised at ⟨ā⟩ /fa = 0 or π depending on
the sign of cud.

In the study of the Ng = 1 toy model we gave an argument supporting the claim that cud
is negative. At sufficiently large N there is no distinction between the coefficients cud for the
Ng = 1 and Ng = 3 scenarios. We are therefore motivated to conjecture that cud < 0 also for
Ng = 3, and from now on work under this hypothesis. Given the central role played by this
hypothesis, it would be interesting to find an independent proof, for instance using lattice
QCD techniques.

We are now interested in studying the spectrum of the NGBs and the axion. To read
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off the masses we first canonically normalize the kinetic term f2 tr ∂µΣL,R∂
µΣL,R, altered by

the vev of the NGBs, and then perform an SO(14) rotation to diagonalise the Hessian of the
potential. As a result of this operation, the masses of the 13 neutral NGBs are found to be [7]

m2
Π0 ≃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6.4× 10−2

2.5× 10−2

2.4× 10−2

2.4× 10−2

2.4× 10−2

2.4× 10−2

2.3× 10−2

2.7× 10−5

1.2× 10−5

2.5× 10−6

1.6× 10−6

1.6× 10−6

4.0× 10−8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× |cud|
N

f2 (3.3.19)

for all the three Z3-symmetric vacua configurations. The eigenstate corresponding to the
axion is the lightest one for any f < fa. The mass that we extract numerically respects the
scaling suggested in the previous section, namely [7]

(Ng = 3)m2
a ≃ 2 |cud|

N
yuyd

f4

f2
a

≃ 1.8× 10−10 × |cud|
N

f4

f2
a

(Ng = 3). (3.3.20)

The NGBs’ masses are substantially unaffected by the mixing with the axion as long as
f/fa ≪ 1 (even though the mixing will turn out to be important for phenomenology, see
subsection 3.3.4). In the extreme limit f/fa → 1 the mixing impacts the NGBs masses by a
few 10%, with the lightest being affected the most.

We conclude this section emphasizing that the axion mass (3.3.20) is parametrically en-
hanced with respect to the standard QCD axion as long as f ≳ 102fπ. Therefore, the goal
outlined at the beginning is fulfilled.

3.3.3 Subleading Corrections and Heavy Axion Quality

The analysis carried out so far demonstrates that the Grand Color axion has a large mass and
a leading order potential minimized at ⟨ā⟩ = 0. Higher order corrections cannot affect this
result unless they introduce new sizable sources of CP violation or flavour-violation. We will
argue next that subleading effects due to renormalizable interactions do not spoil our solution
of the Strong CP problem and that the effect of non-renormalizable operators can be taken
under control.

Renormalizable Interactions

In the renormalizable version of our scenario the effective axion potential Veff(ā/fa) depends
on flavour-invariant combinations of the parameters Yu,d, ⟨ΣL,R⟩. The Yukawas parametrize
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explicit CP violation, whereas the NGB vacuum potentially represents an independent source
of spontaneous CP violation. A non-vanishing vev for the axion is induced by CP-odd, flavour-
conserving combinations of these parameters.

Crucially, in our model all CP-odd invariants must necessarily be proportional to explicit
CP violation. This follows from the fact that spontaneous CP violation does not take place.
As a first simple check of this statement, let us inspect the Ng = 2 toy model, where we have an
explicit analytic solution. Here the CKM matrix is real, i.e. there is no explicit CP violation,
and it is readily seen that equations (3.3.16) preserve the generalised CP transformation
ΣR,L → −Σ∗

R,L. A far less trivial check is obtained for Ng = 3. In that case we verified
that, when we switch off the CKM phase, the explicit numerical solution of the leading order
potential in (3.3.9) also satisfies the relation ⟨ΣR,L⟩ = e±i2πn/3 ⟨ΣR,L⟩∗. In other words, in
the absence of explicit violation, CP is not spontaneously broken.

An important consequence of what we just demonstrated is that any CP-odd flavour
invariant in Veff must be proportional to the explicit CP violation in Yu,d. A key property of
our theory, inherited from the SM, is that explicit CP violation should disappear whenever
two of the eigenvalues of the SM quark mass matrix squared are degenerate, or any mixing
angle goes to zero, or when the CKM phase vanishes. This is very important. We have
already seen that the non-trivial part of the effective axion potential must be proportional to
detYuYd. Here we find that any explicit CP-violating interaction of the axion must contain a
further suppression that disappears in the above limits. Such a suppression is so significant
that explicit CP violation in Veff becomes effectively innocuous: CP-odd flavour-invariant
combinations of the Yukawas and ⟨ΣL,R⟩ may arise in Veff only at very high order in an
expansion in Yu,d and are numerically extremely small. It is therefore not surprising that,
even including the CKM phase, our O(Y 2) potential does not induce an axion vev. In fact, at
O(Y 2) the effect of explicit CP violation cannot be visible, the only flavour-invariant candidate
trY ∗

u ⟨ΣR⟩Yd† ⟨ΣL⟩ is real and hence there is nothing that can be on the right-hand side of
⟨ā⟩ = 0.

In summary, subleading corrections to the effective axion potential are either even in ā
or odd, the latter being proportional to the explicit CP violation. Terms even in ā cannot
destabilize our solution because the leading order theory has no flat directions. The terms odd
in ā are however dangerous if they include a tadpole. In that case the axion vev is shifted from
the origin. Still, the shift must be proportional to the tiny explicit CP-violating phase that
controls the tadpole and the vacuum expectation value would thus be safely below |⟨ā⟩|/fa ≲
10−10. Our axion dynamically solves the Strong CP problem like in the standard QCD
scenario. Higher dimensional operators with new CP-violating or flavour-violating couplings
can however introduce new CP-odd flavour invariants which can be numerically more relevant
that those of the renormalizable theory. These effects are discussed next.

Higher-Dimensional Operators

At the root of the axion quality problem is the fact that a huge fa makes the axion poten-
tial extremely sensitive to cutoff-suppressed U(1)PQ-breaking interactions. As stated at the
beginning of this section, this sensitivity may be alleviated by increasing the axion mass.
However, there is no free lunch. To enhance the axion mass, the confinement scale f has to
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be rather large as well. As a result, cutoff-suppressed U(1)PQ-conserving contributions to the
axion potential, as long as they are CP- or flavour-violating, may become important and in
principle spoil the solution of the Strong CP problem.

More precisely, consider the flavour-violating but U(1)PQ-preserving operator

c̄ijkl
f2

UV
QiQjUkDl, (3.3.21)

where i, j, k, l are flavour indices. This has precisely the same axial U(1)A charges as the
leading order potential in (3.3.9) and thus represents a modification δV0 ∼ c̄ 16π2f6/(N2f2

UV)
of the quantity V0 ∼ trYuYd f4/N defined in (3.3.11). This is not aligned with (3.3.9) for
generic c̄ijkl, and must therefore be small. According to (3.A.2) the axion vev is of order
⟨ā⟩ /fa ∼ Im δV0/|V0|, where the imaginary part of the flavour invariant δV0 may come either
from c̄ijkl directly or from phases of the leading NGB vev, which become physical when
contracted with a flavour-violating c̄ijkl. The requirement that the effective topological angle
be less than 10−10 becomes

f ≲ 10−7fUV (3.3.22)

which for a maximal UV cutoff of order fUV = MP reads f ≲ 1011 GeV. Somewhat similar
considerations apply to operators that do not violate the axial Sp(N − 3) symmetry U(1)A
but still violate flavour, like

c̄ijkl
f2

UV
(ΨiΨj)(ΨkΨl)†. (3.3.23)

This operator modifies the NGB vev and in turn shifts the axion minimum. As a conservative
bound we impose (3.3.22). Moreover, we could have operators that do not violate flavour, but
contribute new CP-odd flavour-conserving phases to the axion effective potential. A typical
example is the Weinberg operator

c̄W
M2

UV

g3
GC

16π2GGCGGC ˜︁GGC. (3.3.24)

The new CP-odd phase should be smaller than 10−10 to guarantee a solution of the Strong
CP problem. From this requirement the weaker upper bound c̄W f

2/f2
UV ≲ 10−10 follows.

Finally, let us come back to the original motivation: the axion quality problem. As in
section 3.2, imposing that a U(1)PQ-violating operator of dimension n does not significantly
alter the axion vev implies

λ∗f
4
a

(︃
fa
fUV

)︃n−4
≲ 10−10m2

af
2
a , (3.3.25)

and by comparing this to the lower bound of the standard QCD axion, i.e. (n− 4)std, we get

(n− 4) = (n− 4)std −
logm2

a/m
2
a,std

log fUV/fa
. (3.3.26)
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The quality problem is logarithmically sensitive to the mass ratio m2
a/m

2
a,std and becomes more

and more sensitive to this quantity as fa gets larger. In our model we find an appreciable
improvement as long as f ≫ 102fπ, see (3.3.20). As a numerical example, for fa = 1010 GeV
and f = 108 GeV we get an axion mass of a few GeV. Taking fUV = MP and λ∗ = 1 this
corresponds to [7]

f = 108 GeV
fa = 1010 GeV
fUV = MP

n ≳ 7

⎛⎜⎜⎝
f = 108 GeV
fa = 1010 GeV
fUV = MP

⎞⎟⎟⎠ (3.3.27)

which is a significant improvement compared to nstd ≳ 10.
In conclusion, the sensitivity to Peccei-Quinn-violating interactions suppressed by the UV

cutoff is reduced compared to the standard scenario as a result of the larger axion mass.
However, this very enhancement leads to a novel sensitivity to Peccei-Quinn-preserving de-
formations14. This “heavy axion quality problem” [7] is generically shared by all models that
attempt to increase the axion mass via a new strong coupling at f ≫ fπ. Future measure-
ments of the dipole moments of the neutron, as well as of atoms and molecules will potentially
be able to set upper bounds on the axion mass of these scenarios.

3.3.4 Phenomenology

The phenomenology of our model is extremely rich. Here we present just a qualitative assess-
ment.

The Sp(N − 3) dynamics generates many massive hadrons, all of which are unstable
because there is no unbroken flavour symmetry that protects them. Heavy hadrons of mass
∝ 4πf/

√
N as well as baryons quickly decay into NGBs. The electroweak-charged NGBs

decay into the SM Higgs boson, W±, Z, and neutral Π0’s. The latter are much more long-
lived, and decay dominantly into QCD hadrons and/or photons via the mixing with the axion
and the η′ of the Sp(N − 3) dynamics. Less relevant decay channels for Π0’s are into SM
fermions via non-renormalizable interactions generated at the scale fGC. Very likely, yet, only
the lightest hadrons were significantly produced in the early Universe because in order to
robustly avoid a domain-wall problem associated to the Z3-degeneracy of the NGB potential
reheating must probably have occurred after Sp(N −3) confinement (see discussion below eq.
(3.3.9)).

The hadrons can be directly produced at the LHC and future colliders. In addition, the
Sp(N−3) dynamics can be indirectly probed via precision measurements. As a rough measure
of the current impact of these constraints we impose the qualitative bound f ≳ TeV. In this
regime the low energy signatures are mainly controlled by ā and Π0 (and, if present, ηB; see
below). The effective field theory is governed by the couplings to the topological terms of the

14The same point was discovered independently in [151]. Their numerical estimates are based on 1-instanton
calculations and therefore not reliable for our model nor for mirror-symmetric scenarios. Yet their conclusions
are qualitatively general and agree with ours.
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gluon and the photon

LEFT ⊃
1
2(∂ā)2 − m2

a

2 ā2 + g2
C

32π2
ā

fa
G ˜︁G+ c̄aγγ

e2

32π2
ā

fa
F ˜︁F

+1
2(∂Π0,i)2 −

m2
Π0,i

2 Π2
0,i + g2

C
32π2 c̄

i
Π0gg

Π0,i
f
G ˜︁G+ c̄iΠ0γγ

e2

32π2
Π0,i
f
F ˜︁F . (3.3.28)

The effective couplings to the Z and W± bosons are phenomenologically less relevant. Assum-
ing that the U(1)PQ has no electroweak anomaly, and momentarily ignoring the mixing with
Π0, the coefficient c̄aγγ can be computed by moving the axion from the SU(N)GC topological
term to the Yukawas with an anomalous chiral rotation, and re-placing it only in front of the
QCD topological term below the Grand Color breaking. Recalling that the SM hypercharge
is given by a combination of U(1)Y′ and U(1)GC, we get

c̄aγγ = −1
2 (N − 3)

(︃
1− 1

3N

)︃
. (3.3.29)

Consistently with expectations, this expression vanishes for N = 3, when our model reduces
to a standard KSVZ scenario. We will consider N = 13 for definiteness, noting that a number
of colors > 17 would typically induce a Landau pole for SU(2)L below the Planck scale
whereas for N < 9 the condition f ≳ TeV would not be attained. We verified that with these
parameters the condition f < fGC ≲ 1013 GeV is also satisfied.

The neutral NGBs have no bare coupling to the SM vectors. However, they acquire them
from the mixing with ā and the heavy η′ of Sp(N−3). These contributions are parametrically
of order c̄Π0gg ∼ f/fa and c̄Π0γγ ∼ max

{︂
m2

Π0
/m2

η′ , f/fa
}︂

. As a result the decay rate into
gluons, controlled by the ā−Π0 mixing, is of order

ΓΠ0→gg ≳ Γā→gg
fa
f
, (3.3.30)

where we took into account the different scaling of the masses with f, fa (see (3.3.20) and
(3.3.19)). Importantly, the rate is always greater than Γā→gg in the regime (3.3.8). This
parametric estimate is confirmed by an accurate numerical analysis, which also reveals that
some Π0 can have rates several orders of magnitude larger than shown in (3.3.30). Note also
that the NGB mixing with the axion does not appreciably modify (3.3.29). As long as f ≪ fa
the effect is parametrically suppressed, and we numerically verified that as f approaches fa
the change in the axion coupling to photons is still at most O(10%).

The axion mass is given in eq. (3.3.20) and in the allowed regime f ≳ TeV is always larger
than the standard one. Furthermore, as we saw around (3.3.22), a conservative condition for
the Strong CP problem to be solved is f ≲ 1011 GeV, where we identified the UV cutoff with
the Planck scale. Combining the two bounds we see that our scenario populates the light-pink
bend in the ma − fa plot of Fig. 3.2 labeled by “Grand Color axion", defined by the implicit
relation 103 GeV ≤ f ≤ 1011 GeV — where f = f(ma, fa) is given by (3.3.20). We included
a hard cut at f < fa to indicate the regime of validity of the effective field theory approach
adopted in this paper, see eq. (3.3.8). In the grey region f > fa our results do not necessarily
apply, though without a detailed analysis this region cannot be excluded. The dotted grey
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Figure 3.2: Collection of the main bounds on fa vs ma, as discussed in subsection 3.3.4. For
definiteness we assumed N = 13 and |cud| = 1. The light-pink bend denoted by “Grand Color
axion" identifies the region populated by our scenario. Plot taken from [7].

lines in Fig. 3.2 show contour regions of eq. (3.3.26) with fUV = MP. The axion quality
problem is progressively more alleviated as we move towards the upper-right corner. The
regime with high quality is the one in which, for a fixed fa, the axion mass is maximal, i.e.
the confinement scale reaches the extreme value f → fa compatible with (3.3.8).

The “Grand Color axion” bend is mostly probed by cosmological observations from BBN
and CMB physics (blue), astrophysics (green), and collider experiments (brown). In particu-
lar, the left boundary of the blue region is taken from the collection of bounds in [94]. The
rightmost part of the cosmology bound is due mainly to the Neff bounds from [152] and the
requirement that the total axion decay rate satisfies Γtot ≥ 3H(TBBN), where H(TBBN) is the
Hubble rate when the Universe reached temperatures of order TBBN = 4 MeV [153], in order
not to interfere with Big-Bang-Nucleosynthesis. The hadronic decay rate has been calculated
adapting the results of [154] to our model. The axion decay rate takes into account (3.3.29),
includes also the mixing with the QCD mesons, and is modified with respect to the standard
case because of the much larger value of ma. For the astrophysics bounds we refer to [94].
The collider bounds on top of figure 3.2 are taken from [155] and [156]. The white regions are
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currently viable.
In the far bottom-left of the “Grand Color axion” bend one should make sure that the

heavier NGBs are sufficiently long-lived to avoid disrupting the primordial abundance of
light elements. However, because of their large masses, vacuum misalignment typically over-
produces them in the form of a Bose condensate of ā,Π0 unless the initial misalignment angles
are extremely small. Moreover, in that region the axion quality problem is not ameliorated
compared to the standard scenario. For these reasons we believe the upper-right region is
more motivated.

The upper-right corner of the “Grand Color axion” bend is also more interesting because
in that regime ongoing and future accelerators as well as future CMB observations are able
to explore our model. In particular, because fa can approach the TeV scale this scenario can
be probed for example at HL-LHC [141], Kaon and Hyperon factories [155], DUNE [156],
NA62 [157], Belle II [158, 159] and MATHUSLA [160]. The phenomenological signatures are
much richer than the standard QCD axion because of a variety of axion-like-particles Π0
with anomalous couplings, see (3.3.28). Future CMB surveys will also significantly improve
measurements of Neff and will be able to constrain a wider region of parameter space on the
right of the blue area. In contrast to the accelerator searches mentioned above, however,
here the neutral NGBs are not expected to play any relevant role because are much heavier
and decay faster than the axion, see (3.3.30). Yet, they might still lead to non-standard
cosmological signatures, albeit quite indirect. The energy stored in a Bose condensate of
neutral NGBs via vacuum misalignment may be estimated as ρΠ0(T ) ∼ θ2

rm
2
Π0
f2(T/Tr)3, with

θr denoting the misalignment angle at the end of inflation and Tr the reheating temperature.
For certain values of masses and decay rates the temperature Tm at which ρΠ0(Tm) dominates
over radiation is actually larger than the decay temperature Td ∼

√︁
ΓΠ0MP. When this

happens the Universe undergoes an early period of matter domination which might result in
a depletion of the primordial densities of visible and dark matter.

One last comment should be added before closing. In addition to Π0, ā, our model gener-
ically features a virtually massless photophobic axion-like particle ηB from the breaking of
U(1)B ⊂ SU(12). It acquires no potential from the Yukawa interactions, since these are
U(1)B-symmetric, and only has electroweak anomalous couplings. Its effective Lagrangian
reduces to

LEFT ⊃
1
2(∂ηB)2 + ηB

fB

(︄
g2

L
32π2W

˜︂W − g2
Y

32π2Y
˜︁Y )︄ , (3.3.31)

where fB = (2/
√

3)f/N , plus derivative interactions with itself and the other NGBs. While
its coupling to photons vanish, 1-loop generated interactions to the SM fermions lead to a
constraint of order f ≳ 300×N TeV [161] whereas, under the hypothesis Tf < f , the impact
on Neff is minimal. The bound on f just quoted is much stronger than those considered
before. To obliterate the problem we may get rid of ηB by gauging U(1)B-L, as suggested
for other reasons in subsection 3.3.1. In order for ηB to be gauged away, all the fundamental
scalars should be neutral and right-handed neutrinos should be added in order to ensure gauge
anomalies cancellation.
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Appendices

3.A General Considerations on the Leading Order Po-
tential

In this appendix we derive the minimization condition for the leading order potential of the
neutral scalars. This can be compactly written as in eq. (3.3.10). The extremality conditions
read {︄

δV0
δΠm e

i⟨ā⟩/faNg + δV ∗
0

δΠm e
−i⟨ā⟩/faNg = 0

V0e
i⟨ā⟩/faNg − V ∗

0 e
−i⟨ā⟩/faNg = 0.

(3.A.1)

Combining these equations (we will show below that |V0| ≠ 0) we get ei⟨ā⟩/faNg = ±V ∗
0 /|V0|,

so that the above system can be rewritten as⎧⎨⎩
δ|V0|
δΠm = 0
sin
(︂

⟨ā⟩
Ngfa

)︂
= ∓ ImV0

|V0|
(3.A.2)

from which it is clear that the vacuum is obtained extremizing |V0|, and a necessary condition
for the Strong CP problem to be solved is that V0 is real at the minimum.

To see whether the vacuum is actually at the minimum or at the maximum of |V0| we
must study the Hessian, which reads

H =
(︄
M2

ΠΠ M2
aΠ

M2
aΠ M2

aa

)︄
(3.A.3)

with

[M2
ΠΠ]mn = 1

f2
δ2V0

δΠmδΠn
ei⟨ā⟩/faNg + 1

f2
δ2V ∗

0
δΠmδΠn

e−i⟨ā⟩/faNg (3.A.4)[︂
M2
aΠ

]︂
m

= i

ffaNg

δV0
δΠm

ei⟨ā⟩/faNg − i

ffaNg

δV ∗
0

δΠm
e−i⟨ā⟩/faNg (3.A.5)

M2
aa = − 1

f2
aN

2
g

V0e
i⟨ā⟩/faNg − 1

f2
aN

2
g

V ∗
0 e

−i⟨ā⟩/faNg .

The NGB-axion mixing and the pure axion term are order f/fa and f2/f2
a . For simplicity

we will work in the limit f ≪ fa, so we can treat them as perturbations, but our conclusions
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will apply in general. In this way, if M2
ΠΠ has no flat directions the lightest eigenvalue

approximately reads

M2
a = M2

aa −M2
aΠ[M2

ΠΠ]−1M2
aΠ +O(f4/f4

a ) ≤M2
aa. (3.A.6)

Thus a necessary condition for stability is M2
aa ≥M2

a ≥ 0, which translates into [7]

V0e
i⟨ā⟩/Ngfa = −|V0|. (3.A.7)

This tells that the absolute minimum of the potential is reached when V LO
neutral = 2V0e

i⟨ā⟩/Ngfa =
−2|V0|, and hence the vacuum is obtained by maximizing |V0|. This justifies the earlier as-
sumption V0 ̸= 0, for V0 = 0 would be energetically disfavored. The conclusion just derived
has been obtained for f ≪ fa but in fact has general validity because a mass mixing always
pushes the lightest eigenstate to lower values, so the condition M2

aa ≥ 0 is anyway necessary.
The presence of flat directions in M2

ΠΠ would not alter the conclusion either. Indeed, for
the same reason we just explained these directions cannot mix with the axion otherwise they
would turn tachyonic after the mixing is removed. It follows that Π flat directions cannot
affect the axion mass nor the argument leading to (3.A.7).

In summary, we demonstrated in complete generality that the minimum of V LO
neutral is

obtained by maximizing |V0| with respect to the Nambu-Goldstone fields. The axion vev
follows. Indeed, writing V0 = |V0(⟨Π⟩)|eiϕ(⟨Π⟩/f), eq. (3.A.7) indicates that the value of the
axion at the minimum is determined by ⟨ā⟩ /Ngfa + ϕ = π mod 2π.

The solution of the Strong CP problem requires Ng(π − ϕ) be a multiple of 2π, and this
cannot be assessed unless an explicit form of V0 is given. In subsection 3.3.2 we analyzed in
detail the potential of our scenario. Here, as a quick check of our results, we study the leading
order potential for the standard axion in 2-flavour QCD. Note that the same structure (3.3.11)
applies to the standard QCD axion provided ˆ︁Yu is interpreted as the quark mass matrix and
A the pion matrix. In the QCD case the axion is rotated such that the quark masses are
positive, i.e. mu,d > 0, and the axion field appears as in (3.3.10) with Ng = 2, see (3.1.9).
Switching off the charged pion components we have V0 = C[mue

iπ0/fπ +mde
−iπ0/fπ ], with C

some constant. For mu ̸= 0 we find that |V0| has two extrema, one at ⟨π0⟩ = 0 and the other
at ⟨π0⟩ = π/2. At the two extrema the function |V0| is respectively given by mu + md and
|mu −md|. Hence the absolute maximum of |V0| is attained when ⟨π0⟩ = 0 and the Strong
CP problem, as well-known, is solved, i.e. ⟨ā⟩ /fa = 2π ∼ 0. When mu = 0 the function
|V0| = |C|md is constant and ϕ = argV0 arbitrary. The argument above tells us that the
axion is now a flat direction, as expected.
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Chapter 4

UV Solutions

This chapter is devoted to the study of UV solutions to the Strong CP problem, namely
solutions based on spontaneous P/CP violation. In section 4.1 we briefly review the main
ideas behind this approach. Then, in sections 4.2, 4.3, we specialize to the case of Nelson-Barr
models. We first perform a comprehensive analysis of the Nelson-Barr low-energy effective
theory, identifying the main criticalities associated with these models. Subsequently, in section
4.3, we propose a set of highly predictive UV scenarios designed to address these challenges.
Section 4.2 and appendices 4.A, 4.B are taken from the original work [8], while section 4.3 is
taken from the original work [9].

4.1 Spontaneous P/CP Violation

UV solutions to the Strong CP problem assume that some generalized notion of CP is an
exact symmetry of whatever completion of the SM is there in the far UV. Being the QCD
topological angle CP-odd, this condition completely eliminates the Strong CP problem at
the UV completion scale. The phenomenological fact that at energies around and below the
electroweak scale we observe P and CP violation, however, implies that this symmetry cannot
remain exact, and thus should be spontaneously broken at some scale Λ /CP. At low energies
the theory is expected to reproduce the SM parameters and its particle content without fine-
tunings. Yet, as noted in chapter 1, P and CP violation in the SM are highly non-generic.
Therefore, the challenge that these models encounter is that of explaining O(1) P and CP
violation in the weak sector while simultaneously suppressing it in the strong sector.

Crucially, these solutions stand up against the Peccei and Quinn one as there is no quality
problem associated to generalized CP. Indeed, the latter can be embedded into a gauge sym-
metry in extra-dimensional theories of gravity [162,163], and as such quantum gravity effects
cannot lead to effective operators encoding its explicit violation [117,164].

From a quantum field theory point of view, the existence of an exact generalized CP
symmetry requires the action to be invariant under the most general CP transformation
(2.2.16),

ψi(x)→ Uijϵψ
†
j(Px), ϕa(x)→ Oabϕb(Px), AAµ (x)→ RABPνµABν (Px), (4.1.1)
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for some matrices U,O,R respectively of U(Nψ), O(Nϕ), Gglob (see chapter 2). This require-
ment strongly constraints the form of the renormalizable and non-renormalizable interactions
of the theory. Notably, in the Standard Model it is not possible to find any definition of CP
which leaves the action invariant. As such its definition is ambiguous. Nevertheless, typically
one refers to P as the would-be symmetry flipping the chirality of the fermions: in terms
of four-component fermions, ψL ↔ ψR (equivalently ψ → γ0ψ). This definition is clearly
violated in the full SM because of the weak sector begin chiral. However, much below the
electroweak scale the heavy W±, Z and Higgs’ bosons can be integrated out, leading to the
well-known SU(3)C×U(1)EM theory (2.1.39). This is invariant under the previous definition
of P except for the topological angles and non-renormalizable operators, and thus justifies the
origin of the conventional notion of P. Actually, the low-energy theory is invariant under an
additional symmetry called charge-conjugation (C), sending ψ → ψc = −iγ2ψ̄

∗. Since ψc has
the same Lorentz transformation properties as ψ, we can generalize the previous notion of P
by embedding it with C to get another (almost) conserved symmetry, CP: ψ → −iγ0γ2ψ̄

∗.
Its action is actually equivalent to time-reversal (T) due to the CPT theorem [165]. In terms
of Weyl fermions CP is much simpler as it amounts to taking U = 1 in (4.1.1) in the mass
basis of the quarks. Unlike P, however, the weak gauging of the full SM does not violate this
symmetry. The entire breaking comes from the Yukawas:

Yd Q̄LHdR + Yd
† d̄RH

†QL
CP−−→ Y ∗

d Q̄LHdR + (Y ∗
d )† d̄RH

†QL

Yu Q̄L
˜︁HuR + Yu

† ūR ˜︁H†QL
CP−−→ Y ∗

u Q̄L
˜︁HuR + (Y ∗

u )† ūR ˜︁H†QL
(4.1.2)

where we also let H CP−−→ H∗. Thus, CP in the SM is only broken by the fact that the
Yukawas are complex (modulo SU(Nψ) rotations). This is consistent with the fact that real
Yukawas would identically imply I /CP = det

[︂
YuYu

†, YdYd
†
]︂

= 0, or equivalently δ = 0 as the
diagonalization of the Yukawas would require only orthogonal matrices (instead of unitary)
so that the resulting CKM matrix would be real.

Given the conventional notions of P and CP, models of spontaneous P or CP violation
are typically distinguished according to which of these two symmetries (or a close-enough
generalization) are promoted to actual symmetries of the theory upon extending the SM
content.

Spontaneous P violation typically requires the introduction of chiral-partners of the SM
fermions, whose exact charges depend on the specific implementation of P. The most straight-
forward way to implement such a symmetry is to double the SM fermions as to associate
a right-handed partner to every left-handed fermion and vice-versa, basically making them
vector-like. In this way parity can be enforced as an exact symmetry and θ̄ = 0 above Λ/P.
Since these partners have not been observed they must be quite heavy, and the mass splitting
can be obtained by introducing an additional Higgs field. However, the gauge degrees of free-
dom of the weak sector are not enough to make the two Higgs vevs’ simultaneously real, and
thus an unacceptable O(1) θ̄ is generated by the splitting. Another possibility is to extend
the SM gauge group to SU(3)C × SU(2)L × SU(2)R × U(1)Y′ , in such a way that the SM
right-handed fermions are embedded in SU(2)R doublets and play the role of the partners.
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Parity also exchanges SU(2)L ↔ SU(2)R, and the most general Yukawas of the quarks read

−LYuk = h Q̄LΦQR + ˜︁h Q̄L ˜︁ΦQR + h.c. (4.1.3)

where the Higgs field Φ sits in the bifundamental of SU(2)L × SU(2)R (˜︁Φ = σ2Φ∗σ2). The
matrices h, ˜︁h are Hermitian as a consequence of P, and at this stage θ̄ = θ + arg deth˜︁h = 0.
Unfortunately, to obtain a phenomenologically acceptable low-energy theory additional scalar
fields are required1 and one encounters the same problem as before, namely their vevs’ induce
a tree-level θ̄ [166, 167]. The way out of this problem is then to introduce new partners to
each SM fermion (and to the Higgs), instead of grouping the right-handed ones in SU(2)R
doublets. Depending on the eventual introduction of an additional U(1)Y′′ and on the exact
charges of the partners many possibilities open [168]. The by far most popular one is the
Babu-Mohapatra model [169], in which no U(1)Y′′ is present and the partners have exactly
the same charges of the SM fermions except SU(2)L ↔ SU(2)R. This model has been quite
extensively investigated in literature [170–173], and despite the fact in the “see-saw” regime
its viability seems comprised due to big radiative corrections to θ̄ [173], the opposite regime
might still offer a valid alternative. As a variation of this minimal and popular idea one could
introduce an additional U(1)Y ′′ . In this way the partners’ sector is completely decoupled from
the SM (except for color gauge interactions and a quartic Higgs portal), and the radiative
corrections to θ̄ are basically identical as in the SM and therefore extremely suppressed.
However, the partners are exactly stable due to the unbroken U(1)EM′ and they lead to an
abundance of fractionally charged hadrons conflicting with observations [174]. Thus either
this symmetry must be spontaneously broken, leading again to an effective Babu-Mohapatra
model, or a non-standard thermal history of the universe is required [175]. In an additional
variation also color is doubled, and tuning the scale of breaking to the vectorlike subgroup
identified with QCD can lead to a completely different phenomenology with respect to the
usual Babu-Mohapatra model [176,177].

The spontaneous CP violation approach promotes a generalization of the conventional
notion of CP to an exact symmetry of the theory. The fundamental difference with respect to
P solutions is that in this case the entire SM fermionic spectrum need not be “paired”. This
allows the spontaneous breaking of CP to occur in a completely independent secluded sector,
being then mediated to the SM thanks to some messenger fields as depicted in figure 4.1.
The non-trivial task that this approach faces, however, is that the mediation must be able to
generate an O(1) CKM phase while simultaneously keeping θ̄ under control2. Within ordinary
4-dimensional theories, the virtually unique scenarios that have a chance of accomplishing
this are Nelson-Barr models [178, 179]. These models exploit the key observation that the
CKM phase appears in flavour-violating observables whereas the topological angles control
CP violation in flavour-invariant processes. Thus, they are are able to produce a sizable

1The vev ⟨Φ⟩ can always be made diagonal by means of an SU(2)L × SU(2)R rotation. Therefore, the
surviving low-energy gauge symmetry is SU(3)C × SU(2)V × U(1)Y′ or SU(3)C × U(1)Y′ × U(1)Y′′ , neither of
which is phenomenologically acceptable.

2The problem of generating an O(1) CKM phase is not there for spontaneous P violation models, as enforcing
P does not necessarily requires the Yukawas to be real (e.g. in the model (4.1.3) it is sufficient for them to
be Hermitian). Enforcing CP implies that there exist a basis in which all the couplings are real, and thus the
CKM phase must be dynamically generated.
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/CP sector
Mediator

SM

Figure 4.1: Schematic representation of the logic behind models of spontaneous CP violation.
The spontaneous breaking of CP happens in a secluded sector and is communicated to the
SM through a messenger field.

CKM phase and a small QCD angle by communicating the spontaneous violation of CP via
flavour-violating couplings. Typically, this occurs through a complex mixing of the quarks
with colored mediators. When this is the case, the up- and down- quark mass terms at
tree-level take the schematic form [179]

Lu ∼
(︂
(2,+1/6)SM (1,+2/3)BSM (2,+1/6)BSM

)︂⎛⎜⎝yuH 0 ξ1/6
ξ2/3 M2/3 0

0 0 M1/6

⎞⎟⎠
⎛⎜⎝ (1,−2/3)SM

(1,−2/3)BSM
(2,−1/6)BSM

⎞⎟⎠
Ld ∼

(︂
(2,+1/6)SM (1,−1/3)BSM (2,+1/6)BSM

)︂⎛⎜⎝yd ˜︁H 0 ξ1/6
ξ1/3 M1/3 0

0 0 M1/6

⎞⎟⎠
⎛⎜⎝ (1,+1/3)SM

(1,+1/3)BSM
(2,−1/6)BSM

⎞⎟⎠
(4.1.4)

where we identified the fermionic fields3 by their SU(2)L ×U(1)Y charges, distinguishing the
SM ones from the BSM mediators (vector-like with respect to the SM gauge group). The
matrices yu,d,M1/6,M1/3,M2/3 are by assumption CP-even and can thus be taken as real,
whereas ξ2/3, ξ1/3, ξ1/6 represent the complex mixings mediating CP violation to the SM.
Because of this particular structure, it is straigthforward to check that the determinant of
the full mass matrices involves only the CP-even subcomponents. Hence it is real, ensuring
that at tree-level θ̄ = 0 with an in general O(1) CKM phase as result of the mass matrix
being complex [179]. Two main concerns arise. First, the property that at tree-level this
structure is capable of setting θ̄ = 0 may be spoiled by quantum effets, which may alter the
form of the mass matrix and reintroduce an unacceptably big topological angle. Second, the
qualitative intuition that it is indeed possible to feed enough CP violation in the CKM phase
only through the mixing should be quantitatively investigated. In the remaining sections of
this chapter, based on the original works [8,9], we will prove that certain class of realizations
are indeed capable of robustly solving the Strong CP problem while simultaneously being
phenomenologically acceptable. In passing we will discuss how a new potential naturalness
problem emerges in these models, and subsequently we will provide an explicit UV completion
facing this issue and at the same time being highly predictive. For additional recent works on
the topic see [170,180–188].

3The fermions are written as Weyl spinors to make contact with the next section.
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4.2 Nelson-Barr Models

The basic assumption underlying the Nelson-Barr approach to the Strong CP problem is that
CP is a good symmetry of the UV. This means that in the effective field theory below some UV
cutoff there exists a field basis in which all topological angles vanish and all couplings are real.
CP is spontaneously broken by a color-neutral sector, whose relevant degrees of freedom are
CP-odd scalars Σ with non-vanishing vacuum expectation value, and then communicated to
the SM via a mediator sector of fermionic particles ψ characterized by a (CP-conserving) mass
scale mψ. To keep the radiative corrections to the QCD theta angle under control, the CP-
odd scalars should interact with the SM only via couplings that carry spurionic charges under
the SM flavour symmetry. These couplings cannot involve the doublet quark representation,
which would lead to an unacceptably big θ̄ [189]. Within a perturbative framework, these
requests are so significant that basically leave two (non-exclusive) options: either Σ couple to
the singlet up or the singlet down quark representations, i.e. via the effective mixings ξ1/3 or
ξ2/3 of (4.1.4). We will refer to these scenarios as models of d− and u−mediation [8]. It is
also possible to consider linear combinations of these two.

Explicitly, the Lagrangian of the minimal models with d−mediation consists of the obvi-
ous kinetic terms, including the gauge interactions, a potential V (Σ, H) for the scalars, the
Yukawas and the mass terms. Adopting the notation of [8], the latter read4

−LdYuk = yu qHu+ yd q ˜︁Hd
(d−mediation) + y ψΣd+mψ ψψ

c + h.c. (d−mediation),
(4.2.1)

where yu, yd, y,mψ are CP-even matrices in flavour space, the theta angles vanish by CP, and
ψ (ψc) has SM charges conjugate (equal) to d. Summation over the family and gauge indices
is understood. A completely analogous Lagrangian can be written for minimal models with
u−mediation. The only difference is that d in (4.2.1) is replaced by the electroweak singlet
up representation and ψ (ψc) should have SM charges conjugate (equal) to u:

−LuYuk = yu qHu+ yd q ˜︁Hd
(u−mediation) + y ψΣu+mψ ψψ

c + h.c. (u−mediation),
(4.2.2)

We emphasize that in either case Σ should be a family of at least two scalars. If there were
just one scalar, the CP-odd phase in its vacuum expectation value could be removed from
(4.2.1) via a re-definition of ψ and ψc, so no CKM phase could be induced. The fermions
ψ,ψc could come in a family of fields, as well, though this is not strictly necessary (we will
discuss this possibility in subsection 4.2.3). The scenarios in (4.2.1), (4.2.2) are particular
incarnations of the Nelson-Barr class first proposed in [190], as clear from the comparison
with (4.1.4).

As we will demonstrate in 4.2.1, scenarios of d− and u−mediation ensure that the cor-
rections to the QCD theta parameter arising from the messenger sector are sufficiently small.
These are irreducible corrections, since they are due to the very same messenger sector that
is responsible for transferring CP violation to the SM, i.e. generating the CKM phase. To

4In this and the following section fermions are taken as 2-component Weyl spinors.
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avoid larger contributions to θ̄, some symmetry must be invoked to forbid q ˜︁Hψc in (4.2.1)
(or qHψc in models with u−mediation). On the other hand, interactions of the CP-violating
sector with the leptons are basically unconstrained phenomenologically.

Other, reducible corrections to θ̄ generically arise from loops involving additional states,
but these can all be naturally suppressed [178]. As a concrete example let us consider the
corrections to θ̄ from loops involving excitations of the CP-violating sector in the scenarios
(4.2.1). All symmetries of the theory allow a quartic scalar interaction with the Higgs doublet
λmnΣ†

mΣn|H|2 ⊂ V (Σ, H). Once this is taken into account it is easy to verify that one obtains
1-loop corrections of the type [190]

θ̄ = cy
16π2 Im

[︄
⟨Σ⟩† λ 1

m2
Σ
y∗yt ⟨Σ⟩

]︄
(4.2.3)

for some real number |cy| ∼ 1. These would be unacceptably large for generic couplings of
order one. However it is possible to naturally suppress (4.2.3) taking |y| ≪ 1. Completely
analogous considerations hold for other reducible contributions to θ̄, such as those from the
gauge sector of the original model of [178]. In the following we will study the models in
equations (4.2.1) and (4.2.2) in the simplifying limit |y| ≪ 1. In this limit the fluctuations
of the CP-breaking sector can be ignored, see (4.2.3), and the corrections to θ̄ arise entirely
from loops of the SM and the mediator sector. The latter effects are irreducible and therefore
fundamentally characterize this approach to the Strong CP problem.

4.2.1 Reproducing the Standard Model: a Coincidence of Scales

Models of d− and u−mediation are very efficient at taming the irreducible corrections to
θ̄, as we will see in 4.2.2. However, any construction of the Nelson-Barr type must satisfy
a highly non-trivial condition in order to reproduce the SM at scales below the messengers
mass. Specifically, the two scales y⟨Σ⟩,mψ should be comparable to each other

Im y ⟨Σ⟩ ∼ Re y ⟨Σ⟩ ∼ mψ, (4.2.4)

within a few orders of magnitude, depending on the model. We will see shortly that |y ⟨Σ⟩ | ≳
|mψ| is necessary to generate a sizable CKM phase, whereas the more subtle |y ⟨Σ⟩ ≲ |mψ|
is required to reproduce the quark mass spectrum within a reliable perturbative description.
To appreciate the origin of (4.2.4) we first focus on the model in eq. (4.2.1) with |y| ≪ 1, as
anticipated above.

The Yukawa part of the Lagrangian (4.2.1), under our assumption that the only remnant
of the CP-violating sector is the vacuum expectation value of Σ, can be written as

LdYuk

⃓⃓⃓
frozen

= −yu qHu− yd q ˜︁Hd− ξ†ψd−mψ ψψ
c + h.c.

= −yu qHu−
(︂
q ψ

)︂(︄yd ˜︁H 0
ξ† mψ

)︄(︄
d
ψc

)︄
+ h.c.,

(4.2.5)

where we introduced the column vector ξ:

ξ∗
i = ymi ⟨Σm⟩ . (4.2.6)
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In this setup CP violation is due entirely to ξ. In other words, there exists a field basis in
which yu, yd,mψ are real, the theta angles vanish, and the only complex quantity is ξ.

Because ψ,ψc are colored, collider bounds force them to lie above the TeV scale (see 4.2.4).
It then makes sense to diagonalize the mass matrix neglecting the electroweak scale in a first
approximation. Performing the following SU(4) transformation(︄

d
ψc

)︄
→

⎛⎝1− ξξ†

|ξ|2
(︁
1− mψ

M

)︁ ξ
M

− ξ†

M
m
M

⎞⎠(︄ d
ψc

)︄
(4.2.7)

the Yukawa sector becomes

LdYuk

⃓⃓⃓
frozen

→− Yu qHu− Yd q ˜︁Hd− Y q ˜︁Hψc −M ψψc + h.c.

=− Yu qHu−
(︂
q ψ

)︂(︄Yd ˜︁H Y ˜︁H
0 M

)︄(︄
d
ψc

)︄
+ h.c.

(4.2.8)

with (matrix multiplication is understood)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M2 = ξ†ξ +m2
ψ

Yu = yu

Yd = yd
[︂
1− ξξ†

|ξ|2
(︁
1− mψ

M

)︁]︂
Y = yd

ξ
M = Yd

ξ
mψ

.

(4.2.9)

After the unitary rotation (4.2.7) the heavy degrees of freedom have real masses M and
complex Yukawa couplings Y . At scales much smaller than M we can integrate them out and
recover the SM including higher-dimensional operators suppressed by inverse powers of M .
The couplings Yu and Yd are the SM Yukawas, up to small loop effects. At the renormalizable
level, CP violation is encoded in the complex matrix Yd, or more precisely in a tree-level CKM
phase, and a radiatively generated theta angle θ̄. They will be our focus next.

The CKM Phase and Perturbativity

A CKM phase compatible with the experimentally determined value can be reproduced as
long as ξ/mψ has imaginary and real entries of comparable order of magnitude satisfying⃓⃓⃓⃓

⃓ ξmψ

⃓⃓⃓⃓
⃓ = |Y −1

d Y | ≳ 1. (4.2.10)

Before proving (4.2.10) let us attempt to derive the CKM phase in the limit |ξ| ≪ |M |, where
analytical calculations can be easily performed.

To do this we move to the basis in which Yu is diagonal, where the CKM matrix is the
unitary matrix that diagonalizes YdYd† = yd(1 − ξξ†/M2)yd†. For ξ = 0 the latter is just the
orthogonal matrix that diagonalizes ydyd†. Equivalently, the SM masses and mixing angles
are determined by Yu = yu and Yd = yd and the CKM phase vanishes. We can thus express
the corresponding real CKM matrix using the Wolfenstein parametrization [191] with η set
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to zero. For non-zero |ξξ†| ≪ M2 the mixing angles are corrected at order |ξ|2/M2 whereas
a small η ∝ Im ξξ†/M2 is generated. Since the invariant J in (1.2.4), measuring the strength
of weak CP violation in the SM, is linear in η, the real part of ξ can only enter at subleading
|ξ|4/M4 order. Now, plugging (4.2.9) in (1.2.4) and Taylor expanding J in powers of ξξ†/M2

we obtain, at leading order, [8]

J = A(1− ρ)ms

mb
λ4
C

Im ξ2ξ
†
3

M2

[︄
1 +O

(︄
|ξ|2

M2 , λC

)︄]︄

≃ 4.1× 10−5 Im ξ2ξ
†
3

M2

[︄
1 +O

(︄
|ξ|2

M2 , λC

)︄]︄
.

(4.2.11)

In deriving (4.2.11) we also exploited the numerical relations md ∼ mbλ
4
C , ms ∼ mbλ

2
C ,

mu/mt ∼ λ7
C , mc/mt ∼ λ4

C (the masses are renormalized at ∼ 1 TeV), and expanded in the
Cabibbo angle. The factor of ms/mb in (4.2.11) originates from the fact that the phases in
YdYd

† are controlled by the off-diagonal elements of the hermitian matrix yd Im [ξξ†/M2]yd†,
and so they disappear when ms/mb,md/mb → 0.

Equation (4.2.11) suggests that the experimental value of J reported in section 1.2 can be
reproduced provided Im ξ2ξ

†
3/M

2 ∼ 0.73. But there is a serious problem with the estimate
(4.2.11): it is not possible to satisfy |ξ2||ξ3|/M2 ∼ 0.73 compatibly with the constraint |ξ|2 =
M2−m2

ψ ≤M2. We should conclude that the value of |ξ|/M needed to apparently reproduce
the observed CKM phase with (4.2.11) is too large for the perturbative expansion used to
be reliable [192]. Some non-perturbative technique must be employed to determine whether
these models can or cannot generate the CKM phase. And this is complicated by the fact that
with |ξ| ∼ M the CKM mixing angles are not just functions of yd, but can be significantly
affected by ξ/M .

Fortunately there is a way to basically “integrate out” yd from the problem and obtain
necessary and sufficient conditions on ξ for Nelson-Barr models to reproduce the CKM phase.
The argument goes as follows. We want to explicitly compute J using the tree-level approxi-
mation Y SM

u,d = Yu,d. Employing (4.2.9) and simple algebraic manipulations we get

det [Hu, Hd] = det
[︂
hu, hd − Y Y †

]︂
= Y †

[︂
hu, [hu, hd]2

]︂
Y − Y †Y Y †hu [hu, hd]huY

− Y †h2
uY Y † [hu, hd]Y + Y †huY Y † {hu, [hu, hd]}Y,

(4.2.12)

where we defined Hu,d = Yu,dYu,d
† and hu,d = yu,dyu,d

†. In the first line of (4.2.12), Hd =
hd − Y Y † follows from (4.2.9). The second equality is a consequence of the fact that, for any
traceless matrix C, detC = trC3/3. In our case C = [hu, hd]−

[︂
hu, Y Y

†
]︂
, with det [hu, hd] = 0

because hu,d are CP-even. The non-vanishing terms in detC are traces containing powers of[︂
hu, Y Y

†
]︂
, and can therefore be written as Y †fY for some anti-symmetric function f of hu,d.

The next step towards our necessary and sufficient conditions relies on the observation that the
functions f can be equivalently re-written in terms of Hu,d by re-using Hd = hd− Y Y †. Note
that this replacement should be carried out uniquely in f , and not in the Y, Y † of (4.2.12),
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otherwise we would obviously get back to the left-hand side of (4.2.12). This replacement
leads us to an important relation, which we write as follows

(d−mediation) det [Hu, Hd] = I2,1 + Y †Y I1,2 + Y †H2
uY I1,0 − Y †Y I1,1 (d−mediation)

(4.2.13)

where

I2,1 = Y †
[︂
Hu, [Hu, Hd]2

]︂
Y

I1,2 = Y †Hu [Hu, Hd]HuY

I1,1 = Y † {Hu, [Hu, Hd]}Y
I1,0 = Y † [Hu, Hd]Y.

(4.2.14)

Because, within a tree-level approximation, Yu,d are the SM Yukawa matrices, we can express
them in a convenient form, say taking a diagonal Yu = ˆ︁Yu and writing Yd = V ∗

CKM
ˆ︁Yd, where

VCKM is the CKM matrix in the Wolfenstein parametrization5. Then eq. (4.2.13) must be
interpreted as a constraint on the coupling Y , or equivalently on ξ/mψ. As promised, the
dependence on yd is included but implicit, i.e. yd has been integrated out.

One can then easily solve (4.2.13) via numerical integration. The parameter ξ is defined by
2 angles, a modulus and three phases. However the overall phase can be removed by a vector-
like rotation of the mediators, so in practice only two of its phases are physical. Scanning
over 300 angles and phases we obtain the |ξ|/mψ vs η plot shown in the upper part of figure
4.2. For models of d−mediation (where (4.2.13) has been derived) we find that |ξ|/mψ ≳ 2 is
necessary. The analytical approximation (4.2.11) works very well for |ξ| ≪ M but becomes
inadequate rather quickly as ξ increases and fails to account for the large spread seen in the
upper part of figure 4.2. The numerical analysis also shows that ξ1 is not very important
and that ξ2, ξ3 should be comparable in size and have large phases. The irrelevance of ξ1 is
an expected consequence of our choice of basis, since the last equation in (4.2.9) says that ξ1
appears in (4.2.13) multiplied by the smallest of the down-type Yukawas or larger powers of
the Cabibbo angle. The main players are clearly ξ2, ξ3, as anticipated by (4.2.11). To obtain
the observed J from (4.2.13), the CP-odd contributions due to terms ∝ Im ξξ†/m2

ψ in the
structures Y ∗

2 f23Y3 should win over the terms ∝ η in terms like Y ∗
3 λ

2
Cf23Y3 (see, e.g., the

expression of the invariant I2,1 in appendix 4.A). This requires [8]

Im ξ2ξ
∗
3

ξ3ξ∗
3

[ˆ︂Yd]2
[ˆ︂Yd]3 ≳ λ2

C . (4.2.15)

Because we approximately have [ˆ︂Yd]2/[ˆ︂Yd]3 ∼ λ2
C , we see that (4.2.15) is satisfied for |ξ2| ∼ |ξ3|.

This condition is visible in the lower-left plot of fig. 4.2. Barring accidental correlations
between yu, yd and ξ, these findings imply that in a generic basis all entries in ξ should be
comparable and satisfy |Re ξ| ∼ | Im ξ| ≳ mψ. This proves the claim (4.2.10).

5The conjugation is a consequence of the definition of the Yukawa interactions (4.2.8), which for typograph-
ical convenience differ here from the ones of equation (1.1.2) and (3.3.4) exactly by a complex conjugation.
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Figure 4.2: Value of the CP-odd parameter η of the Wolfenstein parametrization of the CKM (recall
that J = A2ηλ6

C [1 +O(λ2
C)]) in models of d−mediation (left) and u−mediation (right). In the upper

plots we generated 300 models with random values for the direction (2 angles) and the 2 physical
phases of ξ, and kept an arbitrary dependence on the modulus |ξ|/mψ. Note the difference in the scale
of the x-axis between the two plots. In the lower plots we also scanned over the modulus in the range
0 < |ξ|/mψ < 5 (d−mediation), 20 < |ξ|/mψ < 40 (u−mediation), and kept |ξ3|/|ξ| arbitrary. The red
line indicates the real world value J ≃ 3.0× 10−5 and the cyan lines are the models’ predictions. Plots
taken from [8].

In u−mediation, a completely analog procedure leads to a relation similar to (4.2.13)
with the replacement u ↔ d. The field basis we adopt is now the one with Yd diagonal and
Yu = V t ˆ︁Yu. Only for very few choices of angles and |ξ|/mψ ≳ 20 we can reproduce the
CKM phase, as visible from the top-right plot of fig. 4.2. The basic reason can be traced
back to the larger mass hierarchy of the up-quark sector. As a consequence, for example, in
the u−mediation version of (4.2.11) one finds a more significant mc/mt suppression replaces
ms/mb. As before, ξ1 is irrelevant, but to satisfy the analog of (4.2.15) one must have
|ξ3|/|ξ2| ≲ mc/(mtλ

2
C) ∼ 0.07 ∼ λ2

C . This expectation is confirmed by the bottom-right plot
of fig. 4.2. We conclude that models of u−mediation can reproduce the observed CKM phase
provided their UV completion features some sort of anti-correlation between yu and ξ.

Equation (4.2.10) is our first step towards (4.2.4). Analyzing the effective theory below
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M carefully, one finds there is also an upper bound on |ξ|/|mψ|. This is in fact a necessary
condition if the effective theory has to reproduce the observed SM particle spectrum. When
|mψ|/|ξ| → 0 the heavy state becomes a combination of ψ and one component of the d’s, with
a large Dirac mass M ∼ |ξ|. The two orthogonal d components have independent Yukawa
couplings with only two q’s, whereas the remaining q together with ψc form a massless Dirac
with an anomalous axial symmetry. But this is just the SM with a massless down-quark. We
can confirm this observing that

detYd = det yd
mψ

M
, (4.2.16)

or perhaps more easily noting that in the limit |mψ|/|ξ| → 0 the SM Yukawa matrix Yd in
(4.2.9) becomes rank 2, lim|mψ |/|ξ|→0 Yd = yd

[︂
1− ξξ†/|ξ|2

]︂
. We see that the limit mψ/|ξ| → 0

is phenomenologically unacceptable. Clearly there should be a lower bound on mψ/|ξ|. Let
us see what this is. For small but non-vanishing |mψ|/|ξ| ≪ 1 the mass of the down quark
is of order md ∼ (ˆ︁ydv/√2)(mψ/|ξ|), where ˆ︁yd denotes a typical eigenvalue of yd and we used
M ∼ |ξ|. It is not possible to establish a firm bound on mψ/|ξ| this way, however, because
the value of ˆ︁yd is model-dependent and can in principle range between [ˆ︂Yd]d and the non-
perturbative ∼ 4π. A robust, model-independent bound on mψ/|ξ| can instead be derived
from the UV description above M . Inspecting the field basis (4.2.8) we see that the coupling
Y between the heavy fermionic state and the SM quark doublet becomes parametrically large
when |ξ| ≫ |mψ|, see the third line in (4.2.9). When mψ is too small it becomes non-
perturbative, say |Y | > 4π, and we lose predictivity. Because fig. 4.2 showed that |ξi| ∼ |ξj |
is necessary to reproduce the CKM phase, the constraint |Y | ≪ 4π may be expressed as [8]

(d−mediation)
⃓⃓⃓⃓
⃓ ξmψ

⃓⃓⃓⃓
⃓ = |Y −1

d Y | ≪ 4πv√
2mb

∼ 103 (d−mediation). (4.2.17)

Accidentally, this upper bound is numerically comparable to what one finds requiring the low
energy theory reproduces the observed down-quark mass with ˆ︁yd ∼ [ ˆ︁Yd]b, despite the two
bounds have very different meaning. In the next subsection we will be able to quantify the
perturbativity bound by inspecting the value of θ̄ predicted by these models.

In models with u−mediation |ξ|/|mψ| ≲ mt/mu ∼ 105 is at least necessary to obtain a
realistic spectrum if ˆ︁yu ∼ [ ˆ︁Yu]t, from the effective field theory point of view. A stronger bound
on |ξ|/mψ applies however because we found that the condition |ξ3| ≲ λ2

C |ξ| is necessary to
reproduce the CKM phase, see fig. 4.2. Hence, the UV description is non-perturbative unless
|Y | ≪ 4π, or more explicitly [ ˆ︁Yu]c|ξ|/mψ ≪ 4π and simultaneously λ2

C [ ˆ︁Yu]t|ξ|/mψ ≪ 4π. The
latter provides the most stringent bound, which reads [8]

(u−mediation)
⃓⃓⃓⃓
⃓ ξmψ

⃓⃓⃓⃓
⃓ = |Y −1

u Y | ≪ 4πv√
2mt λ2

C

∼ 300 (u−mediation). (4.2.18)

A concrete manifestation of this non-perturbativity problem is seen in potentially large ra-
diative corrections to the θ̄ parameter when matching to the SM at scales ∼ M , which we
analyze later.
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Combining our findings, we conclude that Nelson-Barr models of d− and u−mediation can
reproduce the amount of CP violation encoded in the CKM matrix as well as the observed
fermion masses provided the two effective scales of the model, the CP-even mass mψ and the
CP-odd mass mixing ξ between the mediators and the SM quarks, have comparable size [8]:

(d−mediation),2 ≲

⃓⃓⃓⃓
⃓ ξmψ

⃓⃓⃓⃓
⃓≪ 103 (d−mediation),

(u−mediation).20 ≲

⃓⃓⃓⃓
⃓ ξmψ

⃓⃓⃓⃓
⃓≪ 300 (u−mediation).

(4.2.19)

In particular, while scenarios of d−mediation can generate the CKM phase with generic
complex vectors ξ with entries of comparable order, models of u−mediation require some sort
of anti-correlation between ξ and yu. This makes such scenarios less generic than models of
d−mediation.

The coincidence (4.2.19) is a structural property of Nelson-Barr models, rooted in the
way CP violation is communicated to the SM. Such coincidence cannot be addressed via the
effective field theory formalism employed here. Rather, it represents a constraint on the UV
completion. Crucially, such relation is key to the viability of these models, since without it
the low energy theory does not reduce to the SM. In the absence of a robust explanation of
(4.2.4) this solution of the Strong CP problem is severely fine-tuned, and hence not convincing.
In other words, a new naturalness problem arises in these models. If not addressed, this is
nothing else than a rephrasing of the original Strong CP problem.

4.2.2 Irreducible Contributions to θ̄

Provided (4.2.19) are satisfied, the effective field theory below M reproduces the SM up to
irrelevant operators suppressed by inverse powers of M . The measured SM Yukawa couplings,
including all radiative corrections, are given by

Y SM
u = FuYu

Y SM
d = FdYd,

(4.2.20)

where Fu,d = 1+O(Y Y †, Yu,dY
†
u,d) are 3 by 3 matrices functions of Yu, Yd, Y , M . The structure

shown in (4.2.20) may be understood taking advantage of the spurionic flavour charges of the
SM Yukawas, for instance in the field basis in (4.2.8). That is, we interpret Y, Yu, Yd as fields
transforming under fictitious (spurious) flavour symmetries that leave (4.2.8) invariant:

Yu →U∗
q YuUu

†

Yd →U∗
q YdUd

†

Y →U∗
q Y,

(4.2.21)

where Uq,u,d are SU(3) matrices. The Yukawas Y SM
u,d in the effective field theory must be

dimensionless combinations of the couplings of our theory that transform precisely as Yu,d.
This takes us to (4.2.20).
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The SM topological angle, obtained by matching (4.2.8) with the SM at the scale M , is
given by the usual quantity:

θ̄ = θ − Im log detY SM
u detY SM

d

= θ − Im log detFu detFd
(4.2.22)

where we used that detYu,d are real, see (4.2.9) and (4.2.16). There are no tree-level contri-
butions because the complex mass matrix of the colored fermions has real determinant (see
for example (4.2.5)), which is the defining characteristic of Nelson-Barr models [178,179]. Of
course the same is true in (4.2.8), since the unitary matrix in (4.2.7) has unit determinant.
In our language, this just follows from the absence of tree-level flavour-invariant, CP-odd
combinations of the parameters.

We can estimate the radiative contributions to θ̄ using the same trick as above. Contri-
butions to θ̄ must be obviously CP-odd combination of our couplings but, importantly, also
invariant under spurious SU(3) rotations. This is because as we have seen its expression must
be written in the flavour-invariant combinations θ,detFu,detFd. In addition, there can be a
dependence on the electroweak scale v ≃ 246 GeV, but for the moment let us work at leading
order in the latter and set v = 0.

The leading CP-odd flavour-invariant combination of our couplings is the one with fewer
insertions of Yukawas. Up to a factor of order unity, and the appropriate power of the loop
factor 1/16π2 needed to match the powers of couplings, such combination coincides with the
value of θ̄ at the matching scale. With Y = 0 we have the SM and the first correction to θ̄,
as we now know very well, is extremely suppressed. Potentially large corrections must involve
Y . Equation (4.2.21) shows that all the invariants are products of basic invariants built out
of two powers of Y and several Yu, Yd (see appendix 4.A for a few examples). The CP-odd
flavour-invariant with the smallest number of Yu,d insertions is (see I1,0 in 4.A) [8]

θ̄
⃓⃓⃓
analy

= canaly

(︃ 1
16π2

)︃3
ImY †

[︂
YdY

†
d , YuY

†
u

]︂
Y

∼
(︃ 1

16π2

)︃3
λ2
C
ˆ︁Y 2
t
ˆ︁Y 3
b
ˆ︁Ys Im ξiξ

∗
j

m2
ψ

(d−mediation) ∼ 6× 10−18 Im ξiξ
∗
j

m2
ψ

(d−mediation).

(4.2.23)

For the numerical estimate of (4.2.23) we went in the basis in which Yu is diagonal, where Yd
is unitary up to CKM rotations, took λC ∼ 0.23 for the Cabibbo angle and renormalized the
couplings at 1 TeV. The factor λ2

C arises because the result is proportional to the 23 element of
the CKM. In terms of familiar Feynman diagrams, this contribution to the QCD topological
angle arises from 3-loop corrections to Fu,d as well as direct corrections to θ, with virtual
fermions and the Higgs. Had we considered scenarios with unsuppressed couplings between
the q’s and the messengers we would have found unacceptably large 2-loop corrections to
θ̄ [189]. Imposing |θ̄| < 10−10 on (4.2.23) one obtains a lower bound on |m|/|ξ| a bit looser
than (4.2.17). All other (subleading) flavour-invariants lead to weaker constraints. Non-
perturbative values of the coupling Y would imply unacceptably large corrections to θ̄.
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Because in eq. (4.2.23) we neglected powers of v, that expression represents only the
leading non-decoupling contribution to θ̄, which dominates if M is sufficiently large compared
to the weak scale. When matching the UV theory to the SM at scales ∼ M , however, one
also finds additional threshold contributions that decouple as 16π2v2/M2 → 0. To estimate
the leading decoupling effect we should allow θ̄ to depend on v, in which case its expression
should respect the same selection rules (4.2.21) plus the additional spurious symmetry v →
−v, (Y, Yu, Yd) → −(Y, Yu, Yd). Now, an important complication found when estimating the
decoupling contributions is that these can be non-analytic in the couplings Yu,d. Indeed, after
electroweak symmetry breaking the Yukawas may appear not only as couplings, but also as
masses. On the other hand, θ̄ is necessarily analytic in Y because such a coupling does not
control the large mass M directly, but rather a small mixing angle of order Y v/M . We thus
learn that the most general expression for θ̄, again leading in Y , reads

θ̄ = ImY †f

(︄
YdY

†
d , YuY

†
u ,

v2

M2

)︄
Y

= ImY †f0
(︂
YdY

†
d , YuY

†
u , 0

)︂
Y + v2

M2 ImY †f1

(︄
YdY

†
d , YuY

†
u ,

v2

M2

)︄
Y +O

(︄
v4

M4

)︄
,

(4.2.24)

where f is an unknown anti-symmetric 3 by 3 matrix, f t = −f . The leading effect controlled
by the term f0 is precisely (4.2.23). The main one proportional to v2/M2 is the decoupling ef-
fect we want to estimate. As explained above, f1 can have a residual non-analytic dependence
on v2 that we cannot Taylor expand. Because this dependence is in principle arbitrarily com-
plicated, it is not possible to find an explicit form of f1 based solely on symmetry arguments.
We can however reliably estimate the order of magnitude. Anti-symmetry of f requires that
f1 depends on both YdY

†
d , YuY

†
u . Some of this dependence could be hidden in logarithms of

the masses; and these are precisely the quantities that are not constrained by our selection
rules. Importantly, though, f1 should be proportional to at least one power of YdY †

d and one
power of YuY †

u . The reason is that if the whole dependence of f1 on, say, the up-type Yukawa
was in the unknown non-analytic terms, then θ̄ would be singular in the limit YuY †

u → 0. And
this cannot be the case because such IR divergences do not appear in matching the Wilson
coefficients of an effective theory. We conclude that the leading decoupling contributions scale
similarly to (4.2.23) [8]

θ̄
⃓⃓⃓
nonanaly

∼ cnonanaly

(︃ 1
16π2

)︃2 v2

M2λ
2
C
ˆ︁Y 2
t
ˆ︁Y 3
b
ˆ︁Ys Im ξiξ

∗
j

m2
ψ

(d−mediation) ∼ cnonanaly 5× 10−17
(︃TeV
M

)︃2 Im ξiξ
∗
j

m2
ψ

(d−mediation),

(4.2.25)

up to logarithms of the masses that we cannot estimate using spurion techniques, which have
been included in cnonanaly. In appendix 4.B we perform a more standard loop analysis in the
mass basis and confirm this result, see (4.B.15).

The powers of 1/16π2 in (4.2.25) are different from those of (4.2.23) because the decoupling
effect is proportional to a mass squared (or analogously to ∝ v2/M2), rather than a coupling
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squared. One can easily appreciate why the number of loops (and hence 1/16π2’s) in (4.2.25) is
one less than (4.2.23) by re-instating the powers of ℏ and observing that the Yukawa couplings
scale as ∼ ℏ−1/2, whereas v2 ∼ ℏ, M ∼ ℏ0. As a result, at least at the leading order, the main
qualitative difference between non-decoupling (4.2.23) and decoupling (4.2.25) contributions
is the formal replacement 1/(16π2) → v2/M2, which indicates that decoupling effects are
parametrically less relevant than the non-decoupling ones when M ≳ 4πv ∼ 3 TeV. More
precisely, the experimental bound θ̄ ≲ 10−10 reads |ξ|/mψ ≲ (800−900)(M/TeV) for numbers
cnonanaly of order unity.

Yet, we argued above that cnonanaly may contain large logs of the mass ratios (dimensional
analysis is enough to show this does not occur in canaly). Those that may in principle impact
our estimate are the logs of the largest available mass, namely M2. Inspecting the relevant
diagrams one sees there are at most 3 powers of large logs. This is compatible with the SM
computation of [54], which is one loop higher. As a conservative estimate, we may thus take
cnonanaly ∼ log3M2/m2

b and the bound becomes |ξ|/mψ ≲ 30(M/TeV). In subsection 4.2.4
we will see that electroweak constraints lead to bounds on the very same quantity that are
comparable to this one, and obviously much more accurate theoretically than our order one
estimate (4.2.25). A genuine 2-loop computation would be necessary to determine the value of
cnonanaly as well as whether (4.B.15) can realistically compete with the bounds of subsection
4.2.4.

In models with u−mediation, repeating an analysis completely analogous to the one leading
to (4.2.23), we find [8]

θ̄
⃓⃓⃓
analy

∼
(︃ 1

16π2

)︃3
ImY †

[︂
YdY

†
d , YuY

†
u

]︂
Y

∼ λ2
C
ˆ︁Y 2
b
ˆ︁Y 3
t
ˆ︁Yc

(16π2)3
Im ξ2ξ

∗
3

m2
ψ

(u−mediation) ∼ 5× 10−15 Im ξ2ξ
∗
3

m2
ψ

(u−mediation).

(4.2.26)

As it was for models of d−mediation, |θ̄| < 10−10 gives a constraint consistent with the
perturbative bound, see (4.2.18), but a bit milder (recall that |ξ3| ∼ λ2

C |ξ| here). Analogously
to (4.2.25), decoupling corrections are of the same order as (4.2.26) up to the replacement
1/(16π2) → v2/M2 and possibly large logs. The bound on |ξ/mψ| from the electroweak T
parameter analyzed in subsection 4.2.4 is stronger and more accurate.

4.2.3 More Families of Mediators

The previous results can be generalized to the case in which the mediators appear in different
families with index a, b = 1, · · · , nψ. We limit our analysis to scenarios where mψ has non-
degenerate eigenvalues and all the mediators ψa, in the basis in which mψ is diagonal, mix
with the SM fermions. This is equivalent to saying that

ξ∗
ia = ymia ⟨Σm⟩ (4.2.27)
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is non-vanishing for any i when mψ is diagonal. The special rotation that removes the mass
mixing (before electroweak symmetry breaking) now is(︄

d
ψc

)︄
→
(︄

A ξ(M†)−1

−m−1
ψ ξ†A mψ

†(M†)−1

)︄(︄
d
ψc

)︄
(4.2.28)

where the condition AA† = 1−ξ(MM†)−1ξ† = [1+ξ(mψmψ
†)−1ξ†]−1 is necessary to ensure this

transformation is unitary (the second equality is a consequence of the first and our definition
of M , see below). After the above rotation is performed the Yukawa and mass terms look
formally as in (4.2.8), where summation over indices is always understood. The masses and
couplings of (4.2.8), in matrix notation, now explicitly read⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

MM† = ξ†ξ +mψmψ
†

Yu = yu

Yd = ydA

Y = ydξ(M†)−1 = YdA
−1ξ(M†)−1.

(4.2.29)

In models with u−mediation the very same results hold except for the replacement d↔ u.
An analysis similar to the one performed in 4.2.1 says that Im (AA†)ij ≳ 1 is necessary

to reproduce the experimental value of J . This of course means that Im ξξ† ≳ |mψ|2. Also,
|mψ| ≪ |ξ| would signal a non-perturbative regime. To see this we multiply AA† on the left
by ξ† and on the right by ξ, and use the definition of MM†, to obtain

ξ†AA†ξ = mψmψ
†[1− (MM†)−1(mψmψ

†)]. (4.2.30)

From this follows that if one eigenvalue of mψmψ
† is much smaller than |ξ†ξ| the matrix

AA† develops a null vector or, in other words, the rank of A becomes smaller than 3. To
see this let us go in the basis in which mψ is diagonal and suppose that [mψ]â = 0 for
some a = â. Equation (4.2.30) then reads [ξ∗]iâ[AA†]ij [ξ]jâ = 0, which implies [ξ]jâ is a null
eigenvector because of our hypothesis (4.2.27). We may rephrase this stating that detmψ = 0
implies detA = 0. In the same limit the last equation in (4.2.29) shows that Y becomes non-
perturbative. These considerations demonstrate that the coincidence ξ ∼ mψ (see (4.2.4))
must be realized even in the general case with more families of mediators. With nψ > 1 it is
more appropriate to express it as [8]{︄

2 ≲ |Y −1
d Y | ≪ 103 (d−mediation)

20 ≲ |Y −1
u Y | ≪ 300 (u−mediation).

(4.2.31)

As in 4.2.1, |Yd−1Y | (or |Yu−1Y |) must be at least of order one in order for J to be reproduced
and simultaneously cannot be much larger than quoted otherwise the theory becomes non-
perturbative. The perturbative bounds are analogous to (4.2.17) and (4.2.18). However, as
opposed to what happened with a single family, we will now show that the constraint on θ̄
sets more stringent upper limits than (4.2.31).

In the case nψ > 1 the derivation of θ̄ deserves some care because the new family index
allows us to build more flavour-invariants involving the mass matrix M . It is not immediately
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obvious that large corrections to the theta angle can be avoided. For brevity we will analyze
the non-decoupling effects only; the decoupling corrections can be estimated as in the previous
section. We will prove that there are no (non-decoupling) 2-loop corrections to θ̄ and that
(non-decoupling) 3-loop contributions are under control, exactly as it was in the one-family
models. The basic ingredients, along with their spurious transformations, are

Yu → U∗
q YuUu

†

Yd → U∗
q YdUd

†

Y → U∗
q Y Uψc

†

M → U∗
ψMUψc

†,

(4.2.32)

where Uq,u,d and Uψ,ψc are SU(3) and SU(nψ) flavour matrices, respectively. As before, we
are interested in corrections proportional to Y . To warm up, it is straightforward to see
that there is no correction to θ̄ at 1-loop order. Indeed, the unique combination O(Y 2) that
is invariant under rotations of the SM fermions is Y †Y . Similarly, the mass can only enter
via M†M , which is invariant under ψ rotations. Now, the class of flavour-singlets one can
build out of these two objects are just traces of Y †Y and (dimensionless functions of) M†M .
Anything of this form will be automatically real and CP-even, however, since such matrices
are hermitian. Hence there cannot be 1-loop corrections to θ̄.

Let us then move to the 2-loop order, considering first only combinations of Y,M . For this
task it is convenient to make use of some group theory. Since the building blocks are hermitian
nψ × nψ matrices they can be expanded in a basis of SU(nψ) generators TA. Explicitly,

hATA ≡ Y †Y − 1
nψ

trY †Y, (4.2.33)

and similarly for M†M . The trace parts are real and contribute to θ̄ at subleading order.
Here we are interested in the leading contribution to the topological angle, so they can be
safely neglected. With this notation, our 2-loop effects must be of the form

hAhB FAB(M†M), (4.2.34)

where the dimensionless function FAB is symmetric and traceless. The key observation is
that CP violation in the SU(nψ) space acts as TA → (TA)∗ = ηABTB on the generators and
thus as hA → ηABhB on the adjoints, where ηAB can be chosen to be diagonal and satisfying
ηACηCB = δAB. Its explicit form depends on nψ. For example ηAB = diag(1,−1, 1) in SU(2).
From the algebra follows that the completely symmetric tensor dABC is CP-even, whereas the
structure function fABC is CP-odd. We conclude that all SU(nψ)-invariant combinations of
adjoints are automatically CP-even unless the expression contains an odd number of fABC .
In particular, the combination (4.2.34) cannot contain the structure functions and is therefore
CP-even: there is no 2-loop effect at O(Y 4). The absence of (non-decoupling) 2-loop contribu-
tions involving both Y and Yu,d is even easier to understand. This class of flavour-invariants
consists of traces of Yu,dYu,d†, Y F (M†M)Y †, which are again real by hermiticity, and hence
CP-even.
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We have thus demonstrated that there are no non-decoupling 2-loop contributions to θ̄ in
these models. The first effects arise at 3-loops. Those due to Y,M are constrained by the
SU(nψ) arguments given above. To get a non-vanishing combination at most one index of
the structure function can be contracted with hA or a function of the masses, as these are all
necessarily symmetric. The unique option is

hAhBhCFA
′B′C′

fAA
′A′′

fBB
′B′′

fCC
′C′′

dA
′′B′′C′′

, (4.2.35)

with FA′B′C′ a dimensionless function ofM †M . (Note that the SM invariant Im det[YuYu†, YdYd
†]

is precisely of this form.) A parametric estimate gives [8]

θ̄
⃓⃓⃓
nψ≥3

∼

⎧⎪⎨⎪⎩
(︂

1
16π2

)︂3 ˆ︁Y 4
b
ˆ︁Y 2
s

(︁
|Yd−1Y |

)︁6 ∼ 10−21 (︁|Yd−1Y |
)︁6 (d−mediation)(︂

1
16π2

)︂3 ˆ︁Y 4
t
ˆ︁Y 2
c

(︁
|Yu−1Y |

)︁6 ∼ 10−12 (︁|Yu−1Y |
)︁6 (u−mediation),

(4.2.36)

where we assumed all numerical factors are of order unity apart from the usual powers of
1/4π. The bound θ̄ ≲ 10−10 translates into much more stringent constraints than quoted
in (4.2.31), because of the large powers of Y involved. Importantly, though, this 3-loop
contribution does not exist if nψ ≤ 2, for the very same reason the SM with less than 3
generations has no Jarlskog invariant: the totally symmetric tensor vanishes and (4.2.36)
cannot be built in those cases. More model-independent contributions, which exist also for
nψ = 2, must involve the SM Yukawas. The larger ones are proportional to the up-type
Yukawa. The key building blocks are Y †Y = hATA + trace, Y †YuYu

†Y = hAu T
A + trace,

and F (M†M) = FATA + trace. There is a unique way the indices of the CP-odd function
fABC can be contracted: fABChAhBu FC(M†M). Including an appropriate number of the loop
1/16π2 factors, the latter CP-odd invariant can equivalently be written as [8]

θ̄
⃓⃓⃓
nψ≥2

∼
(︃ 1

16π2

)︃3
Im tr

[︂
Y †YuYu

†Y, Y †Y
]︂
F (M†M)

∼

⎧⎪⎨⎪⎩
(︂

1
16π2

)︂3
λ2
C
ˆ︁Y 2
t
ˆ︁Y 3
b
ˆ︁Ys (︁|Yd−1Y |

)︁4 ∼ 6× 10−18 (︁|Yd−1Y |
)︁4 (d−mediation)(︂

1
16π2

)︂3 ˆ︁Y 4
t
ˆ︁Y 2
c

(︁
|Yu−1Y |

)︁4 ∼ 10−12 (︁|Yu−1Y |
)︁4 (u−mediation).

(4.2.37)

The numerical bound on |Yd−1Y | (and |Yu−1Y |) is a bit stronger than in the case of a single
family of ψ,ψc, see (4.2.23) and (4.2.26), again because of the larger power of the new Yukawa.

4.2.4 Experimental Signatures

The mediators ψ,ψc are constrained by direct and indirect collider searches. In this sec-
tion we study both d− and u−mediation and provide a qualitative assessment of the most
stringent bounds for scenarios with one and two families of mediators, including those aris-
ing from radiative effects controlled by Y . We will see the latter are actually very relevant
phenomenologically.
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As shown in (4.2.9) for a single family and (4.2.29) for more families, Y can be written as
the d−type (or u−type) Yukawa multiplied on the right by a flavour-violating matrix. The
latter is simply [Yd−1Y ]i = ξi/mψ (or [Yu−1Y ]i = ξi/mψ) if a single family is considered,
or more generally [Yd−1Y ]ia (or [Yu−1Y ]ia). In models of d−mediation we have argued that
Y −1
d Y must have entries of comparable size in order to reproduce the CKM. Therefore, for

simplicity we treat it as a single coupling

[Yd−1Y ]ia = |Yd−1Y | i = 1, 2, 3 (4.2.38)

when quantifying the numerical bounds below. In other words, we will assume the only
hierarchies involved in our calculations are those due to the quark masses and powers of the
Cabibbo angle, and instead ignore possible cancellations in the sum of different [Yd−1Y ]ia’s.

The results of 4.2.1 reveal that in scenarios of u−mediation the CKM is reproduced pro-
vided [Yu−1Y ]ia has a i = 3 component suppressed by ∼ λ2

C compared to the others. Our
analysis will therefore be performed assuming that

[Yu−1Y ]ia = |Yu−1Y | ×
{︄

1 i = 1, 2
λ2
C i = 3

(4.2.39)

where |Yu−1Y | is the parameter we will constrain, similarly to d−mediation. A more rigorous
study of the phenomenology would require a numerical scan, but this is beyond the scope of
our qualitative analysis.

Finally, when estimating the bounds on scenarios with two families for simplicity we take

M1 = M2 = M. (4.2.40)

We will come back to the implications of this simplifying assumption below.

d−Mediation

In models of d−mediation the ψ,ψc behave similarly to a heavy b-quark: they are pair-
produced and decay promptly into quarks and vector bosons or the Higgs boson. Current
direct searches imply mψ ≳ 1400 GeV for a single family [193].

The relevant couplings of the ψ,ψc to the SM can be read off directly from (4.2.8). With
the flavour indices shown explicitly, including those of ψ,ψc (a, b), this is LdYuk ⊃ −Yiaqi ˜︁Hψca−
Mabψaψ

c
b . Integrating out the heavy fermion at tree-level, below the scale Ma we find (after

a field re-definition of the quark doublet) a correction to the SM Lagrangian [8]:

δL(tree)
SM = 1

v2

[︂
c̄ik(Yd)kjqi ˜︁Hdj |H|2 + h.c.

]︂
− 1

2v2 c̄ji
[︂
q†
i σ̄
µqj H

†i
←→
DµH + q†

iσ
aσ̄µqj H

†σai
←→
DµH

]︂
c̄ij = v2

2

(︃
Y

1
M†M

Y †
)︃
ij
.

(4.2.41)

An equivalent description of the following effects can be given in terms of the (flavour-
violating) couplings in the mass basis (see appendix 4.B.1).
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The second line of (4.2.41) gives rise to (flavour-violating) corrections to the Z-couplings
of the down left-handed quarks. In the mass basis Y reduces to ˆ︁Yd multiplied by an anarchic
matrix on the right. The constraint on the flavour-diagonal components of c̄ is therefore
dominated by that on the bottom. In the mass basis it reads

|c̄33| ≲ 0.008, (4.2.42)

(see e.g. [194] and note that in our model c̄ii < 0). Other precision electroweak measurements
are very weakly affected because of the small couplings involved.

All couplings in (4.2.41) contribute to ∆F = 1 and ∆F = 2 transitions. Because of the
strongly hierarchical structure inherited from the SM Yukawas, however, flavour-violating
observables are far less crucial than in most scenarios of physics beyond the SM. The most
constrained ∆F = 2 operators involve the left-handed down sector:

LEFT ⊃ −Cdij;kl (dL†)iσ̄µ(dL)j (dL†)kσ̄µ(dL)l. (4.2.43)

The coefficient is corrected at tree-level δCdij;kl = c̄jic̄lk/(2v2), from the second line of (4.2.41)
via a Z exchange, and also receives a 1-loop contribution from the exchange of the electroweak
gauge bosons, of order δCd ∼ c̄g2λ2

C/(16π2v2). The main bound on (4.2.43) in this model is
currently due to Bs − Bs mixing, and conservatively reads |Cd32;32| ≲ 6.7 × 10−12 GeV−2 (in
the mass basis and when renormalized at M ∼ 1 TeV), see e.g. [195]. The resulting bound on
|Y −1
d Y |/M is weaker than (4.2.42). Operators in the ∆F = 2 class are also induced by the

first line of (4.2.41); however their coefficients are down by larger factors of the SM Yukawas.
More importantly, at 1-loop the effective field theory below M features additional ∆F = 2
interactions of the form LEFT ⊃ −Cij;kl qi†σ̄µqj qk†σ̄µql, with coefficients (again in the mass
basis in which M †M is diagonal) [8]

C
(1-loop)
ij;kl = 1

8
1

(4π)2Y
∗
iaYjaY

∗
kbYlb

logM2
b /M

2
a

M2
b −M2

a

. (4.2.44)

The dominant constraints on these come again from Bs−Bs mixing and directly compete with
(4.2.43). Importantly, (4.2.44) has a different parametric dependence than the corrections δCd
mentioned above, i.e. it is controlled by |Y−1

d Y |/
√
M rather than |Y−1

d Y |/M , and starts to
dominate for masses M ≳ 4πv ∼ 3 TeV. It even becomes more important than (4.2.42) at
around M ≳ 18 TeV.

Let us next move to ∆F = 1 observables. Among the most relevant operators are

LEFT ⊃ (C9)ij(dL)iγµ(dL)j ℓγµℓ+ (C10)ij(dL)iγµ(dL)j ℓγµγ5ℓ, (4.2.45)

with ℓ any of the charged leptons and (C9)ij = +c̄ji(1−4 sin2 θw)/(2v2), (C10)ij = −c̄ji/(2v2).
These follow from the second line of (4.2.41), integrating out the Z, and contribute to rare K,
B meson decays, most notably B → Xsℓℓ̄, Bs → ℓℓ̄, and ϵ′/ϵ. Conservatively requiring the
new physics contribution lies within one sigma from the SM prediction (see, e.g., [196, 197])
we obtain bounds that are somewhat comparable numerically and a bit stronger than those
derived from Bs − Bs mixing. However, they have the very same parametric dependence on
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Figure 4.3: Summary of the most relevant experimental constraints for models of d−mediation
with one (left) or two (right) families of ψ,ψc. Direct searches are shown in light blue,
electroweak bounds in yellow (“EW”, see (4.2.42)), constraints from flavour violation in light
green (“FV”, in particular those due to the ∆F = 1 transitions discussed below (4.2.45) are
visible at lower mass and the Bs − Bs mixing constraint imposed on C(1−loop) dominates at
larger M), and the bound from the neutron electric dipole moment in magenta (“nEDM”)
with a rough estimate of the error band (dashed lines). As seen in 4.2.1, |Yd−1Y | is also subject
to a lower bound (see hatching), required in order for these models to be able to reproduce
the CKM phase, and an upper bound, from perturbativity (see the grey region). See the text
for details. Plots taken from [8].

|Y−1
d Y |/M as (4.2.42), and all turn out to be weaker than the latter. Loop-induced ∆F = 1

observables, say B → Xsγ, lead to subleading bounds.
Finally we should not forget the constraints coming from the non-observation of the neu-

tron electric dipole moment dn. We estimated the dominant non-decoupling contributions
to the θ̄ parameter for one family of mediators in (4.2.23) and for two families in (4.2.37).
Because we did not compute the order one number in front of those expressions we allow for
an unknown overall factor ranging within [0.1, 10]. For one family only the most conservative
bound, |Yd−1Y | ≲ 860, wins over the perturbative constraint (4.2.17). On the other hand,
for two families of mediators θ̄ ≲ 10−10 roughly translates into |Yd−1Y | ≤ 60+100

−30 , which is
always stronger than (4.2.17). Other contributions to dn are induced by higher-dimensional
operators. However, these give small corrections [189]. For example, quark dipole interactions
first arise at 2-loops and are suppressed by the small light quark masses.

As anticipated at the beginning, we collect all the constraints in a single plot assuming
that Yd−1Y has anarchic entries of comparable size |Yd−1Y |. When plotting the bounds on the
2-family model we also take degenerate masses as in (4.2.40). The mass degeneracy effectively
increases the Wilson coefficients c̄ij by a factor of 2, thus making the electroweak and flavour
constraints stronger than in the single family model. The results are shown in figure 4.3 for
one family of mediators (left) and two families (right). We see that direct searches as well as
electroweak precision tests and flavour data have already started to constrain our scenarios,
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though a sizeable portion of accessible parameter space around M ≳ 1 TeV is still available.
Remarkably, in the 2-family model the most significant constraint on the coupling constant
comes from the 3-loop contribution to the neutron electric dipole moment. To make a more
quantitative assessment of the allowed parameter space it would therefore be necessary to
calculate the numerical coefficient in front of (4.2.37).

u−mediation

In models of u−mediation collider searches currently imply mψ ≳ 1200 GeV [198]. In this
regime it is appropriate to describe the electroweak and flavour constraints in terms of an
effective field theory, as done for d−mediation.

The strongest constraint from electroweak observables arises due to radiative corrections to
the ˆ︁T parameter. In the effective field theory this corresponds to the dimensionless coefficient
of |H†DµH|2/v2. The main contributions are of order Y 2 ˆ︁Y 2

t and Y 4. Considering an arbitrary
number of mediators’ families, in the basis in which M is diagonal we obtain [8]:

ˆ︁T = 3
16π2Y

∗
3aY3a

m2
t

M2
a

(︄
log M

2
a

m2
t

− 1
)︄

+ 3
64π2

v2

M2Y
∗
iaYjaY

∗
jbYib

logM2
b /M

2
a

M2
b −M2

a

.

(4.2.46)

Since S is very small we find that the 95% CL bound of [199] simply reduces to ∆T = 4π ˆ︁T/e2 <
0.1. Other electroweak observables lead to weaker bounds. In particular, corrections to the
couplings of the up-type quarks to Z, most importantly those of the charm, are very small.

The dominant ∆F = 2 effects show up in the radiative K0, Bd, Bs meson oscillations. The
associated operator is again the one in (4.2.43) with the Wilson coefficient (4.2.44), where
of course now Y ∝ Yu. Using respectively |Cd21;21| ≲ 2.0 × 10−15 GeV−2, |Cd32;32| ≲ 6.7 ×
10−12 GeV−2, |Cd31;31| ≲ 8.0×10−13 GeV−2 [195] we find comparable bounds on |Yu−1Y |/

√
M ,

though Bs − Bs mixing slightly wins. This constraint is comparable to the one coming from
(4.2.46) at large M . Among the ∆F = 1 observables, by far the most constraining turns
out to be B → Xsγ. In the effective field theory the associated operator is first generated at
1-loop [8, 200]

LEFT ⊃ −
1
9

e

16π2

(︃
Y

1
M†M

Y †
)︃

23
mb sLσ

µνbR Fµν . (4.2.47)

The bound on |Y −1
u Y |/M derived from [200] is weaker than the one due to the electroweak T

parameter as well as Bs −Bs mixing (already at M ≳ 100 GeV).
Similarly to models of d−mediation, the constraints due to the neutron electric dipole are

dominated by (4.2.26) for one generations of mediators and by (4.2.37) for two generations.
We find that in the former case only the most conservative bound on θ̄ is more stringent than
the perturbativity requirement (4.2.18), whereas for two generations it translates, under our
hypothesis (4.2.39), into |Yu−1Y | ≤ 13+22

−7 .
All bounds are collected in figure 4.4. The main conclusions are similar to those drawn for

theories of d−mediation. Yet, the parameter space of models of u−mediation is significantly
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Figure 4.4: Summary of the most relevant experimental constraints on models of u−mediation
with one (left) or two (right) families of ψ,ψc. To reproduce the CKM we imposed the
structure (4.2.39). We show direct searches in light blue, electroweak in yellow (“EW”, see
(4.2.46)), flavour violation in light green (“FV”, from Bs − Bs mixing), the neutron electric
dipole moment (“nEDM”) in magenta. The lower and upper bounds from 4.2.1 are identified
by the hatching and the grey region. See the text for details. Plots taken from [8].

reduced by the lower bound |Yu−1Y | ≳ 20 necessary to reproduce the CKM phase, see figure
4.2. In particular, u−mediation with two or more families appears to be basically excluded; a
thorough numerical scan and an explicit computation of (4.2.37) should tell us if some region of
the parameter space is still allowed. Another, far less concrete, reason why u−mediation is less
attractive is perhaps that d−mediation can be easily embedded into a grand-unified picture,
where in terms of SU(5) representations would be more appropriately called 5-mediation. On
the other hand, u−type quarks come in the same multiplet as the doublets q, which we saw
should not mix with the mediators otherwise θ̄ gets too large, and this generates a tension
between models of 10-mediation and the stringent constraint coming from the neutron EDM
non-observation.

4.3 Addressing the Nelson-Barr Hierarchy Problems

In Nelson-Barr models, the smallness of the neutron electric dipole moment strongly con-
straints the couplings of the mediators to the SM. Radiative corrections to θ̄ are below the
current bounds if the couplings of the d−(u−) quarks to the CP-violating sector are sufficiently
small (4.2.3),

y ≪ 1, (4.3.1)

and CP-odd couplings between the messengers and the quark doublets are forbidden. From an
effective field theory perspective, this non-generic structure can be interpreted as arising from
selection rules associated to a spurious U(1)A symmetry. Below the scale of spontaneous CP
breaking the scalars decouple and the relevant BSM degrees of freedom are just the messengers
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ψ,ψc. Therefore, the effective spurious U(1)A can be seen as involving the messengers, their
CP-even mass mψ and ξ as in table 4.1.

U(1)A
ψ zψ
ψc zψc

mψ −zψ − zψc
ξ,Σ −zψ

Table 4.1: Spurious U(1)A charges in the minimal Nelson-Barr model.

However, these are not the only sources of contamination to θ̄. The spontaneous breaking
of CP itself may introduce a sensitivity to unknown physics at high scales that can poten-
tially jeopardize the solution to the Strong CP problem. To avoid this the breaking must be
sufficiently soft. That is, it is necessary to make sure that the CP-odd scalars Σ responsible
for the spontaneous breaking of CP have vacuum expectation values much smaller compared
to the UV cutoff:

| ⟨Σ⟩ | ≪ fUV. (4.3.2)

Very explicitly, this is necessary to prevent uncontrollable higher-dimensional operators sup-
pressed by the cutoff fUV, e.g. cabΣ†

aΣbϵ
µναβGµνGαβg

2
s/(16π2f2

UV), to spoil the solution.
Finally, a crucial condition was derived in 4.2.1 that these models must strictly satisfy.

The SM amount of CP violation and quark masses can be reproduced in a controllable setup
only if a peculiar coincidence is present (4.2.19) [8]:

(−dmediation),2 ≲

⃓⃓⃓⃓
⃓ ξmψ

⃓⃓⃓⃓
⃓≪ 103 (d−mediation),

(u−mediation).20 ≲

⃓⃓⃓⃓
⃓ ξmψ

⃓⃓⃓⃓
⃓≪ 300 (u−mediation).

(4.3.3)

Thus, we are apparently left with an effective theory that introduces many new additional
fine-tunings instead of solving the one for which it was put forth. First, the existence of
the hierarchy (4.3.2) has to be explained, otherwise no solution of the Strong CP problem is
offered. Indeed, if no justification of the hierarchy is provided the QCD theta angle would
be incalculable, because susceptible of corrections from unknown corrections from the UV,
and its smallness would merely be the consequence of a hidden assumption (even though,
fortunately, the requirement (4.3.2) may easily be addressed by Supersymmetry [201] or a
strong dynamics [189]). Similarly, the coincidence of scales (4.3.3) cannot be explained by
the effective field theory of table 4.1. It must be the consequence of some property of the
UV completion. This coincidence is especially remarkable because ξ is CP-odd whereas mψ

must be CP-even. How is it possible that quantities with an a priori qualitatively different UV
origin, like the CP-even mψ, y and the vacuum expectation value of a separate sector, turn out
to be comparable to each other in size? “Explaining” (4.2.4) is tantamount to finding a class
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of UV completions for the effective field theory described above that naturally accommodates
it. This is as key as (4.3.2) if one wishes to truly solve the Strong CP problem via spontaneous
CP violation. In the case no such UV completions can be found one would have to conclude
that Nelson-Barr scenarios are just a very elaborated way to trade the smallness of θ̄ with a
subtle fine-tuning of the parameters.

From a model-building viewpoint, the real challenge in constructing realistic Nelson-Barr
scenarios is therefore making sure that (4.3.3) is realized within a framework that also explains
(4.3.2) and (4.3.1). One might naively argue that (4.3.3) would be easily accommodated in a
theory where all couplings are of order unity and all scales beyond the SM of comparable size.
A more careful look, however, reveals that this cannot be the case. In non-SUSY versions
additional corrections to θ̄ always arise from loops involving excitations of the CP-violating
sector and would be unacceptably large for generic couplings of order unity, see (4.3.1). But,
if y is taken to be small, why is the potential of the CP-violating sector minimized at a scale
⟨Σ⟩ ∼ mψ/y that “knows” about the couplings of the mediators to the SM? In SUSY versions
of Nelson-Barr one can avoid the corrections controlled by y if CP violation takes place at
scales much larger than SUSY-breaking [201]. Yet, then there are necessarily several scales
involved and the question remains: why would (4.2.4) be satisfied? One may alternatively
justify (4.2.4) postulating that mψ itself arises from the vacuum expectation value of a new
scalar field, mψ = yS ⟨S⟩. This would be an interesting approach in both non-SUSY as well
as SUSY realizations. Now, granting the reasonable assumption y ∼ yS , the coincidence
would be explained by making sure that both scalars acquire comparable vacuum expectation
values, i.e. for ⟨S⟩ ∼ ⟨Σ⟩. The conceptual hurdle then is achieving this in such a way that
mψ be a CP-even parameter, which is mandatory if the strong CP is to be solved. Is there
a way to guarantee this? In the rest of this section we will show that it is indeed possible to
find elegant UV completions of the Nelson-Barr scenarios that simultaneously address the key
requirements (4.3.2), (4.3.1), and (4.2.4) by presenting the model of the original work [9]. In
particular, we will show how these requirements are naturally explained in scenarios in which
CP violation is dynamical and responsible for generating both ξ and mψ, the messengers
are chiral (that is they have zψc ̸= −zψ in table 4.1), and the global U(1)A is gauged. At
low energy the UV completion reproduces the scenarios of d−mediation studied in section
4.2. This guarantees the Strong CP problem is robustly solved. In addition, though, our
constructions add new constraints and phenomenological signatures which we discuss in 4.3.2.
Overall, the main message is that realistic scenarios of spontaneous CP violation are very
predictive and compelling solutions of the Strong CP problem.

4.3.1 The Basic Setup

We begin our analysis with a preliminary discussion of the key ingredients. In the following we
will assume that CP is an exact symmetry in the UV. This means that there exists a field basis
in which all couplings are real and the topological angles vanish. CP is then spontaneously
broken in the effective field theory, as described below. We will focus on scenarios with
d−mediation.

As anticipated, we tackle the hierarchy problem (4.3.2) within non-Supersymmetric mod-
els. This is achieved replacing the vacuum expectation value of the fundamental scalars Σ by
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the condensate of a set of SM-neutral fermion bilinears

⟨χαχcβ⟩ ∼ 4πf3δαβ. (4.3.4)

Here χα, χcα are two or more families of fermions charged under, say, the fundamental and
anti-fundamental of an exotic strong SU(n)6(α, β are the flavour indices, and to save typing
we will often omit them). The latter dynamics undergoes dynamical chiral symmetry breaking
at a mass scale ∼ 4πf , roughly the equivalent of ΛC ∼ 1 GeV in real-world QCD. The powers
of 4π in (4.3.4) are borrowed from naive-dimensional analysis arguments analogous to those
adopted in QCD.

In the chiral limit the condensate does not violate CP. To see this observe that the results
of [22] imply that in our scenarios the vector-like symmetries as well as parity remain unbro-
ken, and hence ⟨χαχcβ⟩ = Cδαβ with C† = C a real number by P invariance. Because CP acts
as C → C∗ it follows that the condensate is also CP invariant. The situation is completely dif-
ferent when the chiral symmetry is explicitly broken by tiny effects, such as higher-dimensional
operators like (χχc)2, since in that case some of the approximate Nambu-Goldstone bosons
emerging from chiral symmetry breaking may acquire a vacuum expectation value ∼ f and
break CP (and/or P) spontaneously. We will later show that in our models ⟨χχc⟩ generi-
cally has large imaginary entries, with magnitude (4.3.4), even if all the parameters of the
Lagrangian are CP-even by hypothesis. This elegant mechanism of spontaneous CP violation
of course requires at least two families of χ, χc, since there would be no Nambu-Goldstones
otherwise. The identification Σ → χχc obviously implies that the Yukawa couplings y of
(4.3.1) should be replaced by non-renormalizable interactions:

yψΣd→ ψdχχc

f2
UV

, (4.3.5)

for some high UV cutoff scale fUV.
The above basic setup accomplishes two goals at once. First, it ensures that the hierarchy

f ≪ fUV is naturally explained via dimensional transmutation. In other words, our constraint
(4.3.2) is satisfied. If we are careful enough, this means we do not have to worry about
possible UV effects spoiling our solution of the Strong CP problem. Second, in a picture
where (4.3.5) controls the main interaction between the SM quarks and the CP-violating
sector, the non-renormalizable nature of (4.3.5) automatically guarantees that the excitations
of the CP-violating sector, the hadrons of the χ, χc dynamics, have very tiny couplings of
order

y ∼ 4π f2

f2
UV
≪ 1 (4.3.6)

with d and ψ. Hence, potentially sizeable loop corrections to the theta parameter due to the
CP-violating sector are completely negligible. We have thus automatically satisfied (4.3.1) as
well. So far, so good. The first serious model-building challenge is, as anticipated, making
sure that the coincidence (4.2.4) is explained. To achieve this, we look for a model in which

6Later on we will choose n = 3, so here we do not keep track of the large n counting.
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the mass of ψ,ψc is given by a new coupling yS ∼ y times the vacuum expectation value of a
(composite) scalar ⟨S⟩, of the same order as ⟨Σ⟩.

Since in the present framework y arises from a non-renormalizable operator, also the
mass of ψ,ψc has to arise from a dimension-6 operator similar to (4.3.5). We therefore
introduce another composite scalar made up of new SM-neutral fermions with SU(n) charges,
i.e. S → λλ, and look for models in which the explicit mass term of Table 4.1 is UV-completed
by

mψψψ
c → ψψcλλ

f2
UV

. (4.3.7)

As long as the UV dynamics is sufficiently generic (but of course CP-invariant), the coefficients
in front of (4.3.5) and (4.3.7) should be comparable in size, implying y ∼ yS as needed. In
addition, | ⟨λλ⟩ | ∼ | ⟨χχc⟩ | would be generically satisfied because the λ’s are charged under
the very same confining SU(n) carried by ψ,ψc. With these assumptions we get

mψ ∼
⟨λλ⟩
f2

UV
∼ | ⟨χχ

c⟩ |
f2

UV
∼ |y ⟨Σ⟩ |. (4.3.8)

This is the desired result (4.3.3). We are making progress, but the main hurdle comes next:
why does argmψ vanish, that is why is ⟨λλ⟩ real while ⟨χχc⟩ is complex?

Since ψ,ψc are colored, an hypothetical phase in their mass would immediately translate
into a correction to θ̄. If no further assumption is made, ⟨λλ⟩ is expected to carry its own
broken chiral symmetries and be complex, as we argued for ⟨χχc⟩. Fortunately this can be
avoided. We identified four sufficient conditions that guarantee that the complex phases in
⟨λλ⟩ are sufficiently small to be compatible with |θ̄| ≲ 10−10. These are [9]:

(a) λ must appear in a single family;

(b) there must be a gauge U(1) under which the SU(n) sector is chiral;

(c) the gauge U(1) must commute with the non-abelian flavour symmetry of the χ, χc’s;

(d) the scale of spontaneous CP violation has to satisfy

f

fUV
≲ 10−5. (4.3.9)

We will see later how these conditions can be implemented in concrete models. Here we
explain why ⟨λλ⟩ is approximately CP-even when they are satisfied.

To start, (a) implies λ does not carry non-abelian global symmetries which would other-
wise generically imply large complex phases arise from the vacuum expectation value of the
associated Nambu-Goldstone fields. The unique spontaneously broken global symmetry λ is
allowed to carry is an axial abelian one, if present. In fact, at the beginning we argued that
such a symmetry must be there in order to reproduce the desired structure. It should not
be a surprise to find then that the global charge carried by λ must be precisely the U(1)A
of table 4.1. To see this assume that such a U(1)A exists. It follows that the new strong
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sector has to be charged under it if we want to allow (4.3.5). In particular, χχc has to be
chiral under the U(1)A. From this observation one might directly conclude that λ must also
be charged. Indeed an accurate U(1)A can only survive in the IR if such a symmetry has no
U(1)A×SU(n)×SU(n) anomaly. This of course requires the fermion λ to be charged. There
is an alternative argument that forces λ to be chiral under the very same U(1)A. Because mψ

is to be given by (4.3.7) we better make sure that ψ,ψc are themselves chiral under U(1)A,
otherwise a Dirac mass term for ψ,ψc would be allowed and we would not be able to convinc-
ingly explain (4.3.3). The bilinear λλ has thus to be charged as well. However we want to
put it, the necessary low-energy structure of these models combined with (4.3.5) and (4.3.7)
lead us to conclude that the SU(n) sector must be chiral under the global U(1)A.

Under the hypothesis (a) we see that the only Nambu-Goldstone mode that can potentially
induce a sizable complex phase in ⟨λλ⟩ is the one associated to the U(1)A. However, condition
(b) renders the latter unphysical: the phase in ⟨λλ⟩ due to the vacuum expectation value of the
(would-be) U(1)A Nambu-Goldstone boson is eaten by the abelian gauge field. Importantly,
for this to fully hold (c) must be satisfied. According to (c), the gauge charges of χα, χcα must
be the same for each flavour α. This ensures that the gauge U(1) acts on the SU(n) sector
exactly as the global U(1)A. As a consequence, the longitudinal component of the gauge boson
exactly coincides with the U(1)A Nambu-Goldstone. In the unitary gauge this is removed and
cannot show up in ⟨λλ⟩.

Whenever (a), (b), (c) are satisfied the only Nambu-Goldstone bosons that can contribute
to the phase of ⟨λλ⟩ are those of the non-abelian flavour symmetry acting on χα, χ

c
α. But

because λ is neutral under such a symmetry, their effect is proportional to the small chiral
symmetry-breaking couplings that are responsible for triggering spontaneous CP violation,
see below (4.3.4). These come from operators of at least dimension-6 in our scenarios (see
next section) and therefore lead to

argmψ ∼
f2

f2
UV

. (4.3.10)

The experimental constraint |θ̄| ≲ 10−10 becomes an interesting upper bound (4.3.9) on the
scale of CP breaking. The vacuum expectation values of the Nambu-Goldstone modes have a
completely negligible impact on mψ if (d) is assumed.

Interestingly, (4.3.9) also guarantees that the contamination of other CP-odd phases does
not spoil our solution of the Strong CP problem. In particular, one may fear uncontrollable
complex contributions to ⟨λλ⟩ (and, less relevantly, to ⟨χχc⟩) arising from the vacuum expec-
tation value of any of the CP-odd massive hadrons η of the exotic dynamics. In general the
potential of the composite scalars is the sum of a zeroth order term from the renormalizable
part of the λ, χ, χc interactions, plus a small perturbation: V = V0 + V1. In our models all
perturbations are due to higher-dimensional operators of at least dimension six because of
the chiral nature of the U(1), and therefore V1/V0 ∼ f2/f2

UV. We have seen above that an
hypothetical complex phase in ⟨λλ⟩ must come at next to leading order, and therefore be
controlled entirely by the small perturbation V1. This leads us again to (4.3.10). The con-
dition (d) prevents these effects from appreciably affecting the θ̄ parameter. We stress that
the results of [22] are central to our conclusions. In a theory with fundamental scalars Σ, S
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we would not have at our disposal such powerful theorems and it would be difficult to find
general conditions guaranteeing mψ = yS ⟨S⟩ be CP-even.

We thus have found a picture in which the key requirements (4.3.2), (4.3.1), and (4.2.4)
discussed at the beginning of this section are structurally realized and the Strong CP problem
can be robustly addressed. Remarkably, this basic set up has very important phenomenolog-
ical consequences. Together with (4.3.8) and (4.3.4), eq. (4.3.9) implies an upper bound on
the messengers’ mass:

mψ ∼ 4πf f2

f2
UV

≲ 10−14fUV. (4.3.11)

The scale at which CP violation is communicated to the SM, which is set by the messengers’
mass, is therefore super-soft [9]:

mψ ≪ 4πf ≪ 4πfUV. (4.3.12)

This feature has important theoretical implications. With a super-soft CP-violating scale
the effect of possible additional heavy physics decouples from θ̄. That is, because of (4.3.12)
the existence of new physics unrelated to the Strong CP problem, characterized by masses
m≫ mψ and sizeable couplings to the SM but not to the CP-violating sector, is not severely
constrained in our scenarios. Precisely, the impact of heavy particles on θ̄ decouples as
powers of m2

ψ/m
2 ≪ 1. New physics above the TeV may thus safely be invoked to address

other puzzles in physics beyond the SM, like the origin of the SM flavour hierarchy, or to
partially stabilize the weak-Planck scale hierarchy without spoiling our solution of the Strong
CP problem. Said differently, there need not be a desert between 4πf and the TeV scale.

There are also interesting phenomenological consequences, however. Since our effective
field theory arguments are at most reliable up to the Planck scale we expect fUV ≲ 2.4× 1018

GeV. It follows that [9]

mψ ≲ few 10’s TeV. (4.3.13)

This constraint must be interpreted at an order of magnitude level, given it depends on an
unknown UV scale and the coefficients of dimension-6 interactions, as well as the incalculable
value of the condensates ⟨χαχcβ⟩, ⟨λλ⟩. Yet, the implication is clear: our solutions predict
new colored fermions not far from the TeV. This important constraint makes these scenarios
testable and very predictive7. We may also reverse the argument and observe that, since the
messengers are colored fermions, the lack of experimental evidence of such particles says that
mψ ≳ 103 GeV. Via (4.3.11) this implies fUV ≳ 1017 GeV. Assuming order one coefficients in
(4.3.8), we see the UV cutoff must lie close to the Planck scale.

The main ingredients of the model have now been identified. In the following we will
construct a concrete realization and discuss some of the main phenomenological implications.

4.3.2 A Concrete Realization

An anomaly-free realization of the ideas in 4.3.1 requires more fields than the minimal ones
necessary to address the Strong CP problem, namely more than just ψ,ψc, χα, χcα, λ. Some of

7An analogous connection with the TeV was made in the context of mirror-world models in [138].

105



CHAPTER 4. UV SOLUTIONS

the extra states may lead to interesting phenomenological signatures, which will be analyzed
later on.

A. Field Content

The particle content beyond the SM involves only fermionic (Weyl) fields and is summarized
in table 4.2. The non-abelian gauge groups are all asymptotically free and the Landau poles of
the abelian sector are many orders of magnitude above the Planck scale. The embedding of the
fields charged under the SM in complete grand-unified SU(5) ⊃ SU(3)C × SU(2)L × U(1)Y
multiplets is straightforward (see the caption of table 4.2). Let us discuss the role of the
various fields in turn.

SU(3)C SU(2)L U(1)Y SU(3) U(1)

ψ1 3 1 −1
3 1 +1

ψ2 3 1 −1
3 1 −1

ψc1 3 1 +1
3 1 −1

3
ψc2 3 1 +1

3 1 +1
3

ψ′
1 1 2 +1

2 1 +1
ψ′

2 1 2 +1
2 1 −1

ψ′c
1 1 2 −1

2 1 −1
3

ψ′c
2 1 2 −1

2 1 +1
3

χα=1,2 1 1 0 3 +1
2

χcα=1,2 1 1 0 3 +1
2

λ 1 1 0 8 −1
3

NI=1,2,3,4 1 1 0 1 −2
3

N ′
I=1,2,3,4 1 1 0 1 −1

6

Table 4.2: Field content beyond the SM [9]. All fields are Weyl fermions. Note that the
messengers (ψa, ψ′

a)⊕ (ψca, ψ′c
a ) form complete 5a⊕5a multiplets of a grand-unified SU(5) SM

gauge group, but are chiral under U(1).

The CP-violating Sector. The minimal CP-violating sector realizing the program
spelled in 4.3.1 is composed of two families of χ, χc in the fundamental representation of a
new confining SU(3) gauge group and a single Weyl fermion λ in the adjoint representation.
These fermions are all charged under the axial gauge U(1), with charges chosen such that the
anomaly SU(3)× SU(3)× U(1) is absent.

This theory, when supplemented with small (CP-conserving by hypothesis) perturbations
of the type (χχc)(χχc)†/f2

UV, breaks CP spontaneously. To assess the qualitative behavior of
the non-perturbative dynamics let us first neglect all couplings except for the SU(3) gauge
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interaction. Then χ, χc, λ enjoy a global anomaly-free symmetry SU(2)χ×SU(2)χc×U(1)V×
U(1)A, where U(1)V is just the χ, χc baryon number, whereas the global U(1)A acts on χ, χc, λ
precisely as the U(1) of table 4.2. While there is no definite proof, there are good reasons to
expect that in the IR this theory develops two condensates ⟨χχc⟩ ∼ ⟨λλ⟩. Indeed, according to
the arguments of [22] the vectorial subgroup SU(2)χ+χc × U(1)V must remain intact. Hence
the only allowed condensates are ⟨λλ⟩ , ⟨χχc⟩. An heuristic argument based on the most
attractive channel [202] suggests that ⟨λλ⟩ is likely to form first, immediately followed by
⟨χχc⟩. In the following we will therefore assume that both condensates form, and that they
have comparable sizes.

After chiral symmetry breaking the U(1)A Goldstone mode is eaten by the U(1) gauge
via the Higgs mechanism. The remaining 3 Nambu-Goldstone bosons πq are described by the
SU(2) matrix U = eiπ

qσq/f , with σq the Pauli matrices. Below the chiral symmetry breaking
scale, the condensates may be parametrized as

⟨χαχcβ⟩ = cχ4πf3Uαβ

⟨λλ⟩ = cλ4πf3 (4.3.14)

or some unknown parameters cχ, cλ expected to be of order unity. The latter are guaranteed to
be CP-even, as demonstrated in subsection 4.3.1. The renormalizable theory we just described
conserves CP and has a degenerate vacuum parametrized by any value of the πq’s. However,
additional small interactions can break explicitly the accidental SU(2)χ×SU(2)χc symmetry
and generate a potential for U . For example, a set of unavoidable dimension-6 interactions of
the type

cαβ;γδ
f2

UV
(χαχcβ)(χγχcδ)† (4.3.15)

breaks SU(2)χ×SU(2)χc completely if the (real) coefficients cαβ;γδ are generic. This operator
in fact describes the dominant source of explicit chiral symmetry breaking in the model of table
4.2. Once (4.3.15) is included in the picture, the Nambu-Goldstone bosons acquire a small
potential (see (4.3.14)) VNGB(π) ∼ 16π2f4(f/fUV)2 cαβ;γδUαβU

∗
γδ, and the vacuum degeneracy

is lifted. The actual vacuum configuration of the U field depends on the unknown CP-even
parameters cαβ;γδ. What matters to us here is not the exact expression of the vacuum state,
however, but simply that CP is generically broken by complex entries of order (4.3.4). To
prove this one has to observe that CP is spontaneously broken if ⟨U⟩∗ ̸= ⟨U⟩, i.e. if ⟨π1⟩ ≠ 0
or ⟨π3⟩ ≠ 0. It is then easy to see that, for generic CP-even coefficients cαβ;γδ, VNGB is indeed
minimized at8

Im ⟨U⟩ ∼ 1. (4.3.16)

A numerical scan of the coefficients cαβ;γδ in the range [−10, 10] confirms that this holds in
more than 50% of the parameters space: spontaneous CP violation is generic in our model.

8As usual, all these expressions are to be interpreted as holding in the field basis in which all couplings are
CP-even, according to the hypothesis of exact CP invariance of the UV.
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The Mediator Sector. The messengers ψ,ψc of table 4.2 are vector-like under the
SM subgroup SU(3)C × U(1)Y, but chiral under the new gauge U(1). They appear in four
different representations in order to avoid an anomaly in SU(3)C×SU(3)C×U(1) and U(1)Y×
U(1)Y×U(1). This implies the existence of a non-minimal number of mediators’ families. Of
course other constructions are possible, but we will stick to this one in the following.

The particles ψ′, ψ′c are introduced in table 4.2 with the sole scope of removing the U(1)Y×
U(1)× U(1) anomaly left by the ψ,ψc system. The ψ′, ψ′c mix with the SM lepton doublets
similarly to how ψ,ψc mix with quarks. In this sense they can be seen as mediators for CP
violation in the leptonic sector. Their presence does not spoil the solution of the Strong CP
problem, as will be argued below. If preferred, it is possible to find alternative scenarios
where the leptonic messengers are replaced by other fields with SM charges. In order for such
alternatives to be phenomenological viable, though, the new states must have sufficiently large
decay rates into SM particles. This is certainly the case with the field content of Table 4.2.

Extra states. The last degrees of freedom that need to be discussed are the N,N ′

particles. This SM neutral sector removes the remaining U(1) × U(1) × U(1) and U(1) ×
grav × grav anomalies. One may find many different ways to cancel these anomalies, and
the field content of table 4.2 is just an arbitrary choice. A different choice will be discussed
later. It is worth to make a few comments, though. First, one cannot replace the spectator
sector by increasing the number of χ, χc, λ families. If this avenue is pursued, the SU(3)
sector would contain flavors with different U(1) charges; as a consequence the spontaneously
broken abelian global symmetry and the gauged U(1) would no more coincide. This would
be a disaster because it would imply that the phase from λλ could not be removed by the
Higgs mechanism and the Strong CP problem would not be solved. Second, we were unable
to replace the SM-neutral N,N ′ with a slightly more involved (but still unstable) messenger
sector of SM-charged states. This does not mean it is not possible, of course. Overall, our
opinion is that a separate SM- and SU(3)-neutral spectator sector is a rather generic feature
of our models.

B. Interactions

There is a very limited set of new couplings at the renormalizable level: the obvious kinetic
terms (including those of the exotic gauge fields) and, since our model contains an abelian
group, a kinetic mixing between hypercharge and the U(1) gauge. The latter is however not
relevant phenomenologically because the exotic vector acquires a large mass, as we will see
below. On the other hand, there are no renormalizable couplings among the exotic fermions of
table 4.2 and the SM fermions, and the former are all chiral. Non-gauge interactions involving
the exotic fermions all arise from operators of dimension six or higher suppressed by powers of
the UV cutoff fUV ∼ 1017−18 GeV, see the discussion around (4.3.9). Operators of dimension
larger than 6 lead to effects suppressed by at least v/fUV ≲ 10−15 or (f/fUV)3 ≲ 10−15 and
have no phenomenological impact (there is a single exception to this conclusion, i.e. the mass
of N ′, which we discuss around (4.3.25).). Therefore, here we limit ourselves to a discussion
of the leading dimension-6 interactions.

We are interested in four-fermion operators O involving the fermions of table 4.2. These
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appear in the effective Lagrangian as cO/f2
UV. Our working hypothesis of exact CP invariance

at the Planck scale implies that all Wilson coefficients c are real in a suitable field basis. For
definiteness we will take them to be of order unity. No particular flavour structure is favoured
by our models.

Operators involving only the fermions ψ,ψc, ψ′, ψ′c, N,N ′ and SM fields are strongly irrel-
evant. In particular they do not bring CP-violating phases and do not contribute appreciably
to θ̄. On the other hand, operators containing χ, χc, λ can become important at low energies
because after symmetry breaking they can be turned into relevant interactions. Let us thus
focus on interactions with χ, χc, λ. The charge assignments of table 4.2 imply these belong
to five distinct classes. First we find the operators that, after symmetry breaking, generate
CP-violating mass terms as in (4.3.5):

(χαχcβ)†ψ1d, χαχ
c
βψ2d, (χαχcβ)†ψ′

1ℓ, χαχ
c
βψ

′
2ℓ. (4.3.17)

Note that the charge assignments do not allow analogous (and dangerous) dim-6 interactions
among χχc, ψ,ψc and the quark doublet q. In particular, the U(1) charges are carefully
chosen to forbid ψψcχχc, which would generate a complex mass for the quark mediators and
re-introduce a Strong CP problem. In the second class we have operators inducing CP-even
masses of the type (4.3.8) after symmetry breaking. These are

ψ1ψ
c
1λλ, ψ2ψ

c
2(λλ)†, ψ′

1ψ
′c
1 λλ, ψ′

2ψ
′c
2 (λλ)†. (4.3.18)

Third, we have operators involving only χ, χc, λ, like the ones in eq. (4.3.15). These are
especially important because they represent the dominant source of explicit breaking of the
chiral SU(2)χ × SU(2)χc symmetry group of the strong SU(3) sector. Since we have already
argued that CP gets spontaneously broken we do not need to analyze them in detail here.
The fourth class of operators containing χ, χc, λ consists of

χ†
ασ̄

µχβ Jµ, λ†σ̄µλ Jµ, (4.3.19)

with Jµ indicating any gauge singlet vector current (of dimension 3) constructed out of the
other fields, SM fields included. After chiral symmetry breaking this class of operators generate
tiny (in general CP-violating) interactions between the SU(3) hadrons and the rest of the
world. Fortunately, they also do not affect θ̄ appreciably because they induce corrections
suppressed by powers of (f/fUV)2 ≲ 10−10. Finally, the last class of operators involving the
CP-violating sector parametrize flavour-violating interactions with the spectator sector:

χαχ
c
βλNI . (4.3.20)

This generates, after SU(3) confinement, a mass for NI , as we will discuss below. On the
other hand, N ′

I remain massless at dimension-6. We will estimate their mass in a moment.

C. Phenomenology

We now analyze in some detail the phenomenology of our model. Yet, before embarking in
this journey, it proves useful to summarize the different mass scales in the theory. These are
pictorially shown in figure 4.5.
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Figure 4.5: Schematic representation of the mass scales involved. See the text for details.
Taken from [9].

The highest scale is the UV cutoff, parameterized by fUV ∼ 1017−18 GeV. One may identify
it with the Planck scale, but we decided to keep our discussion more general. All masses of
the particles beyond the SM masses arise from the dynamically generated scale [9]

m /CP ∼ 4πf ∼ 1013−14 GeV (4.3.21)

of the confining SU(3) sector. The natural hierarchy f/fUV appears in many of the following
expressions, so it is convenient to introduce the more compact notation

ϵ ≡ f

fUV
. (4.3.22)

As we argued around eq. (4.3.9), ϵ ≲ 10−5 ensures there are no large contributions to the
QCD θ̄ parameter due to the vacuum expectation value of CP-odd resonances.

Let us now see what masses arise from chiral symmetry breaking. First, heavy SU(3)
hadrons all have masses of order m /CP. The SU(3) dynamics also generates pseudo Nambu-
Goldstone bosons, the key players in the spontaneous breaking of CP (see (4.3.16)). Their
masses are induced dominantly by the interactions in (4.3.15) and are expected to be of order
(see the corresponding potential VNGB) [9]

mπ ∼ ϵm /CP ≲ 108−9 GeV. (4.3.23)

Furthermore, chiral symmetry breaking generates a mass for the U(1) vector, mA ∼ gAf ∼
(gA/4π)m /CP, with gA the U(1) gauge coupling. For definiteness we will assume that gA is
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not far from order unity, so that mA ≫ mπ. This assumption does not have any significant
impact on our analysis, though.

Similarly, the fermions ψ,ψc and separately ψ′, ψ′c form, after chiral symmetry breaking,
two families of Dirac pairs with CP-even masses generated by the interactions (4.3.18) and CP-
odd mixings (4.3.17) with the SM d, ℓ representations. Overall, these are of order mψ,mψ′ ∼
ϵ2m /CP ≲ 1− 10 TeV (see also (4.3.8)).

The spectator sector of table 4.2 lives at scales parametrically smaller than the TeV. N
gets a mass after a seesaw-like mixing with heavy fermionic hadrons ∼ χχcλ via (4.3.20). A
rough estimate says that [9]

mN ∼ ϵ4m /CP ≲ 102 − 103 eV. (4.3.24)

Finally, the dominant contribution to the mass of N ′ arises from dimension-9 interactions like
N ′N ′χχcλλ. After chiral symmetry breaking we get [9]

mN ′ ∼ ϵ5m /CP ≲ 10−3 − 10−2 eV. (4.3.25)

Note that the larger powers of ϵ in (4.3.24), (4.3.25) compared to the other beyond the SM
particles make mN,N ′ more sensitive to the actual O(1) couplings involved in our estimates.

We next turn to a study of how the Strong CP is solved, and then cosmological and collider
signatures of our scenarios.

The CKM Phase and the Strong CP problem. It is easy to see why the
model introduced in 4.3.2 solves the Strong CP problem. CP is spontaneously violated by the
vacuum expectation value ⟨χχc⟩. The excitations of the CP-violating sector (heavy hadrons
and Nambu-Goldstone bosons) couple to the SM via small Planck-suppressed couplings (4.3.6)
and can be ignored, as anticipated in (4.3.1). For all practical purposes the CP-violating sector
is frozen and parametrized by the two condensates ⟨χχc⟩ and ⟨λλ⟩. Within the effective field
theory at scales ≪ mπ ≪ 4πf the relevant degrees of freedom are the SM particles and
ψ,ψc, ψ′, ψ′c, N,N ′. There is a unique CP-odd spurion, namely ⟨χχc⟩, which couples to the
colored sector solely via (4.3.17). The CP-violating theory we are describing is essentially
that of table 4.1 with ξ replaced by ⟨χχc⟩ /f2

UV and mediators’ masses satisfying |mψ| ∼ |ξ|
(see (4.3.8)). This theory reproduce the SM at scales ≪ mψ, including the CKM phase, and
a θ̄ very comfortably below the current bounds, as we showed in section 4.2.

Yet, our UV completion adds new ingredients to the effective field theory of table 4.1. It
predicts the constraint (4.3.13) and additional (SM-charged) unstable particles ψ′, ψ′c, neutral
states N,N ′, and Planck-suppressed CP-conserving interactions. The additional states cannot
play any role in transferring CP violation to QCD. In particular, the leptonic CP-violating
coupling in (4.3.17) is completely irrelevant for the Strong CP problem, since the additional
CP-odd flavour-invariants felt by the colored particles are the same quark invariants found
in the absence of ψ′, ψ′c with additional suppressing factors controlled by the tiny lepton
Yukawa couplings. Furthermore N,N ′ are also not important for what concerns the Strong
CP problem because they only interact with the SM via (CP-conserving) gauge-interactions
and (CP-conserving) irrelevant couplings. In general, non-renormalizable operators cannot
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affect θ̄ appreciably because CP violation is super-soft and their contributions are therefore
suppressed by powers of m2

ψ/(4πfUV)2.
We conclude that our picture satisfies all the low energy requirements spelled out at the

beginning of section 4.3, including (4.3.2), (4.3.1), and (4.2.4), and robustly solves the Strong
CP problem.

Cosmology. We next study the cosmology of our models. Referring back to figure 4.5,
we begin with a discussion of the heavy states beyond the SM, and then proceed to lower
masses.

Most of the heavy hadrons are unstable and decay into pions or into SM particles and
ψ,ψ′, N,N ′ via (4.3.17), (4.3.18), (4.3.19). Similar considerations apply to the heavy U(1)
vector. Due to the axial U(1), however, the baryons χχχ are practically stable. Hence,
if thermalized, the exotic baryons would have decoupled at T ∼ m /CP/25 and subsequently
dominated the expansion rate until very recently. To avoid conflict with the physics of BBN,
we assume that the temperature of our Universe has never exceeded [9]

TRH ≪
m /CP
25 ∼ 1011−13 GeV. (4.3.26)

This guarantees that baryons were never thermalized and their abundance was always safely
within acceptable values. The constraint (4.3.26) also serves another purpose. If the Universe
was hot enough to go through the CP-violating phase transition we may have ended up
generating topological defects via the Kibble-Zurek mechanism. These may then have come
to dominate the expansion of the Universe, which is also phenomenologically unacceptable.
Thanks to the condition (4.3.26), though, the transition to the CP-violating vacuum occurred
before or during inflation, so that any abundance of topological defects would have been
diluted to an acceptable amount.

Pions, on the other hand, represent no cosmological hazard. They decay via (4.3.17) into
messengers and SM fermions with lifetimes τπ ∼ 4π/(y2mπ), where y ∼ 10−9 was introduced
in (4.3.6). Even if produced abundantly at re-heating, they would have disappeared from the
plasma when the early Universe was at T ∼ few TeV.

Going further down in mass we encounter the states ψ,ψc, ψ′, ψ′c, N,N ′. Obviously, since
ψ,ψc, ψ′, ψ′c mix with the SM quarks and leptons, they are unstable and decayed very quickly
as soon as they decoupled.

The situation is a bit more complicated for N,N ′. These particles are cosmologically
stable and couple to the plasma only via higher-dimensional operators suppressed by the UV
cutoff as well as gauge U(1) interactions. For temperatures satisfying (4.3.26) they never
thermalized. Under the reasonable assumption that they were not directly produced by the
inflaton, a tiny population of N,N ′ was nevertheless generated at, and soon after, re-heating
by the annihilation of nearly thermalized ψ,ψc, ψ′, ψ′c. The latter processes are mediated by
the effective 4-fermion interaction

Leff ⊃ −
1
f2J

A
µ

[︂
qNN

†σ̄µN + qN ′N ′†σ̄µN ′
]︂

(4.3.27)

where JA
µ = ∑︁

i qi Ψi
†σ̄µΨi is the U(1) current of the thermalized charged fermions Ψi =

ψ,ψc, ψ′, ψ′c and qi their U(1) charges. We would like to provide a quantitative estimate of
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the energy density carried by the spectators. In order to do so it is enough to focus on the
N ’s because N ′ have a much smaller mass and their energy density is suppressed by a factor
mN ′/mN ∼ ϵ ≲ 10−5 compared to that of N .

An approximate estimate of the yield YN = nN/s is obtained via the Boltzmann equation
dYN/dt = Γcoll/s. If the Ψi’s are taken to have had a thermal distribution, for simplicity, the
collision term is given by

Γcoll = q2
N

(︄∑︂
i

giq
2
i

)︄
1

18π5f4

(︄
7π4T 4

120

)︄2

(4.3.28)

where gi is the multiplicity of each Ψi (helicity excluded). From table 4.2 we have q2
N

∑︁
i giq

2
i =

400/81. Finally, the present-day energy in units of the entropy, ρN/s = ∑︁4
I=1mNIYN (there

is a family of 4 N ’s in table 4.2), is approximately [9]

ρN
s
∼

4∑︂
I=1

mNI

Γcoll
Hs

⃓⃓⃓⃓
⃓
TRH

∼ ρDM
s

(︄∑︁4
I=1mNI

4 KeV

)︄(︄
1013 GeV

f

)︄4 (︃
TRH

1011 GeV

)︃3
.

(4.3.29)

Since this expression is dominated by the large-T regime, where details of re-heating can be
important, our computation should be viewed as a qualitative estimate of the actual density.
Nevertheless, the message is clear: in the small TRH regime (4.3.26), where eq. (4.3.29) was
consistently derived, our spectator sector represents generically a subleading component of
dark matter. Yet, with some luck it could be a portion of the missing matter of the Universe,
with N a good cold dark matter candidate and N ′ a negligible component of dark radiation.

Collider Signatures. The particles ψ,ψc, ψ′, ψ′c are subject to collider, electroweak,
and flavor constraints. A detailed analysis of the quark mediators was done in section 4.2.
The bottom line is that most of parameter space is allowed for masses above the TeV.

The physics of the lepton mediators has not been discussed before in this context, but it is
easy to show that these states lead to weaker constraints on the parameters of our scenarios
compared to the quark mediators. As for the quark mediators, the ψ′-ℓ mixing can be removed
via a rotation of (ℓ, ψ′c). The massive eigenstate couples to the Higgs and the lepton singlets
with coupling that up to a unitary rotation is oriented along the direction of the SM lepton
Yukawa coupling Ye, i.e. Y ′ ∝ Ye.

The ψ′, ψ′c are produced in pairs via Drell-Yan, and then decay into leptons and vector
bosons or the Higgs. Current constraints are looser than for quark mediators and are not
relevant to our models, where mψ′ ∼ mψ is the natural expectation. Deviations of the Z
couplings to leptons are constrained at the permille level. The corresponding bounds are not
much stronger than those of the quark mediators, however, because the new coupling Y ′ is
proportional to the SM lepton Yukawa and therefore highly hierarchical. The most significant
constraint from flavor-violation comes from the non-observation of µ→ eγ and is well under
control for |Y −1

e Y ′| ≲ 300×mψ′/TeV. CP violation, including the electric dipole moment of
the electron, is strongly suppressed. Overall, we conclude that lepton mediators are allowed
to live at the TeV scale.
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Baryogenesis. Explaining the observed baryon asymmetry may at first sight appear
difficult in our scenarios, as baryogenesis necessitates of both new sizable CP-violating phases
and new interactions with the SM. Yet, successfull baryogenesis above the weak scale does not
require new couplings to the colored sector , and therefore does not immediately jeopardize
our solution of the Strong CP problem. In fact, it may be realized simply adding new physics
with CP-violating couplings to the leptons. Low-energy leptogenesis thus appears to be the
most natural and safe option in these models.

A slight modification of our model has all the necessary ingredients. Suppose we replace
the spectator sector of table 4.2 with this more complicated set of fermions neutral under the
SM and the new SU(3) but chiral under the U(1) [9]:

U(1)

N1,2 −1
3

N ′
1,··· ,5 −2

3
X1,2,3 +1

2
X ′

1,··· ,5 −1
6

The main difference compared to the spectator sector of table 4.2 is that with this modified
field content one finds a renormalizable coupling ψ′c

2 HN as well as dimension-6 interactions
that generate complex Majorana masses of order the TeV for N,N ′, X (note that N ′ mixes
with N). The state X ′ instead obtains a mass from dimension-9 interactions and is expected to
be of order (4.3.25). In an appropriate portion of the parameter space the modified model may
thus generate the observed baryon asymmetry via resonant decays N,N ′ → ψ′c†H†, ψ′cH →
ℓ†H†, ℓH as studied in [203]. The other fields of the spectator sector would behave qualitatively
as in the scenario discussed before; X would be a cold dark matter candidate and X ′ a
negligible part of radiation. The crucial difference compared to our earlier model is that here
X is much heavier and for this reason has an abundance that is roughly a factor 109 larger
compared to (4.3.29). This implies that the re-heating temperature is allowed to be three
orders of magnitude smaller, TRH ∼ 108 GeV. We can thus have a viable dark matter candidate
comfortably within the allowed regime (4.3.26). The phenomenology of this modified version
of our scenario is quite rich and would deserve further scrutiny. Our purpose here is merely
to demonstrate that there is no structural obstruction to incorporating a mechanism for
baryogenesis in our scenarios.
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Appendices

4.A Flavour Invariants

The invariants In,m of (4.2.14) can be systematically expanded in powers of the Cabibbo angle
employing the numerical relationsmu/mt ∼ λ7

C , mc/mt ∼ λ4
C andmd/mb ∼ λ4

C , ms/mb ∼ λ2
C .

In the field basis in which the up Yukawa is diagonal (Yu = ˆ︁Yu and Yd = V ∗
CKM

ˆ︁Yd) the leading
terms are [8]

I2,1 = Y †
[︂
Hu, [Hu, Hd]2

]︂
Y

= 2ˆ︁Y 4
t
ˆ︁Y 2
c
ˆ︁Y 4
b
ˆ︁Y 2
s

[︂
1 +O

(︂
λ2
C

)︂]︂
×
[︄
−A2η

(︄
|ξ2|2

m2
ψ

+ 2 |ξ3|2

m2
ψ

)︄
λ6
C −A2η

ˆ︁Ydˆ︁Ys λ5
C

Re ξ2ξ1
†

m2
ψ

−A2η
ˆ︁Ysˆ︁Ybλ4

C

Re ξ3ξ2
†

m2
ψ

+ A(1− ρ)
ˆ︁Ysˆ︁Ybλ4

C

Im ξ3ξ2
†

m2
ψ

+A
ˆ︁Ydˆ︁Yb λ3

C

Im ξ3ξ1
†

m2
ψ

+A2ρ
ˆ︁Ydˆ︁Ys λ5

C

Im ξ1ξ2
†

m2
ψ

]︄
,

(4.A.1)

I1,2 = Y †Hu [Hu, Hd]HuY

= 2ˆ︁Y 4
t
ˆ︁Y 2
c
ˆ︁Y 4
b

[︄
A
ˆ︁Ysˆ︁Ybλ2

C

Im ξ3ξ2
†

m2
ψ

]︄ [︂
1 +O

(︂
λ2
C

)︂]︂
,

(4.A.2)

I1,1 = Y † {Hu, [Hu, Hd]}Y

= 2ˆ︁Y 4
t
ˆ︁Y 4
b

[︄
A
ˆ︁Ysˆ︁Ybλ2

C

Im ξ3ξ2
†

m2
ψ

]︄ [︂
1 +O

(︂
λ2
C

)︂]︂
,

(4.A.3)

I1,0 = Y † [Hu, Hd]Y

= 2ˆ︁Y 2
t
ˆ︁Y 4
b

[︄
A
ˆ︁Ysˆ︁Ybλ2

C

Im ξ3ξ2
m2
ψ

]︄ [︂
1 +O

(︂
λ2
C

)︂]︂
.

(4.A.4)

In calculating (4.2.13) the subleading terms are crucial because huge cancellations occur. For
example, the invariants I1,1, I1,0 are not proportional to m2

c at leading order, but their sum
in (4.2.13) is. Similarly, several other important cancellations take place.

There are five more CP-odd flavour invariants one can build out of Hu, Hd, and Y , but
I1,2, I1,1, I1,0 are the most relevant. Importantly, the largest ones in size (see I1,0, I1,1) have a
similar dependence on A(ˆ︁Ys/ˆ︁Yb)λ2

C Im ξ3ξ2
†/m2

ψ. This explains the similarity in the factors
in front of (4.2.23), (4.2.25), (4.2.37).
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4.B Mass Basis

4.B.1 Diagonalization

After electroweak symmetry breaking there appear a new mass mixing of order Y v/M in the
down sector, see (4.2.8). We introduce the 4-family vectors

D =
(︄
qd
ψ

)︄
Dc =

(︄
d
ψc

)︄
(4.B.1)

and diagonalize the mass matrix via SU(4) rotations D → UDD, Dc → UDcD
c,

U tD

(︄
Ydv√

2
Y v√

2
0 M

)︄
UDc = ˆ︂Md. (4.B.2)

The resulting couplings to W±, Z and the Higgs boson h (defined as Ht = (0, v + h)/
√

2 in
the unitary gauge) read:

LW = − g√
2
Viα[qu†]iσ̄µDαW

+
µ + h.c.

LZ = − g

2cw

[︂
[qu†]iσ̄µ[qu]i −ZαβDα

†σ̄µDβ − 2s2
wJ

µ
EM

]︂
Zµ

Lh = − [ˆ︂Mu]ij
v

[qu]iujh− [Y]αβDαD
c
βh+ h.c.

(4.B.3)

where JµEM is the flavour-diagonal QED current of qu, u,D,Dc, and

Viα = [Uqu†]ij [UD]jα
Zαβ = [UD†]αi[UD]iβ

= δαβ − [U∗
D]4α[UD]4β

[Y]αβ = [ˆ︂Md]αβ
v

− M

v
[UD]4α[UDc ]4β.

(4.B.4)

Explicit expressions for V,Z,Y can be derived as an expansion in Y v/M (see for example
[187,188]). We show here only the leading order:

UD =
(︄

U Y ∗v√
2M

− Y tv√
2MU 1

)︄[︂
1 +O(Y 2v2/M2)

]︂

UDc =
(︄
U ′ 0
0 1

)︄[︂
1 +O(Y 2v2/M2)

]︂ (4.B.5)

with U t(YdYd†)U∗ = U ′†(Yd†Yd)U ′ = 2ˆ︂M2
d/v

2.
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4.B.2 Decoupling Contributions to θ̄

Here we describe the irreducible, decoupling contributions to θ̄ in models of d−mediation.
All estimates in this section are obtained working in the electroweak basis in which Yu is
diagonal. In this case one effectively has Uqu = Uu = 1 and the expressions in (4.B.4) are all
controlled by V = UD and UDc ; also, at leading order the matrix U should be identified with
the 3-dimensional CKM matrix, see (4.B.5).

First off, it is easy to see that there are no 1-loop corrections to θ̄, similarly to the SM.
CP violation at 2-loops may arise due to loops of the W±, Z or the Higgs h. These can again
contribute via corrections to the Yukawas (4.2.20) or direct contributions to θ. Inspecting
the couplings of (4.B.3) we see that 2-loop diagrams with fermions and W± (we will refer to
these as W± −W± diagrams) generate corrections directly to θ of the form [8]

θ̄
⃓⃓⃓
nonanaly,WW

=
(︄

g2

16π2

)︄2

Im ([V ]iα[V ∗]iβ[V ]jβ[V ∗]jα) F ij;αβ1WW

+
(︄

g2

16π2

)︄2

Im ([V ]iα[V ∗]iβ[V ]4β[V ∗]4α) F i;αβ2WW ,

(4.B.6)

with i, j = 1, 2, 3 and α, β = 1, 2, 3, 4. Here Viα a generalization of the CKM matrix and
F1WW,2WW are real functions of the masses (squared) indicated by the corresponding indices.
A sum over families is understood, though the imaginary prefactor is non-zero only when i ̸= j
and α ̸= β. The functions F1WW,2WW are constrained by a number of physical considerations.
By unitarity of the 4 by 4 matrix Vαβ, eq. (4.B.6) vanishes unless F1WW,2WW depend on both
m2
α and m2

β. Indeed, if the dependence on m2
α was absent one could sum over α and obtain

a vanishing expression because of a generalized GIM mechanism. Similar logic applies to
β. On the other hand, if no dependence on m2

j (or equivalently m2
i ) exists we may replace

[V ]jβ[V ∗]jα = δαβ − [V ]4β[V ∗]4α in the above expression. The δαβ does not contribute but
the reminder does not vanish. In practice, we can split eq. (4.B.6) into a piece that has a
non-trivial dependence on both i ̸= j (F1WW ) and one that does not depend on one of the
two, say on j (F2WW ).

Incidentally, the contribution ∝ F2WW has exactly the same structure obtained in 2-loop
corrections to θ̄ from diagrams with fermions, one W± and one Z (W± − Z for short), up to
an irrelevant correction [8]:

θ̄
⃓⃓⃓
nonanaly,WZ

=
(︄

g2

16π2

)︄2

Im ([V ]iα[V ∗]iβ[V ]4β[V ∗]4α) F i;αβWZ . (4.B.7)

To prove this observe that the W± − Z loop is proportional to (see (4.B.3))∑︂
σ

Im ([V ]iβ[V ∗]iγ [Z]σγ [Z∗]σβ) F ′i;βγσ
WZ

= Im ([V ]iβ[V ∗]iγ [V ]4β[V ∗]4γ)
[︄∑︂
σ

|V4σ|2F ′iβγσ
WZ − F ′iβγγ

WZ − F ′iβγβ
WZ

]︄
≡ Im ([V ]iβ[V ∗]iγ [V ]4β[V ∗]4γ)F i;βγWZ

(4.B.8)
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For the same reason explained above, FWZ must depend on m2
i ,m

2
β,m

2
γ otherwise the sum

vanishes. The resulting structure is the one in (4.B.7), as promised. The loop diagrams with
only fermions and Z vanish because

Im ([Z]αβ[Z∗]αγ [Z]σγ [Z∗]σβ) = 0 (no sum), (4.B.9)

as can be seen from the explicit expression of [Z]αβ given in (4.B.3).
Diagrams with virtual Higgs bosons also contribute, but we will see below they are sublead-

ing. Before showing this we discuss a key constraint that the functions F1WW,2WW,WZ are sub-
ject to. Because there cannot occur IR divergences in matching the UV to the SM effective field
theory below the scale M , F1WW,2WW,WZ must be well-behaved when M2 ≫ m2

i,j ,m
2
α,β,m

2
W .

Hence

F ij;αβ1WW = min
(︄
m2
i

m2
W

,
m2
j

m2
W

)︄
min

(︄
m2
α

m2
W

,
m2
β

m2
W

)︄ ˜︁F1WW

(︄
m2
i

m2
α

,
m2
j

m2
α

,
m2
β

m2
α

,
m2
W

m2
α

)︄
(4.B.10)

F i;αβ2WW = m2
i

m2
W

min
(︄
m2
α

m2
W

,
m2
β

m2
W

)︄ ˜︁F2WW

(︄
m2
i

m2
α

,
m2
β

m2
α

,
m2
W

m2
α

)︄
(4.B.11)

F i;αβWZ = m2
i

m2
W

min
(︄
m2
α

m2
W

,
m2
β

m2
W

)︄ ˜︁FWZ

(︄
m2
i

m2
α

,
m2
β

m2
α

,
m2
W

m2
α

,
m2
Z

m2
α

)︄
, (4.B.12)

with the powers of m2
i,α/m

2
W ensuring that F1WW,2WW,WZ be regular when any of the quark

masses involved vanishes. Of course this does not mean that the result is inevitably propor-
tional to m2

u or m2
d, because the CP-odd factor Im [V ]iα[V ∗]iβ[V ]jβ[V ∗]jα is non-vanishing

only for specific combinations of indices, the dominants of which do not necessarily involve
the first generation. Actually (4.B.12) demonstrates that the dominant contributions to θ̄
arise from diagrams in which the heavier generations run in the loop. Finally, the end result
for θ̄ should clearly be regular as g → 0. This tells us that ˜︁F1WW,2WW,WZ are analytic in the
vector boson masses. The dominant contributions can be calculated for m2

W /M
2 → 0.

As a check of our arguments, one can verify that (4.B.6) together with (4.B.12) reproduce
the structure of the non-analytic contributions to θ̄ found in the SM [52]. The unitarity of the
CKM matrix however forces a non-trivial cancellation at 2-loops. Such degeneracy is lifted in
diagrams with an additional strong coupling (or photon) loop, and so the actual end result is
down by a factor g2

s/16π2 compared to (4.B.6). In our case no such cancellation takes place
because there is no “heavy top quark" to compensate for the fourth d−type family. For this
reason θ̄ is already corrected at 2-loops.

At this point we have all the tools to estimate the size of the non-analytic contributions to
θ̄. We begin considering contributions to F1WW , where both i, j ̸= i appear. The largest mass
factor from (4.B.12) is obtained when i = 3, j = 2 and α = 4, β = 3. The proportionality
to (m2

c/m
2
W )(m2

b/m
2
W ) renders such corrections rather innocuous. In addition, (4.B.6) turns

out to be very small as well. Using the approximate expressions for V derived in the previous
appendix, and recalling that Y can be written as a function of the SM Yukawa Yd and
ξ/mψ as in (4.2.9), we find that Im [V ]34[V ∗]33[V ]23[V ∗]24 ∼ (mb/M)λ2

C(ms/M)(|ξ|2/m2
ψ).

Even including potentially large logs, the resulting contribution to |θ̄| is at most numerically
comparable to (4.2.23) for M ∼ 1 TeV. The effect becomes subleading with (TeV/M)2 as soon
as the mediator mass is above the TeV, which has to be the case because of direct searches.
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Next we turn to an estimate of the W± −W± loops controlled by F2WW , or analogously
of the W±−Z loop in eq. (4.B.7), which we argued to be comparable parametrically. In this
case the largest mass enhancement is obtained with i = 3, α = 4, β = 3, when the fermions
running in the loop are the top, the bottom, and the heavy fermion. This is much larger than
the effect proportional to F1WW that we just analyzed. On the other hand,

Im [V ]34[V ∗]33[V ]43[V ∗]44 ∼ λ2
C

mbms

M2
Im ξ2ξ3

†

m2
ψ

(4.B.13)

is comparable to the imaginary part found above. The final result is thus expected to be of
order [8]

θ̄
⃓⃓⃓
nonanaly,WZ

= cnonanaly

(︄
g2

16π2

)︄2
m2
t

m2
W

m2
b

m2
W

λ2
C

mbms

M2
Im ξiξj

†

m2
ψ

(4.B.14)

∼ cnonanaly 10−16
(︃TeV
M

)︃2 Im ξiξj
†

m2
ψ

. (4.B.15)

We discussed it below (4.2.25). Here we just observe that an independent way to understand
the necessity of factors of quark masses in front of (4.2.25) is to note that when all SM fermions
are degenerate we can put Vij in diagonal form, in which case (4.B.6) vanishes.

Loops with fermions and 2 virtual Higgses, or one Higgs and one W±, or one Higgs and
one Z are respectively controlled by (no sum over indices is implied)

Im ([Y]αβ[Y∗]αγ [Y]σγ [Y∗]σβ) (4.B.16)
Im ([V ]iβ[V ∗]iγ [Y]γσ[Y∗]βσ) (4.B.17)
Im ([Z]αβ[Z∗]αγ [Y]γσ[Y∗]βσ) = |V4α|2 Im ([V4β[V ∗]4γ [Y]γσ[Y∗]βσ) . (4.B.18)

We inspected these structures and found that a non-vanishing correction to θ or Fu,d in (4.2.20)
can only be obtained if subleading terms in the mixing ∼ Y v/M between ψ and the SM are
taken into account. As a result corrections to θ̄ due to loops of the Higgs boson are always
smaller than in (4.B.15).
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Chapter 5

Summary and Outlook

The Standard Model of particle physics is one of the most successful theories of all time.
The precision to which it has been tested is unmatched in science, and after more than fifty
years it is still incredible how such a simple model can predict so closely what we observe in
Nature. Yet, we know that this cannot be the end of the story. Dark Matter, Baryogenesis, a
quantum description of gravity, are all problems that cannot be addressed within this simple
theory. The Standard Model needs to be extended. Still, the ultimate theory is expected to
reproduce the Standard Model parameters and its particle content in a natural way, namely
without fine-tunings. However, experiments clearly indicate that the pattern of CP violation in
the Standard Model is highly non-generic. This suggests that CP violation in its completion
must also be non-generic. It must apparently feature sizeable CP-odd phases, in order to
explain CP violation in the weak interactions, while simultaneously justify the absence of CP
violation in the strong sector. What properties should the UV completion of the Standard
Model have in order to accommodate these experimental facts without having to fine-tune its
parameters? Identifying theories with the correct characteristics defines what is known as the
Strong CP problem.

Among all the naturalness problems, the Strong CP problem is particularly special: it
is associated to a topological angle, that of QCD. Thus, it would not be a problem at all
if the strong interactions remained perturbative. In reality these become non-perturbative
around the GeV scale and, even though understanding CP violation in that regime is not a
trivial task, we are still able to make quantitative predictions thanks to modern tools such
as chiral lagrangian techniques and lattice computations. Today’s theoretical understanding
is however possible only thanks to a number of seminal works that elucidated the connection
between the topological angle, the QCD vacuum structure and the U(1)A problem, as revised
in chapter 2. In particular, the intimate connection with the U(1)A problem underlines how
the Strong CP problem is real and cannot be solved by the strong dynamics itself: it requires
some external explanation.

Another remarkable property of the QCD angle is that although its smallness is not
technically natural, its infinite renormalization can appear only at 7-loops order or more in
the Standard Model. Thus, if thanks to some mechanism it set to a small enough value
at the matching scale between the Standard Model and its completion, a big angle is not
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regenerated below that threshold and the Strong CP problem may be effectively solved. This
is not true in generic BSM scenarios. As we showed in chapter 2, infinite corrections to the
QCD angle may appear already at the 2-loops order in sufficiently generic theories and may
invalidate the mechanism fixing its value at the threshold scale. This result is particularly
relevant for UV solutions to the Strong CP problem, where the perturbative stability of θ̄
as set at the threshold is crucial to provide realistic models. For this reason, an important
future extension would be to actually compute the numerical coefficient in front of the 2-loops
beta function. Interestingly, this computation can be carried out in any model as long as
the tensorial structure does not vanish, even though it requires the calculation of a highly
non-trivial 3-loops diagram. In addition, we also showed how quite generally the running of
θ̄ starts already at 1-loop order. Identifying theories in which both the running of θ and θ̄
occurs at minimum at 2-loops order may therefore be the first step towards a sistematical
classification of possible UV solutions to the Strong CP problem.

A multitude of solutions to the Strong CP problem have been proposed. By far, the most
popular one is the QCD axion, studied in chapter 3. In this simple setup the QCD angle is
replaced by a dynamical field, called axion, that naturally relaxes its vacuum expectation value
to a CP-conserving minimum when QCD becomes strongly coupled. This elegant solution,
however, crucially relies on the existence of an anomalous U(1)PQ symmetry that must be
exact up a very high degree except for its anomalous coupling to the QCD topological term.
The associated fine-tuning introduces a quality problem that, if not addressed, renders the
axion solution to Strong CP problem ineffective. This issue may be faced in two ways: one
can either find a mechanism to suppress the potentially dangerous perturbations, or find new
corrections to the axion potential such that the QCD contribution gets effectively enhanced.
In chapter 3 we investigated the latter option by postulating that the dominant contribution to
the axion potential arises from an additional gauge group confining at scales much higher than
QCD. The model-building challenge posed by this interesting idea led to an elegant scenario
with a very minimal field content, in which the two groups unify at high-scales into a Grand
Color group. The resulting axion is parametrically heavier than the standard one, sizeably
ameliorating the quality problem and opening a new region in the usual ma − fa parameter
space with mass around the GeV and a TeV decay constant. Interestingly, this “visible axion”
as well as other striking phenomenological signatures of the model will be testable in the near
future at collider experiments and via cosmological observations. Therefore, it could prove
useful to study in greater detail the phenomenology of the model, or even to explore scenarios
beyond the minimal realization presented in this chapter, for example compatible with a grand
unification scheme.

The other possible option to tackle the Strong CP problem is to impose an UV condition
such that at the matching scale between the Standard Model and its completion the QCD
angle is set to a value consistent with experimental observations. This gives rise to the
class of UV solutions to the Strong CP problem, as opposed to IR-effective ones such as the
QCD axion. The basic assumption of these solution is an exact generalized CP symmetry
in the UV, which gets spontaneously broken at lower scale. In chapter 4 we gave a brief
overview of the most popular constructions of this kind, focussing then on models falling in
the Nelson-Barr class. We scrupulously analysed the viability of these models by deriving
the conditions for which the Strong CP problem is solved while simultaneously the correct
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amount of low-energy CP violation, encapsulated in the CKM phase, is reproduced and the
most recent experimental bounds are complied with. This required a careful estimation of
loop corrections to θ̄ up to 3-loops as well as a detailed analysis of the new particles’ influence
on the SM quark masses and on low and high-energy observables. As a result, we found that
these models must satisfy a non-trivial coincidence between a priori unrelated CP-odd and
CP-even mass scales. This immediately leads to the question of how naturally this coincidence
can be generated in concrete UV completions. In the last part of chapter 4 we showed how
this property can emerge by gauge invariance and a CP-conserving, but otherwise generic,
physics at the Planck scale. We presented a construction in which the spontaneous breaking of
CP is due to a confining non-Abelian dynamic, automatically realizing the crucial coincidence
without any additional fine-tuning. The model is remarkably predictive, requiring vector-like
quarks and leptons around the TeV scale and a dark sector featuring interesting cosmological
signatures, among which viable dark matter candidates. We also showed how baryogenesis
can be easily accounted for in this scheme. As a future direction, thus, it would be interesting
to perform a more accurate study of the cosmological history of our model to single out the
best implementation capable of simultaneously reproducing the amount of dark matter and
of matter-antimatter asymmetry observed in our universe.

After more than fifty years, the Strong CP problem still remains one of most puzzling
questions in physics beyond the Standard Model. The theoretical effort put forth in trying to
overcome this challenge led to a vast landscape of models tackling the problem from different
angles, and it is still a source of inspiration for many new and original approaches. While
most scenarios have already started to be constrained by current experiments, only future
observations will be able to tell us which is the correct path to follow and, maybe, help to
shed light on one of the greatest puzzles in theoretical particle physics.

123



124



Conventions

The metric in Minkowski space is the mostly-minus one

ηµν =

⎛⎜⎜⎜⎝
1
−1

−1
−1

⎞⎟⎟⎟⎠ .
The Levi-Civita tensor ϵµνρσ is totally antisymmetric with ϵ0123 = +1.

Given a compact Lie group G with Lie algebra g, the generators T aR in some representation
R are finite-dimensional Hermitian matrices satisfying the algebra[︂

T aR, T
b
R

]︂
= ifabcT cR

where fabc are the structure constants of the group. In the adjoin representation (T a)bc =
−ifabc. The generators are chosen so that

trT aRT bR = T (R)δab

where T (R) is the index of the representation. This satisfies the equality

T (R)d(G) = C2(R)d(R)

where d(G) is the dimension of the group (the number of generators), d(R) is the dimension
of the representation R and C2(R) is the quadratic Casimir, defined as

T aRT
a
R = C2(R)1R.

In a non-abelian gauge theory, the gauge fields Aµ(x) ≡ Aaµ(x)T a sit in the adjoin repre-
sentation and transform under a gauge transformation U(x) = eiα(x)aTa as

Aµ → UAµU
−1 − i

g
(∂µU)U−1.

where g is the gauge coupling. A field ψ(x) in the representation R of G transforms as
ψ → eiα(x)·TRψ, so that the covariant derivative, which satisfies Dµ(Uψ) = UDµψ, is given by

Dµψ =
(︂
∂µ − igAaµT aR

)︂
ψ.
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The gauge field-strength can be defined in terms of the covariant derivative as

Fµν = i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig [Aµ, Aν ]

or in components

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν

and transforms under a gauge transformation U as

Fµν → UFµνU
−1.
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