The Cost of Learning: Efficiency vs. Efficacy of
Learning-Based RRM for 6G

Seyyidahmed Lahmer*, Federico Chiariotti*T, Andrea Zanella*
*Department of Information Engineering, University of Padova, via G. Gradenigo 6B, 35131 Padova, Italy
fDepartment of Electronic Systems, Aalborg University, Fredrik Bajers Vej 7C, 9220 Aalborg @st, Denmark
Emails: {federico.chiariotti, seyyidahmed.lahmer, andrea.zanella}@unipd.it

Abstract—In the past few years, [Deep Reinforcement Learning|
[[DRL)| has become a valuable solution to automatically learn
efficient resource management strategies in complex networks.
In many scenarios, the learning task is performed in the Cloud,
while experience samples are generated directly by edge nodes or
users. Therefore, the learning task involves some data exchange
which, in turn, subtracts a certain amount of transmission
resources from the system. This creates a friction between the
need to speed up convergence towards an effective strategy, which
requires the allocation of resources to transmit learning samples,
and the need to maximize the amount of resources used for
data plane communication, maximizing users’ [Quality of Service
which requires the learning process to be efficient, i.e.,
minimize its overhead. In this paper, we investigate this trade-off
and propose a dynamic balancing strategy between the learning
and data planes, which allows the centralized learning agent
to quickly converge to an efficient resource allocation strategy,
while minimizing the impact on [QoS] Simulation results show
that the proposed method outperforms static allocation methods,
converging to the optimal policy (i.e., maximum efficacy and
minimum overhead of the learning plane) in the long run.

Index Terms—Resource allocation, Reinforcement learning,
Cost of learning, Edge networking, Network slicing.

I. INTRODUCTION

The use of [Artificial Intelligence (AI)| in communication
networks has become pervasive with the transition from 4G
to 5G, and learning is at the core of the 6G standardization
process [[1]: mobile networks have become exponentially more
complex, with multiple [QoS] targets and extremely fast dy-
namics, and computational and energetic considerations have
become inextricable from communications with the rise of
green networking [2]] and [Mobile Edge Computing (MEC)|[3]].
The 6G vision acknowledges that hand-designed resource
allocation strategies are not up to the challenge of managing all
these elements, proposing the use of as an adaptable and
robust alternative for network orchestration [4] and resource
allocation [5]], along with a variety of other optimization tasks.
DRLJs effectiveness in dealing with complex scenarios is well-
established: these agents can find foresighted policies aiming
for long-term objectives [6]], significantly improving network
performance after the agent has been trained.

This work was supported by the EU H2020 MSCA ITN project Greenedge
(grant no. 953775), by the European Union under the Italian National Recov-
ery and Resilience Plan (NRRP) of NextGenerationEU, under the REDIAL
Young Researchers grant and the partnership on “Telecommunications of the
Future” (PE0000001 - program “RESTART”), and by the Villum Foundation,
Denmark, under Villum Investigator grant “WATER.”

However, large and complex models, such as those
required to control modern communication networks, are also
computational processes that require non-negligible compu-
tational [7]], transmission [8]], and energetic resources. Local
training at the edge puts a significant strain on nodes
with limited energetic and computational budgets, and offload-
ing training to the Cloud incurs a significant communication
overhead. As the use of in 6G is aimed at optimizing
the allocation of communication and computational resources,
not considering the cost of learning might lead to suboptimal
outcomes [9]. In this sense, their efficiency becomes question-
able: the performance during the training process might be
affected by the cost of the process itself, particularly for more
complex models and agents, leading to a trade-off between it
and effectiveness at convergence.

Online training, which is necessary in environments with
time-varying statistics, is particularly vulnerable to this is-
sue [10], as the agent needs to keep training to update
its policy to the changes in the environment. In our previous
work [11]], we considered the trade-off between effectiveness
and efficiency of Cloud-based training by optimizing the
resource allocation between the data plane, i.e., the network
resources allocated to the end users, and the learning plane,
i.e., the portion of the network resources used by the learning
process. However, in that work, we considered a static resource
allocation to the learning plane, thus fixing the overhead cost
of the learning process on the system and, at the same time,
fixing the speed at which the could converge towards an
efficient strategy for the allocation of the remaining resources
to the users.

In this work, we go beyond a simple static allocation and de-
fine a more general learning plane control loop, which decides
the allocation of resources based on a greedy optimization
strategy. This dynamic resource allocation is computationally
simple, and maintains a similar efficiency to fixed allocation
strategies, while reaching the same effectiveness as ideal out-
of-band (i.e., with negligible overhead) approaches after the
training period is over. We demonstrate the performance of
the proposed framework in a simple network slicing scenario,
showing that the dynamic approach leads to significantly better
performance after an initial transition. To be noticed that
the optimization framework we propose is not tied to the
networking scenario, but works in any allocation problem in
which the pool of resources that the agent needs to

allocate to the users is also required for the training of the
agent itself.

The rest of this paper is divided as follows: first, Sec.
presents the system model and the learning plane optimization.
The slicing use case is then described in Sec. while Sec.
presents the simulation results. Finally, Sec. [V] concludes the
paper and presents some possible future work on the subject.

II. SYSTEM MODEL

Let us consider a generic resource allocation problem, which
is modeled as an infinite horizon [Markov Decision Process
defined by the tuple (S, A,P,R,~v): S represents
the state space, A is the action space (which is potentially
different for each state), P € [0, 1]ISI*I4IXIS is the transition
probability matrix, which considers both the state and the
action chosen by the agent, R : S x A x S — R is the
reward function, and v € [0,1) is the discount factor. The
ultimate objective of a agent is to find the optimal policy
m* : § = A, which maximizes the expected long-term reward:

7 = argmax E Z*th(st,ﬂ'(st),stH) (D

mS—A =0

Time is divided in slots, and the slot index is denoted
by t € ZT. Let us assume that, in each time slot ¢ and
independently from the state s € S, the system can allo-
cate N resource blocks, which may represent communication
bandwidth, computational cycles, or energy, depending on
the specific application: the type of resource may affect the
definition of the specific but is irrelevant at this point.
In general, we refer to requests in the following: a request may
be a packet that needs to be transmitted, a computing job that
needs to be executed, or an action that requires some energy,
but each request requires exactly one resource block.

The system resources are allocated among M different
slices, where a slice may represent a single user, or a group of
users with the same features. The action space then contains all
possible resource allocation vectors that split the N resources
among the M slices:

M
Az{ae{o,...,N}M:Zam:N}.)

m=1

Furthermore, we assume that each slice is associated to a
[First-In First-Out (FIFO)| queue of requests: each queue has a
limited size @, after which the system starts dropping older
requests for that slice to make room for newer ones.

In this work, we focus on [Key Performance Indicators|
tied to the latency with which the requests of the
different slices are served. However, the approach can be
generalized to consider other metrics.

We hence indicate by T, ; the latency of the i-th request
from slice m, which depends on the time it spends in the queue
before being assigned a resource. Dropped or rejected requests
have an infinite latency by definition. The ¢-th request from

slice m is generated at time %, ;, and age A, ;(¢) is defined
as:

Am,z(t) =t—- tm,i- (3)
We can then define the reward function:
M a
R(s,a,8) = > > fm (Bg9) » “)
m=11i=1

where A, ;) is the age of the packet in position 7 of the m-th
queue at the current time ¢, and f,, : N — [0, 1] is a function
mapping the latency of each request to slice m’s resulting
With a slight abuse of notation, we define f(@) = 0,
where & indicates that there is no packet in that position in
the queue. We can distinguish between slices with hard timing
requirements, for which the [QoS| of a request is 1 if it is
served within a maximum latency, and O if it exceeds that
deadline; and soft timing requirements, for which the is
a generic monotonically decreasing function of the latency. It
should also be noted that dropped or rejected requests do not
generate any rewards, as they are never included in the sum.
The state of the system is then represented by the age of each
request contained in each queue, so that in the most general
case, S = ({@} UN)M*@,

The objective of the learning agent is then to learn how to
allocate resources among users, so as to maximize their [QoS]
parameters; it should also be aware of the slices that have a
higher risk of violating hard timing requirements and schedule
resources to avoid missing deadlines. However, learning is
also a computational process, and the agent may take
up some of the same resources that may be allocated to the
users in order to improve its policy. As we highlighted in our
previous work [[11]], considering the cost of learning can lead
to significantly different choices, limiting the amount and type
of experience samples that are selected for training: this is also
true regardless of the type of resource the learning requires.

However, even our previous work only considered static
policies, which set up a separate virtual channel (either di-
vided in time or in frequency) for the learning data, strictly
separating the learning and data planes. Equivalently, an agent
learning how to schedule tasks in an edge server could
reserve a certain percentage of computation time to self-
improvement, but the amount was decided in advance. This is
clearly suboptimal: intuitively, the relative returns from policy
self-improvement decrease over time, as the agent gradually
converges to the optimal policy. After convergence, and as
long as the environment statistics are stable, the value of
further improvements to the policy is zero by definition. A
dynamic policy for adapting the allocation between requests
and learning should then take this into account.

Furthermore, the current state of the system also needs to
be taken into account: if delaying the queued requests further
does not have a large impact on the the system can take
away resources from the slices in order to improve the resource
allocation policy, but if the impact is big, e.g., if some requests
from a slice with hard timing requirements are already close to

1

Centgalized

/_\/_Leg'ner

Palicy:
loT v 1 Comm-Link
thing L
police]
emergency ,\\
LY
s hY
H e . .
- . Access Point
loT \\
thing 1Y
factory :
-
loT
Medical
Emergency

Shared Link of Capacity C

Fig. 1: Schematic of the learning control loop in a communication scenario.

the deadline, they need to be prioritized, choosing immediate
gains over potential future improvements.

This is particularly important for non-stationary environ-
ments, in which the coherence time of the [MDP] statistics is
finite: in this kind of system, the learning agent needs to adapt
the allocation to the changing statistics of the environment, and
cannot rely on offline training, but must keep learning from
experience and adapt to the changes proactively.

A. Learning Plane Resource Allocation

One of the problems of including the learning plane in the
resource allocation policy is the circularity of the policy: in or-
der to learn when to allocate resources to policy improvement,
a agent needs to first learn when learning is important.
As the policy evolves over time and learning becomes less
of a priority, this makes the reward that the agent perceives
dependent on the agent’s own reduced demands, making the
environment non-stationary.

In order to avoid this problem, we need to set an external
rule to regulate learning, so that the environment that the agent
sees is stationary. We define a generic resource allocation
vector space Z as follows:

M
Z:{ze{O,...,N}M:szSN) (5)

m=1
We remark here that Z is not the action space, but rather a
superset of it, i.e., A C Z: the definition of the action space
in (Z) only considers allocation that gives all of the available
resources to slices. If Zf’/{:l Zm < N, the remaining resources

are allocated to the learning.

We can then divide time slots in two categories: in [DRL
slots, the DRT] agent applies its current policy and allocates all
the resources to the slices requesting them, while in learning
slots, we use a different policy, which divides resources be-
tween the learning process and the slices. Naturally, this policy
must be simpler than the one defined by the problem,
and should not be learning-based, to avoid the circularity
problem. We also remark that learning slots are not considered
as experience samples for the training, as the resource
allocation z might not be a valid action in the

Fig.[T]shows a basic schematic of the process in the commu-
nication use case: the two classes of users, corresponding to
[Internet of Things (IoT)|and human communications, transmit
over a shared link, and the resources in each time slot (which
correspond to bandwidth and time resources in the uplink to
the Cloud) are allocated following the dynamic division. Slots
3 and 6 in the figure are learning slots, as a significant portion
of the resources is allocated to the learning plane.

We can then define a randomized selection between
and learning slots: in each time slot ¢, the learning plane
can be allocated some resources with probability p(t), which
decreases linearly over time, following a similar profile to
the e-greedy policy’s exploration parameter. If we consider a
coherence time for the scenario of 7 slots, i.e., the statistics of
the environment will be approximately stationary for 7 steps,
so that previous experience is still useful and the optimal
policy is static, we can adapt the learning curve. However,
we still need to define an allocation strategy in learning slots.

(21, Z2, Z3)
!
(21, 22, 0) (21,22, Z5)
i t
) t greedy Split
I 1-p(t) ﬂ!\ plt)]
L/
i
s(t)

Fig. 2: Schematic of the learning plane resource allocation
policy.

B. Greedy Allocation Strategy

Firstly, we define a function R:8Sx2Z — R, which
represents the best approximation of the instantaneous reward
for each resource allocation, considering only the information
available in the current state. If the f,, functions are
known, we can consider the following approximated reward:

M Zm L
Ris,z) = > D fn (Bgni) = D fn (B + 1)
m=1 | i=1 Jj=zm+1

(6)
Naturally, this only considers the instantaneous reward, and an
allocation based on this function will often lead to worse out-
comes: however, this is a simple policy that can be evaluated
instantly, and its optimization is relatively simple.

The second element that we must take into account when
designing the policy in learning slots: after each slot,
we generate an experience sample, which is queued for trans-
mission or training. Due to memory limitations, the maximum
number of unprocessed samples is E, and each sample is split
into ¢ packets, each of which requires one resource allocated to
the learning. We then define a second function S(z, e), where
e € {0,...,E} is the number of samples in the experience
queue. The greedy strategy is then the solution to the following
optimization problem:

z*(s,z,e) = arg max (M_lf%(s, z) + E'S(z, e)))]

If f,, is concave for all slices with a soft timing requirement,
we can exploit the [FIFO| nature of the queue to provide a
simple iterative solution, starting from the empty assignment
and gradually assigning resources to either one of the slices
or the learning process, depending on its value.

Fig. 2 shows a schematic of the full learning plane resource
allocation strategy, in a simple case with M = 2: at each time
step, the node randomly selects either the agent or (with
probability p(t)) the greedy allocation, which reserves some
resources for the learning plane, while taking care to avoid
damaging the reward.

TABLE I: Use case and learning parameters.

Parameter Symbol Value
Communication system
Number of subchannels N 15
Slot time duration T 1 ms
Packet queue length Q 1500
Packet size L 512 B
Link capacity C 7.68 MB/s
Traffic model
Total users Uy 16
. Active user rate Ry 512 kB/s
Slice 1 05 05
Activity transition matrix o)))
0.92 0.08
Total expected traffic E[G1] 2.88 MB/s
Total users Us 17
Active user rate R2 512 kB/s
Slice 2 . .
Activity transition matrix ~ O(2) 0.5 0.5
0.5 0.5
Total expected traffic E [G2] 4.35 MB/s
Packet deadline T,Efa)x 70 ms
Learning plane
Discount factor o7 0.95
Learning queue length E 1500
Packets required for each sample ¢ 3
Initial learning slot probability 0 0.2
Final learning slot probability pf 0.01
Learning slot probability decay o 8 x 104
Learning slot decay pace H 1000
Queue pressure parameter X1 1400

III. NETWORK SLICING USE CASE

We consider a simple, but representative scenario, in which
an [Orthogonal Frequency Division Multiple Access (OFDMA)|
link with N orthogonal subchannels is used to transmit the
data packets generated by two classes of data sources, as well
as traffic on the learning plane. The scenario fits the general
model presented in the previous section, as the communication
resources are shared between the data and learning planes. The
full parameters for the scenario, which we will describe in this
section, are given in Table

A. Communication System Model

The number of active users in each slice is variable, making
traffic non-deterministic. We consider two slices, correspond-
ing to the two types of data sources:

o Slice 1 represents file transfer traffic, for which we do
not set any strict latency constraints. However, we want
the system to have the highest possible reliability to ease
the burden on the higher layers. As such, f1(7) =1 for
all finite values of T, but the is 0 if T is infinite
(i.e., if the packet is dropped);

o Slice 2 represents interactive traffic, such as video con-
ferencing or [Virtual Reality (VR)| traffic, with a strict

latency deadline: packets need to_be transmitted within
a maximum latency Tr(fa)x, or the drops to 0.

We consider a maximum number of active users U,,, € N
for each slice, each of which follows a Gilbert-Elliott on-off
model, which can be modeled as a binary Markov chain with
transition probability matrix O™ In state 0, the user does
not transmit, while in state 1, it transmits packets of size L
with a constant bitrate R,,.

The aggregate traffic generated by slice m is then rep-
resented by the number of active users at time ¢ w,(t),
multiplied by R,,. We can define a Markov chain over
Um € {0,..., Uy}, with the following transition probabilities:

min(u,v)
Pt (t+1) = vlun () = u) = Y _(0F)* (O5)

w=max(0,u+v—U,,)

u Umiu m)\v—w m —u—v+w
() ()b og e,

w v—w
(®)
The expected traffic G,,, from slice m can be computed as:
O Uy Ry
E[Gm]=—0 ©)

Oy + 05"
On the other hand, the total channel capacity is simply given

by:
NL

C = == =17.68 MB/s. (10)
T

We also consider different policies for each slice’s queue: in
both queues, packets that find a full queue are rejected, i.e.,
they do not enter the queue and are dropped immediately.
However, in the second queue, packets still in the queue whose
age is higher than the deadline are also dropped, as they do
not contribute to the [QoS] of the slice and transmitting them
would just waste resources.

B. Learning Plane

We can then define the [DRT] agent and learning plane opti-
mization parameters. We used a[Deep Q-Network (DQN)| [12]
for the agent, as the problem is simple enough not to require
more advanced architectures. We also simplified the state and
action space, limiting the possible resource allocation vectors
to the following:

(1)

with 0; € {(1,—-1),(0,0),(—1,1)}. In other words, the change
in the allocation is at most 1 resource with respect to the
previous step. The outputs of the [DQN]correspond to the
estimated long-term value of selecting each d;, so the network
only has 3 output values. The state was also simplified: for
each slice m € {1,2}, the input to the network is given by
the following values:
o The number ¢,, € {0,...,Q} of packets in the queue;
o The minimum latency 72" for packets transmitted in the
previous slot;
e The maximum latency 7,-* for packets transmitted in
the previous slot;

a1 = a; + 0y,

TABLE 1I: architecture.

Layer size Activation function
Input Output
13 64 ReLLU
64 32 ReLU
32 3 Linear

o The average latency Tr,® for packets transmitted in the

previous slot;

e The number d,, of dropped or rejected packets in the

previous slot;

e The current number a,,, of resources allocated to the slice.
The values for each queue are contained in the tuple s(™) =
(G, T2 08X T2V . a), to which we add another pa-
rameter: £, i.e., the number of packets in the queue for slice
2 that would miss their deadline if they are not transmitted in
the next slot. We can define it as follows:

Q
D=3 (Dpw) — f2 (B +1) - (12)
i=1

As the first slice does not have latency requirements, there
are no equivalent parameters for it. The input to the is
then given by s(™) s(™) £(m) for a total of 13 values, which
are normalized to fit in the range between O and 1. The full
network architecture is given in Table

We then consider the learning plane optimization. First,
we set the size of the experience sample queue £ = 1500,
and implement an early rejection policy. When a sample is
generated, its rejection probability is equal to %, i.e., to the
current pressure on the queue. Consequently, samples that find
a full queue are always rejected, but sometimes samples that
could fit in the queue are dropped in favor of new experiences,
avoiding too many correlated samples filling the queue.

The probability of selecting a slot as a learning slot decays
linearly, starting from an initial value pg and gradually decay-
ing to a value py. The decay is applied every H steps, after
which the learning rate decreases by a constant value o

p(t) = max (pf,po - L};J 0’) :

Finally, we consider the greedy allocation in the learning
slots. As the first slice has no latency requirements, we
consider allocating resources to it greedily only when the
number of packets in the queue is higher than a threshold x:
in this way, we avoid packet rejections, but also leave more
resources for learning plane and latency-sensitive packets.

We can then define the following estimated rewards:

(13)

(14)
15)

Rl(s,z) = min(0, z; — min(q; — x1, NV));
Rs(s,z) = min(0, 25 — min(&, N));

2
S(z,e) = min(e, N) — (N . Z zm> . (16)

IThe complete implementation of the DQN agent and dynamic resource
allocation is available at https://github.com/slahmer97/costoflearning

https://github.com/slahmer97/costoflearning

Static allocation (2 blocks)

= infinite learning bandwidth
0

w /

/
-100

-150
200
-250

-300
Step

500k 1M 1.5M 2M
Fig. 3: Average cumulative reward per second.

The minimum operation ensures that resources will not be
allocated to a slice once the queue pressure is below the limit
& or all packets with a close deadline are served, respectively.
We can define the following problem:

2

z*(s,z,e) = argmax S(z, e) +
zEZ

Ru(s,z). (17)
m=1
As the problem can easily be converted to an integer linear
problem, we can easily solve it through iterative methods by

assigning each resource.

IV. SIMULATION RESULTS

We can then measure the performance of the dynamic
learning plane resource allocation, running the agent
in the slicing use case for 2000 seconds. We define two
benchmarks against which we compare our dynamic solution:

e Out-of-band learning plane: in this ideal scenario, training
data is transmitted over a side channel with infinite
capacity. This corresponds to the common assumption in
the literature of free training;

e Static allocation: in this case, we set aside a fixed
number of resources for the training process in each time
slot. This is equivalent to the solution in our previous
work [11], which considered the cost of learning but only
proposed static policies.

We run two versions of the static allocation, which give 1 and
2 resources per time slot to the learning plane, respectively.

The overall reward over the training process is shown in
Fig. B} as the figure shows, the dynamic allocation initially
performs worse than static allocation, but manages to converge
slightly faster and maintain close to ideal performance after
approximately 4 x 10° samples, corresponding to slightly more
than 10 minutes of real time, while the static algorithms have
a lower reward at convergence. This is also due to the fact
that, unlike in our previous work, the resources allocated
to the learning plane change the nature of the problem, so
that resources allocated to the learning plane cannot just be
transferred to the data plane: as the agent trained with
N’ < N resources, it will perform suboptimally if it is asked
to allocate N resources.

We can also consider the effect of learning slots on the
learning and data planes: Fig. [] shows how many experi-
ence samples are forwarded to the Cloud during the training

—
b

800 B
g

S 600 =
N—

<

S 400 | L
o

‘%O 200 -
=

=

b 0 T T T

— 0 500 1000 1500 2000

Time (s)

Fig. 4: Average number of forwarded learning experiences per
second.

1 | | L o
E 0.8 - -
Q
— 0.6 L
<
.8
S 0.4+ -
o
E 02 L
84|
0 T T T T
0 0.2 0.4 0.6 0.8 1
Reward loss

Fig. 5: Empirical CDF of the reward loss during learning slots.

process. Following the linear decay of p(t), the number of
new experience samples transmitted for training is initially
very high, but decreases over about 300 seconds to reach the
minimum, which is between 40 and 50 samples per second.
This rate is high enough to guarantee that changes in the
environment statistics are captured, but does not impact the
final performance, as we discussed above. Furthermore, we
can analyze the impact of learning slots on the instantaneous
reward by looking at the empirical [Cumulative Distribution|
of the reward penalty from using the greedy
allocation, shown in Fig. the reward loss is 0 in 40% of
cases, and below 0.1 in 80% of cases. This means that the
greedy allocation can still guarantee good performance in most
cases, and as such, is a robust strategy for the learning slots.
The static allocation with only 1 resource per time slot works
better than with 2, even though its convergence is slightly
slower, but still ends up dropping or rejecting hundreds of
packets per second: slice 2 tends to suffer more, as it has more
stringent requirements which need to be optimized better. On
the other hand, our dynamic resource allocation manages to
allocate resources as well as the ideal system, after the initial
training period.

We can further analyze the performance of slice 2 by
considering the average latency experienced by packets, as
shown in Fig. [T} the out-of-band solution quickly converges
to immediately serving all packets from the slice, ensuring
the lowest possible risk of violating the hard timing require-
ment. The dynamic resource allocation needs more time, and
approaches the limit during training as several resources are
taken up by the learning plane, but quickly reduces the latency

6000 ‘
P Out-of-band (ideal)
S~
v/ —— Dynamic
& 4000 1 Static (1 res.)
% Static (2 res.)
g, 2000 i o
o o
i
Q N N
01— T T ey
0 500 1000 1500 2000
Time (s)
(a) Slice 1 (rejected packets).
Fig. 6: Drop and rejection rates
2 80
g __________________________________
>
3
5
E - - - Deadline oo Out-of-band (ideal)
06)0 —— Dynamic Static (1 res.)
s Static (2 res.)
g
< T - \
0 500 1,000 1,500 2,000
Time (s)

Fig. 7: Average queuing latency in slice 2.

to the same level as the ideal policy, with only minor spikes
that remain below 5 ms. On the other hand, the static strategies
have a latency that is close to the limit, as the limited resources
available to the data plane require much riskier choices to
avoid having too much of an impact on the other slice. The
dynamic allocation manages to achieve better performance
for both slices, even during training, only suffering an initial
performance drop in the first minute of training.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have designed a dynamic resource allo-
cation policy which can mediate between the learning and
data planes, controlling the trade-off between effectiveness and
efficiency of models. Unlike most works in the learning-
based networking literature, we specifically consider the cost
of learning, i.e., the resources required by the training process
of a [DRT] agent, and shown that our dynamic policy can
outperform static schemes and, after a short transition phase,
match the performance of an ideal system with an out-of-band
learning plane.

Possible extensions of the work include a wider deploy-
ment with more resources and a more difficult problem, with
multiple slices and more stringent requirements, such as those
for [Ultra-Reliable Low-Latency Communications (URLLC)|
Another interesting theoretical question is the interplay be-
tween cost of learning and active learning: when resources in
the learning plane are scarce, transmitting the most valuable
samples can significantly accelerate training. In[DRT] this also

7 - Out-of-band (ideal)
E 2000 —— Dynamic |
E Static (1 res.)
f:—é Static (2 res.)
s |
o
©
i
a
T T T
0 500 1000 1500 2000
Time (s)

(b) Slice 2 (rejected and dropped packets).

of each slice queue over time.

has an important effect on the trade-off between exploration
and exploitation, which we plan to study in a future work.

REFERENCES

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
roadmap to 6G: Al empowered wireless networks,” IEEE Communica-
tions Magazine, vol. 57, no. 8, pp. 84-90, 2019.

I. Chih-Lin, “Al as an essential element of a Green 6G,” IEEE Trans-
actions on Green Communications and Networking, vol. 5, no. 1, pp.
1-3, 2021.

N. Hu, Z. Tian, X. Du, and M. Guizani, “An energy-efficient in-
network computing paradigm for 6G,” IEEE Transactions on Green
Communications and Networking, vol. 5, no. 4, pp. 1722-1733, 2021.
N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133-3174, 2019.

H. Sami, H. Otrok, J. Bentahar, and A. Mourad, “Al-based resource
provisioning of IoE services in 6G: A deep reinforcement learning
approach,” IEEE Transactions on Network and Service Management,
vol. 18, no. 3, pp. 3527-3540, 2021.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

N. Shalavi, G. Perin, A. Zanella, and M. Rossi, “Energy efficient
deployment and orchestration of computing resources at the network
edge: a survey on algorithms, trends and open challenges,” 2022.
[Online]. Available: https://arxiv.org/abs/2209.14141

O. Beaumont, L. Eyraud-Dubois, and A. Shilova, “Efficient combination
of rematerialization and offloading for training DNNs,” Advances in
Neural Information Processing Systems, vol. 34, pp. 23 844-23857,
2021.

I. Jang, H. Kim, D. Lee, Y.-S. Son, and S. Kim, “Knowledge transfer
for on-device deep reinforcement learning in resource constrained edge
computing systems,” IEEE Access, vol. 8, pp. 146 588-146 597, 2020.
R. S. Villaga and R. Stadler, “Online learning under resource con-
straints,” in International Symposium on Integrated Network Manage-
ment (IM). IFIP/IEEE, 2021, pp. 134-142.

F. Mason, F. Chiariotti, and A. Zanella, “No free lunch: Balancing learn-
ing and exploitation at the network edge,” in International Conference
on Communications (ICC). 1EEE, 2022, pp. 631-636.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

(10]

(11]

[12]

https://arxiv.org/abs/2209.14141

	Introduction
	System Model
	Learning Plane Resource Allocation
	Greedy Allocation Strategy

	Network Slicing Use Case
	Communication System Model
	Learning Plane

	Simulation Results
	Conclusions and Future Directions
	References

